Barts & The London - Institute of Dentistry

Professor Robert Hill, BSc. MsC. Ph.D. DIC.

Robert

Chair in Dental Physical Sciences, Research Director

Email: r.hill@qmul.ac.uk
Telephone: +44 20 7882 5974
Room Number: Rm 2.20 Dental Physical Sciences, Francis Bancroft Building, Mile End

Profile

Professor Robert Hill is a Materials Engineer with a Ph.D in Chemical Engineering from Imperial College. In his early career he worked with Alan Wilson on Glass Ionomer Cements (GIC)s and in 1988 was part of the Group that won the Queens Award. He was formerly Professor of Biomaterials at Imperial College.Robert Hill is the inventor of Serenocem® a GIC for ENT surgery and a co inventor of Ultradex Recalcifying and Whitening – a nano hydroxyapatite toothpaste. In 2013 he won the Alan Wilson prize for Dental Materials and led the group that won  the Armourers and Brasiers Venture Prize. In 2014 he founded BIoMin Technologies Ltd (see www.biomin.co.uk)  a Queen Mary Spin out company based on key patents filed on Fluoride Containing Bioactive Glasses. The company produces Bioactive Glass Remineralising Hypersensitivity toothpastes that are sold in Europe, China, India and Australia.

He is a member of TC4 of the International Congress of Glass that deals with Medical and Dental Glasses and TC7 that deals with Glass-ceramics.

 

Teaching

Professor Hill teaches Dental Materials to BDS, DClin and MSc Students.

Research

Research Interests:

Professor Hills research interests include Bioactive Glasses, Glass Ionomer Cements, Apatites, Composite Fillings, Varnishes  Adhesives Bone Grafts, Bone Substitutes and Glass-ceramics .Professor Hills research  is very multidisciplinary ranging from the fundamentals of glass structure  and glass in glass phase separation to how cells interact with materials. He has published over 250 refereed papers and filed more than twenty patents. He is particularly known for his expertise in translating laboratory research into commercial products. He works closely with companies producing Dental Materials and the Oral Healthcare Industry.

Currently his major interests are in researching and developing Fluoride Containing Bioactive Glasses for Dental Composites Varnishes, Periodontal Treatment  and Orthodontic Adhesives. He is also working on glass-ceramics based on Mica,  Chlorapatite and other phases.

He has supervised over 50 Ph.D students  many of whom are now University lecturers or Professors or have senior positions in industry. He is currently supervising 7 Ph.D students and 3 DClin Students.

Publications

Henry, J., et al., The investigation of the crystalline phases development in Macor® glass-ceramic. Journal of the European Ceramic Society, 2018. 38(1): p. 245-251.

Taha, A.A., et al., The effect of bioactive glasses on enamel remineralization: A systematic review. Journal of dentistry, 2017.

Taha, A.A., et al., Development of a novel bioactive glass for air-abrasion to selectively remove orthodontic adhesives. Clinical oral investigations, 2017: p. 1-11.

Swansbury, L.A., et al., Modelling the Onset of Phase Separation in CaO-SiO2-CaCl2 Chlorine-Containing Silicate Glasses. The Journal of Physical Chemistry B, 2017.

Sriranganathan, D., et al., The effect of the incorporation of fluoride into strontium containing bioactive glasses. Journal of Non-Crystalline Solids, 2017. 457: p. 25-30.

Simila, H.O., N. Karpukhina, and R.G. Hill, Bioactivity and fluoride release of strontium and fluoride modified Biodentine. Dental Materials, 2017.

Samueli, A., R. Hill, and D. GILLAM, Bioactive Glasses in the Management of Dentine Hypersensitivity: A Review. Dental Health: Current Research, 2017.

Kargozar, S., et al., Strontium-and cobalt-substituted bioactive glasses seeded with human umbilical cord perivascular cells to promote bone regeneration via enhanced osteogenic and angiogenic activities. Acta Biomaterialia, 2017.

Kanwal, N., et al., In-vitro apatite formation capacity of a bioactive glass-containing toothpaste. Journal of dentistry, 2017.

Huang, M., R.G. Hill, and S.C. Rawlinson, Zinc bioglasses regulate mineralization in human dental pulp stem cells. Dental Materials, 2017. 33(5): p. 543-552.

Elgayar, I., et al., Dielectric spectroscopy and dissolution studies of bioactive glasses. International Journal of Applied Glass Science, 2017. 8(4): p. 418-427.

Duminis, T., S. Shahid, and R.G. Hill, Apatite glass-ceramics: a review. Frontiers in Materials, 2017.

Chen, X., et al., High chloride content calcium silicate glasses. Physical Chemistry Chemical Physics, 2017. 19(10): p. 7078-7085.

Chen, X., et al., Sodium is not essential for high bioactivity of glasses. International Journal of Applied Glass Science, 2017. 8(4): p. 428-437.

Al-Eesa, N., et al., Fluoride containing bioactive glass composite for orthodontic adhesives–ion release properties. Dental Materials, 2017. 33(11): p. 1324-1329.

van Duinen, R.N., et al., In-vitro Study on Temperature Changes in the Pulp Chamber Due to Thermo-Cure Glass Ionomer Cements. Acta stomatologica Croatica, 2016. 50(4): p. 287.

Sriranganathan, D., et al., Strontium substituted bioactive glasses for tissue engineered scaffolds: the importance of octacalcium phosphate. Journal of Materials Science: Materials in Medicine, 2016. 27(2): p. 39.

Liu, J., et al., Fluoride incorporation in high phosphate containing bioactive glasses and in vitro osteogenic, angiogenic and antibacterial effects. Dental Materials, 2016. 32(10): p. e221-e237.

Liu, J., et al., Strontium-substituted bioactive glasses in vitro osteogenic and antibacterial effects. Dental Materials, 2016. 32(3): p. 412-422.

Kusumoto, H., et al., The effect of phosphate, fluorine, and soda content of the glass on the mechanical properties of the glass ionomer (polyalkenoate) cements. Journal of Non-Crystalline Solids, 2016. 449: p. 94-99.

Kent, N.W., R.G. Hill, and N. Karpukhina, A new way of forming a calcium phosphate cement using bioactive glasses as a reactive precursor. Materials Letters, 2016. 162: p. 32-36.

Kent, N.W., et al., In vitro and in vivo study of commercial calcium phosphate cement HydroSet™. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 2016.

Kargozar, S., et al., Synthesis, physico-chemical and biological characterization of strontium and cobalt substituted bioactive glasses for bone tissue engineering. Journal of Non-Crystalline Solids, 2016. 449: p. 133-140.

Huang, M., R.G. Hill, and S.C. Rawlinson, Strontium (Sr) elicits odontogenic differentiation of human dental pulp stem cells (hDPSCs): a therapeutic role for Sr in dentine repair? Acta biomaterialia, 2016. 38: p. 201-211.

D’Onofrio, A., et al., Development of novel strontium containing bioactive glass based calcium phosphate cement. Dental Materials, 2016. 32(6): p. 703-712.

Tang, H., et al., Glass polyalkenoate cements based on simple CaO–Al2O3–SiO2 glasses. Materials Science and Technology, 2015. 31(2): p. 197-202.

Tan, M.H., R.G. Hill, and P. Anderson, Comparing the air abrasion cutting efficacy of dentine using a fluoride-containing bioactive glass versus an alumina abrasive: An in vitro study. International journal of dentistry, 2015. 2015.

Simpson, R., et al., A comparative study of the effects of different bioactive fillers in PLGA matrix composites and their suitability as bone substitute materials: A thermo-mechanical and in vitro investigation. Journal of the mechanical behavior of biomedical materials, 2015. 50: p. 277-289.

Shah, F.A., et al., Apatite formation of bioactive glasses is enhanced by low additions of fluoride but delayed in the presence of serum proteins. Materials Letters, 2015. 153: p. 143-147.

Jamelle, A., R. Hill, and D. Gillam, In-vitro properties of calcium phosphate cement as a bone grafting material. International Dental Journal of Students Research, 2015. 3.

Hill, R.G., D.G. Gillam, and X. Chen, The ability of a nano hydroxyapatite toothpaste and oral rinse containing fluoride to protect enamel during an acid challenge using 19 F solid state NMR spectroscopy. Materials Letters, 2015. 156: p. 69-71.

Hill, R.G., X. Chen, and D.G. Gillam, In vitro ability of a novel nanohydroxyapatite oral rinse to occlude dentine tubules. International journal of dentistry, 2015. 2015.

Fuchs, M., et al., Therapeutic ion-releasing bioactive glass ionomer cements with improved mechanical strength and radiopacity. 2015.

Comesaña, R., et al., Toward smart implant synthesis: bonding bioceramics of different resorbability to match bone growth rates. Scientific reports, 2015. 5.

Chen, X., et al., Novel Highly Degradable Chloride Containing Bioactive Glasses. Biomedical glasses, 2015. 1(1).

Talioti, E., R. Hill, and D. Gillam, The efficacy of selected desensitizing OTC products: a systematic review. ISRN dentistry, 2014. 2014.

Shahid, S., et al., Glass ionomer cements: Effect of strontium substitution on esthetics, radiopacity and fluoride release. Dental Materials, 2014. 30(3): p. 308-313.

Shah, F.A., et al., Influence of cell culture medium composition on in vitro dissolution behavior of a fluoridecontaining bioactive glass. Journal of Biomedical Materials Research Part A, 2014. 102(3): p. 647-654.

Shah, F.A., et al., Fluoride-containing bioactive glasses and Bioglass® 45S5 form apatite in low pH cell culture medium. Materials Letters, 2014. 119: p. 96-99.

Mohammed, N., et al., Physical chemical effects of zinc on in vitro enamel demineralization. Journal of dentistry, 2014. 42(9): p. 1096-1104.

Mahmood, A., et al., Abrasive wear of enamel by bioactive glass-based toothpastes. Am J Dent, 2014. 27: p. 263-267.

Lusquiños, F., et al., Bioceramic 3D implants produced by laser assisted additive manufacturing. Physics Procedia, 2014. 56: p. 309-316.

Karpukhina, N., R. Hill, and R. Law, Crystallisation in oxide glasses–a tutorial review. Chemical Society Reviews, 2014. 43(7): p. 2174-2186.

Hill, R., et al., A clinical case study: Using a strontium substituted bioactive glass- StronBone®- to fill alveolar sockets. Eur Cells Mater, 2014. 28: p. 51.

Gorseta, K., et al., One-year clinical evaluation of a Glass Carbomer fissure sealant, a preliminary study. Eur J Prosthodont Restor Dent, 2014. 22(2): p. 67-71.

Chen, X., R. Hill, and N. Karpukhina, Chlorapatite GlassCeramics. International Journal of Applied Glass Science, 2014. 5(3): p. 207-216.

Chen, X., et al., Bioactivity of sodium free fluoride containing glasses and glass-ceramics. Materials, 2014. 7(8): p. 5470-5487.

Chen, X., et al., Novel alkali free bioactive fluorapatite glass ceramics. Journal of Non-Crystalline Solids, 2014. 402: p. 172-177.

Chen, X., et al., ‘Smart’acid-degradable zinc-releasing silicate glasses. Materials Letters, 2014. 126: p. 278-280.

Theocharopoulos, A., et al., Crystallization of high-strength nano-scale leucite glass-ceramics. Dental Materials, 2013. 29(11): p. 1149-1157.

Theocharopoulos, A., et al., Reduced wear of enamel with novel fine and nano-scale leucite glass-ceramics. Journal of dentistry, 2013. 41(6): p. 561-568.

Mohammed, N., et al., Effects of Fluoride on in vitro Enamel Demineralization Analyzed by 19F MAS-NMR. Caries research, 2013. 47(5): p. 421-428.

Karpukhina, N., et al., Effect of sodium, potassium and zinc substitutions in lithium disilicate glass and glass-ceramics. Physics and Chemistry of Glasses-European Journal of Glass Science and Technology Part B, 2013. 54(2): p. 76-83.

Gentleman, E., et al., Surface properties and ion release from fluoride-containing bioactive glasses promote osteoblast differentiation and mineralization in vitro. Acta biomaterialia, 2013. 9(3): p. 5771-5779.

Farooq, I., et al., Influence of sodium content on the properties of bioactive glasses for use in air abrasion. Biomedical Materials, 2013. 8(6): p. 065008.

Al-Noaman, A., S.C. Rawlinson, and R.G. Hill, Bioactive glass-stoichimetric wollastonite glass alloys to reduce TEC of bioactive glass coatings for dental implants. Materials Letters, 2013. 94: p. 69-71.

Al-Noaman, A., et al., Effect of FA addition on bioactivity of bioactive glass coating for titanium dental implant: Part II—Composite coating. Journal of Non-Crystalline Solids, 2013. 364: p. 99-106.

Al-Noaman, A., et al., Effect of FA on bioactivity of bioactive glass coating for titanium dental implant. Part I: Composite powder. Journal of Non-Crystalline Solids, 2013. 364: p. 92-98.

Al-Noaman, A., et al., Behaviour of osteoblast-like cells cultured on titanium coated with FA/glass composite coating. Journal of Non-Crystalline Solids, 2013. 364: p. 85-91.

Zainuddin, N., et al., Characterisation of a remineralising Glass Carbomer® ionomer cement by MAS-NMR spectroscopy. Dental Materials, 2012. 28(10): p. 1051-1058.

Martin, R., et al., An examination of the calcium and strontium site distribution in bioactive glasses through isomorphic neutron diffraction, X-ray diffraction, EXAFS and multinuclear solid state NMR. Journal of Materials Chemistry, 2012. 22(41): p. 22212-22223.

Lynch, E., et al., Multi-component bioactive glasses of varying fluoride content for treating dentin hypersensitivity. Dental Materials, 2012. 28(2): p. 168-178.

Fujikura, K., et al., Influence of strontium substitution on structure and crystallisation of Bioglass® 45S5. Journal of Materials Chemistry, 2012. 22(15): p. 7395-7402.

Fredholm, Y.C., et al., Influence of strontium for calcium substitution in bioactive glasses on degradation, ion release and apatite formation. Journal of The Royal Society Interface, 2012. 9(70): p. 880-889.

Brauer, D.S., et al., Bactericidal strontium-releasing injectable bone cements based on bioactive glasses. Journal of The Royal Society Interface, 2012: p. rsif20120647.

Brauer, D.S., R.G. Hill, and M.D. O'Donnell, Crystallisation of fluoride-containing bioactive glasses. Physics and Chemistry of Glasses-European Journal of Glass Science and Technology Part B, 2012. 53(2): p. 27-30.

Brauer, D., et al., Fluoride-containing bioactive glass-ceramics. Journal of Non-Crystalline Solids, 2012. 358(12): p. 1438-1442.

Al-Noaman, A., S.C. Rawlinson, and R.G. Hill, The role of MgO on thermal properties, structure and bioactivity of bioactive glass coating for dental implants. Journal of Non-Crystalline Solids, 2012. 358(22): p. 3019-3027.

Al-Noaman, A., S.C. Rawlinson, and R.G. Hill, The influence of CaF 2 content on the physical properties and apatite formation of bioactive glass coatings for dental implants. Journal of Non-Crystalline Solids, 2012. 358(15): p. 1850-1858.

Wu, Z.Y., et al., Melt-derived bioactive glass scaffolds produced by a gel-cast foaming technique. Acta Biomaterialia, 2011. 7(4): p. 1807-1816.

Wu, Z.Y., R.G. Hill, and J.R. Jones, Optimizing the processing of porous melt-derived bioactive glass scaffolds. Bioceramics Development and Applications, 2011. 1.

Shahid, S., R. Billington, and R. Hill, The effect of ultrasound on the uptake of fluoride by glass ionomer cements. Journal of Materials Science: Materials in Medicine, 2011. 22(2): p. 247-251.

O’Donnell, M., et al., Real time neutron diffraction and NMR of the Empress II glass-ceramic system. dental materials, 2011. 27(10): p. 990-996.

Mneimne, M., et al., High phosphate content significantly increases apatite formation of fluoride-containing bioactive glasses. Acta Biomaterialia, 2011. 7(4): p. 1827-1834.

Lotfibakhshaiesh, N., et al., Strontium-substituted bioactive glass coatings for bone tissue engineering. Clinical Biochemistry, 2011. 44(13): p. S36.

Hill, R.G. and D.S. Brauer, Predicting the bioactivity of glasses using the network connectivity or split network models. Journal of Non-Crystalline Solids, 2011. 357(24): p. 3884-3887.

Hill, R.G. and D.S. Brauer, Predicting the glass transition temperature of bioactive glasses from their molecular chemical composition. Acta biomaterialia, 2011. 7(10): p. 3601-3605.

Comesaña, R., et al., Three-dimensional bioactive glass implants fabricated by rapid prototyping based on CO 2 laser cladding. Acta biomaterialia, 2011. 7(9): p. 3476-3487.

Chen, X., et al., Crystallization and flexural strength optimization of fine-grained leucite glass-ceramics for dentistry. Dental Materials, 2011. 27(11): p. 1153-1161.

Brauer, D.S., M. Mneimne, and R.G. Hill, Fluoride-containing bioactive glasses: Fluoride loss during melting and ion release in tris buffer solution. Journal of Non-Crystalline Solids, 2011. 357(18): p. 3328-3333.

Brauer, D.S., et al., Benefits and drawbacks of zinc in glass ionomer bone cements. Biomedical Materials, 2011. 6(4): p. 045007.

Brauer, D.S., et al., Density–structure correlations in fluoride-containing bioactive glasses. Materials Chemistry and Physics, 2011. 130(1): p. 121-125.

Watts, S., et al., Influence of magnesia on the structure and properties of bioactive glasses. Journal of Non-Crystalline Solids, 2010. 356(9): p. 517-524.

Theocharopoulos, A., et al., Wear quantification of human enamel and dental glass–ceramics using white light profilometry. Wear, 2010. 269(11): p. 930-936.

Thanjal, N., et al., Kinetics of fluoride ion release from dental restorative glass ionomer cements: the influence of ultrasound, radiant heat and glass composition. Journal of Materials Science: Materials in Medicine, 2010. 21(2): p. 589-595.

Stanton, K.T., et al., Spherulitic crystallization of apatite–mullite glass-ceramics: Mechanisms of formation and implications for fracture properties. Journal of Non-Crystalline Solids, 2010. 356(35): p. 1802-1813.

Shahid, S., et al., The effect of ultrasound on the setting reaction of zinc polycarboxylate cements. Journal of Materials Science: Materials in Medicine, 2010. 21(11): p. 2901-2905.

Poologasundarampillai, G., et al., Synthesis of bioactive class II poly (γ-glutamic acid)/silica hybrids for bone regeneration. Journal of Materials Chemistry, 2010. 20(40): p. 8952-8961.

O'Donnell, M., et al., Real time neutron diffraction and solid state NMR of high strength apatite–mullite glass ceramic. Journal of Non-Crystalline Solids, 2010. 356(44): p. 2693-2698.

O’donnell, M. and R. Hill, Influence of strontium and the importance of glass chemistry and structure when designing bioactive glasses for bone regeneration. Acta Biomaterialia, 2010. 6(7): p. 2382-2385.

Munhoz, T., et al., Setting of commercial glass ionomer cement Fuji IX by 27 Al and 19 F MAS-NMR. journal of dentistry, 2010. 38(4): p. 325-330.

Lotfibakhshaiesh, N., D.S. Brauer, and R.G. Hill, Bioactive glass engineered coatings for Ti6Al4V alloys: Influence of strontium substitution for calcium on sintering behaviour. Journal of Non-Crystalline Solids, 2010. 356(44): p. 2583-2590.

Kedia, G., et al., Production of Poly--Glutamic Acid by Bacillus subtilis and Bacillus licheniformis with Different Growth Media. Journal of nanoscience and nanotechnology, 2010. 10(9): p. 5926-5934.

Hill, R.G., et al., The early stages of nucleation and crystallisation of an apatite glass-ceramic: Evidence for nano-scale crystallisation. Journal of Non-Crystalline Solids, 2010. 356(52): p. 2935-2941.

Gentleman, E., et al., The effects of strontium-substituted bioactive glasses on osteoblasts and osteoclasts in vitro. Biomaterials, 2010. 31(14): p. 3949-3956.

Fredholm, Y.C., et al., Strontium containing bioactive glasses: glass structure and physical properties. Journal of Non-Crystalline Solids, 2010. 356(44): p. 2546-2551.

Chen, X., et al., Crystallization of high-strength fine-sized leucite glass-ceramics. Journal of dental research, 2010. 89(12): p. 1510-1516.

Brauer, D.S., et al., Fluoride-containing bioactive glasses: effect of glass design and structure on degradation, pH and apatite formation in simulated body fluid. Acta Biomaterialia, 2010. 6(8): p. 3275-3282.

Brauer, D.S., et al., Effect of TiO 2 addition on structure, solubility and crystallisation of phosphate invert glasses for biomedical applications. Journal of Non-Crystalline Solids, 2010. 356(44): p. 2626-2633.

Azevedo, M., et al., Synthesis and characterization of hypoxia-mimicking bioactive glasses for skeletal regeneration. Journal of Materials Chemistry, 2010. 20(40): p. 8854-8864.

Abo-Mosallam, H., et al., MAS-NMR studies of glasses and glass-ceramics based on a clinopyroxene–fluorapatite system. Journal of Materials Chemistry, 2010. 20(4): p. 790-797.

Zainuddin, N., et al., A long-term study on the setting reaction of glass ionomer cements by 27 Al MAS-NMR spectroscopy. dental materials, 2009. 25(3): p. 290-295.

Quintero, F., et al., Laser spinning of bioactive glass nanofibers. Advanced Functional Materials, 2009. 19(19): p. 3084-3090.

O'Donnell, M., R. Hill, and S. Fong, Neutron diffraction of chlorine substituted fluorapatite. Materials Letters, 2009. 63(15): p. 1347-1349.

O’Donnell, M., et al., The effect of phosphate content on the bioactivity of soda-lime-phosphosilicate glasses. Journal of Materials Science: Materials in Medicine, 2009. 20(8): p. 1611-1618.

O’Donnell, M., et al., Raman spectroscopy, 19 F and 31 P MAS-NMR of a series of fluorochloroapatites. Journal of the European Ceramic Society, 2009. 29(3): p. 377-384.

Hill, R., et al., Characterisation of fluorine containing glasses and glass-ceramics by 19 F magic angle spinning nuclear magnetic resonance spectroscopy. Journal of the European Ceramic Society, 2009. 29(11): p. 2185-2191.

Brauer, D.S., et al., Structure of fluoride-containing bioactive glasses. Journal of Materials Chemistry, 2009. 19(31): p. 5629-5636.

O’Donnell, M., et al., Effect of P 2 O 5 content in two series of soda lime phosphosilicate glasses on structure and properties–Part II: Physical properties. Journal of Non-Crystalline Solids, 2008. 354(30): p. 3561-3566.

O’donnell, M., et al., Effect of P 2 O 5 content in two series of soda lime phosphosilicate glasses on structure and properties–Part I: NMR. Journal of Non-Crystalline Solids, 2008. 354(30): p. 3554-3560.

O’Donnell, M., et al., Structural analysis of a series of strontium-substituted apatites. Acta Biomaterialia, 2008. 4(5): p. 1455-1464.

Karpukhina, N., R.V. Law, and R.G. Hill. Solid State NMR Study of Calcium Fluoroaluminosilicate Glasses. in Advanced Materials Research. 2008. Trans Tech Publ.

Brauer, D.S., et al. Fluoride-containing bioactive glasses. in Advanced Materials Research. 2008. Trans Tech Publ.

Boyd, D., et al., The role of Sr2+ on the structure and reactivity of SrO–CaO–ZnO–SiO2 ionomer glasses. Journal of Materials Science: Materials in Medicine, 2008. 19(2): p. 953-957.

Matsuya, S., et al., Structural characterization of ionomer glasses by multinuclear solid state MAS-NMR spectroscopy. Journal of non-crystalline solids, 2007. 353(3): p. 237-243.

Hill, R., et al., RealTime Nucleation and Crystallization Studies of a Fluorapatite Glass–Ceramics Using SmallAngle Neutron Scattering and Neutron Diffraction. Journal of the American Ceramic Society, 2007. 90(3): p. 763-768.

Towler, M., et al., Calcium and zinc ion release from polyalkenoate cements formed from zinc oxide/apatite mixtures. Journal of Materials Science: Materials in Medicine, 2006. 17(9): p. 835-839.

Stamboulis, A., et al., MAS-NMR spectroscopy studies in the setting reaction of glass ionomer cements. Journal of dentistry, 2006. 34(8): p. 574-581.

Stamboulis, A., et al. Real time neutron diffraction studies of apatite glass ceramics. in Key Engineering Materials. 2006. Trans Tech Publ.

Owen, C.A., et al., Progress in Raman spectroscopy in the fields of tissue engineering, diagnostics and toxicological testing. Journal of Materials Science: Materials in Medicine, 2006. 17(11): p. 1019-1023.

Hill, R.G., et al. A MAS-NMR and combined Rietveldt study of mixed calcium/strontium fluorapatite glass-ceramics. in Key Engineering Materials. 2006. Trans Tech Publ.

Hill, R., A. Stamboulis, and R. Law, Characterisation of fluorine containing glasses by 19 F, 27 Al, 29 Si and 31 P MAS-NMR spectroscopy. journal of dentistry, 2006. 34(8): p. 525-532.

Crowley, C., et al., The influence of capsule geometry and cement formulation on the apparent viscosity of dental cements. Journal of dentistry, 2006. 34(8): p. 566-573.

Boyd, D., et al., An investigation into the structure and reactivity of calcium-zinc-silicate ionomer glasses using MAS-NMR spectroscopy. Journal of Materials Science: Materials in Medicine, 2006. 17(5): p. 397-402.

Stanton, K.T. and R.G. Hill, Crystallisation in apatite-mullite glass–ceramics as a function of fluorine content. Journal of Crystal Growth, 2005. 275(1): p. e2061-e2068.

Stamboulis, A., R.G. Hill, and R.V. Law, Structural characterization of fluorine containing glasses by 19 F, 27 Al, 29 Si and 31 P MAS–NMR spectroscopy. Journal of Non-Crystalline Solids, 2005. 351(40): p. 3289-3295.

Hill, R.G., N. Da Costa, and R.V. Law, Characterization of a mould flux glass. Journal of non-crystalline solids, 2005. 351(1): p. 69-74.

Elgayar, I., et al., Structural analysis of bioactive glasses. Journal of Non-Crystalline Solids, 2005. 351(2): p. 173-183.

Towler, M., et al., Zinc ion release from novel hard tissue biomaterials. Bio-medical materials and engineering, 2004. 14(4): p. 565-572.

Stamboulis, A., R.V. Law, and R.G. Hill, Characterisation of commercial ionomer glasses using magic angle nuclear magnetic resonance (MAS-NMR). Biomaterials, 2004. 25(17): p. 3907-3913.

Stamboulis, A., et al. A MAS NMR study of the crystallisation process of apatite-mullite glass-ceramics. in Key Engineering Materials. 2004. Trans Tech Publ.

Stamboulis, A., R.G. Hill, and R.V. Law, Characterization of the structure of calcium alumino-silicate and calcium fluoro-alumino-silicate glasses by magic angle spinning nuclear magnetic resonance (MAS-NMR). Journal of Non-Crystalline Solids, 2004. 333(1): p. 101-107.

Hill, R., et al., MAS-NMR study of the crystallisation process of barium fluorphlogopite glass ceramics. Physics and chemistry of glasses, 2004. 45(2): p. 121-126.

Hill, R., et al., The influence of strontium substitution in fluorapatite glasses and glass-ceramics. Journal of Non-Crystalline Solids, 2004. 336(3): p. 223-229.

Henry, J. and R. Hill, Influence of alumina content on the nucleation crystallization and microstructure of barium fluorphlogopite glass-ceramics based on 8SiO 2· YAl 2 O 3 4MgO2MgF 2 BaO Part II Microstructure Hardness and Machinability. Journal of materials science, 2004. 39(7): p. 2509-2515.

Henry, J. and R. Hill, Influence of alumina content on the nucleation crystallization and microstructure of barium fluorphlogopite glass-ceramics based on 8SiO 2· YAl 2 O 3 4MgO2MgF 2 BaO Part I Nucleation and crystallization behaviour. Journal of materials science, 2004. 39(7): p. 2499-2507.

Gorman, C.M. and R.G. Hill, Heat-pressed ionomer glass–ceramics. Part II. Mechanical property evaluation. Dental Materials, 2004. 20(3): p. 252-261.

Calver, A., R. Hill, and A. Stamboulis, Influence of fluorine content on the crystallization behavior of apatite-wollastonite glass-ceramics. Journal of materials science, 2004. 39(7): p. 2601-2603.

Towler, M., C. Crowley, and R. Hill, Investigation into the ultrasonic setting of glass ionomer cements Part I Postulated modalities. Journal of materials science letters, 2003. 22(7): p. 539-541.

Samuneva, B., et al., Crystallization processes in composite biomaterials. Journal of sol-gel science and technology, 2003. 26(1-3): p. 1203-1208.

Rafferty, A., R. Hill, and D. Wood, An investigation into the amorphous phase separation characteristics of an ionomer glass series and a sodium-boro-silicate glass system. Journal of materials science, 2003. 38(11): p. 2311-2319.

Rafferty, A., et al., An investigation of amorphous phase separation, leachability and surface area of an ionomer glass system and a sodium-boro-silicate glass system. Journal of materials science, 2003. 38(19): p. 3891-3902.

Murphy, A. and R. Hill, Fracture toughness of tooth acrylics. Journal of Materials Science: Materials in Medicine, 2003. 14(11): p. 1011-1015.

Islam, P., R. Hill, and A. Stamboulis, Activation energy for crystal growth in stoichiometric CaAl 2 Si 2 O 8 and Ca 2 Al 2 Si 2 O 9 glasses. Journal of materials science letters, 2003. 22(18): p. 1287-1289.

Henry, J. and R. Hill, The influence of lithia content on the properties of fluorphlogopite glass-ceramics. I. Nucleation and crystallisation behaviour. Journal of non-crystalline solids, 2003. 319(1): p. 1-12.

Henry, J. and R. Hill, The influence of lithia content on the properties of fluorphlogopite glass-ceramics. II. Microstructure hardness and machinability. Journal of non-crystalline solids, 2003. 319(1): p. 13-30.

Guida, A., et al., Preliminary work on the antibacterial effect of strontium in glass ionomer cements. Journal of materials science letters, 2003. 22(20): p. 1401-1403.

Greene, K., et al., Effect of composition on the properties of glasses in the K 2 O–BaO–MgO–SiO 2–Al 2 O 3–B 2 O 3–MgF 2 system. Journal of non-crystalline solids, 2003. 325(1): p. 193-205.

Gorman, C.M. and R.G. Hill, Heat-pressed ionomer glass-ceramics. Part I: an investigation of flow and microstructure. Dental Materials, 2003. 19(4): p. 320-326.

Freeman, C., et al., Crystallization modifies osteoconductivity in an apatite–mullite glass–ceramic. Journal of Materials Science: Materials in Medicine, 2003. 14(11): p. 985-990.

Towler, M.R., et al., Modelling of the glass phase in fly ashes using network connectivity theory. Journal of Chemical Technology and Biotechnology, 2002. 77(3): p. 240-245.

Stanton, K.T., et al., Thermal analysis of fly ashes sourced from European nonblended coals. Journal of Chemical Technology and Biotechnology, 2002. 77(3): p. 246-250.

Kenny, S., et al. In vitro response of osteoblast-like cells to hydroxyapatite-zinc oxide-poly (acrylic acid) cements. in Key Engineering Materials. 2002. Trans Tech Publ.

Johal, K., et al., In vivo response of strontium and zinc-based ionomeric cement implants in bone. Journal of Materials Science: Materials in Medicine, 2002. 13(4): p. 375-379.

Hill, R. and D. Wood, Comments on “Devitrification and microstructural coarsening of a fluoride-containing barium alumino-silicate glass”. Journal of materials science letters, 2002. 21(23): p. 1867-1868.

Guida, A., et al., Fluoride release from model glass ionomer cements. Journal of materials science: Materials in Medicine, 2002. 13(7): p. 645-649.

Guida, A., R. Hill, and S. Eramo, Fluoride release properties of GRACs. A survey of the literature. Minerva stomatologica, 2002. 51(4): p. 121-144.

Towler, M., et al., A preliminary comparison of the mechanical properties of chemically cured and ultrasonically cured glass ionomer cements, using nano-indentation techniques. Biomaterials, 2001. 22(11): p. 1401-1406.

Kenny, S., M. Buggy, and R.G. Hill, The influence of hydroxyapatite: Zinc oxide ratio on the setting behavior and mechanical properties of polyalkenoate cements. Journal of Materials Science: Materials in Medicine, 2001. 12(10): p. 901-904.

Hadley, P., et al., Distribution of fluoride in glass ionomer cement determined using SIMS. Biomaterials, 2001. 22(12): p. 1563-1569.

Fennell, B. and R. Hill, The influence of poly (acrylic acid) molar mass and concentration on the properties of polyalkenoate cements Part II Young's modulus and flexural strength. Journal of materials science, 2001. 36(21): p. 5177-5183.

Fennell, B. and R. Hill, The influence of poly (acrylic acid) molar mass and concentration on the properties of polyalkenoate cements Part III Fracture toughness and toughness. Journal of materials science, 2001. 36(21): p. 5185-5192.

Fennell, B. and R. Hill, The influence of poly (acrylic acid) molar mass and concentration on the properties of polyalkenoate cements Part I Compressive strength. Journal of materials science, 2001. 36(21): p. 5193-5202.

Clifford, A., et al., The crystallisation of glasses from the ternary CaF2-CaAl2Si2O8-P2O5 system. Journal of materials science, 2001. 36(16): p. 3955-3961.

Clifford, A., et al., The influence of calcium to phosphate ratio on the nucleation and crystallization of apatite glass-ceramics. Journal of Materials Science: Materials in Medicine, 2001. 12(5): p. 461-469.

Walsh, J.M., et al., Evaluation of Castable ApatiteMullite GlassCeramics for Medical and Dental Applications. Materials for Medical Engineering, Volume 2, 2000: p. 65-72.

Sullivan, A., R. Hill, and K. Waters, A preliminary investigation of glass polyalkenoate cements based on waste gasifier slags. Journal of Materials Science Letters, 2000. 19(4): p. 323-325.

Sullivan, A. and R. Hill, Influence of poly (acrylic acid) molar mass on the fracture properties of glass polyalkenoate cements based on waste gasifier slags. Journal of materials science, 2000. 35(5): p. 1125-1134.

Stanton, K. and R. Hill, The role of fluorine in the devitrification of SiO2· Al2O3· P2O5· CaO· CaF2 glasses. Journal of materials science, 2000. 35(8): p. 1911-1916.

Robert, H., et al. Influence of glass composition on nucleation crystallisation microstructure and properties of apatite-mullite glass-ceramics. in International Symposium on Crystallization in Glasses and Liquids. 2000.

Rafferty, A., R. Hill, and D. Wood, Amorphous phase separation of ionomer glasses. Journal of materials science, 2000. 35(15): p. 3863-3869.

Rafferty, A., et al., Apatite-mullite glass-ceramics; influence of fluorine content. Journal of American Ceramic Society, 2000. 83: p. 2833-8.

Kenny, S., R.G. Hill, and M. Towler, The influence of poly (acrylic acid) molar mass on the properties of polyalkenoate cements formed from zinc oxide/apatite mixtures. Journal of Materials Science: Materials in Medicine, 2000. 11(12): p. 847-853.

Henry, J., et al. Influence of aluminium oxide content on the formation of barium containing fluormica glass-ceramics. in International Symposium on Crystallization in Glasses and Liquids. 2000.

Griffin, S. and R. Hill, Influence of glass composition on the properties of glass polyalkenoate cements. Part IV: influence of fluorine content. Biomaterials, 2000. 21(7): p. 693-698.

Griffin, S. and R. Hill, Influence of glass composition on the properties of glass polyalkenoate cements. Part II: influence of phosphate content. Biomaterials, 2000. 21(4): p. 399-403.

Greene, K., et al. Characterisation of mixed potassium-barium mica glass-ceramics with varying fluorine content. in International Symposium on Crystallization in Glasses and Liquids. 2000.

Gorman, C., W. McDevitt, and R. Hill, Comparison of two heat-pressed all-ceramic dental materials. Dental Materials, 2000. 16(6): p. 389-395.

De Barra, E. and R. Hill, Influence of glass composition on the properties of glass polyalkenoate cements. Part III: influence of fluorite content. Biomaterials, 2000. 21(6): p. 563-569.

 

1990-1999 (38)

Wood, D., et al., An investigation into the crystallization of Dicor glass–ceramic. Journal of materials science letters, 1999. 18(13): p. 1001-1002.

Wallace, K., et al., Influence of sodium oxide content on bioactive glass properties. Journal of Materials Science: Materials in Medicine, 1999. 10(12): p. 697-701.

Hill, R., D. Wood, and M. Thomas, Trimethylsilylation analysis of the silicate structure of fluoro-alumino-silicate glasses and the structural role of fluorine. Journal of materials science, 1999. 34(8): p. 1767-1774.

Griffin, S. and R. Hill, Influence of glass composition on the properties of glass polyalkenoate cements. Part I: influence of aluminium to silicon ratio. Biomaterials, 1999. 20(17): p. 1579-1586.

Samuneva, B., et al., Crystallization of gels in the apatite-mullite system. Journal of sol-gel science and technology, 1998. 13(1-3): p. 951-956.

Johnson, A., et al., The effect of casting conditions on the biaxial flexural strength of glass–ceramic materials. Dental Materials, 1998. 14(6): p. 412-416.

Griffin, S. and R. Hill, Influence of poly (acrylic acid) molar mass on the fracture properties of glass polyalkenoate cements. Journal of materials science, 1998. 33(22): p. 5383-5396.

Fennell, B., R. Hill, and A. Akinmade, Failure and fracture characteristics of glass poly (vinylphosphonate) cements. Dental Materials, 1998. 14(5): p. 358-364.

De Barra, E. and R. Hill, Influence of alkali metal ions on the fracture properties of glass polyalkenoate (ionomer) cements. Biomaterials, 1998. 19(6): p. 495-502.

De Barra, E. and R. Hill, Influence of poly (acrylic acid) content on the fracture behaviour of glass polyalkenoate cements. Journal of materials science, 1998. 33(23): p. 5487-5497.

Blades, M., et al., In vivo skeletal response and biomechanical assessment of two novel polyalkenoate cements following femoral implantation in the female New Zealand White rabbit. Journal of materials science: materials in medicine, 1998. 9(12): p. 701-706.

Devlin, A., et al. Ion release from novel ionomeric cements related to in vitro biocompatibility. in JOURNAL OF DENTAL RESEARCH. 1997. AMER ASSOC DENTAL RESEARCH 1619 DUKE ST, ALEXANDRIA, VA 22314.

Murphy, A. and R.G. Hill. Fracture toughness of tooth acrylic. in Key Engineering Materials. 1996. Trans Tech Publ.

Hill, R., An alternative view of the degradation of bioglass. Journal of Materials Science Letters, 1996. 15(13): p. 1122-1125.

Griffin, S. and R. Hill, Glass composition influence on glass polyalkenoate cement mechanical properties. Journal of non-crystalline solids, 1996. 196: p. 255-259.

Clifford, A. and R. Hill, Apatite-mullite glass-ceramics. Journal of Non-Crystalline Solids, 1996. 196: p. 346-351.

Murphy, A. and R. Hill. Fracture-Toughness Of Tooth Acrylic. in Journal Of Dental Research. 1995. Amer Assoc Dental Research 1619 Duke St, Alexandria, VA 22314.

Johal, K., et al. Ionomeric Cements-In-Vivo Response To Set Rods With Increasing Sodium Content. in Journal Of Dental Research. 1995. Amer Assoc Dental Research 1619 Duke St, Alexandria, VA 22314.

Johal, K., et al., In vivo response of ionomeric cements: effect of glass composition, increasing soda or calcium fluoride content. Journal of Materials Science: Materials in Medicine, 1995. 6(12): p. 690-694.

Hill, R.G., et al. Fluoride release from glass polyalkenoate (ionomer) cements. in Key Engineering Materials. 1995. Trans Tech Publ.

Hill, R. and D. Wood, Apatite-mullite glass-ceramics. Journal of Materials Science: Materials in Medicine, 1995. 6(6): p. 311-318.

Devlin, A., et al. Fluoride-Ion Release From Glass-Ionomer Cements. in Journal Of Dental Research. 1995. Amer Assoc Dental Research 1619 Duke St, Alexandria, VA 22314.

DEBARRA, E., et al. The mechanism of fluoride release from glass (ionomer) polyalkenoate cements. in Journal Of Dental Research. 1995. Amer Assoc Dental Research 1619 Duke St, Alexandria, VA 22314.

Hill, R., et al., Microstructural evidence for amorphous phase separation in bone china. British ceramic transactions, 1994. 93(1): p. 16-20.

Hill, R., The role of microstructure on the fracture toughness and fracture behaviour of rubber-reinforced acrylics. Journal of materials science, 1994. 29(11): p. 3062-3070.

Griffiths, J. and R. Hill, The influence of atmosphere and sample surface area on phase formation in melt-quenched BiSPb)-Sr-Ca-Cu-O glass-ceramics. Journal of materials science letters, 1994. 13(2): p. 135-136.

Darling, M. and R. Hill, Novel polyalkenoate (glass-ionomer) dental cements based on zinc silicate glasses. Biomaterials, 1994. 15(4): p. 299-306.

Hill, R. and P. Gilbert, HighTemperature Dynamic Mechanical Thermal Analysis of a Lithium Zinc Silicate GlassCeramic. Journal of the American Ceramic Society, 1993. 76(2): p. 417-425.

Hill, R. Structure Property Relationships in Glass Polyalkenoate Cements. in Key Engineering Materials. 1993. Trans Tech Publ.

Hill, R., Comments on “The application of the reptation hypothesis to polyelectrolyte biomaterials”. Journal of materials science letters, 1993. 12(5): p. 332-333.

Hill, R., The fracture properties of glass polyalkenoate cements as a function of cement age. Journal of materials science, 1993. 28(14): p. 3851-3858.

Hill, R.G., C. Goat, and D. Wood, Thermal Analysis of a SiO2─ Al2O3─ CaO─ CaF2 Glass. Journal of the American Ceramic Society, 1992. 75(4): p. 778-785.

Hill, R. and C. Styles, The influence of polymer chain length on the fracture toughness of polymer-modified Portland cements. Journal of materials science letters, 1992. 11(23): p. 1555-1558.

Akinmade, A. and R. Hill, Influence of cement layer thickness on the adhesive bond strength of polyalkenoate cements. Biomaterials, 1992. 13(13): p. 931-936.

Wood, D. and R. Hill, Glass ceramic approach to controlling the properties of a glass-ionomer bone cement. Biomaterials, 1991. 12(2): p. 164-170.

Wood, D. and R. Hill, Structure-property relationships in ionomer glasses. Clinical materials, 1991. 7(4): p. 301-312.

Hill, R., M. Patel, and D. Wood. Preliminary studies on castable apatite-mullite glass-ceramics. in Bioceramics: Proceedings of the 4th International Symposium on Ceramics in Medicine London, UK, September 1991. 1991. Elsevier.

Hill, R. and S. Labok, The influence of polyacrylic acid molecular weight on the fracture of zinc polycarboxylate cements. Journal of materials science, 1991. 26(1): p. 67-74.

 

1981 – 1989 (10)

Wilson, A., et al., The influence of polyacid molecular weight on some properties of glass-ionomer cements. Journal of dental research, 1989. 68(2): p. 89-94.

Hill, R., A. Wilson, and C. Warrens, The influence of poly (acrylic acid) molecular weight on the fracture toughness of glass-ionomer cements. Journal of materials science, 1989. 24(1): p. 363-371.

Hill, R., Relaxation spectroscopy of polyalkenoate cements. Journal of materials science letters, 1989. 8(9): p. 1043-1047.

Hill, R. and A. Wilson, A rheological study of the role of additives on the setting of glass-ionomer cements. Journal of dental research, 1988. 67(12): p. 1446-1450.

Hill, R. and A. Wilson, Some structural aspects of glasses used in ionomer cements. Glass technology, 1988. 29(4): p. 150-158.

Hill, R., P. Tomlins, and J. Higgins, Preliminary study of the kinetics of phase separation in high molecular weight poly (methyl methacrylate)/solution-chlorinated polyethylene blends. Macromolecules, 1985. 18(12): p. 2555-2560.

Hill, R., P. Tomlins, and J. Higgins, A preliminary study of the dynamics of phase separation in oligomeric polystyrene-polybutadiene blends. Polymer, 1985. 26(11): p. 1708-1712.

Hill, R., et al., The fracture of acrylic polymers in water. Journal of materials science, 1984. 19(6): p. 1904-1916.

Hill, E., et al., Fracture toughness of acrylic denture base. Biomaterials, 1983. 4(2): p. 112-120.

Hill, R.G., The crosslinking agent ethylene glycol dimethacrylate content of the currently available acrylic denture base resins. Journal of dental research, 1981. 60(3): p. 725-726.

 

Patents (Published)

Hill R.G., Darling M. and Wood D.J. "Novel Polyalkenoate Cements" British Patent Application 92049634 6th March 1992.

Hill, R.G., Darling, M. and Wood, D.J. "Glass Polyalkenoate Cements" PCT Patent Application WO 93/17653 16th September 1993.Patents/GlassZnPatBTG.pdf

Hill R.G. Wood D.J. Samuneva B. and Dimitrova-Lukacs M. “Glass-Ceramics” Irish Patent Application Number S98 0839 12th October 1998.

Hill R.G. and Mulvihill H. Irish Short Term Patent “Vitreous Dental Porcelains” Application Number S2001/0926 19th October 2001.

Hill R and Stevens M “Bioacive glass” International Patent Application WO2007/144662 June 07. Patents/PatSrBioglass.pdf

R Hill, M Stevens, M O'Donnell – “Bioactive Glass Coatings” WO Patent WO/2009/0812 2009 Patents/HillCoatingPat.pdf

R Hill, M Stevens “Glass Polycarboxylate Cements” - WO Patent WO/2009/004,349 2009 Patents (10)/patcement.pdf

G Jell, R Hill, M Stevens, M Azevedo – “Hypoxia inducing Factor (HIF) Stabilising Glasses” WO Patent WO/2009/144, 453, 2009 Patents/patHypoxia.pdf

R Hill, G. Poolo Gasundarampillai  J Jones “Bioactive Nano Composite Material” WO Patent (WO/2009/030919) 2009 Patents/PatBioactive Nanocomposite.pdf

R Hill J Jones and Z Wu “Process for producing porous scaffolds from sinterable glass” WO Patent WO 2009/1444455A2 2009 Patents/patScaffod.pdf

Hill R and O’Donnell M “Multicomponent Glasses for Use in Personal Care Products” WO 2011/000866A2 Patents/HillOdonell11000866.pdf

R Hill, D.G. Gillam, A.J. Bushby, D. Brauer, N. Karpukhina and  M.A. Mneimne        “Bioactive Glass Composition” WO 2011/161422A1 Patents/HillQMPatentTpaste.pdf

NW Kent, RG Hill and N Karpukhina “A composition for making a cement or implant” December 2011. Patents/QMULCementPat-1.pdf

Armin Pfeil and Robert Hill Hilti Glas Polyalkenoat Zement und dessen Verwendung DE 102011077332 A1 December 2012 Aktiengesellschaft. June 2011 Curable composition chemical fastening of mortar and concrete, Comprises polyacid or precursor compound, inorganic compound chosen from calcium oxide, alumina, silica and flyash, water, and OPTIONALLY complexing agent Patents/HiltiPatentDE102011077332A1.pdf

Hill RG Collings AJ Baynes I and Gillam DG “Multicomponent Oral Healthcare Composition” WO 2013/117913 A2Patents/HillPeriPat3.pdf

Theocharopoulos A M X Chen Cattel N.Karpukhina RG Hill “Leucite Glass-Ceramics” WO2014/207244A1Patents/PorcPatent.pdf