Behrang Noohi: What is derived geometry?
You may have heard of "derived/higher geometry" and wondered what it is. A brainchild of Alexander Grothendieck, it is more of a "new viewpoint in mathematics" rather than being a specific subject. A recent flurry of activities, aiming to set up the right foundations, has seen the subject transform enormously, resulting in spectacular applications to algebraic geometry,
Abhishek Saha: Bounding the heights of peaks of vibration modes on hyperbolic membranes
I will give a gentle introduction to the "sup-norm problem" in a setting where number theory plays a key role. The sup-norm problem asks for non-trivial bounds on the sup-norms of eigenfunctions of the Laplacian on Riemannian manifolds. In the special case when the manifold is a surface of constant negative structure, and isconstructed from "quaternion algebras", a famous result of Iwaniec and Sarnak improves upon the trivial bound using number-theoretic techniques. I will explain this result, and then talk about recent progress on an analogous question where the underlying surface is itself allowed to vary.
Mark Jerrum (1:00-1:30)
Title: Developments in rejection sampling
Abstract: I’ll attempt to ingratiate myself with the maximum number of people by touching on rejection sampling, the Lovász Local Lemma, the Tutte polynomial, etc. The talk will include joint work with Heng Guo, lately a postdoc in the School.
Justin Ward (1:30-2:00)
Title: Approximation, Hardness, and Proof Theory
Abstract: In this talk, I will provide a brief overview of the main ideas underpinning the modern field of “approximation algorithms.” From a practical perspective, approximation algorithms can be viewed as a way of coping with computationally “hard” problems. More generally, however, the study of so-called “approximability” is about developing a finely-grained notion of what it means for a problem to be “hard.” This notion relies on a collection of fundamental results linking proof theory, computation, and optimisation, which I will briefly describe and discuss.
Martin Benning: What do you meme? Nonlinear scale-space methods in practice. (1:05-1:30)
Abstract: We discuss PDE-based approaches for decomposing signals into components with features at different scales. Starting with linear scale-space and inverse scale-space methods, we see shortcomings when using those to decompose structures with discontinuities. We use this as a motivation for considering nonlinear inverse scale-space methods and their extensions to spectral decomposition methods. Those methods allow to obtain more suitable decompositions of signals with discontinuities, and we show how this can be exploited in a variety of applications in image-processing. We particularly focus on the creation of memes via facial image fusion.
Primoz Skraba: Stability in Applied Topology. (1:30-1:55)
Abstract: The goal of this talk is to give a brief overview of applied topology, introducing persistence and various notions of stability. I will try to explain the type of problems people in the field are working on and how it intersects with other areas of mathematics - including probability, algebra, and algorithms.
Weini Huang: Population dynamics under tradeoffs in an evolving Lotka-Volterra systems (11:05-11:30)
Abstract: Biological systems including cancer are complex systems with interactions of individuals with different traits. Often those traits are linked and the optimization of all traits independently is impossible due to the existence of trade-offs. For example, energy or resources allocated to survival is not available for reproduction. Rather than having a Lotka-Volterra (predator-prey) system with predefined variables, we developed a stochastic model capturing random mutations. We use our model to understand the role of survival-reproduction trade-offs in lab experiments. We found that the shape of trade-offs evolves in experiments as we assumed, and thus could impact the population diversity level as predicted by our model. Indeed, we see first glimpses of these predictions in on-going experimental studies. In addition, the importance of evolving trade-offs may also apply in the evolution of cancer resistance and open an opportunity to control resistant subpopulations with specifically designed evolutionary treatment strategies.
Silvia Liverani: Clustering with mixture models. (11:30-11:55)
Abstract: I will introduce mixture models and their use for identifying the presence of subpopulations within a population. I will then introduce the basic components of a specific Bayesian mixture model called profile regression and conclude by discussing a few application areas for this type of models.
Ginestra Bianconi: Emergent Hyperbolic Network Geometry and Dynamics (11:05-11:30)
Abstract: Simplicial complexes naturally describe discrete topological spaces. When their links are assigned a length they describe discrete geometries. As such simplicial complexes have been widely used in quantum gravity approaches that involve a discretization of spacetime. Recently they are becoming increasingly popular to describe complex interacting systems such a brain networks or social networks.
After a brief introduction in this talk we present non-equilibrium statistical mechanics approaches to model large simplicial complexes and we will explore the hyperbolic nature of their emergent geometry.
Moreover we will investigate how the dimension of these simplicial complexes affects their stochastic topology and their dynamics (synchronization and topological percolation/k-connectedness).
Reto Buzano: Mean Curvature Flow and Embedded Spheres (11:30-11:55)
Arick Shao: Control of Wave Equations (13:30-13:55)
Abstract: We discuss the question of whether solutions of a PDE on a finite domain can be controlled, through either its boundary data or its forcing term. Moreover, we focus mainly on wave and hyperbolic equations, where finite speed of propagation puts fundamental constraints on when such control is possible. Here, we give a brief survey of the main techniques and results in this area, and we conclude with some novel results for wave equations on time-dependent domains with moving boundaries.