Skip to main content
Queen Mary Summer School

Practical Machine Learning

computer machine learning portrayed as a picture


Academic Lead: Dr Dimitris Kalogiros

Syllabus: SUM401N_Practical_Machine_Learning [PDF 95KB]

Machine learning influences modern life in many different avenues and is silently revolutionising the way we live and work. We can see the influence of machine-learning algorithms in social media, web search engines, mobile device spell checkers and self-driving cars.  This course will give you an introduction to machine learning using the Python programming language and the TensorFlowTM programming toolkit from Google.  No programming background is assumed, however if you want to take this course, you should be familiar with using computers.  

This course is taught by scientists using machine learning for data analysis at CERN’s Large Hadron Collider and will allow you to work on practical examples from both general and physics-based problems. Examples will be drawn from a variety of problems in order to allow you to build up an understanding of the tools and how to use them. This will prepare you for a mini-project analysing data from a particle physics experiment to complement the examples encountered earlier in the course.

Course content is subject to change.

Course aims

This is a practical course that provides you with an introduction to the concepts of machine learning and the application of algorithms to several types of available data samples. In order to achieve this, you will be introduced to the Python programming language and key concepts related to the TensorFlowTM programming toolkit. You will learn how to train machine-learning algorithms and evaluate their performance on image data and scientific data from the Large Hadron Collider. We will develop your programming skills so that you can explore the potential benefits of deep-learning algorithms.



Teaching and learning

You will be taught through a combination of lectures, laboratory work, and workshops.

Learning outcomes

You will learn/develop:

  • basic commands in Python and learn how to manipulate data using this programming language
  • how to use TensorFlowTM tools to optimise neural networks and convolutional neural networks as examples of machine-learning algorithms
  • a comprehension of machine-learning algorithms and their use.

You will develop/be able to:

  • understand the principles of optimisation algorithms and the role of activation functions in neural networks
  • understand the concept of overtraining of hyperparameters for a machine-learning algorithm, and how that can be spotted using data samples
  • understand the concept of the Receiver Operating Characteristic (ROC) curve and how the area under this curve can be used to select models based on the ability to separate signal from background
  • demonstrate information expertise through the portfolio of work that you will build during this course, and the application of that portfolio of skills to problem solving
  • demonstrate a rounded intellectual development in all aspects of this course, including self-study, directed reading, in-session quizzes to test your incremental assimilation of knowledge and the final critical presentation of what you have learned and achieved during the course
  • improve your research capacity via the application of core principles on machine learning to example data sets. This will allow the critical analysis of data in terms of specific problems using modern techniques
  • communicate clearly via the oral presentation component, where you will give a five-minute presentation on what you have learned during the course (including the main results you have obtained) and will respond to questions on your presentation.


Additional costs

All reading material will be provided online, so it is not necessary to purchase any books.

For course and housing fees visit our finance webpage

Entry requirements

We welcome Summer School students from around the world. We accept a range of qualifications


How to apply

Have a question? Get in touch - one of the team will be happy to help!

Applications close 24 May 2024


Teaching dates
Session 2: 22 July - 8 August 2024
Course hours
150 hours (of which 48 will be contact hours)
Continuous in-class practical skills assessment (25%) Continuous portfolio assessment (50%) Oral assessment (25%)

Apply now

Ask a question

Our location

Back to top