Skip to main content
School of Mathematical Sciences

Dr Ingrid Amaranta Membrillo Solis

Ingrid Amaranta

Lecturer in Mathematical Data Science

Email: i.a.membrillosolis@qmul.ac.uk
Room Number: MB-G25
Website: https://amarantamembrillosolis.wordpress.com
Twitter: @iamarantams

Research

Research Interests:

My research interests encompass several areas in topology and geometry, including algebraic topology, differential geometry, metric geometry, and geometric and topological data analysis. In particular, I'm interested in the following topics:

  • Geometric and topological data analysis of soft materials
  • Persistence theory
  • Topology of moduli spaces of Riemannian orbifolds
  • Spectral and metric geometry of singular spaces
  • Unstable homotopy theory of mapping spaces

 

Publications

 

  1.  Che, M., Galaz-García, F., Guijarro, L., & Membrillo Solis, I. A. (in press). Metric geometry of the spaces of persistence diagrams. Journal of Applied and Computational Topology
  2. Gittins, K., Gordon, C., Khalile, M., Membrillo Solis, I., Rossetti, J. P., Sandoval, M., & Stanhope, E. Do the Hodge spectra distinguish orbifolds from manifolds? Part 2. Michigan Mathematical Journal. To appear.
  3. Gittins, K., Gordon, C., M., Membrillo Solis, I., Sandoval, M., & Stanhope, E. (2024). Do the Hodge spectra distinguish orbifolds from manifolds? Part 1. Michigan Mathematical Journal, 74(3), 571-598.
  4. Che, M., Galaz-García, F., Guijarro, L., Membrillo Solis, I., & Valiunas, M. (2024). Basic metric geometry of the bottleneck distance. Proceedings of the American Mathematical Society.
  5. Madeleine, T., Podoliak, N., Buchnev, O., Membrillo Solis, I., Orlova, T., van Rossem, M., Kaczmarek, M., D’Alessandro, G. and Brodzki, J. (2023). Topological learning for the classification of disorder: an application to the design of metasurfaces. ACS nano.
  6. Membrillo Solis, I., Orlova, T., Bednarska, K., Lesiak, P., WoliƄski, T. R., D’Alessandro, G., Brodzki, J. & Kaczmarek, M. (2022). Tracking the time evolution of soft matter systems via topological structural heterogeneity. Communications Materials, 3(1), 1.
  7. Kishimoto, D., Membrillo-Solis, I., & Theriault, S. (2021). The homotopy types of SO (4)-gauge groups. European Journal of Mathematics, 7(3), 1245-1252.
  8. Membrillo-Solis, I., & Theriault, S. (2021). The homotopy types of U (n)-gauge groups over lens spaces. Boletín de la Sociedad Matemática Mexicana, 27, 1-12.
  9. Membrillo-Solis, I. (2019). Homotopy types of gauge groups related to S3-bundles over S4. Topology and its Applications, 255, 56-85.
Back to top