# Ms Nida Aziz

## Teaching Fellow

Email: n.aziz@qmul.ac.uk
Room Number: Peter Landin, CS 400

## Teaching

The module provides a grounding in control systems modelling and analysis, using engineering mathematical techniques. It concludes with the examples of control systems design, underpinned by the modelling and analysis that precedes and informs the design. Syllabus: Control systems: what they are, examples of control systems, open-loop and closed-loop control systems, block diagrams of continuous (analog) and discrete-time (digital) control systems, system equations, differential equations, difference equations, linear and non-linear systems, free response, forced response, total response, steady state and transient responses, second-order systems, linearity and superposition, Laplace transform and its inverse , properties of Laplace transform, pole-zero mapping, application of Laplace transform to model systems, Routh-Hurwitz stability criterion, transfer functions and properties, analysis and design of feedback control systems, Bode analysis and design, Root-locus analysis and design, steady-state error analysis, introduction to advanced topics in control systems.

This module introduces the principles of control systems, particularly in respect of electronic systems. It covers: - feedback systems - modelling dynamic systems - the steady state response - the frequency response and s-plane analysis for the transient response - control of digital systems (sampled data systems) - use of the z-transform.

This module introduces the principles of C Programming to students who already know how to program at a basic level in Java. It provides a knowledge of the theory of C Programming and also its practical use in real engineering systems. The focus is on microprocessor based systems.

### Electronic Devices and Applications (Undergraduate)

This module describes the physical basis behind common semiconductor devices including the pn junction diode, bipolar junction transistor, MOSFET and related devices (NMOS, PMOS, CMOS) and Operational Amplifiers. Basic circuits using these devices are discussed including rectifiers, amplifiers, inverters, integrators, differentiators, and summing circuits.

### Professional and Research Practice (Work based)

This module is only open to degree apprentices in the School of Electronic Engineering and Computer Science. It covers the following topics: discipline topic tasters; finding, retrieving and evaluating information; ethics, science & technology; scientific and technical writing; skills for workplace context.

### Professional and Research Practice (Undergraduate)

This module provides you with the opportunity to examine the role of engineering in society and the expectations of society for a professional engineer. During the module, you should develop and achieve a level of written and spoken communication expected of a professional engineer. You will also construct a personal development plan (PDP) and an on-going employability skills folder. The assessment of the module is 100 per cent coursework, broken down as follows: oral presentation: 25 per cent; in-class essay: 25 per cent; PDP folder: 25 per cent; employability folder: 25 per cent. Not open to Associate Students or students from other departments.