Skip to main content
School of Biological and Behavioural Sciences

Research highlights from our 2014 REF submission

Academics within the School of Biological and Behavioural Sciences are involved in a wide range of ground breaking projects across the broad sweep of biological, biochemical and psychological sciences. The Research Excellence Framework (REF) 2014 considered the strength of our research in six core areas.

Aquatic Ecology

We have arguably the strongest Aquatic Ecology research group in the UK. Major research achievements, from this group, have centred on the formulation of climate change frameworks, the effects of global warming on aquatic organisms and ecosystems, and the discovery of potential new pathways in the cycling of the key bio-element, nitrogen.

Research highlight

Vast expanses (30 million km2) of the ocean contain very little oxygen, yet, rather than being dead, they help sustain life on Earth. Nitrogen, second only to carbon in life, is cycled through these ‘oxygen minimum zones’ back to the atmosphere. To date the focus has been on inorganic, simpler forms of nitrogen, yet our research suggests that more complex, organic forms are returned directly to the atmosphere, thus altering our perception of how this vital element is cycled on Earth.

Photograph shows scientists from Queen Mary University of London working in the tropical North Pacific - the largest oxygen minimum zone on Earth.

Biological Psychology

Our Biological Psychology department arose from an initiative to develop our School’s strengths in animal behaviour and cognition. This group works on innovative research at the interface between psychology and biology. A wide range of models are studied including bees, corvids & primates, zebra finches, zebra fish, goats, cattle and deer and humans.

Research highlight

Scientists from Queen Mary University of London used genome-sequencing methods to advance the study of vocal communication in songbirds like the zebra finch. In these animals, vocal interactions trigger complex changes in gene expression in the brain, which can illuminate the biology underlying the evolution and learning of human language.

Evolution and Genetics

Our Evolution and Genetics group has one of the highest concentrations of evolutionary genomics researchers in the UK. Recent projects have investigated genome restructuring following polyploidy in plants, social organisation in fire ants, and food web tracking (in both tropical and temperate systems) to investigate ecosystem functioning and evolution. Watch Dr Clare discuss her work on bats and food webs in the video below:

Research highlight

Research ascertained that genome restructuring following polyploidy in plants is astonishingly fast. Professor Leitch explains:

“In plants unexpected, fertile hybrid combination occurs; sometimes between distantly related species. The hybridization processes is often associated with the doubling of chromosome numbers, a process called polyploidy. Together, these processes of hybridization and polyploidy have driven the evolution of plants. Scientists at Queen Mary have shown that polyploidy leads to astonishing fast genome evolution and altered activities of genes. That directly impacts ecosystem functioning and the foods that we eat; indeed without polyploidy underpinning our crops we could neither feed nor clothe all the people on earth.”

Structural Biology and Photosynthesis

Our work on structural biology was highlighted as excellent in the 2008 Research Assessment Exercise. We continue to invest in these projects and have complemented this work with the further development of a distinctive cluster of excellence in photosynthesis research. Major achievements are determination of the structures of membrane proteins, biosynthetic enzymes, protein complexes and supra-molecular complexes.

Research highlights

Substantial advances in understanding how membrane proteins work have been made by the structural biology and photosynthesis groups.  The structure of the first G-protein coupled receptor (opsin) in complex with its cognate G-protein was a major step forward in understanding this important family of enzymes which are drug targets as well as photo-transducers.

Professor Pickersgill’s determination of the structure of cobalamin biosynthetic enzymes has elucidated mechanism in these enzymes and revealed the interactions responsible for trapping products. Product trapping prevents off-pathway interactions and protects labile intermediates possibly also conferring additional specificity to the biosynthetic cascade.  Determination of the structures of protein complexes from the type II bacterial secretion system has revealed interactions essential for forming a functional secretion system.