Skip to main content
School of Biological and Behavioural Sciences

Experience-dependent consolidation of spatial coding 

Research environment

The School of Biological and Behavioural Sciences at Queen Mary is one of the UK’s elite research centres, according to the 2021 Research Excellence Framework (REF). We offer a multi-disciplinary research environment and have approximately 180 PhD students working on projects in the biological and psychological sciences. Our students have access to a variety of research facilities supported by experienced staff, as well as a range of student support services.

Dr Guifen Chen group focuses on studying how sensory inputs are integrated at the neural network level to form spatial representation in the brain. Her long-term research interests lie in the network mechanisms of spatial cognition and episodic memory in healthy and diseased brains including Alzheimer's and Autism. Further details about Dr Guifen Chen's group are available here: https://www.qmul.ac.uk/sbbs/staff/guifen-chen.html 

Training and development

Our PhD students become part of Queen Mary’s Doctoral College which provides training and development opportunities, advice on funding, and financial support for research. Our students also have access to a Researcher Development Programme designed to help recognise and develop key skills and attributes needed to effectively manage research, and to prepare and plan for the next stages of their career.

Project description

The ability to navigate in the world and recall visited locations is a fundamental skill shared by both animals and human beings. The physical environment possesses many different cues that are perceived by the sensory systems. In mammals, the hippocampus and its adjacent areas in the medial temporal lobe, have long been implicated in spatial navigation and memory. Several types of spatial neurons have been discovered in this area, including place cells and grid cells. However, little is known about how the spatial patterns are formed from sensory inputs and integrate this information into our existing memory.

This project will study how our brain integrates visual and self-motion information to give rise to the unified spatial representation and how the representation is consolidated during sleep. The project will use our recently-developed two-dimensional virtual reality (2D VR) technique with in vivo electrophysiological recording.

The 2D VR provides mice with an immersive experience of navigating in a virtual world, and allows independent manipulations of visual and self-motion cues in 2D space. Computational models will be used to explain the findings and to make future predictions.

The outcome of the project will provide biological inspiration to the development of artificial intelligence, and also shine a light on neural mechanisms implicated in age-associated cognitive decline.

Funding

This studentship is open to students applying for China Scholarship Council funding. Queen Mary University of London has partnered with the China Scholarship Council (CSC) to offer a joint scholarship programme to enable Chinese students to study for a PhD programme at Queen Mary. Under the scheme, Queen Mary will provide scholarships to cover all tuition fees, whilst the CSC will provide living expenses for 4 years and one return flight ticket to successful applicants.

Eligibility and applying

Applicants must be:
- Chinese students with a strong academic background.
- Students holding a PR Chinese passport.
- Either be resident in China at the time of application or studying overseas.
- Students with prior experience of studying overseas (including in the UK) are eligible to apply. Chinese QMUL graduates/Masters’ students are therefore eligible for the scheme.

Please refer to the CSC website for full details on eligibility and conditions on the scholarship. 

Applications are invited from highly motivated candidates with a keen interest in neuroscience and with or expecting to receive a first or upper-second class honours degree and a masters degree in an area relevant to the project (for example Neuroscience, Life Sciences, Medicine, Psychology, Physics, Engineering, Maths or Computer Science).

Candidates with programming skills such as Matlab, a good understanding of maths, and/or experience of rodent experiments are desirable.

Applicants from outside of the UK are required to provide evidence of their English Language ability. Please see our English Language requirements page for details: https://www.qmul.ac.uk/international-students/englishlanguagerequirements/postgraduateresearch/   

Informal enquiries about the project can be sent to Dr Guifen Chen at guifen.chen@qmul.ac.uk 

Formal applications must be submitted through our online form by 31st January 2024 for consideration, including a CV, personal statement and qualifications. You must meet the IELTS/ English Language requirements for your course and submit all required documentation (including evidence of English Language) by 14th March 2024. You are therefore strongly advised to sit an approved English Language test as soon as possible. 

Shortlisted applicants will be invited for a formal interview by the supervisor. If you are successful in your application, then you will be issued an QMUL Offer Letter, conditional on securing a CSC scholarship along with academic conditions still required to meet our entry requirements. Once applicants have obtained their QMUL Offer Letter, they should then apply to CSC for the scholarship by in March 2024 with the support of the supervisor.

Only applicants who are successful in their application to CSC can be issued an unconditional offer and enrol on our PhD programme. For further information, please go to: https://www.qmul.ac.uk/scholarships/items/china-scholarship-council-scholarships.html 

Apply Online

References

1. Rowland, D. C., Roudi, Y., Moser, M.-B. & Moser, E. I. Ten Years of Grid Cells. Annu Rev Neurosci 39, 1–22 (2015).
2. Chen, G., Lu, Y., King, J. A., Cacucci, F. & Burgess, N. Differential influences of environment and self-motion on place and grid cell firing. Nat Commun 10, 630 (2019).
3. Chen, G., King, J. A., Lu, Y., Cacucci, F. & Burgess, N. Spatial cell firing during virtual navigation of open arenas by head-restrained mice. Elife 7, e34789 (2018).
4. Aronov, D., Nevers, R. & Tank, D. W. Mapping of a non-spatial dimension by the hippocampal–entorhinal circuit. Nature 543, 719–722 (2017).
5. Doeller, C. F., Barry, C. & Burgess, N. Evidence for grid cells in a human memory network. Nature 463, 657–661 (2010).
Back to top