Module code: MTH4115
Credits: 15.0
Semester: SEM2
Contact: Dr Matthew Lewis
Overlap: In taking this module you cannot take MTH4215
Prerequisite: Before or while taking this module you must ( take MTH4100 or take MTH4200 or take MTH4300 or take MTH4400 ) and ( take MTH4107 or take MTH4207 or take MTH4500 or take MTH4600 )
Properties of two- and three-dimensional space turn up almost everywhere in mathematics. For example, vectors represent points in space, equations describe shapes in space and transformations move shapes around in spaces; a fruitful idea is to classify transformations by the points and shapes that they leave fixed. Most mathematicians like to be able to 'see' in special terms why something is true, rather than simply relying on formulas. This model ties together the most useful notions from geometry - which give the meaning of the formulas - with the algebra that gives the methods of calculation. It is an introductory module assuming nothing beyond the common core of A-level Mathematics or equivalent.
Connected course(s): UDF DATA
Assessment: 100.0% Examination
Level: 4