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AdS-CFT

N = 4 gauge theory

with U(N) gauge group

l

String theory AdS5 × S5.
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The gauge theory has U(N) gauge group.

Hence the dynamical variables include a
matrix-valued gauge field Aµ(x, t). In addition, there
are 6 bosonic hermitian matrix fields
Φ1(x, t), Φ2(x, t), · · · , Φ6(x, t).

There are also fermion fields λa which are spinors.

() November 9, 2011 3 / 47



We are interested in the path integral

Z =

∫

DADλDΦe−S(A,Φ,λ)

and correlators, such as

〈trΦn
1(x)trΦn

1(y)〉
≡ 1

Z

∫

DADλDΦe−S(A,Φa,Λa)trΦn
1(x)trΦn

1(y)

The action depends on a coupling constant g2
YM .

Computations in the gauge theory can be done at
g2

YM = 0 or small. Strong coupling of large g2
YMN is

easier on the dual AdS side.
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trΦn
1(y) is an example of a local operator. In conformal field theories,

there is an operator-state correspondence, which allows us to
associate a quantum state to a local operator.

This is done in the framework of radial quantization, where the radial
displacement from a chosen point plays the role of time, and the
scaling operator plays the role of Hamiltonian.

Will freely use local operators or states.
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The theory is superconformal.

Conformality means that the bosonic symmetries include an operator
∆ which implements the action of x → λx on the fields.

The symmetries include 16 fermionic symmetric generators Q and
sixteen conjugate generators S, such that

{Q, S} = ∆ + · · ·
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The local-operators/states from representations of the superconformal
algebra. These representations have ∆ ≥ 0.

The lowest ∆ ( called lowest weight ) states are annihilated by all the S
symmetry generators.

The Q generate multiplets, which contain fields with different Poincare
symmetries, e.g scalars and tensors Tµν as well as fermions can
belong to the same multiplet.
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Special representations are generated by some operator O annihilated
by some subset of the Q.

Operators annihlated by

8 of the Q are called half-BPS
4 · · · · · · quarter-BPS
2 · · · · · · eighth-BPS
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Half-BPS lowest weight states are of the form
trX , trX 2, .. where X is a complex combination
(Φ1 + iΦ2), holomorphic traces in the matrix variable
X along with products of these traces.

Their multiplicity and a subset of their correlators
are unchanged from zero coupling g2

YMN = 0 to
strong coupling of g2

YMN large.
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Quarter BPS lowest weight states at zero coupling are constructed
from arbitrary holomorphic matrix traces of X , Y (two complex
combinations).

X = Φ1 + iΦ2

Y = Φ3 + iΦ4

At first order in the expansion in g2
YM , or at one-loop, the multiplicity

changes. Only those in the kernel of

H2 = tr [X , Y ][X̌ , Y̌ ]

are quarter BPS.
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There is evidence that no further jump happens beyond one-loop. The
multiplicity and an appropriate subset of correlators involving these
quarter BPS operators remain unchanged.

A similar story of a jump at weak coupling holds for eighth BPS states.
At zero coupling they are made from holomorphic traces of X , Y , Z .
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For AdS/CFT, it is important to know this spectrum of states precisely.
These states include gravitons, which arise from Kaluza-Klein
reduction on the S5, as well as large rotating branes and deformations
of the AdS5 × S5 geometries.

Symmetric groups (or permutation groups) have proved very useful in
organising these states : providing a basis that works at finite N, and
diagonalises the CFT-inner product on the states.
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OUTLINE

1 The half BPS case. A basis for holomorphic traces in one matrix
which diagonalizes the inner product. Labelled by Young diagrams

2 Quarter and eighth BPS in the limit g2
YM = 0. A basis in terms of

Clebsch-Gordan coefficients of symmetric groups

3 Quarter and eighth BPS at weak coupling interacting. A matrix
PGP.

4 Why symmetric groups ? Schur-Weyl duality + enhanced Noether
symmetries at zero coupling

5 Some comments on the dual AdS physics of these states.
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HALF-BPS case
In this case, all the relevant states are obtained from
gauge invariant polynomials in one complex matrix

n = 1 : tr(X)
n = 2 : trX2 , (trX)2

n = 3 : trX3, trX2trX, (trX)(trX)

The counting of these states at degree n is given by
the number of partitions of n.
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1 = 1
2 = 2

= 1 + 1
3 = 3

= 2 + 1
= 1 + 1 + 1
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The number p(n) is the number of conjugacy classes
of Sn – the symmetric group of permutations of n
objects.

σ ∼ ασα−1
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Conjugacy classes are specified by cycle structures
of the permutation

(

1 2 3
2 1 3

)

→ (12)(3)
(

1 2 3
2 3 1

)

→ (123)

In general the cycle structure of σ ∈ Sn can be written
as

1p12p2 · · ·
n = p1 + 2p2 + · · ·
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The matrix X , of size N can be viewed as

X : V → V

where V is N-dimensional vector space.

X ⊗ X · · · ⊗ X : V⊗n → V⊗n

Action of permutations on V⊗n

σ(ei1 ⊗ ei2 · · ·ein) = ei
σ(1)

⊗ ei
σ(2)

· · ·ei
σ(n)
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The general polynomial can be written as

trV⊗n(X⊗nσ)

or more explicitly

X i1
i
σ(1)

X i2
i
σ(2)

· · ·X in
i
σ(n)

These polynomials in X are independent under
conjugation σ → γσγ−1
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For the n = 2 case,

(trX )2 = X i1
i1

X i2
i2

= X i1
i
σ(1)

X i2
i
σ(2)

with σ = (1)(2)

(trX 2) = X i1
i2

X i2
i1

= X i1
i
σ(1)

X i2
i
σ(2)

with σ = (12)
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This is a basis

O[σ](X ) = trV⊗n(X⊗nσ)

in the space of gauge-invariant polynomials as long
as n ≤ N. It is overcomplete for n > N.

() November 9, 2011 21 / 47



Physically we want to compute the two-point function

〈O[σ1](X )O[σ2](X
†)〉

which define an inner product on the space of states
corresponding to local operators O[σ1]

The basic 2-point function is

〈X i
j (X

†)k
l 〉 = δi

l δ
k
j

() November 9, 2011 22 / 47



At g2
YM = 0, we can use Wick’s theorem to get

< XXXX †X †X †X † >=
∑

< XX † >< XX † >< XX † >< XX † >

The sum is over different pairings of the X and X †. There are 4! in this
case, in general n! with n copies of X , X †. These sums can also be
parametrized by permutations in Sn .
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The two-point function is complicated in the
multi-trace basis. A better basis – good at finite N and
diagonalises the 2-point function – is

OR(X ) =
∑

σ

χR(σ)Oσ(X )

It diagonalises

〈OR(X )OS(X †)〉 = fRδR,S

where R is a Young diagram of Sn.
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For the Young diagram which has one row of two boxes (symmetric)

χ[2](X ) =
1
2
(trX 2 + trXtrX )

For the one with one box in each of two rows (antisymmetric)

χ[1,1](X ) =
1
2
(trX 2 − trXtrX )
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There is a nice representation theory answer for these 2-point
functions. In this basis, 3-point functions are simply related to
Littlewood-Richardson coefficients for composing Young diagrams.

Permutations – more precisely conjugacy classes – appear in
classifying the operators.

trV⊗n(X⊗nσ) = trV⊗n(X⊗nγσγ−1)

Wick contractions parametrized by permutations. So expect group
theory.

Conjugacy classes and irreducible representations equal in number
and paired by character χR(σ).
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Eighth-BPS case : Free limit.
The eighth-BPS case. Gauge-invariant polynomials in
three complex matrices X1, X2, X3.
Now consider

Xa1 ⊗ Xa2 · · ·Xan

and

O~a(α) = tr (Xa1 ⊗ Xa2 · · · ⊗ Xanα)

Again for a good diagonal basis – we need some
representation theory,
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In this case local operators not invariant under conjugation. But Wick
contractions (hence permutations) still govern the correlator. So expect
group theory – beyond characters.

General group elements related to representations

n! =
∑

R

d2
R
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Fourier transform on group relates permutations σ to irreducible
representation labels R, i , j by

DR
ij (σ)

Expect these more refined representation theory data to appear in
finding a diagonal basis for 2point functions.
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There is U(3) transformation group where X1, X2, X3

form a 3-dimensional representation. Can work with a
U(M) version with M = 3 here.

V⊗n
M ≡

⊕

Λ⊢n

V U(M)
Λ ⊗ V (Sn)

Λ

Schur-Weyl duality.
There exists a unitary transformation

Ca1,··· ,an
Λ,MΛ,mΛ

〈a1, a2, · · · , an|Λ, MΛ, mΛ〉

This is a type of generalized Clebsch-Gordan
coefficient.
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Another decomposition is

V (Sn)
R ⊗ V (Sn)

R =
⊕

T

V (Sn)
T ⊗ V T

R,R

Tensor product of two irreps of Sn. There is a
diagonal action of Sn. Decomposing into irreps under
this diagonal action, there is a direct sum of irreps.

The space V T
R,R is a multiplicity space for the irrep T .
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There are now orthogonal Clebsch-Gordan coefficients

SR R T ;τ
i j k = 〈R, i ; R, j |T , k , τ〉

where τ runs over the multiplicity space.
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A diagonal basis for the 2-point functions

OΛ,MΛ,R,τ =

√
dR

n!

∑

α,~a

S R R Λ, τ
i j m DR

ij (α)C~a
Λ,MΛ,mO~a,α

The finite N constraint is that R has no more than n
rows.
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Eighth-BPS : Interacting theory
Here again, we want the two-point function. The
correct BPS states are now in the Kernel of a 1-loop
dilatation operator

H = tr[X1, X2][X̌1, X̌2]

The problem is to find a basis for this Kernel and get a
formula for the 2-point function for the Kernel states.

() November 9, 2011 34 / 47



Again we do this by using symmetric groups.
Any permutation α ∈ Sn with p1 one-cycles, p2

two-cycles, etc.

p1 p2

(.)(.) · · · (.) (..)(..) · · · (..) · · ·

is associated with a subgroup C(α) of γ such that
γαγ−1 = α.
This is isomorphic to

Sp1 × (Sp2 ⋉ Z p2
2 ) × (Sp3 ⋉ Z p3

3 ) · · ·

where p1, p2, · · · are the numbers of 1, 2, · · · cycles
of α.
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There is another similar subgroup S(α) where the Zpi

are replaced by Spi

Consider an element in the group algebra of Sn

Pα =
1

|S(α)|
∑

σ∈S(α)⊂Sn

σ

This is a projector

PαPα = Pα

C(α) is the symmetry group of tr((Xa1 ⊗ · · · ⊗ Xan)α)
S(α) is the symmetry group of symmetrized traces.
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The element Pα being in C(Sn) can be expanded

Pα =
∑

β

pβ,αβ

The numbers p[α],[β] are interesting generalizations of
”sorting numbers” which appear in combinatorics.
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Define the matrix (P)Λ,R1,τ1
Λ,R2,τ2

using Pα and representation theory data

(P)Λ,R1,τ1
Λ,R2,τ2

=

√

dR1
dR2

n!

∑

α∈Sn

DΛ
ij (Pα)

DR1
k1l1

(α)SR1 R1 Λ, τ1
k1 l1 i DR2

k2l2
(α)SR2 R2 Λ, τ2

k2 l2 j
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Define the matrix (P)Λ,R1,τ1
Λ,R2,τ2

using Pα and representation theory data

(P)Λ,R1,τ1
Λ,R2,τ2

=

√

dR1
dR2

n!

∑

α∈Sn

DΛ
ij (Pα)

DR1
k1l1

(α)SR1 R1 Λ, τ1
k1 l1 i DR2

k2l2
(α)SR2 R2 Λ, τ2

k2 l2 j
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τ2

τ1

R1

Pα

Λ

Λ

R2

R1

α

R2

α
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P is a projector on the Hilbert space of the free
theory.
Another matrix is defined as

(G)Λ,R1,τ1
Λ,R2,τ2

=
dR

DimR
δR1

R2
δτ1
τ2

The 2-point function of the BPS states in the
interacting theory is given by the matrix

PGP
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For the half-BPS case, we knew the eigenvalues and
eigenvectors of the matrix of 2-point functions. The
e-vecs were labelled by R – Young diagrams. The
e-vals were group theoretic fR.

Here the matrix of 2-point functions is PGP.

Would like to know more about eigenvalues and
eigenvectors of this matrix – an entirely group
theoretic quantity.
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Why symmetric groups ?

Not a symmetry of the lagrangian.

They arise by Schur-Weyl duality. Back to the half BPS sector
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Relavant part of the action is

S =

∫

d4x∂µX∂µX †

The gauge symmetry

X → UXU†
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The traces are invariant under this U(N).

The χR(X ) are holomorphic continuations of U(N) charcaters. So they
ought to be related to some U(N).

There is an enhanced global symmetry at zero coupling

X → UXV †

The extra U(N) explains the U(N) nature of χR(X ). Casimirs of the left
U(N) – constructed by Noether procedure – act diagonally on the
χR(X ).
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For the case of 2-matrices we described a basis with manifest
quantum numbers for U(2).

Another basis uses the symmetry breaking Sm+n → Sm × Sn arising
when we consider

trV⊗(m+n)(X⊗m ⊗ (X †)⊗n α)

This is the the restricted Schur basis. See papers of Robert de Mello
Koch et. al.
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Yet another basis uses a Brauer algebra B(m, n) instead of Sm+n

which also admits the Sm × Sn subgroup.

Existence of all these different bases can be understood by
appropriate Casimir of enhanced symmetries.

See “Enhanced symmetries of gauge theory and resolving the
spectrum of local operators,” Kimura and Ramgoolam,
http://arxiv.org/abs/0807.3696
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Back to ADS/CFT.

The connection between the Young diagram
classification of half-BPS and spacetime in AdS is
well understood : Giant gravitons and LLM
geometries.

There are moduli spaces of eighth BPS giant graviton
solutions – holomorphic surfaces in CP3. (Mikhailov)
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The precise map between the local operators and
these geometries is not understood. The results
outlined here should help make contact with the
quantum properties of these giant gravitons.

Longer term goal would be an analogous treatment of
sixteenth BPS states, which are related to black
holes having finite horizon area. Basic puzzles on
counting and entropy are outstanding here.
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