Skip to main content
School of Physics and Astronomy

Planet formation in stellar clusters

Research Group:Astronomy Unit

Number of Students:1

Length of Study in Years: 3-4 years

Full-time Project: yes

Funding:

QM Scholarship
STFC

Project Description:

Planets are formed from discs of material around young stars. However, most stars form in clustered groups of up to hundreds of thousands. Radiation from massive stars in these clusters can impinge upon planet-forming discs and evaporate them, limiting their mass, radius and lifetime. This in turn could affect the properties of the resulting planets. Understanding how discs evolve and produce planets in different radiation environments is crucial given the diversity of exoplanet properties that are being discovered.

One of 8 recently discovered evaporating discs (proplyds) in the flame nebula (NGC 2024) by Haworth et al. (2021).

One of 8 recently discovered evaporating discs (proplyds) in the flame nebula (NGC 2024) by Haworth et al. (2021).

PhD projects are available studying planet formation in stellar clusters using simulations, observations and comparisons of the two. They will:

  • Span a wide range of astrophysics (star formation, accretion discs, planet formation, exoplanets)
  • Involve world leading numerical simulations on supercomputers, including hydrodynamics, radiative transfer and photochemistry
  • Involve working with real observational data (archival exoplanet data, but also new disc data from ALMA). 

You will therefore develop a very wide range of skills and expertise as part of this project!

An example computer simulation of an evaporating disc by Haworth & Clarke (2019)

An example computer simulation of an evaporating disc by Haworth & Clarke (2019)

Some papers and other resources for the interested student:

  1. https://arxiv.org/pdf/1804.00013.pdf 
  2. https://arxiv.org/pdf/1903.03644.pdf 
  3. https://arxiv.org/pdf/1801.05822.pdf 
  4. https://www.imperial.ac.uk/news/178300/fledgling-stars-prevent-their-neighbours-from/ 

Requirements:

A Masters degree in physics, mathematics, or similar. In addition to this, the main requirement is familiarity with scientific programming, which will underpin a significant fraction of the research.

SPA Academics: Tom Haworth Other team members: Giulia Ballabio (PDRA), Lin Qiao (PhD student)