Dr Mark Baxendale

Reader in Nanotechnology
Email: m.baxendale@qmul.ac.ukTelephone: 020 7882 5795Room Number: G.O. Jones Building, Room 122Networks:
Undergraduate Teaching
Present:
SPA4402 Modern Physics
SPA6543 Group Project for Physicists
Past:
SPA5250 Physics of Energy and the Environment
SPA4116 From Newton to Einstien
SPA4116 Scientific Measurement
SPA7016U Physics Research Project
SPA7015U Physics Investigative Project
SPA6776 Physics Extended Investigative project
SPA6913 Physics Review Project
Research
Research Interests:
Nanotechnology is the exploitation of physical phenomena that only occur on the scale of several atoms to large molecules. Mark Baxendale is an expert in the energy and health applications of carbon macromolecules (fullerenes, carbon nanotubes, graphene, and conducting polymers).
Traditional methods of harvesting energy from low-grade heat are not viable. Mark Baxendale explores new ways to convert waste heat into usable electrical power by exploiting nanoscale phenomena. He seeks alternatives to conventional inorganic semiconductor materials for thermoelectric technology. Conducting polymer and perovskite materials are his focus in this respect.
Mark Baxendale designs and synthesises magnetic nanoparticles for non-invasive methods and therapies in biotechnology. Directed drug delivery and magnetic hyperthermia cancer therapy are his target usages. His goal is the realisation of self-thermoregulating nanostructures that kill the cancerous cells within a tumour with induced heat. At the same time, MRI imaging can precisely monitor both their temperature and location.
Publications
Tang, W., Zhang, J., Ratnasingham, S. R., Liscio, F., Chen, K., Liu, T., . . . Fenwick, O. (2020). Substitutional doping of hybrid organic-inorganic perovskite crystals for thermoelectrics. Journal of Materials Chemistry A. doi:10.1039/d0ta03648j
Qiu, M., & Baxendale, M. (2020). Quantum-tunneling controlled thermoelectricity in polymers. Organic Electronics, 78, 105553. doi:10.1016/j.orgel.2019.105553
Wan, K., Taroni, P. J., Liu, Z., Liu, Y., Tu, Y., Santagiuliana, G., . .Baxendale, M., Bilotti, E. (2019). Flexible and Stretchable Self‐Powered Multi‐Sensors Based on the N‐Type Thermoelectric Response of Polyurethane/Nax(Ni‐ett)n Composites. Advanced Electronic Materials, 51(12), 1900582. doi:10.1002/aelm.201900582
Boi, F. S., Zhang, X., Odunmbaku, O., Xia, J. C., Taallah, A., & Baxendale, M. (2019). Magnetic ordering and interactions in iron-filled carbon foam. Materials Today Chemistry, 12, 261-265. doi:10.1016/j.mtchem.2019.03.003
Taroni, P. J., Santagiuliana, G., Wan, K., Calado, P., Qiu, M., Zhang, H., . . . (2018) Toward Stretchable Self-Powered Sensors Based on the Thermoelectric Response of PEDOT:PSS/Polyurethane Blends. Advanced Functional Materials. 28(15), 1704285. doi:10.1002/adfm.201704285
Baxendale, M., & Peci, T. (2017). A Facile Method for Self-Organized Texturing of Iron-Filled Multiwalled Carbon Nanotube Arrays. physica status solidi (a) 214(11), 1700327. doi:10.1002/pssa.201700327
Boi, F. S., Guo, J., Wang, S., He, Y., Xiang, G., Zhang, X., & Baxendale, M. (2016). Fabrication of cm scale buckypapers of horizontally aligned multiwalled carbon nanotubes highly filled with Fe3C: The key roles of Cl and Ar-flow rates. Chemical Communications, 52(22), 4195-4198. doi:10.1039/c5cc10533a
Peci, T., & Baxendale, M. (2016). Length and α-Fe Content Control of Self-Organised Ferromagnetic Nanowires Encapsulated by Multiwalled Carbon Nanotubes by Low Flow-Rate CVD. Carbon. 98, 519-525. doi:10.1016/j.carbon.2015.11.038
Peci, T., Dennis, T. J. S., & Baxendale, M. (2015). Iron-filled multiwalled carbon nanotubes surface-functionalized with paramagnetic Gd (III): A candidate dual-functioning MRI contrast agent and magnetic hyperthermia structure. Carbon, 87, 226-232. doi:10.1016/j.carbon.2015.01.052
Boi, F. S., Maugeri, S., Guo, J., Lan, M., Wang, S., Wen, J., . . . Xiang, G. (2014). Controlling the quantity of α-Fe inside multiwall carbon nanotubes filled with Fe-based crystals: The key role of vapor flow-rate. Applied Physics Letters, 105(24), 243108-243114. doi:10.1063/1.4904839
Davies, P., Papakonstantinou, P., Martin, N., Kratochvílová, I., Ewels, C., Shaffer, M., . . . Nguyen, T. (2014). Synthesis in gas and liquid phase: general discussion.. Faraday Discuss, 173, 115-135. doi:10.1039/c4fd90042a
Bikkarolla, S. K., Baxendale, M., Ewels, C., Enoki, T., Kaneko, K., Martín, N., . . . Kinloch, I. (2014). Applications, composites, and devices: general discussion.. Faraday Discuss, 173, 429-443. doi:10.1039/C4FD90046D
Boi, F. S., Wilson, R. M., Mountjoy, G., Ibrar, M., & Baxendale, M. (2014). Boundary layer chemical vapour synthesis of self-organised ferromagnetically filled radial-carbon-nanotube structures. Faraday Discussions, 173, 67-77. doi:10.1039/c4fd00071d
Boi, F. S., Mountjoy, G., Wilson, R. M., Luklinska, Z., Sawiak, L. J., & Baxendale, M. (2013). Multiwall carbon nanotubes continuously filled with micrometre-length ferromagnetic α-Fe nanowires. Carbon 64, 351-358. doi: 10.1016/j.carbon.2013.07.085
Boi, F. S., Mountjoy, G., & Baxendale, M. (2013). Boundary layer chemical vapor synthesis of self-organized radial filled-carbon-nanotube structures. Carbon, 64, 516-526. doi:10.1016/j.carbon.2013.08.001
Boi, F. S., Mountjoy, G., Luklinska, Z., Spillane, L., Karlsson, L. S., Wilson, R. M., . . . Baxendale, M. (2013). The origin of long-period lattice spacings observed in iron-carbide nanowires encapsulated by multiwall carbon nanotubes.. Microscopy and Microanalysis, 19(5), 1298-1302. doi:10.1017/S1431927613001918
McAndrew, C. F., & Baxendale, M. (2013). High electrical conductance enhancement in Au-nanoparticle decorated sparse single-wall carbon nanotube networks.. Nanotechnology, 24(30), 305202. doi:10.1088/0957-4484/24/30/305202
Boi, F. S., Mountjoy, G., Wilson, R. M., Luklinska, Z., Sawiak, L. J., & Baxendale, M. (2013). Multiwall carbon nanotubes continuously filled with micrometre-length ferromagnetic α-Fe nanowires. Carbon, 64, 351-358. doi:10.1016/j.carbon.2013.07.085
Feizi, E., Scott, K., Baxendale, M., Pal, C., Ray, A. K., Wang, W., . . . Hodgson, S. N. B. (2012). Synthesis and characterisation of nickel nanorods for cold cathode fluorescent lamps. Materials Chemistry and Physics, 135(2-3), 832-836. doi:10.1016/j.matchemphys.2012.05.066
Bilotti, E., Zhang, R., Deng, H., Baxendale, M., & Peijs, T. (n.d.). Fabrication and Property Prediction of Conductive and Strain Sensing TPU/CNT Nanocomposite Fibres. Journal of Materials Chemistry, 20, 9449-9455. doi:10.1039/C0JM01827A
McClory, C., McNally, T., Baxendale, M., Pötschke, P., Blau, W., & Ruether, M. Electrical and Rheological Percolation of PMMA/MWCNT Nanocomposites as a Function of CNT Geometry and Functionality. European Polymer Journal, 46(5), 854-868. doi:10.1016/j.eurpolymj.2010.02.009
Hudziak, S., Darfeuille, A., Zhang, R., Peijs, T., Mountjoy, G., Bertoni, G., & Baxendale, M. Magnetoresistive Phenomena on Fe-Filled Carbon Nanotube/Elastomer Composites. Nanotechnology, 21, 125505. doi:10.1088/0957-4484/21/12/125505
Ciselli, P., Zhang, R., Wong, Z., Reynolds, C. T.,Baxendale, M., & Peijs, T. (2009). Oriented UHMW-PE/CNT Composite Tapes by a Solution Casting-Drawing Process Using Mixed-Solvents. European Polymer Journal, 45(10), 2741-2748. doi:10.1016/j.eurpolymj.2009.06.004
Baxendale, M., Battini, P., Pollini, I., Endo, M., Kim, Y. A., Hayashi, T., & Muramatsu, H. (2009). Quantum conductance in double-wall carbon nanotubes grown by chemical vapor deposition. Physical Review B, 80(12), 125411. doi:10.1103/PhysRevB.80.125411
Zhang, R., Dowden, A., Deng, H., Baxendale, M., & Peijs, T. (2009). Conductive network formation in the melt of carbon nanotube/thermoplastic polyurethane composite. Composites Science and Technology, 69(10), 1499-1504. doi:10.1016/j.compscitech.2008.11.039
Morgan, C., Alemipour, Z., & Baxendale, M. (2009). Variable range hopping in oxygen-exposed single-wall carbon nanotube networks. phys status solidi (a), 205, 1394-1398. doi:10.1002/pssa.200925122
Baxendale, M., Melli, M., Alemipour, Z., Pollini, I., & Dennis, T. J. S. (2007). Quantum conductance in single- and double-wall carbon nanotube networks. Journal of Applied Phyics, 102(10), 103721. doi:10.1063/1.2817623
Andzane, J., Tobin, J. M., Li, Z., Prikulis, J., Baxendale, M., Olin, H., . . . Erts, D. (2007). Selection of Application Specific Single and Multi Walled Carbon Nanotubes by In Situ Characterization of Conductive and Field Emission Properties. Journal of Nanotechnology Online. doi:10.2240/azojono0123
Zhang, R., Baxendale, M., & Peijs, T. (2007). Universal resistivity-strain dependence of carbon nanotube/polymer composites. Physical Review B, 76(19),195433. doi:10.1103/PhysRevB.76.195433
Rajendra, J., Baxendale, M., Dit Rap, L. G., & Rodger, A. (2004). Flow linear dichroism to probe binding of aromatic molecules and DNA to single-walled carbon nanotubes.. Journal of the American Chemical Society, 126(36), 11182-11188. doi:10.1021/ja048720j
Baxendale, M. (2003). Biomolecular applications of carbon nanotubes.. IEE Proceedings in Nanobiotechnology, 150(1), 3-8. doi:10.1049/ip-nbt:20030576
Charlier, J. C., Terrones, M., Baxendale, M., Meunier, V., Zacharia, T., Rupesinghe, N. L., . . . Amaratunga, G. A. J. (2002). Enhanced electron field emission in B-doped carbon nanotubes. Nano Leters., 2(11), 1191-1195. doi:10.1021/nl0256457