School of Physics and Astronomy

Dr Alkistis Pourtsidou


Lecturer in Cosmology

Telephone: 0207 882 3463
Room Number: G. O. Jones Building, Room 507


I'm a lecturer in cosmology at Queen Mary University of London. My main research interest is cosmology with large-scale structure surveys, mainly Euclid and MeerKAT/SKA. I am also occasionally working on dark energy models and cosmic strings. 

I completed my PhD at the University of Nottingham in 2011, followed by a postdoc at the Univesrity of Manchester (2012), a postdoc at Bologna University (2014), and a Dennis Sciama Fellowship at the Institute of Cosmology & Gravitation in Portsmouth (2017). I have an MSc in Elementary Particle Theory from Durham University and a degree in Physics from the University of Athens.

My Github repository with code and lecture material.


Queen Mary teaching

2017 - present: Physical Cosmology (SPA6311).

2017: Module Organiser for Synoptic Physics,

International teaching

2018: Tutor in the Data Science Intensive programme (South Africa).

2018: Lecturer in the Tonale Winter School in Cosmology (Italy).


Research Interests:

I am currently working on:

  • Cosmology with 21cm intensity mapping: theory, simulations, and data analysis.
  • Theory and observations of large-scale structure with Euclid, MeerKAT/SKA, and LSST.
  • Modelling non-linear scales for galaxy clustering.
  • Dark energy models.
  • Large scale structure tests of gravity and inflation.


International collaborations:

Euclid: co-lead of the InterScience Taskforce: non-linear, co-lead of the Additional Galaxy Clustering Probes WorkPackage.

SKA: Core member (Cosmology SWG), co-lead of Cosmology with SKA-LOW Focus Group.

LSST:UK Affiliate PI


STFC grant (PI): Neutral Hydrogen Intensity mapping with MeerKAT (258,000 GBP).

GCRF development grant (Co-I): SA-DISCNET: A collaborative data science training network across southern Africa and southern UK (140,000 GBP).

Newton International Exchanges (PI): Developing the synergies between Euclid and SKA (5,000 GBP).


PhD Supervision

Project Title

Cosmology Theory Meets Data: Modelling Non-Linear Scales for Dark Energy Experiments 

During the last few years, we have entered the “golden era” of observational cosmology. The standard cosmological model fits the data extremely well, but requires the existence of two exotic constituents, namely dark energy in the form of a cosmological constant, and cold dark matter. Dark energy currently dominates the Universe and it is responsible for its accelerated expansion.

For full details click here [note: this position is now filled]