Permutations, Strings and Feynman Graphs.

Sanjaye Ramgoolam

Queen Mary - London

Corfu Workshop, September, 9, 2011

Based on papers
From Matrix Models and quantum fields to Hurwitz space and the absolute Galois group
arXiv:1002.1634[hep-th] ; Robert de Mello Koch, Sanjaye Ramgoolam
Permutations, Strings and Feynman Graphs
Robert de Mello Koch, Sanjaye Ramgoolam ; to appear : arXiv:1109.****
Introduction

There is a very fundamental connection between permutations and strings.
There is a very fundamental connection between permutations and strings.

Permutations are re-arrangements of \(\{1, 2, \cdots, n\} \). The set of all such re-arrangements forms the group \(S_n \), of order \(n! \).
There is a very fundamental connection between permutations and strings.

Permutations are re-arrangements of \(\{1, 2, \cdots, n\} \). The set of all such re-arrangements forms the group \(S_n \) of order \(n! \).

Example \(\sigma_1, \sigma_2, \sigma_3 \) are 3 permutations among the 6 in \(S_3 \).

\[
\begin{align*}
\sigma_1 & : \{1, 2, 3\} \rightarrow \{1, 2, 3\} \\
\sigma_2 & : \{1, 2, 3\} \rightarrow \{2, 1, 3\} \\
\sigma_3 & : \{1, 2, 3\} \rightarrow \{2, 3, 1\}
\end{align*}
\]
Other ways of describing σ_2:

\[
\sigma_2(1) = 2, \sigma_2(2) = 1, \sigma_2(3) = 3
\]
\[
\sigma_2 = 213
\]
\[
\sigma_2 = (12)(3)
\]
Other ways of describing σ_2:

\[
\sigma_2(1) = 2, \sigma_2(2) = 1, \sigma_2(3) = 3
\]
\[
\sigma_2 = 213
\]
\[
\sigma_2 = (12)(3)
\]

In cycle notation

\[
\sigma_1 = (1)(2)(3)
\]
\[
\sigma_2 = (12)(3)
\]
\[
\sigma_3 = (123)
\]
Other ways of describing σ_2:

$$\sigma_2(1) = 2, \sigma_2(2) = 1, \sigma_2(3) = 3$$
$$\sigma_2 = 213$$
$$\sigma_2 = (12)(3)$$

In cycle notation

$$\sigma_1 = (1)(2)(3)$$
$$\sigma_2 = (12)(3)$$
$$\sigma_3 = (123)$$

Two permutations σ, σ' having the same cycle structure are related by conjugation.

$$\sigma = \gamma \sigma \gamma^{-1}$$

e.g. $(12)(3)$ and $(13)(2)$ are related by $\gamma = (1)(23)$.
S_3 has 3 cycle structures, equivalently 3 conjugacy classes. Consider the possible states of 3-strings winding around a circle.

\[
\begin{align*}
X(\sigma) &= 0 & \text{Singly Wound} \\
X(\sigma) &= 2\pi & \text{Doubly Wound} \\
X(\sigma) &= 3\pi & \text{Triply Wound}
\end{align*}
\]

$X \sim X + (2\pi)$

$0 \sim 0 + (2\pi)$
Starting from a configuration of such strings we can label the points above a fixed spacetime point and obtain a permutation.
The number of winding states, or cycle structures in S_n, is the number of partitions of n, called $p(n)$: a well-studied number in Mathematics. Its asymptotics is relevant to Hagedorn transition.

\[
\begin{align*}
 3 &= 1 + 1 + 1 \\
 2 &= 2 + 1 \\
 3 &= 3
\end{align*}
\]
The number of winding states, or cycle structures in S_n, is the number of partitions of n, called $p(n)$: a well-studied number in Mathematics. Its asymptotics is relevant to Hagedorn transition.

\[
\begin{align*}
3 & = 1 + 1 + 1 \\
2 & = 2 + 1 \\
3 & = 3
\end{align*}
\]

When we consider string interactions, the permutations themselves matter, not just the cycle structure they belong to.
The connection between strings and permutations plays a central role in gauge-string duality. I will explain 3 connections to illustrate this.

- Large N expansion of 2 dimensional Yang Mills partition function.

- Large N expansion of Hermitian Matrix model correlators.

- Feynman Graph counting in scalar field theory.

The third example suggests that Large N is not crucial to strings emerging from Quantum Field theory.
Gauge-String Duality.
Some dynamics of quantum field theory with matrix fields has a
dual description in terms of String theory. Maldacena’s
AdS/CFT duality between strings on $AdS_5 \times S^5$ and $N = 4$
SYM with $U(N)$ gauge group is one of the richest examples.
Gauge-String Duality.
Some dynamics of quantum field theory with matrix fields has a
dual description in terms of String theory. Maldacena’s
AdS/CFT duality between strings on $AdS_5 \times S^5$ and $N = 4$
SYM with $U(N)$ gauge group is one of the richest examples.

In lower dimensions, we have 2D pure Yang Mills theory with
$U(N)$ gauge group, on Riemann surface Σ_G of genus G and
area A.
Gauge-String Duality.
Some dynamics of quantum field theory with matrix fields has a dual description in terms of String theory. Maldacena’s AdS/CFT duality between strings on $AdS_5 \times S^5$ and $N = 4$ SYM with $U(N)$ gauge group is one of the richest examples.

In lower dimensions, we have 2D pure Yang Mills theory with $U(N)$ gauge group, on Riemann surface Σ_G of genus G and area A.

This theory is quasi-topological and the partition function depends only on G, A. In this case, the string theory has 2D target Σ_G, as discovered by Gross and Taylor in mid-nineties.
Permutations are key to organising the gauge invariant operators. For 2dYM on a cylinder, defining the partition function requires specifying the boundary condition, which is a group element U in $U(N)$ at each boundary.

\[U_1 = e^{i \oint_{c_1} A \cdot ds} \]
\[U_2 = e^{i \oint_{c_2} A \cdot ds} \]
The gauge-invariant functions are traces.

\[tr(U^3), trU^2 trU, (trU)^3 \]

Some are linear in traces, some non-linear. Permutations give a unified linear way of thinking about all of them.
\[trU^2 = U_{i_2}^{i_1} U_{i_1}^{i_2} \]
\[= U_{i_{\sigma(1)}}^{i_1} U_{i_{\sigma(2)}}^{i_2} \]

with \(\sigma = (12) \)

\[(trU)^2 = U_{i_1}^{i_1} U_{i_2}^{i_2} \]
\[= U_{i_{\sigma(1)}}^{i_1} U_{i_{\sigma(2)}}^{i_2} \]

Multi-traces are constructed by using different permutations.

\[tr_{V \otimes n}(\sigma U \otimes n) \]

Different permutations with the same cycle structure give the same trace. Replacing \(\sigma \rightarrow \gamma \sigma \gamma^{-1} \) leaves the trace invariant.
In 2dYM, the partition function $Z(U_1, U_2)$ on a cylinder (and any Riemann surface) can be written exactly in terms of representations of $U(N)$.

We can transform to a permutation basis

$$Z(\sigma_1, \sigma_2) = \int dU_1 dU_2 Z(U_1, U_2) tr_n(\sigma_1 U_1^\dagger) tr_n(\sigma_2 U_2^\dagger)$$

$$Z(\sigma_1, \sigma_2) = \sum_{\gamma \in S_n} \delta(\sigma_1 \gamma \sigma_2 \gamma^{-1})$$
In 2dYM, the partition function $Z(U_1, U_2)$ on a cylinder (and any Riemann surface) can be written exactly in terms of representations of $U(N)$.

We can transform to a permutation basis

$$Z(\sigma_1, \sigma_2) = \int dU_1 dU_2 Z(U_1, U_2) \text{tr}_n(\sigma_1 U_1^\dagger) \text{tr}_n(\sigma_2 U_2^\dagger)$$

$$Z(\sigma_1, \sigma_2) = \sum_{\gamma \in S_n} \delta(\sigma_1 \gamma \sigma_2 \gamma^{-1})$$

This is the answer in the zero area limit.
The δ function is defined like a Kronecker delta, except over the symmetric group:

$$\delta(\sigma) = \begin{cases} 1 & \text{if } \sigma = \text{identity} \\ 0 & \text{otherwise} \end{cases}$$

Can be manipulated like Kronecker Delta.
The δ function is defined like a Kronecker delta, except over the symmetric group:

$$\delta(\sigma) = 1 \text{ if } \sigma = \text{identity}$$

$$= 0 \text{ otherwise}$$

Can be manipulated like Kronecker Delta.

The permutation γ is the re-lebelling of sheets of the cover in going from one boundary to another. The delta function ensures that the two cycle structures are the same.
Figure: Paths and permutations on cylinder
At non-zero area the sum is modified to include additional permutations which can be interpreted as a counting of branched covers (holomorphic maps) where $\partial_z f$ of the map is allowed to vanish at certain points on the worldsheet.
Let us leave 2dYM aside, to give a simple illustration of this point in the Hermitian matrix model.

The physics of the Gaussian measure for the eigenvalue distribution is encoded in correlators of traces:

$$\int dX \ e^{-\frac{1}{2}trX^2} \mathcal{O}(X)$$

The observables are general traces:

$$trX, \ trX^2, \ trXtrX, \ trX^3, \ trX^2trX, \ trXtrXtrX$$
One finds that

$$
< \mathcal{O}_p > = \frac{1}{n!} \sum_{\sigma_1 \in p \in S_n} \sum_{\sigma_2 \in [2^{n/2}]} \sum_{\sigma_3} \delta(\sigma_1 \sigma_2 \sigma_3) N^{C_{\sigma_3}}
$$

Here \(n \) is even. The permutation \(\sigma_3 \) is arbitrary, but \(\sigma_2 \) has the cycle structure \([2^{n/2}]\), i.e. of type

$$
(12)(34) \cdots (n-1 \, n)
$$

This comes from the fact that the computation of the correlators can be done by Wick contractions, which are pairings of the \(n \) matrices in the observable.
One can use some **classical mathematics of Riemann** to relate this formula directly to the geometry of branched covers, i.e. holomorphic maps a worldsheet Σ to a sphere.

Holomorphy:

$$\partial \bar{z} f = 0$$

The powers of N keep track of the genus of the worldsheet.

Three permutations: If $\partial_z f(P) = 0$ then $f(P) \in \{0, 1, \infty\}$.

Details in arXiv:1010.1634
A third connection involves a QFT without large N. Just real scalar field theory, for concreteness, take vacuum diagrams in ϕ^4 theory.

Calculations in QFT are simplified by organizing the large number of Wick contractions, into graphs, each of which comes with a symmetry factor.
For $v = 1$ there is one graph. For $v = 2$, there are 3 graphs, etc.

Figure: One vertex vacuum diagram in ϕ^4 theory

Figure: Two vertex vacuum diagrams in ϕ^4 theory
This sequence of vacuum diagrams

\[1, 3, 7, 20, 56, 187, 654, 2705, 12587, 67902, 417065, \ldots\]

has an expression in terms of string amplitudes, of the kind that appears in 2dYM.
This sequence of vacuum diagrams

\[1, 3, 7, 20, 56, 187, 654, 2705, 12587, 67902, 417065, \ldots\]

has an expression in terms of string amplitudes, of the kind that appears in 2dYM.

\[
\frac{1}{|H_1||H_2|} \sum_{\sigma_1 \in H_1} \sum_{\sigma_2 \in H_2} \sum_{\gamma \in S_{4v}} \delta(\sigma_1 \gamma \sigma_2 \gamma^{-1})
\]

Number of diagrams with \(v\) vertices
H_1 is a subgroup of S_{4^v}:

$$(S_4 \times S_4 \cdots \times S_4) \rtimes S_v \equiv S_v[S_4]$$

There are v copies of S_4 and S_v acts as an automorphism of this product group.
H_1 is a subgroup of S_{4^v}:

$$(S_4 \times S_4 \cdots \times S_4) \rtimes S_{v} \equiv S_{v}[S_4]$$

There are v copies of S_4 and S_{v} acts as an automorphism of this product group.

H_2 is a subgroup of S_{4^v}:

$$(S_2 \times S_2 \cdots \times S_2) \rtimes S_{2^v} \equiv S_{2^v}[S_2]$$
H_1 is a subgroup of S_{4v}:

$$(S_4 \times S_4 \cdots \times S_4) \rtimes S_v \equiv S_v[S_4]$$

There are v copies of S_4 and S_v acts as an automorphism of this product group.

H_2 is a subgroup of S_{4v}:

$$(S_2 \times S_2 \cdots \times S_2) \rtimes S_{2v} \equiv S_{2v}[S_2]$$

H_1 is the symmetry of the v 4-valent vertices. H_2 is the subgroup of permutations which commute with

$$(12)(34) \cdots (4v - 1 \ 4v)$$

which has to do with the pairing-property of Wick contractions.
The key step in deriving this expression is to describe the graph in terms of a pair of data Σ_0, Σ_1, where Σ_0 is associated with vertices and Σ_1 with Wick contractions.

Figure: Two vertex vacuum diagrams in ϕ^4 theory
Figure: Numbering the half-edges
(a) \[\Sigma_0 = <1, 2, 3, 4> <5, 6, 7, 8> \]
\[\Sigma_1 = (12)(34)(56)(78) \]

(b) \[\Sigma_0 = <1, 2, 3, 4> <5, 6, 7, 8> \]
\[\Sigma_1 = (23)(16)(47)(58) \]

(c) \[\Sigma_0 = <1, 2, 3, 4> <5, 6, 7, 8> \]
\[\Sigma_1 = (15)(26)(37)(48) \]

This also leads to neat symmetric group expressions for symmetry factors which have a string interpretation.
Conclusions
The connection between Strings and Permutations is fundamental to gauge-string duality.
Conclusions

The connection between Strings and Permutations is fundamental to gauge-string duality.

There are “topological” dualities between QFT and strings related to the counting of Feynman diagrams which do not involve large N.
Conclusions
The connection between Strings and Permutations is fundamental to gauge-string duality.

There are “topological” dualities between QFT and strings related to the counting of Feynman diagrams which do not involve large N.

Are there physical versions of such dualities involving non-trivial dependence on space-time and momenta?