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The role of climate change on economic performance and output has been

studied extensively in the empirical literature, however, its distributional ef-

fects have received little attention. This paper attempts to fill this gap by

investigating whether climate shocks affect income inequality in a large num-

ber of countries. We use data on climate indicators, income and inequality

measures for 153 countries spanning a long time period. The climate shock

is identified as the disturbance that explains the bulk of the climate fluctu-

ations in the long run. Our findings suggest that an adverse climate shock

is associated with an increase in measures of income inequality. We find a

heterogeneous impact of the on the left and right tail within-country income

distribution. The impact of the shock is larger in magnitude for low income

and hot on average countries with a significant agricultural sector and low

expenditure on health sector.
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1 Introduction

Climate deeply affects aspects of economic and social activity. The economic effects

of climate change have been long studied and a range of results, at times controversial,

have been produced. Studies on climate change show that excessive CO2 emissions

lead to global warming, extreme weather conditions and volatility, rise of sea levels,

change in precipitation patterns etc. Economically, these changes impact a number of

sectors such as agriculture, health, energy, but also labour productivity, institutional

quality, political stability and ultimately national output and its growth rate. Cross

sectional studies using global samples estimate this impact and present high variation

in their findings. For example, Kahn et al. (2021a), in a panel of 174 countries, find

that an average increase of 0.04%oC per year will reduce world output by 7% until

2100 if no mitigation policies are implemented. However, in a global sample of 125

countries, Dell et al. (2012a), find that a rise in temperature lowers the growth rate

of income per capita by 1.3% but only in poor countries. The effect on rich countries

and the role of precipitation have not found to be significant in this study.

Investigating the effects of a certain rise in temperature on global output, results

coming from various studies vary from large negative ones (e.g. −2.14% by a 3.1oC

increase in temperature (Roson and der Mensbrugghe (2012))) to very small ones

(e.g. Mendelsohn, Morrison, Schlesinger and Andronova (2000)) and to high positive

ones (e.g. 2.3% by a 1oC increase in temperature (Tol (2002)) 1). It is also clear

that not all regions will be affected the same way. There is some consensus in the

literature that Sub Saharan countries may experience a significant loss of GDP as

large as 25% (Rehdanz andMaddison (2005)) while East European and Former Soviet

Union countries may experience a very small loss or even a benefit on their output

(for example Mendelsohn, Morrison, Schlesinger and Andronova (2000) estimate a

4% rise by a 2.5oC warming).

Since climate change effects vary according to geographical location, economic

development and structure, one could naturally ask how climate change affects the

way income is distributed among households. The research findings mentioned above,

by showing heterogeneous impact among countries, implicitly indicate inequality ef-

1The numbers we use here are coming from Nordhaus and Moffat (2017), who review estimates
on global output from 27 studies. The authors use a systematic research synthesis of these studies
and estimate an income loss of 2.04% to a 3oC global warming and sharp convexities as temperature
goes up.
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fects. However, to our knowledge, there are very few studies which explicitly examine

distributional implications within a country. For example, how a poor and a rich

household will be affected by global warming in Mexico or in Norway? We know that

due to their location and economic characteristics these countries will be affected dif-

ferently. However, we do not know how the income of poor and rich households can

be affected in each country and whether specific economic characteristics can exac-

erbate or mitigate movements on income distribution.

To our knowledge, this paper is one of the first attempts to shed light on the im-

pact of climate change on inequality. More specifically, we investigate whether shocks

in climatological factors, such as temperature and precipitation, impacts inequality

measures. We gather annual data for 153 countries ranging from 1900 (for some

countries) to 2020. We employ a panel structural VAR model which includes cli-

mate, inequality indicators and macroeconomic variables. In our benchmark model,

we identify climate shocks as those that explain the bulk of the change of climate

variables at low frequencies (see for example Angeletos et al. (2020)). We are in-

terested in the long run effects of climate change. As Dell et al. (2014) point out,

these type of effects are particular and differ from the short run ones as they can be

stronger due to intensification or smaller due to adaptation. Our findings show that

climate shocks of rising temperature are associated with rise in inequality measures.

More specifically, a rise in temperature by 1oC increases the Gini coeffi cient by 0.63

percent on average in six years. This effect is stronger for less developed economies,

with a large agricultural sector and for the ones classified as hot countries laying on

certain climate zones.

Related literature

Our paper relates to the literature examining the impact of climate change on

economic activity but focus on its heterogeneous effects. It is motivated by studies on

global samples which find heterogeneous impact on GDP across geographical regions.

Our research moves forward to examine the distributional, within country income

effects. The strand of literature which investigates the impact of climate change on

economic activity is vast, highly served by Integrated Assessment Models (IAMs).

IAMs combine a large area of knowledge from more than one disciplines, such

as climate science, ecology, economics, game theory, law, politics etc. These mod-

els have been used extensively to answer complicated questions, examining multiple

scenaria on how CO2 emissions can affect global warming and temperature in dif-
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ferent aspects of life, under diverse policy responses. The choice of model, structure

and assumptions determine largely their results and implications. Although these

models have been highly criticised on the basis of assumptions and estimations used,

they all agree on serious market and non-market damages, especially in the case of

policy inaction2. They agree that CO2 emissions will peak first and then decrease

for specific global warming targets. For example, the 2016 DICE model (Nordhaus

(2019)) finds that a 3oC global warming will suppress global output by 2%, while a

6oC one will amass to 8% output loss indicating loss hikes in a non-linear fashion.

We relate to panel data studies which use global samples3. For example, Dell

et al. (2012a) examine how annual variation in temperature and precipitation affect

annual growth for 125 countries in 1950-2002 period. Their findings show a significant

negative impact (−1.4% GDP pc to +10C warming) but only for poor countries and

only for a rise in temperature (and not a fall in precipitation). Hsiang (2010) finds an

output loss of 2.5% for Caribbean countries to +1oC warming in 1970-2006 period.

Kahn et al. (2021b), in a panel of 174 countries, find a negative impact of temperature

rise on real output and estimate that a persistent increase of 0.04%oC on average

per year will decrease world output by 7% until 2100, if mitigation policies are not

implemented.

The following papers discuss distributional effects and some aspects on inequal-

ity but mostly across countries or regions: Burke and Tanutama (2019) by using

longitudinal data on economic output from over 11, 000 districts across 37 countries,

find a nonlinear response of growth to temperature distribution. Their results also

indicate that additional warming will exacerbate inequality across countries. Cevik

and Jalles (2022) examine the relationship between measures of climate change vul-

nerability and inequality. They find that these measures are associated with higher

income inequality. In contrast, the focus of our work is on the effects of adverse

climate shocks which are identified by using the long run properties of climate data

therefore our estimates do not rely on constructed indices of vulnerability that may

suffer of endogeneity.

Diffenbaugh and Burke (2019) estimate that global warming has increased the

between country inequality by 25% in the last 50 years. By using counterfactual

2For a thorough review see (Nordhaus (2019)).
3A detailed survey on panel data papers with global samples research can be found in Dell et al.

(2014).
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historical climate trajectories from a battery of global climate models, the authors

estimate that GDP pc has been reduced by 17 − 31% at the poorest four deciles

of the population and the top to bottom ratio in percentiles is 25% larger than in

a world without global warming. Interestingly, the authors note that although the

difference between poor and rich countries has decreased in the last few decades,

global warming has slowed down this process. Islam and Winkel (2017) discuss the

impact of climate change on social inequality within countries. Social inequality is

defined as a much broader concept than the income one, referring to demographic

and economic characteristics and access to public resources. The paper discusses

channels of transmission from a socioeconomic and policy point of view and presents

some tentative correlations.

The heterogeneous impact across countries and regions can be explained by a

number of factors which act as channels of transmission. Naturally, geographic loca-

tion and actual climate of a country play a crucial role. Dell et al. (2009) find that

61% of income variation in municipal level across 12 American countries is attributed

to these factors. Gallup et al. (1999) show that countries close to the equator are

poorer and grew at a slower rate between 1965 and 1995 due to malaria and losses in

the agricultural sector among other factors. Barrios et al. (2010) find that deteriora-

tion of rainfalls explain 15− 40% in the income gap between sub-Saharan countries

and the rest of the developing countries.

An economic sector which is closely interlinked to climate is agriculture. Its size

and importance to aggregate national income but also the ability of a country to

technologically adapt to climate changes are all important elements of this trans-

mission channel. There is a consensus for significant output losses in developing

economies; for example, Schlenker and Lobell (2010) estimate negative yields for

the sub-Saharan countries, Guiteras (2009) for India, Feng et al. (2010) for Mexico,

etc. Findings for developed economies, however, indicate a smaller or not significant

effect (see for example the debate in Deschenes and Greenstone (2007) and Fisher

et al. (2012) for the US).

Rise in temperature affects negatively health and mortality especially in countries

which have already a hot climate. Deschenes and Greenstone (2011) report that a

hotter than average day rises the annual mortality rate in the US by 0.11% while in

the developing countries the effect is dramatically higher: Burgess et al. (2011) finds

that an additional excess heat day increases the annual mortality rate in India by
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0.75%. Poor health and limited access to health services contribute directly to lower

productivity and income and eventually to higher inequality.

The relationship between energy consumption and climate change has been also

investigated in the literature. Energy consumption is interlinked to weather volatility.

During excessive hot days the demand for cooling energy is higher while during the

excessive cold ones, demand for heating is higher. Countries which are naturally cold

will consume less energy for heating to a rise in temperature, while countries which

are naturally hot will consume more energy for cooling. The net effect is likely to

be a higher demand for energy (Deschenes and Greenstone (2011)). Although this

is only demand for residential energy, this factor can directly influence disposable

income espcecially for low income households. Therefore it has distributional effects

on income which can further vary between rich and poor countries where the level of

heating and cooling technology is different. Given rising energy prices, we investigate

further this channel to see whether a country being a net importer or exporter of

energy could have important distributional effects on income.

The remainder of the paper is structured as follows: Section 2 describes the

estimation of the panel VAR model and identification scheme for the climate shocks.

Section 3 describes the variables used in the empirical analysis. Section 4 presents

the main results for the inequality measures and discusses heterogeneous responses

among countries of different income levels. It also carries out robustness checks.

Section 5 concludes.

2 Empirical model

The empirical model is the following Bayesian panel VAR:

Yit = αi + rj + τ t +

P∑
p=1

BpYit−p + vit

where var (vit) = Ω, i = 1, 2, ..M indexes the countries in our panel, t = 1, 2, .., T

denotes the time-periods. The model includes country, region and time fixed effects

(αi, rj and τ j).

In the benchmark case, the matrix of endogenous variables includes two climate

variables: temperature and precipitation. We control for national economic condi-
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tions by including real GDP per-capita. Our main variable of interest is the Gini

coeffi cient. However, as discussed below, we also consider alternative measures of

inequality such as ratio of income at different percentiles of the distribution.

Recent papers (e.g. Óscar Jordá et al. (2020)) highlight the adverse effects of lag

truncation of VAR models especially if interest centers are capturing the impact of

shock at medium or long run horizons. Therefore we consider the possibility of lags

longer than 1. Based on the SIC we find that 5 lags provide the best fit.

We use a natural conjugate prior for the VAR coeffi cients β = vec ([αi, rj,, τ t, Bp])

and error covariance matrix Ω with the prior tightness set to imply a loose prior belief.

As described in Banbura et al. (2010) the posterior distribution has a convenient

normal-inverse Wishart form that can be factored in to the marginal posterior for Ω

that is inverse Wishart and the conditional posterior for the VAR coeffi cients that

is Gaussian. Thus, it is straightforward to draw from posterior using the MCMC

algorithm described in Banbura et al. (2010). We employ 25,000 iterations with a

burn-in of 20,000. Figure 1 in the Appendix presents ineffi ciency factors that suggests

that the algorithm has converged.

2.1 Identification of climate shocks

Climate change is a gradual process when compared to economic fluctuations. As

reported widely (see for example Climate.Gov), global average surface temperature

has increased by about 1 degree centigrade since the pre-industrial era. However, the

impact of this change on weather volatility is substantial and is driving extremes in

temperature and rainfall. Our aim is to capture shocks that drive the low frequency

movements in climate variables. For this purpose, we adopt the identification scheme

of Angeletos et al. (2020). We identify climate shocks as those that explain the bulk

of the variance of climate variables in the long-run.

More formally, define the relationship between the reduced form vit and structural

shocks εit in the VAR model:

vit = A0εit

where A0 is a N × N contemporaneous impact matrix. Note that A0 can be

written as A0 = Ã0Q whereQ is an orthonormal matrix that rotates Ã0, the Cholesky

decomposition of Ω. The structural moving average representation of the VARmodel
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is:

Yit = β(L)A0εit.

Without loss of generality, our interest centers on the first column of Q, denoted by

q1, which corresponds to the first structural shock. We choose q1 so that the contri-

bution of the first shock to the long-run variance of temperature and precipitation

is maximised. We define the long-run in the frequency domain as corresponding to

cycles greater than 20 years. As discussed in Angeletos et al. (2020), the contribution

of the shock to the spectral density over a frequency band is given as q′1S($,$)q1

where:

S($,$) =



$∫
$

g̃g

$∫
$

gg̃


where g = My(I − be−i$)−1ã0 and g̃ is its complex conjugate. Note that b and ã0
denote the VAR coeffi cients Bp and the matrix Ã0 in companion form. Finally, My

denotes a selection vector. The vector q1 can be recovered as eigenvector associated

with the largest eigenvalue of S($,$)

3 Data

Our panel data-set covers 153 countries. The time-series are unbalanced. The longest

span of data covers the period 1901-2020. We restrict the shortest time-series to cover

at least 20 years.

We obtain annual data on temperature and precipitation from the Climatic Re-

search Unit gridded Time Series (CRU TS) dataset produced by the UK’s National

Centre for Atmospheric Science at the University of East Anglia (see Harris et al.

(2020) ). Country-level observations on the climate variables are calculated as area-

weighted averages. These series are available for each country from 1901 to 2020.

Real GDP per-capita for 17 advanced countries is taken from the Jordà-Schularick-

Taylor data set where these data series are available from the beginning of the 20th

century. These data are supplemented with real GDP per-capita taken from the

World Bank’s world development indicators. We use these sources to obtain addi-
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Figure 1: Impulse response functions to 10C increase in temperature. The vertical
axis of GDP and Gini coeffi cient plots measures the response in percent. The hor-
izontal axis indicates time in years. The dark blue line is the median estimate and
the shaded areas are the 68% and 95% error bands.

tional macroeconomic variables when required.

Our main variables of interest are measures of income inequality. The benchmark

measure is the Gini coeffi cient based on pre-tax national income. We also use the

ratio of log income at different percentiles of the income distribution. The inequality

data are obtained from the World Inequality Database (WID).
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4 Empirical results

4.1 Baseline model

Figure 1 plots the response to a climate shock normalised to an increase in temper-

ature by 10C. As discussed above, the climate shock is defined as the shock that

explains the bulk of the variance of temperature and precipitation in the long-run,

thus in the benchmark specification, countries with less than 20 observations have

been excluded. As it can be seen in Figure 1, the adverse shock reduces precipitation

for about a year after the shock while it takes more than 8 years to temperature to

go back to its equlibrium. The median response of GDP in levels is negative and

persists for more than 10 years. The response of GDP is in line with Dell et al.

(2012a) where GDP growth falls to a positive temperature shock even though the

result is more pronounced to an interaction with poor countries. The response of

the Gini coeffi cient rises slowly and picks after 5 years with a maximum rise of 0.62

percent. The Null can be rejected in the 95 percent error bands for both variables.

To see what the model predicts by setting the targets of Paris Agreement for global

warming, a 20C rise in temperature will increase the Gini coeffi cient by 1.24 percent

in 5 years while the more strict but less feasible target of 1.50C rise augments the

inequality measure by 0.93 percent.

4.2 Heterogeneity

Our baseline results indicate that a rise in temperature increases the Gini coeffi cient

in the long run. However, given that a rise in Gini indicates a generic rise in inequal-

ity but does not reveal which percentiles are mostly affected by the shock, we need

to decompose further this result. Thus, we proceed in collecting the 10th, 50th and

90th percentiles of pretax income for the years available in each country and include

all three variables in the benchmark VAR. The results shown in Figure 2 indicate

that the pre-tax income of the 10th percentile suffers the highest drop. It falls by

3.8 percent in four years while the median income falls by 2.6 percent in the same

horizon. The 90th percentile experiences a much smaller fall on its income, with a

maximum drop of 1.1 percent in the second year. It also demonstrates the shortest

lived significant effect.

Interestingly, if we define a rise in inequality as the growing difference among
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Figure 2: Distributional effects of the climate shock by percentiles. The figure reports
the impulse response functions of 10th, 50th, and 90th percentiles of households’pre-
tax income distribution to 10C increase in temperature shock. The vertical axis
measures the response in percent. The horizontal axis indicates time in years. The
dark line is the median estimate and the shaded area is the 68% error band.

income percentiles, then the higher difference appears in the right tail of income

distribution. This is possibly because the 90th percentile encounters the smallest loss

from the shock. The other two percentiles, both, experience comparable losses and

their between difference is smaller. For a visual representation, we construct the

P50/P10 ratio which is the log difference of the median (P50) to the 10th percentile

(P10) to examine the impact on the left tail of the income distribution, and the

P90/P50 ratio, for the right tail. Figure 3 shows the responses of these tails to the

climate shock. While both ratios rise to the shock, a higher rise is observed in the

right tail of the income distribution. The P90/P50 ratio has a peak response of 2

percent in the sixth year while the P50/P10 ratio has a peak response of 1.4 percent

after about four years.

5 Channels of transmission

To understand better the ways inequality measures respond to a climate shock in the

baseline model, we investigate whether specific economic or climatological factors

play a role. We group countries according to these characteristics and see if the

responses to climate shock are heterogeneous. We start with climate and geographical

factors and proceed with economic characteristics.
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Figure 3: Distributional effects of the climate shock by income ratios. The figure
reports the impulse response functions of P50/P10 and P90/P50 pre-tax income
ratios to 10C increase in temperature shock. The vertical axis measures the response
in percent while the horizontal axis indicates time in years. The shaded area is the
68% error band.
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Figure 4: Impulse response functions of the Gini Coeffi cient to 10C increase in tem-
perature in samples of hot and cool countries respectively. The vertical axis measures
the response in percent while the horizontal axis indicates time in years. The shaded
area is the 68% error band.

5.1 Average temperature and geographic location

As the negative cross sectional correlation between temperature and economic ag-

gregates has been widely registered in the literature, the importance of geographical

location (e.g. Mendelsohn, Schlesinger and Williams (2000), Dell et al. (2012a), Re-

hdanz and Maddison (2005), Tol (2002) etc.) indicates towards heterogeneity. To

investigate whether the average temperature of a country influences inequality, we

split our sample to hot and not hot or cool countries and carry out the benchmark

experiment to these two sub samples. Following Dell et al. (2012a), we use the me-

dian temperature for all countries in the sample between 1950-1960, which is 21.3OC

as the cut offpoint. Countries above this temperature are considered "hot "while the

rest are named "not hot" or "cool". Figure (4) shows that the Gini coeffi cient signif-

icantly rises by 1% in four years in hot countries while it does not have a significant

response in the cooler ones.

Countries closer to equator are hotter and this has been found to have a nega-

tive impact on labour productivity, agriculture, health, among other factors (see for

example Gallup et al. (1999)). Here, we attempt to evaluate whether geographical
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location is a significant transmission mechanism of the temperature shock to inequal-

ity, following a large literature stressing the importance of geography on economic

development. However, it comes with its own caveats when studied on a national

level: A country may be large and/or long and cover a range of environments and cli-

mate zones. It may not only have significant income heterogeneity but also a climate

one. For example, Argentina reaches out to South pole or Pakistan, which includes

parts of Himalayas on its northern part, are both classified as hot countries since

their average annual temperature is above the median of the sample. Other notably

large countries, which lay on a number of climate zones, are the USA and China.

Figure 5 shows that the Gini coeffi cient will increase in European, South Asian

and most notably sub Saharan countries while no significant impact is found in

some regions like MENA and North America. Large northern countries like Russia

and the central Asian ones may experience a fall in inequality. Although this is an

interesting result for the eleven former Soviet countries which compise this sample,

we do find that the level of their GDP per capita falls to a temperature shock.

One possible explanation is that the right tail of the income distribution is more

adversely affected and/or there are other significant channels of transmission than

the geographic location. A caveat of this exercise is that some of these geographic

sub samples suffer from small number of cross sections.

5.2 Income level

The asymmetric effect of a rise in temperature to rich and poor countries as stated in

the literature, leads to the investigation of the average income level as a propagation

mechanism. We test the hypothesis that low income countries may experience a

higher rise of inequality to a climate shock. For example, Dell et al. (2012a) found

that a rise in temperature by 10C can decrease income by 1.4% only in poor countries

(with no adaptation) but no significant impact has been found for the rich ones.

Low income countries are usually warm, located near the equator, have a larger

agricultural sector which is more susceptible to weather conditions and a lower ability

to adapt to climatic changes (Mendelsohn et al. (2006))

We split our sample to poor and rich countries. Low income countries are clas-

sified by the World Bank as the ones with Gross National Income (GNI) per capita

less than $1, 045 in 2020. High income countries have their GNI per capita equal or
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Figure 5: Impulse response functions of the Gini Coeffi cient to 10C increase in tem-
perature in different geographic regions.

more than $12, 696 in the same year. Figure 6 shows the Gini responses of poor and

rich countries to climate shock. The Gini coeffi cient rises substantially and peaks

by 0.9 percentage points in the fourth year for the low income countries, while there

is no significant evidence for rising inequality in high income countries. Thus, we

find that not only low income countries will be more negatively affected by climate

shocks in terms of GDP, but also inequality within these countries is expected to

rise. This result is in line with findings that demonstrate an asymmetric economic

effect among poorer and developed economies stressing the fact that the developing

world is more vulnerable to climate change (e.g. Mendelsohn, Morrison, Schlesinger

and Andronova (2000), Tol (2002)).

5.3 Agriculture

Agriculture is the only economic sector inextricably intertwined with climatic con-

ditions as it is directly affected by temperature and precipitation. Its contribution

to national income and technological ability to adjust and protect production from

climate change can affect considerably different income brackets. To test whether

the size of agricultural sector acts as a propagation mechanism to inequality, we di-
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Figure 6: Impulse response functions of the Gini Coeffi cient to 10C increase in tem-
perature in samples of low and high income countries respectively.

vide our sample to agricultural and non agricultural countries. We collect the value

added of agricultural, forestry, and fishing production as a percentage of GDP for

each country and for all years available. Following Dell et al. (2012a), agricultural

countries are classified as the ones whose share of agriculture to GDP in 1995 is

above the median of the sample (12.32%). For industrialised countries we take the

38 OECD countries in our sample.

Figure 7 shows that the Gini coeffi cient rises on the impact by around 0.8% and

remains high in the countries with large agricultural sector. The impact is positive

but noticeably smaller for the rest of the sample (non agricultural countries) where

the Gini still rises but by half relative to agricultural countries. To see whether

technologically advanced countries can adapt quicker to weather adverse conditions

we create a third sample. Using the Global Finance 2023 ranking of the world’s most

technologically advanced countries, we select the ones with positive index as the most

advanced technologically countries. The results show a negative but insignificant

response of the Gini coeffi cient to temperature shock, supporting the idea that these

countries adapt better and are more independent to weather conditions.
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Figure 7: Impulse response functions of the Gini Coeffi cient to 10C increase in tem-
perature in samples of agricultural, non agricultural and technologically advanced
countries respectively.

5.4 Energy

The relationship between climate change and energy production and consumption

is bilateral and interactive. High climate volatility induces higher demand for en-

ergy (for example cooling or heating) which in turn leads to higher production and

consumption of energy with its well known environmental repercussions. In this sec-

tion, we only try to capture the one directional effect of climate change to inequality

through the channels of energy production and prices, setting aside the feedback

effects of energy consumption to climate change.

One way to capture the effect of energy consumption to inequality is by looking at

the response of CPI energy inflation and its feedback effects on the Gini coeffi cient.

Energy expenditure comprises an important component of disposable income and

can affect more the vulnerable households. To investigate this effect we augment our

benchmark specification with CPI energy inflation series from World’s Bank Global

Database of Inflation for each country in the sample.

Our benchmark model does not indicate any significant effect of temperature

shocks on CPI energy inflation and Gini coeffi cient (see Figure 8, first row). How-

ever, when we look at countries’classifications we find some significant responses of
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CPI energy inflation for certain types. We repeat this exercise for subsamples with

high and low income countries, average hot and cool climate, agricultural versus

industrialised. In this section, we also try a new specification, which is net energy

importers and exporters. Energy producing countries such as Iran, Qatar, Saudi

Arabia, Turkey and Nigeria have reportedly the lowest electricity prices per Kwh in

2020 (Statista.com) so it is interesting to see whether these countries experience high

energy prices which may contribute to higher inequality. By using data from World

Bank Indicators, net energy importers are defined as countries which have positive

energy imports as a percentage of their energy needs in 2000 and on average in the

sample years. Respectively, net exporters are the ones who have a negative ratio.

The majority of countries in our sample are net importers (85 countries). This is a

highly heterogeneous group containing most of the OECD, industrialised and high

income countries. In contrast, net energy exporters, (38 countries) are mostly hot

countries of low income per capita, located near the equator.

In Figure 8 we report the types of countries where the response of energy inflation

is significant to the shock. For the rest, not a significant response was found. The

results indicate that CPI energy inflation has a positive response for low income and

agricultural countries. In these countries, the Gini coeffi cient rises to the shock thus

energy inflation can be a factor which exacerbates inequality. CPI energy inflation

falls only for net energy exporters but the inequality indicator increases slightly and

only in the long run. Thus for these countries there is no clear evidence that lower

energy prices can improve equality.

5.5 Health Expenditure

Higher than average temperatures and heat events have a negative effect on many as-

pects of human healht and mortality rates. For example, they can negatively impact

prenatal and infancy health, people with pre-existing respiratory and cardiovascu-

lar diseases (Deschenes and Greenstone (2011)). As higher temperature challenges

certain health conditions and strain public health services, medical coverage and ac-

cess to health care remain crucial. Government spending on public health services

can be linked to income inequality as in a poor public health services environment,

individuals may have to use their disposable income or savings to access private

health services. Poor health combined with low income can have serious effects on
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Figure 8: Impulse response functions of CPI Energy Inflation and Gini Coeffi cient
to 10C increase in temperature for all countries and subsamples.

19



Figure 9: Impulse response functions of the Gini Coeffi cient to 10C increase in tem-
perature in samples of countries with low and high expenditure per capita on health
sector respectively.

hours worked, productivity, employment and earnings. To investigate the role of

public expenditure on health as a contributor to inequality during heat shocks, we

include this variable in our benchamark model. More specifically, we collect the

current expenditure on health per capita normalised by GDP from 2000 onward and

derive the mean for each country. Then we obtain the median expenditire accross

countries and divide our sample into two groups: the low health expenditure group,

which has a ratio of health expenditure to GDP lower than the median and the high

health expenditure group, which has a ratio above the median. Next, we perform

the benchmark experiment to both groups.

Figure 9 indicates that temperature shocks increase the Gini coeffi cient by 0.53%

in six years in low health expenditure countries. Although the coeffi cent increases

also in high health expenditure ones, we cannot reject the Null. This result indicates

inequality will be higher in countries with lower expenditure than the average on

health sector.
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6 Robustness

We carry out a number of robustness checks. These can be divided in the following

categories:

6.1 Identification

The benchmark model uses a partial identification scheme of Angeletos et al. (2020)

where we identify one shock. We extend this model to jointly identify an ‘economic

shock’and a climate shock. The former disturbance is defined as one that explains the

bulk of the variance of GDP at long-run frequencies. The ‘economic shock’is ordered

first and is estimated by solving the maximisation problem maxq1 q
′
1S($,$)q1. The

second shock is defined as the climate shock. As before, this shock is chosen so that

the contribution of this disturbance to the long-run variance of temperature and

precipitation is maximised. However, we also require this shock to be orthogonal to

the ‘economic shock’. As shown in the top left panel of figure 10, the response of

the Gini coeffi cient to the climate shock remains largely unchanged in this extended

model.

Second, we use long-run restrictions of Blanchard and Quah (1989) to identify

the climate shock. Under this alternative scheme, the shock is identified as the

only innovation that can have a non-zero impact on the level of temperature in the

long-run.4 The second panel in the top row of figure 10 plots the response of the

Gini coeffi cient to a climate shock that increases the change in temperature by one

percent.5 As in the benchmark case, the shock is associated with an increase in the

Gini coeffi cient.

The third panel in the top row of the figure shows the response from a version

of the benchmark model where we define the long-run in the frequency domain as

corresponding to cycles greater than 10 years. This change has minimal effects on

the benchmark results.
4Note that for the purposes of this model, all variables enter the VAR in first differenced form.
5Temperature enters this model in first differences as the long-run impact matrix represents the

infinite-horizon cumulated response. Restrictions on this long-run impact matrix thus represent
restrictions on the impulse response of the level of temperature in the long-run.

21



6.2 Data and specification

Our benchmark data set consists of temperature and precipitation that are aggre-

gated to the country-level using area weights. In this section, we check if our results

are sensitive to the aggregation method. We employ the climate data set compiled

by Dell et al. (2012b). Dell et al. (2012b) aggregate temperature and precipitation

using population weights. The fourth panel in the top row of figure 10 shows that

the response of the Gini coeffi cient is qualitatively similar to the benchmark case.

The benchmark results are also preserved when we include country-specific time-

trends in the benchmark model (see first panel in the second row of figure 10).

6.3 Local projections

Recent papers (see Óscar Jordá et al. (2020)) have shown that lag truncation in VAR

models can result in biased estimates of medium and long-run impulse responses. In

contrast, local projections (LP) are less susceptible to this bias. As noted above, we

include a relatively large number of lags in our benchmark VAR model to reduce the

possibility of lag truncation bias. In this section, we estimate the impulse responses

to the climate shock using a panel local projection as a cross-check on our benchmark

model. The LP for horizon h is defined as:

Yit+h = αi,h + rj,h + τ t,h +
P∑
p=1

Bp,hYit−p + vit (1)

As described in Jorda (2005), the impulse response can be calculated as B1,hA
(1)
0

where A(1)0 denotes the contemporaneous affect of the climate shock obtained using

the benchmark VAR model.6The second panel in the second row of figure 10 shows

that the LP-based response of the Gini coeffi cient is very similar to the benchmark

results. Note that this also provides some reassurance that the number of lags

included in the benchmark model is suffi cient to approximate the medium and long-

run response.

In order to check if non-linearities play an important role, we extend the LP to

6Note that at horizon 0, the VAR and local projection coincide.
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include quadratic terms:

Yit+h = αi,h + rj,h + τ t,h +
P∑
p=1

Bp,hYit−p +
P∑
p=1

Dp,hY
2
it−p + vit (2)

Jorda (2005) shows that, in this extended model, the impulse response is given

by B1,hA
(1)
0 + D1,h

(
2Yit−1A

(1)
0 +

(
A
(1)
0

)2)
. We evaluate this non-linear response at

the mean of the data: Yit−1 = Ȳ . The resulting response of the Gini coeffi cient is

quite similar to the benchmark case (see third panel in the second row of figure 10).
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Figure 10: Robustness: Impulse response functions of the Gini Coeffi cient to 10C increase in temperature for a number of
alterations of the benchmark model. The vertical axis of each plot shows the response in percent and the horizontal axis the
number of years. The thick line is the median estimate and the shaded area is the 68% confidence bands.
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7 Conclusions

In this paper we consider the impact of climate change on income inequality. Using

a recently developed identification scheme, we estimate the shocks as those that ex-

plain most of the variance of temperature and precipitation at long run frequencies.

A climate shock that increases temperature by 1oC is associated with an increase in

the Gini coeffi cient by 0.62 percent after about 5 years and persists for more than 10

years. Our findings also suggest that the shock has a heterogeneous impact across

the income distribution, and the poor households incur a higher loss in their income.

The right tail of the income distribution is mostly affected as the distance between

the rich and the median households increases the most to the shock. Investigating

whether country specific characteristics can play a role to heterogeneity, we find a

stronger effect on the Gini coeffi cient on lower income and hot on average countries

and economies with an important agricultural sector and a lower spending on health

sector. Energy inflation can play a role to certain subsamples but not overall. In con-

trast, the impact on inequality for high income, technologically advanced economies

or countries with cooler on average temperature is close to zero.
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