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Abstract

The role of climate change on output has been studied extensively in the empiri-

cal literature. However, its distributional implications have received little attention.

This paper attempts to fill this gap by investigating if climate shocks affect income

inequality. Using a Vector Autoregression for a large cross-country panel, we iden-

tify the climate shock in the frequency domain as the shock that explains the bulk

of the variance of climate variables in the long-run. An adverse climate shock is

associated with an increase in measures of income inequality, affecting mostly low

income households. The impact of the shock is larger in magnitude for low income,

hot countries with a significant agricultural sector and low degree of adaptation to

climate change.
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1 Introduction

Climate affects aspects of economic and social activity deeply. The economic effects of

climate change have been long studied and a range of results, at times controversial, have

been produced.

As shown by Nordhaus and Moffat (2017), the estimated effects of rising temperature on

global output, vary from being large and negative (e.g.−2.14% due to a 3.1oC increase

in temperature (Roson and der Mensbrugghe (2012)) to high and positive (e.g. 2.3% due

to a 1oC increase in temperature (Tol (2002)). There is some consensus in the literature

that Sub-Saharan countries may experience a loss of GDP as large as 25% (Rehdanz and

Maddison (2005)) while East European and Former Soviet Union countries may experi-

ence a very small loss or even a gain (see Mendelsohn et al. (2000)) indicating a possible

impact on inequality across countries.

However, to our knowledge, there has been limited focus on distributional implications

of climate shocks within countries. This paper attempts to fill this gap in the litera-

ture. Using annual data for 153 countries ranging from 1900 to 2020, we employ a panel

structural VAR model which includes climate, inequality indicators and macroeconomic

variables. We identify climate shocks as those that explain the bulk of the change of

climate variables at low frequencies (see Angeletos et al. (2020)). Our findings show that

climate shocks that increase temperature by 1oC are associated with a rise of the income

Gini coefficient by 0.63 percent 6 years after the shock. This effect is stronger for less

developed economies, with a large agricultural sector and for the ones classified as hot

countries. Countries that have a low degree of adaptability to climate change are also

found to be more affected by the shock.

This paper makes two contributions to the literature. To our knowledge, this paper is the

first to carry out a systematic analysis of the possible effects of climate change on income

inequality. Previous papers have focused largely on cross-country inequality. As discussed

below, studies that discuss the effects of climate change on within-country inequality do

not use the distribution of income within country but utilise proxies for inequality based

on the cumulative distribution function (CDF) of aggregate GDP (see Diffenbaugh and

Burke (2019)). Our paper also considers the heterogeneity of the effect of climate change

on inequality across countries and investigates factors that may drive the differences.

From an econometric point of view, we propose a novel identification strategy for climate

shocks that is based on the work of Angeletos et al. (2020). Using the spectral density

of the climate variables, we isolate shocks that affect their low-frequency dynamics. This

procedure is consistent with the idea of climate change as a slow process.
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The paper is organised as follows: Section 2 discusses the literature related to this paper.

The data and the empirical model are described in Section 3 while Section 4 presents the

main findings. Section 5 concludes.

2 Related Literature

Our paper relates to the literature examining the impact of climate change on economic

activity but focuses on its heterogeneous effects. The strand of literature which investi-

gates the impact of climate change on economic activity is vast. A large proportion of

papers utilise Integrated Assessment Models (IAMs) that combine knowledge from more

than one discipline. These models are used to examine how CO2 emissions can affect

global warming and temperature under diverse policy responses. While the choice of

model, structure and assumptions can have a large impact on the results and implica-

tions, the general consensus is that climate change leads to serious market and non-market

damages, especially in the case of policy inaction1. For example, the 2016 DICE model

(Nordhaus (2019)) finds that a 3oC global warming will suppress global output by 2%.

Our work is closer to cross-country panel data studies 2. For example, Dell et al. (2012) ex-

amine how annual variation in temperature and precipitation affect annual growth for 125

countries in 1950-2002 period. Their findings show a significant negative impact (−1.4%

GDP per-capita to +10C warming) but only for low-income countries and only for a rise

in temperature (and not a fall in precipitation). Hsiang (2010) finds an output loss of

2.5% for Caribbean countries to +1oC warming in 1970-2006 period. Kahn et al. (2021),

in a panel of 174 countries, find a negative impact of temperature rise on real output and

estimate that a persistent increase of 0.04%oC on average per year will decrease world

output by 7% until 2100, if mitigation policies are not implemented.

Some recent papers discuss distributional effects of climate change, but largely focus

on inequality across countries or regions: Burke and Tanutama (2019) use longitudinal

data on economic output from over 11, 000 districts across 37 countries and find a nonlin-

ear response of growth to the temperature distribution. Their results also indicate that

additional warming will exacerbate inequality across countries. Cevik and Jalles (2022)

examine the relationship between measures of climate change vulnerability and inequality

and find that higher vulnerability is associated with higher income inequality. Diffenbaugh

and Burke (2019) estimate that global warming has increased between-country inequality

1For a thorough review see (Nordhaus (2019)).
2A detailed survey on panel data papers with global samples research can be found in Dell et al.

(2014).
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by 25% in the last 50 years. By using counterfactual historical climate trajectories from

a battery of global climate models, the authors estimate that GDP per-capita has been

reduced by 17− 31% at the poorest four deciles of the population and the top to bottom

ratio in percentiles is 25% larger than in a world without global warming. Interestingly,

the authors note that although the difference between poor and rich countries has de-

creased in the last few decades, global warming has slowed down this process. Islam and

Winkel (2017) discuss the impact of climate change on social inequality within countries.

Social inequality is defined as a much broader concept, referring to demographic and

economic characteristics and access to public resources. The paper discusses channels of

transmission from a socioeconomic and policy point of view and presents some tentative

correlations.

Two features distinguish our work from this recent literature. First, in contrast to

Cevik and Jalles (2022) who focus on vulnerability, the aim of our work is to examine the

effects of adverse climate shocks which are identified by using the long run properties of

climate data and our estimates do not rely on constructed indices of vulnerability that

may suffer from endogeneity. Second, our interest centers on the impact of climate shocks

on within-country inequality. Unlike Diffenbaugh and Burke (2019), we utilise data on

the distribution of income for each country in our sample derived from tax records and

surveys. In contrast, the simulations in Diffenbaugh and Burke (2019) pertaining to

economic inequality use measures that are calculated using the CDF of aggregate GDP

per-capita across countries3. Our analysis is related to a recent paper by Palagi et al.

(2022) who investigate the relationship between precipitation and income inequality in

agricultural and non-agricultural countries. They find evidence that the relationship

between precipitation and low income shares follows an inverted-U-shape, with extreme

levels of precipitation associated with an increase in inequality. In contrast to Palagi et al.

(2022), we show that the impact of climate shocks on the income distribution can depend

on a range of factors beyond agricultural intensity.

3Diffenbaugh and Burke (2019) state on page 9813: ’Because of the lack of availability of long time-
series of subnational economic data, we calculate these ratios using the respective percentiles of the
population-weighted empirical CDF of country-level per capita GDP values’
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3 Empirical model and data

The benchmark empirical model is the following Bayesian panel VAR:

Yit = αi + rj + τt +
P∑

p=1

BpYit−p + vit (1)

where var (vit) = Ω, i = 1, 2, ..M indexes the countries in our panel, t = 1, 2, .., T denotes

the time-periods. The model includes country, region and time-fixed effects (αi, rj and

τj).

The matrix of endogenous variables includes two climate variables: temperature and

precipitation. We control for national economic conditions by including real GDP per

capita. Our main variable of interest is the Gini coefficient of pre-tax income. We also

consider alternative measures of inequality such as income at different percentiles of the

distribution.

Based on the Bayesian information criterion, we set the lag length to 5. Using lags longer

than 1 also ameliorates the possible adverse effect of lag truncation on capturing the

impact of shock at medium or long run horizons (see Jordá et al. (2020)).

We use a natural conjugate prior for the VAR coefficients β = vec ([αi, rj,, τt, Bp]) and

error covariance matrix Ω with the prior tightness set to imply a loose prior belief. We

draw from the posterior distribution using the MCMC algorithm described in Banbura

et al. (2010). We employ 25,000 iterations with a burn-in of 20,000.4

3.1 Identification of the climate shock

As climate change is a gradual process, our aim is to capture shocks that drive the low

frequency movements in climate variables. Following Angeletos et al. (2020). We identify

climate shocks as those that explain the bulk of the variance of climate variables at long-

run frequencies.

More formally, define the relationship between the reduced form vit and structural shocks

εit:

vit = A0εit

where A0 is a N×N contemporaneous impact matrix. A0 can be written as A0 = Ã0Q

where Q is an orthonormal matrix that rotates Ã0, the Cholesky decomposition of Ω.

Without loss of generality, our interest centers on the first column of Q, denoted by q1,

4The estimation algorithm and convergence diagnostics are presented in the technical appendix.
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which corresponds to the first structural shock. We choose q1 so that the contribution of

the first shock to the long-run variance of temperature and precipitation (obtained from

the VAR-implied spectral density) is maximised. As discussed in Angeletos et al. (2020),

the contribution of the shock to the spectral density over a frequency band (ϖ,ϖ) is given

as q′1S(ϖ,ϖ)q1 where:

S(ϖ,ϖ) =

ϖ∫
ϖ

(g̃g) dω

where g = My(I − be−iϖ)−1ã0 and g̃ is its complex conjugate. Note that b and ã0 denote

the VAR coefficients Bp and the matrix Ã0 in companion form. Finally, My denotes a

selection vector. The vector q1 can be recovered as an eigenvector associated with the

largest eigenvalue of S(ϖ,ϖ) We set the frequency band as (ϖ,ϖ) = (∞, 2π
20
) so that the

long-run corresponds to cycles greater than 20 years. 5

3.2 Data

Our panel dataset covers 153 countries. The time series are unbalanced. The longest

span of data covers the period 1901-2020. We restrict the shortest time-series to cover

at least 20 years. We obtain annual data on temperature and precipitation from the

Climatic Research Unit gridded Time Series (CRU TS) dataset produced by the UK’s

National Centre for Atmospheric Science at the University of East Anglia (see Harris

et al. (2020)). Country-level observations on the climate variables are calculated as area-

weighted averages. These series are available for each country from 1901 to 2020. Real

GDP per capita for 17 advanced countries is taken from the Jordà-Schularick-Taylor

data set where these data series are available from the beginning of the 20th century.

These data are supplemented with real GDP per capita taken from the World Bank’s

world development indicators. We use these sources to obtain additional macroeconomic

variables when required. Our main variables of interest are measures of income inequality

are obtained from the World Inequality Database (WID). The benchmark measure is

the Gini coefficient based on pre-tax national income (WID code PTINC). We also use

average pre-tax income within 10 decile groups of income: P1, P2, . . . , P10. For example,

P1 denotes income averaged for individuals that fall below the 10th percentile of income.

5Our main results are robust to using an alternative identification scheme that identifies the climate
shock as the only disturbance that can affect temperature at long horizons (Blanchard and Quah (1989)).
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4 Empirical results

4.1 Impact on income inequality

Figure 1 plots the response to a climate shock normalised to an increase in temperature

by 10C relative to trend.6 The adverse shock reduces precipitation for about a year, while

it takes more than 8 years for the temperature to go back to trend. The median response

of GDP per capita is negative and persists for more than 10 years. The adverse climate

shock is associated with a rise in inequality: The Gini coefficient rises gradually, with a

maximum increase of 0.62 percent at the 6 year horizon.

In order to explore the source of the increase in income inequality, we estimate an extended

version of the VAR model where we include average income in the ten decile groups

P1, P2, . . . , P10 along with the climate variables and GDP. The top panel of Figure 2

reports the median impulse response of income in each group to shock normalised to an

increase in temperature by 10C. The bottom panels display the response at the 1 and 5

year horizon together with the error bands. The results indicate that the climate shock

has the largest effect at the left tail of the income distribution. At the 5 year horizon, the

pre-tax income of the 10th percentile suffers the highest drop, falling by about 4 percent,

while the income of the top group falls by less than 1 percent at the same horizon. In

short, the adverse climate shock appears to make households at and below the median of

the income distribution worse off relative to the rich ones.

The top panel of Figure 3 displays the contribution of the climate shock to the forecast

error variance of income in each decile. In absolute terms, the contribution of the shock

is small but statistically different from zero. The contribution is largest at the left tail of

the income distribution. The identified shock explains about 1.4 percent of the income

fluctuations of group P10, while this contribution is only about 0.1 percent for the top

income decile. The bottom panels display the decomposition of variance in the frequency

domain–the contribution of the identified shock is largest at long-run frequencies associ-

ated with cycles greater than 20 years. In order to assess the importance of the climate

shock for each region, we carry out a counterfactual experiment. For each region in our

panel, we simulate data for the average Gini coefficient using the posterior mean estimates

from our benchmark VAR, under the assumption that the identified climate shock equals

0 over the sample period.7. We then calculate the mean percentage difference over time

between the actual Gini coefficient and the counterfactual estimate obtained from the

6The time-effects in the panel VAR capture the global trend in the climate data.
7As the number of observations can be small for individual countries, we carry out this simulation at

the regional level
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simulation. A higher value of this statistic indicates that income inequality would have

been lower in the absence of climate shocks. Moreover, as the magnitude of the historical

shocks differs across regions, this contribution can differ geographically. Figure 4 shows

a heat map that summarises the results from this experiment. The contribution of the

climate shock to the Gini coefficient is largest in countries located in South-East Asia, the

Middle-East,Australia and Sub-Saharan Africa, with the largest impact at about 0.1 per-

cent. In contrast, the contribution is negative for former Soviet republics and European

countries. It is interesting to note that the estimated contribution of the shock in some

high-income countries such as the United States and Canada estimated to be small but

positive. Next, we turn to a more detailed examination of the factors that may explain the

heterogeneity of the impact of the climate shock on income inequality across countries.

4.2 Heterogeneity and channels of transmission

To investigate the drivers of the transmission of the climate shock to inequality we consider

if the effect varies with country characteristics.

Income As demonstrated in papers such as Dell et al. (2012), the effect of adverse

climate shocks is asymmetric between poor and rich countries, with the former bearing

the brunt of the negative effects on output. In order to investigate if the level of income is

also a propagation mechanism for the impact on inequality, we extend our baseline VAR

as follows:

Yit = αi + rj + τt +
P∑

p=1

BpYit−p +
P∑

p=1

bp (zit−p ×Dit) + vit (2)

where zit denotes the Gini coefficient and Dit is a dummy variable that equals 1 for

countries classified as low and lower-middle income by the World Bank.8.

The top-left panel of figure 5 shows the cumulated response of the Gini coefficient at the

10 year horizon. The solid circle shows the median response, while the horizontal lines

represent the 68 percent error band. It is clear that the rise in inequality after the climate

shock is substantially larger in low-income countries with a cumulated effect on the Gini

coefficient estimated to be more than twice as large.

Agriculture and Manufacturing Agriculture is the only economic sector inextricably

intertwined with climatic conditions as it is directly affected by temperature and precip-

8These countries are those where Gross National Income per capita was less than 4,095 US dollars in
2020
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itation. Its size and contribution to national income but also the ability of a country

to technologically adapt to climate changes are all important elements of this transmis-

sion channel. To test the importance of this channel we estimate the following extended

version of our model:

Yit = αi + rj + τt +
P∑

p=1

BpYit−p +
P∑

p=1

bp (zit−p × yit−p) + vit (3)

where yit denotes the ratio of value added from agriculture to GDP. Note that yit is

also included as an additional endogenous variable. The interaction term implies that

the impulse responses depend on initial conditions. We estimate the response using the

simulation methods described in Koop et al. (1996), using deciles of yit to set the initial

conditions.9

The second panel of Figure 5 depicts the cumulated response of the Gini coefficient con-

ditioned at difference percentiles of the share of agriculture. There is some evidence that

higher agricultural intensity is associated with a larger effect of the shock, especially in

the top quartile of the distribution. In contrast, using the share of manufacturing to GDP

as yit in equation 3 suggests that this feature is unimportant in driving the main results.

Vulnerability and adaptation The resilience of an economy to climate change may

also determine the severity of the impact on aggregate economic variables and inequality.

To measure resilience we use the indices constructed by the University of Notre Dame.

The vulnerability index measures the exposure, sensitivity and adaptive capacity of six

sectors in each country: food, water, health, ecosystem services, human habitat and

infrastructure. A higher value of the index indicates that a country is more vulnerable

to climate change. The ND-Gain index measures the readiness of each country net of

the degree of vulnerability. The measure of readiness approximates the ability of the

investment in climate, governance and social conditions to facilitate adaptation. Higher

values of the ND-Gain index indicate a larger degree of readiness. The fourth and fifth

panels of Figure 5 set the vulnerability and ND-gain index, respectively, as the interacting

variable. Countries who fall on the right tail of the vulnerability distribution are most

negatively affected by an increase in temperature while countries who fall on the left tail

of the ND-Gain distribution will have the lowest gain from the shock. Thus, the fourth

9The generalised impulse response of Koop et al. (1996) at horizon h is defined as a difference between
the expectation of Yt+h conditioned on a shock and initial conditions and the expectation assuming no
shock. These conditional expectations are calculated using Monte Carlo integration using 100 replications
for each MCMC iteration.
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panel shows that the effect of the climate shock is substantially larger at the right tail

of the distribution of the vulnerability index. In contrast, a higher degree of readiness

appears to ameliorate the impact of the shock on inequality, and countries at the right

tail of the ND-Gain distribution experience the smallest impact on inequality, as can be

seen in the fifth panel.

Nonlinear effects The final two panels of Figure 5 use the interacted VAR with tem-

perature and the Gini Coefficient as the variable yit in equation 3, respectively. The

last two panels of the figure show that the effect of the shock on inequality is larger for

countries that are hot and have higher levels of income inequality. The former result is

consistent with the argument that a hot climate is associated with poorer health out-

comes (see Deschenes and Greenstone (2011)) and this may, in turn, affect productivity

and income. Similarly, higher levels of the Gini may be associated with limited access to

social security and health services further exacerbating the effect of the shock.

4.3 Robustness

We carry out an extensive sensitivity analysis and challenge our results from different per-

spectives. We try different identification strategies for the temperature shock, alternative

time series for the climate data, different model specifications, and estimation techniques.

Our benchmark results remain robust and detailed descriptions of these experiments are

presented in the appendix.

Identification The benchmark model uses a partial identification scheme of Angeletos

et al. (2020) where we identify one shock. We extend this model to jointly identify an

‘economic shock’ and a climate shock. The former disturbance is defined as one that

explains the bulk of the variance of GDP in long-run frequencies and is orthogonal to the

climate shock. Second, we use long-run restrictions as in Blanchard and Quah (1989) to

identify the climate shock. Under this alternative scheme, the shock is identified as the

only innovation that can have a non-zero impact on the level of temperature in the long

run. In both cases, the impact of the climate shock on the Gini coefficient is similar to

the benchmark.

Data The benchmark results are preserved when we use climate data aggregated to

country level using population weights.
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Specification Similarly, the results are robust to using different lag lengths and adding

time trends. Our estimates do not depend on the choice of the Panel VAR. We show in

the appendix that we obtain results similar to benchmark when we use linear or non-linear

panel local projection models.

5 Conclusions

We show that a climate shock that increases temperature by 1oC is associated with an

increase in the Gini coefficient by 0.62 percent after about 6 years and poor households

incur a higher loss in their income. The effect on inequality is larger in poor countries

and those characterised by a hot temperature, a larger agricultural sector or lower level

of climate adaptation.

This paper contributes to the literature on the economic impact of climate change but

adds an important but still largely unexplored dimension: The rise of within-country

inequality. Climate change does not only harm countries economically but makes them

also more unequal. In terms of policy implications, our results re-iterate the importance

of readiness in ameliorating the effects of climate change. By using policies to channel

resources towards increasing climate adaptability, policy-makers can help to protect the

most vulnerable households in their countries.
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Figure 1: Impulse response functions to a 10C increase in temperature. The vertical axis
plots the response in percent. The horizontal axis indicates time in years. The dark line
is the median estimate and the shaded areas are the 68% error bands.
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Figure 2: Impulse response functions of income percentiles to 10C increase in temperature.
The vertical axis plots the response in percent. The horizontal axis indicates time in years.
The dark red line is the median estimate and the shaded areas are the 68% error bands.

15



Figure 3: Contribution to the FEV of income. The vertical axis plots the contribution
in percent. The horizontal axis indicates time in years. The dark red line is the median
estimate and the shaded areas are the 68% error bands.
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Figure 4: Contribution of the climate shock to the Gini coefficient in percent calculated as
the average Gini coefficient in each country minus the estimate under the assumption of
no climate shock. Higher values (darker shades) indicate that the Gini coefficient would
have been lower in the absence of climate shocks. Countries not included in the dataset
are shaded white.
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Figure 5: Cumulated response of the Gini coefficient at the 10 year horizon to 10C increase
in temperature. The vertical axis plots the response in percent. The horizontal axis in the
remaining subplots indicates percentiles of the variable in the title. The solid dot is the
median response while the vertical lines show the 68% error bands. Q1, . . . Q10 denotes
the deciles of the distribution of the respective variable.

18



The distributional effects of climate change. An

empirical analysis. Appendix

Haroon Mumtaz1 and Angeliki Theophilopoulou2

1Queen Mary University of London
2Brunel University

This version: November 27, 2023.

1 Model estimation

The panel VAR model is defined as:

Yit = αi + rj + τt +
P
p=1 BpYit−p + vit

where var (vit) = Ω, i = 1, 2, ..M indexes the countries in our panel, t = 1, 2, .., T denotes

the time-periods. The model includes country and region fixed effects (αi and rj). Let

b = vec


B1

.

.

BP

c

 where the vector c︸︷︷︸
EX×1

= vec

 αi

rj

τt

 collects the exogenous regressors.

1.1 Priors

We follow Banbura et al. (2007) and use a Natural Conjugate prior implemented via

dummy observations. The priors are implemented by the dummy observations yD and xD

that are defined as:

1



yD =



diag(γ1s1...γnsn)
κ

0N×(P−1)×N

diag (s1...sn)

..............

0EX×N

 , xD =



JP⊗diag(s1...sn)
κ

0NP×EX

..............

0N×(NP )+EX

..............

0EX×NP IEX × 1/c

 (1)

where JP = diag(1, 2, ..., P ), γ1 to γn denote the prior mean for the parameters on the

first lag obtained by estimating individual AR(1) regressions, s1 to sn is an estimate of the

variance of the endogenous variables obtained individual AR(1) regressions, κ measures

the tightness of the prior on the autoregressive VAR coefficients, and c is the tightness of

the prior on the remaining regressors. We set κ = 1 and c = 1000. We also implement

priors on the sum of coefficients (see Banbura et al. (2007)). The dummy observations

for this prior are defined as:

ỹD =
diag (γ1µ1...γnµn)

τ
, x̃D =

(
(11×P )⊗ diag(γ1µ1...γnµn)

τ
0N×EX

)
(2)

where µi is the sample average of the ith variable. As in Banbura et al. (2007) we set

τ = 10κ.

1.2 Posterior and MCMC algorithm

Banbura et al. (2007) show that posterior distribution can be written as:

g (Ω|Y ) ˜iW
(
Ω̄, NT + 2 +NT −K

)
(3)

g (b|Ω, Y ) ˜N
(
b̄,Ω⊗ (X ′

∗X∗)
−1
)

(4)

where iW denotes the inverse Wishart distribution, NT is the total number of observa-

tions, K denotes the number of regressors in each equation of the VAR model. Note that

Y∗ =

 Y

yD

ỹD

 and X∗ =

 X

xD

x̃D

 and

b̃ = (X ′
∗X∗)

−1
(X ′

∗Y∗)

b̄ = vec
(
b̃
)

Ω̄ =
(
Y∗ −X∗b̃

)′ (
Y∗ −X∗b̃

)
2



Posterior draws can be easily generated by drawing Ω from the marginal distribution in

3 and then b from the conditional distribution in equation 4. We set the number of draws

to 10,000 with a burn-in of 8,000. For each retained draw, we calculate the impulse vector

using the method of Angeletos et al. (2020) outlined in the main text and estimate the

impulse response.
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Figure 1: Inefficiency Factors

Figure 1 shows that inefficiency factors are below 20. This suggests that there is strong

evidence that the MCMC algorithm has converged.
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2 Robustness

We carry out a number of robustness checks. These can be divided in the following

categories:

2.1 Identification

The ‘economic shock’ is ordered first and is estimated by solving the maximisation problem

maxq1 q
′
1S(ϖ,ϖ)q1. The second shock is defined as the climate shock. As before, this

shock is chosen so that the contribution of this disturbance to the long-run variance of

temperature and precipitation is maximised. However, we also require this shock to be

orthogonal to the ‘economic shock’. As shown in the top left panel of figure 2, the response

of the Gini coefficient to the climate shock remains largely unchanged in this extended

model.

Second, we use long-run restrictions of Blanchard and Quah (1989) to identify the

climate shock. Under this alternative scheme, the shock is identified as the only innovation

that can have a non-zero impact on the level of temperature in the long-run.1 The second

panel in the top row of figure 2 plots the response of the Gini coefficient to a climate

shock that increases the change in temperature by one percent.2 As in the benchmark

case, the shock is associated with an increase in the Gini coefficient.

The third panel in the top row of the figure shows the response from a version of the

benchmark model where we define the long-run in the frequency domain as corresponding

to cycles greater than 10 years. This change has minimal effects on the benchmark results.

2.2 Data and specification

Our benchmark data set consists of temperature and precipitation that are aggregated to

the country-level using area weights. In this section, we check if our results are sensitive to

the aggregation method. We employ the climate data set compiled by Dell et al. (2012).

Dell et al. (2012) aggregate temperature and precipitation using population weights. The

fourth panel in the top row of figure 2 shows that the response of the Gini coefficient is

qualitatively similar to the benchmark case.

The benchmark results are also preserved when we include country-specific time-trends

in the benchmark model (see first panel in the second row of figure 2).

1Note that for the purposes of this model, all variables enter the VAR in first differenced form.
2Temperature enters this model in first differences as the long-run impact matrix represents the

infinite-horizon cumulated response. Restrictions on this long-run impact matrix thus represent restric-
tions on the impulse response of the level of temperature in the long-run.
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2.3 Local projections

Recent papers (see Jordá et al. (2020)) have shown that lag truncation in VAR models

can result in biased estimates of medium and long-run impulse responses. In contrast,

local projections (LP) are less susceptible to this bias. As noted above, we include a

relatively large number of lags in our benchmark VAR model to reduce the possibility

of lag truncation bias. In this section, we estimate the impulse responses to the climate

shock using a panel local projection as a cross-check on our benchmark model. The LP

for horizon h is defined as:

Yit+h = αi,h + rj,h + τt,h +
P∑

p=1

Bp,hYit−p + vit (5)

As described in Jorda (2005), the impulse response can be calculated asB1,hA
(1)
0 whereA

(1)
0

denotes the contemporaneous affect of the climate shock obtained using the benchmark

VAR model.3The second panel in the second row of figure 2 shows that the LP-based

response of the Gini coefficient is very similar to the benchmark results. Note that this

also provides some reassurance that the number of lags included in the benchmark model

is sufficient to approximate the medium and long-run response.

In order to check if non-linearities play an important role, we extend the LP to include

quadratic terms:

Yit+h = αi,h + rj,h + τt,h +
P∑

p=1

Bp,hYit−p +
P∑

p=1

Dp,hY
2
it−p + vit (6)

Jorda (2005) shows that, in this extended model, the impulse response is given by

B1,hA
(1)
0 +D1,h

(
2Yit−1A

(1)
0 +

(
A

(1)
0

)2
)
. We evaluate this non-linear response at the mean

of the data: Yit−1 = Ȳ . The resulting response of the Gini coefficient is quite similar to

the benchmark case (see third panel in the second row of figure 2).

3Note that at horizon 0, the VAR and local projection coincide.
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Figure 2: Robustness Analysis
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