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Abstract

This paper uses a panel Threshold VAR model to estimate the regime-dependent impact of oil shocks

on stock prices. We find that an adverse oil supply shock has a negative effect on stock prices when

oil inflation is low. In contrast, this impact is negligible in the regime characterised by higher oil price

inflation. Using a simple DSGE model, we suggest that the explanation for this result may be tied to the

behaviour of credit spreads. When oil inflation is low, lower policy rates encourage firms to get highly

leveraged. A negative oil shock in this scenario leads to a substantial increase in spreads, reducing profits

and equity prices. In contrast, at higher rates of inflation, spreads are less affected by the oil shock,

ameliorating the impact on the stock market.

Key words: Threshold VAR, Hierarchical Prior, DSGE model, Oil shocks.

1 Introduction

What is the impact of oil shocks on the stock market? Kilian and Park (2009) shows that the answer to this

question depends on the source of the shock. For example, a rise in oil prices is associated with a fall in stock

prices only when the oil price increase is driven by oil-market specific demand shocks. In contrast, supply

shock based oil price increases are estimated to have a negligible impact on stock returns. The analysis in
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Kilian and Park (2009), thus offers the key insight that not all oil price increases are the same as far as their

impact on the stock market is concerned.

In the current paper, we extend this analysis and investigate if the timing, magnitude and sign of oil

price changes matters as well. The motivation for pursuing this is two fold. First, a large literature strongly

indicates that oil shocks may have a non-linear impact on macroeconomic variables such as GDP. In a classic

paper, Mork (1989) argues that oil price increases may be more important than decreases. The subsequent

investigations in Hamilton (1996) and Hamilton (2003) also suggest that the magnitude of the increase in

current oil prices relative to past increases may matter when determining the impact of oil price shocks on

output.1Second, if the relationship between oil shocks and stock prices is non-linear, then restricting analyses

to linear specifications may understimate the importance of these shocks. Therefore, our investigation is

potentially important both from the perspective of investors and policy makers.

To examine the question at hand, we use a non-linear Bayesian VAR model for seventeen OECD countries.

In order to account for the cross-sectional dimension of our data set, we allow for the possibility of pooling

via a hierarchical structure for the prior distributions. This set up enables us to estimate the posterior

distribution of the average VAR parameters across countries and provides more precise estimates of dynamic

responses than those based on a single country data set.

The empirical analysis in our paper is related to Sim and Zhou (2015) who show that there is a relation-

ship between the quantiles of the US stock returns and quantiles of oil price shocks. Similarly, Chen (2010)

shows that the probability of a bear market is affected positively by oil price increases. In a recent contribu-

tion, Jiménez-Rodríguez (2015) employs the methodology used in Hamilton (2003) to test for a non-linear

relationship between oil price changes and stock returns for Canada, Germany, the UK and the US and finds

some evidence against linearity.2 Our empirical model generalises these analyses in two important ways.

First, as we use a structural VAR, we identify oil shocks and estimate their impact simultaneously. Most of

the existing literature examines non-linearity in a single-equation framework using off-model measures of oil

shocks. Second, our large panel dimension enables us to derive average effects for the OECD while allowing

for heterogeneity across countries. This feature also distinguishes our work from Holm-Hadulla and Hubrich

1For a recent critical survey of this large literature, see Hamilton (2011).
2See Kang et al. (2015) for a detailed survey of this literature.
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(2017). who estimate a Markov Switching VAR using aggregate Euro-Area data to examine the response

to oil price shocks. While Holm-Hadulla and Hubrich (2017) consider the response to composite oil price

shocks, we investigate shocks that originate from the demand or supply side. Another key contribution of

our paper relative to existing work on this topic is the fact that we also examine the non-linear transmission

of the oil shocks from a theoretical perspective.

Our results suggest the following conclusion for the average OECD country in our panel: Oil supply

shocks are associated with a fall in equity prices that is substantially larger during the regime characterised

by low oil price inflation. In contrast, when oil price inflation is high, these shocks have a negligible impact

on stock prices. There is weaker evidence that a similar result holds for speculative demand shocks to oil.

Our results suggest, therefore, that not only the source of the oil shock is important for stock prices, but

the timing may matter as well. As a consequence, while innovations such as oil supply shocks appear to be

unimportant for stock prices in a linear VAR model (see Kilian and Park (2009)), our analysis shows that

the assumption of linearity may mask the important effect of such shocks in specific regimes.

To investigate a possible mechanism for these results, we extend the DSGE model of Blanchard and Gali

(2010) to include a working capital friction that responds to liquidity conditions in a non-linear way. In

particular, to capture the dynamics of the firms’liquidity and risk premia, the cost of finance is assumed

to increase as liquidity in the economy declines. When the economy is in a low oil price and low aggregate

inflation environment, policy interest rates are low. The firms increase their borrowing and become over

leveraged. An adverse oil shock such as a decrease in oil supply pushes up inflation and induces the monetary

authority to raise interest rates. This pushes up credit spreads substantially because of an increase in default

probability. As a consequence, firms’profits decline and stock prices fall. This channel is muted in a high oil

price/aggregate inflation environment as increases in the policy rate have a smaller impact on credit spreads.

The paper is organised as follows: The empirical model and results are presented in Section 2. We

consider an explanation for the empirical results in Section 3. Section 4 concludes.
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2 Empirical Analysis

2.1 Empirical model

For each country in our panel, we estimate the following threshold VAR (TVAR) model:

Zit =

c1i +

P∑
j=1

b1i,jZit−j + uit

Sit + (1)

c2i +

P∑
j=1

b2i,jZit−j + uit

 (1− Sit)

where i = 1, 2, ...17 denotes the 17 OECD countries included in the study (see data description in section

2.1.3). The matrix of endogenous variables is denoted by Zit, which in the benchmark case includes the

following eight variables sampled at the monthly frequency: (1) oil production (Pt), (2) oil inventories (It),

(3) a measure of global real activity (Yt), (4) nominal oil price (ot) and (5) Industrial production for country

i (ipt), (6) CPI inflation for country i (πt), (7) the spread between the 10 year government bond yield and

a short-term interest rate (spt) and (8) the stock market index for country i (st). With the exception of

Yt which is stationary by construction, It which is defined in differences, spt which is differenced to induce

stationarity, the remaining variables enter in log differences and the lag length P is fixed to 13.

The covariance matrix of the residuals is also regime dependent and defined as:

var (uit) = Σit = Sit � Σ1i + (1− Sit)� Σ1i (2)

The regime switches in the model are governed by the variable Sit:

Sit = 1⇐⇒ õt−di ≤ o∗i (3)

The threshold variable õt is the 12 month moving sum of monthly oil price inflation, an approximation to

the annual growth in ot. This choice is partly motivated by earlier studies that emphasise the importance of

increases in the oil price relative to previous highs (see for e.g. Hamilton (1996)). The structure in equation

3 implies that the dynamic relationship between the oil market and the economy is allowed to change if the
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difference in ot relative to its past exceeds an unknown threshold value o∗i . The importance of the magnitude

of changes in the oil price is also implied by the DSGE model describe in Section 3 below. Note also that

the lag or delay in the threshold variable di is treated as an unknown parameter with and is allowed to take

on values di = 1, 2, ..., 12.

In order to account for possibility that the dynamic relationships amongst the endogenous variables may

have similarities across OECD countries, we introduce a hierarchical prior for a number of key parameters

in the model. Defining the VAR coeffi cients as β1,i = vec ([b1i,1, .., b1i,P ]) and β2,i = vec ([b2i,1, .., b2i,P ]), we

follow Ruisi (2018) and Mumtaz and Sunder-Plassmann (2017) and assume a priori that:

p
(
β1,i|β̄1, λ1

)
˜N
(
β̄1, λ1Λi

)
(4)

p
(
β2,i|β̄2, λ2

)
˜N
(
β̄2, λ2Λi

)

where β̄1 and β̄2 denote the weighted cross-sectional averages of the VAR coeffi cients, Λi is a matrix with

diagonal elements reflecting the scale of the coeffi cients and the variances λ1 and λ2 control the degree

of pooling. As λ1 → 0 , for example, the prior places a strong weight on β1,i being close to the average

coeffi cients β̄1 while larger values for λ1 imply heterogenous dynamics across countries.

The regime dependent residual covariance matrices are factored as:

Σ1i = A−1
1i H1iA

−1′
1i (5)

Σ2i = A−1
2i H2iA

−1′
2i

where H1i and H2i are diagonal matrices with the variances of orthogonalised shocks on the main diagonal.

A1i and A2i are lower triangular. As in Mumtaz and Sunder-Plassmann (2017) we assume the following

prior for the non-zero and non-one elements of A1i and A2i (denoted by a1,i and a2,i ):

p (a1,i|ā1, δ1) ˜N (ā1, δ1Ξi) (6)

p (a2,i|ā2, δ2) ˜N (ā2, δ2Ξi)
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where ā1 and ā2 represent the cross-sectional weighted average, Ξi are diagonal matrices to account for scale

differences in the elements of a1,i and a2,i while the degree of pooling across countries is controlled by δ1

and δ2 in the two regimes.

Finally, the prior on the threshold o∗i also has a hierarchical structure:

p (o∗i |ō, $) ˜N (ō, $Ψi) (7)

where ō is the average value of the threshold across countries. As before, values of $ close to zero imply

that the threshold for each country takes on similar values.

Note that the model allows the constants c1i, c2i and the error variances H1i, H2i to be different across

countries thus accounting for heterogeneity in initial conditions and the magnitude of shocks hitting the

economies.

This structure for the prior distributions offers two key advantages. First, as we describe below, by using

the posterior distribution for the average VAR parameters
(
β̄1, β̄2, ā1, ā2, ō

)
we can estimate the regime-

dependent impulse responses for the average country in our sample. The fact that this calculation exploits

the cross-sectional dimension implies that the estimated responses are likely to more precisely estimated

than those from a purely time-series model where the estimates would be based on the sub-sample implied

by each regime. Second, while the model allows for heterogeneity across countries, country-specific posterior

distributions are based on priors centered on cross-country averages. This additional information may im-

prove the precision of country-specific estimates when compared to set ups where cross-sectional information

is not incorporated in the prior.

2.1.1 Estimation and impulse responses

Details on prior distributions and the estimation algorithm are presented in the technical appendix. However,

it is useful to highlight some important features. The prior for the variances controlling the degree of pooling

λ1, λ1,δ1, δ2, $ is assumed to be an inverse Gamma distribution IG (s, v). As discussed in Gelman (2006) and

Jarocinski (2010) the usual ‘agnostic prior’with small positive values for s and v can be quite informative

in some circumstances. We follow the suggestion in Gelman (2006) and use v = −1 and s = 0 which implies
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a uniform prior for the standard deviations. The marginal posterior distributions are approximated using

a Metropolis within Gibbs algorithm. As described in the technical appendix, the Metropolis step is used

to sample from the conditional posterior distribution of the threshold o∗i while the remaining conditional

posteriors are standard. The technical appendix presents a small Monte-Carlo experiment which indicates

that the proposed algorithm performs fairly well.

As the model is non-linear we use the methods described in Koop et al. (1996) to estimate the impulse

responses. Our interest mainly centers on the average responses across countries. In this case, the contempo-

raneous impact matrices A1 and A2 are based on the average parameters ā1 and ā2. As described below, our

benchmark model identifies three oil market shocks using sign restrictions. Given these contemporaneous

impact matrices, the impulse responses are defined as:

IRF = E (Zh|ε)− E (Zh) (8)

where h = 0, 1, .., 60 is the horizon and ε represents the oil shock of interest. The expectations in equation 8

are estimated using Monte-Carlo integration using the posterior distribution of the average VAR parameters

(see Koop et al. (1996)).3 This procedure takes into account the dynamic impact of the shock on the

probability of regime switches over the impulse response horizon. We compute these impulse responses using

the sequence of ‘histories’or lagged values of the average state data Zt as initial conditions and report the

average.

2.1.2 Identification of oil shocks

We identify three oil market shocks: (1) oil supply shock, (2) oil demand shock and (3) speculative demand

shock. In the benchmark case, the identification scheme follows Kilian and Murphy (2014) and is based on

the contemporaneous sign restrictions listed in Table 1 (see also Peersman and Robays (2012)).

The oil supply shock is defined as the innovation that leads to an increase in the price of oil but reduces

oil production and world real activity. In contrast, an increase in oil demand driven by world real activity

leads to rise in oil price and production and is accompanied by a rise in the measure of global activity. Oil

3Note that E (Zh) represents the expected future value of the endogenous variables in an average or typical state.
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Supply Demand Speculative demand
Oil production ≤ 0 ≥ 0 ≥ 0
Real activity ≤ 0 ≥ 0 ≤ 0
Oil price ≥ 0 ≥ 0 ≥ 0
Inventories ≥ 0

Table 1: Sign restrictions for the benchmark model

specific, or speculative demand shocks are also associated with a rise in oil price and production but this

innovation leads to a fall in real activity and a rise in inventories. As discussed in Kilian and Murphy (2014),

speculative demand shocks represent the expected future demand for oil in excess of supply. Such a shortfall

may be anticipated due to political uncertainty in oil producing countries, with these type of demand shocks

pushing up inventories and pushing down real activity as a result of a fall in oil consumption. Following

Kilian and Murphy (2014), we also impose bounds on the price elasticity of oil supply and demand on impact.

In particular, we impose the condition that the price elasticity of supply is less than 0.025 on impact, while

the impact elasticity of oil demand is constrained to remain above -0.8.

In a robustness analysis presented below, we show that if a recursive identification scheme is used instead,

the key findings regarding non-linearity of impulse responses are not over turned.

2.1.3 Data

As mentioned above, the TVAR model is estimated for 17 OECD countries that include: Austria, Belgium,

Germany, Denmark, Spain, Finland, France, Canada, Ireland, Italy, Japan, Netherlands, Norway, Portugal,

Sweden, United Kingdom and the United States. The oil market variables are common across countries.

Data for global oil production measured in millions of barrels is obtained from the Energy Information

Administration (EIA). Following Kilian and Murphy (2014), inventories are measured by the EIA data for

US crude oil inventories scaled by the ratio of OECD petroleum stocks to US petroleum stocks. The measure

of global real activity is taken from Kilian (2009) and is based on the dry cargo shipping freight rates. We

use the West Texas intermediate measure of the spot crude oil price with the data obtained from the Federal

Reserve bank of St Louis (FRED) data base. The remaining country-specific variables are obtained from

the OECD data base.

The sample runs from 1973M1 to 2016M12 for all countries except Portugal where the sample starts from
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Figure 1: The shaded area indicates periods where õt−d > ō where the posterior median for the delay d is
used.

1985M8.

2.2 Empirical results

To investigate the fit of the TVAR model relative to a linear VAR, we calculate the deviance information

criterion (DIC) based on the cross-sectional average of the data (see Spiegelhalter et al. (2002)). The DIC

rewards model fit while penalising model complexity with smaller values of the statistic preferred. The

estimated DIC for the linear model is 10353.27. The estimated DIC for the TVAR is lower at 9900.71

suggesting that an improvement in model fit.

2.2.1 Impulse Responses

We consider impulse responses in the two regimes identified by the empirical model. The estimated posterior

median of ō, the average value of the threshold across countries, is 2 percent, while, on average, the delay
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is estimated to be 1. Based on these estimates, the regime classification is presented in Figure 1 with the

shaded area depicting the periods belonging to the second regime characterised by positive and high annual

oil price growth. This regime was predominant during the 1970s, the early and mid-1990s and returned in

the form of several persistent episodes during the last two decades of the sample.
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Figure 2: Cumulated impulse response to 1 SD adverse oil supply shock in each regime. Regime 1 denotes periods when õt−d ≤ ō and Regime 2
denotes periods when õt−d > ō. The shaded area and the dotted line represent 68 percent error bands.
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Figure 2 shows the response of endogenous variables in the two regimes. As described above, these

impulse responses are based on average parameters and can be interpreted as the response in a typical

OECD country. The supply shock is associated with an increase in the oil price by an amount that is almost

identical across regimes. The decline in oil production and inventories is also similar in the two states. On

the other hand, global real activity declines by a substantially larger amount when the process is in the

second regime. While the error bands are large, the median response of industrial production shows the

opposite pattern — ipt declines by a larger amount during the regime characterised by low and negative oil

inflation. This result is mirrored in the response of stock prices, the variable of interest in our study. In

regime 2, the null hypothesis of a zero response of st cannot be rejected. This result supports the conclusions

reached by Kilian and Park (2009) who shows that oil supply shocks have a negligible effect on stock prices

in the context of a linear VAR model. However, the response of stock prices in regime 1 is statistically

different from zero. In fact, stock prices decline by about 1.5 percent in response to the shock in this regime

indicating that responses from linear models may mask a more complex picture. The estimated error bands

suggest that the response in this regime is systematically different from the response when oil inflation is in

the high state. Thus, the results indicate that adverse oil supply shocks have a stronger negative impact on

stock prices in the average OECD country during periods of low oil inflation.
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Figure 3: Cumulated impulse response to 1 SD positive oil demand shock in each regime. See notes to Figure 2.
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In contrast to the response to oil supply shocks, there appears to be limited evidence of non-linear stock

price dynamics in response of oil demand shocks driven by world activity (see Figure 3). The shock raises

oil prices, oil production and world real activity where the regime 1 response of Yt and ot is estimated to be

larger at long horizons. While there is weak evidence that ipt increases by a larger amount in regime 1, the

remaining impulse responses indicate that responses are almost identical across regimes.
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Figure 4: Cumulated impulse response to 1 SD adverse speculative oil demand shock in each regime. See notes to Figure 2.
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Figure 4 displays the estimated response to a 1 standard deviation adverse speculative oil demand shock

—the shock pushes up oil inventories and oil prices but reduces world activity and oil production. There

is some evidence that the shock depresses stock prices by a larger amount in regime 1, with st showing a

decline of about one percent. These results are close to the linear impulse responses presented in Kilian and

Park (2009). In regime 2, however, the shock has a negligible impact on st. Thus, as in the case of oil supply

shocks, the results suggest that stock prices react by a larger amount during the regime characterised by

low oil inflation. However, the difference in the response of stock prices across regimes is smaller than in the

case of oil supply shocks with some overlap in the estimated error bands.
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Figure 5: Cumulative response of stock prices to 1 SD and 5 SD shocks. The responses to 5 SD shocks are divided by 5 and then cumulated.
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Figure 6: Cumulative response of stock prices to 1 SD and -1 SD shocks. The responses to negative shocks are multiplied by -1.
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Figure 5 shows that evidence for the presence of non-linearity associated with the size of the shock is

limited. The figure presents the cumulated response of stock prices to one and five standard deviation shocks.

The responses to the larger shock are divided by 5 prior to cumulation for comparison. When considering

supply shocks, there is weak evidence that the larger shock has a slightly smaller effect, proportionally, in

regime 1 at short horizons. In the same regime, the positive effect of demand shocks is less persistent when

the size of the shock is large and the decline in st begins earlier. There appears to be no evidence for size non-

linearity when considering the response to speculative demand shocks. In Figure 6 we investigate if responses

to positive and negative one standard deviation shocks display significant differences. It is immediately clear

from the figure that this is not the case — the response of stock prices to positive and negative shocks is

virtually identical.
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Figure 7: Country-specific responses of stock prices to oil shocks in regime 1 (red solid line and shaded area) and regime 2 (dotted lines)
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Figure 8: Country-specific responses of stock prices to oil shocks in regime 1 (red solid line and shaded area) and regime 2 (dotted lines)
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Robustness The results presented above are based on the (cross-section) average model parameters. In

Figures 7 and 8, we consider the regime-specific response of stock prices to oil shocks for each country in

the panel. It is evident from the figures that the key results discussed above are present for all countries.

First, the response of stock prices to oil supply shocks is negative and different from zero in regime 1 while

the regime 2 response is close to zero or mildly positive. Second, the regime non-linearity appears to be

important in the case of supply shocks. Differences in responses across regimes are less pronounced in the

case of speculative demand shocks and almost non-existent in the case of demand shocks. There is a small

amount of heterogeneity across countries in terms of the degree of non-linearity in response to oil supply

shocks.4 Canada, Japan and the US are examples of countries where the divergence between the responses

across regimes is the largest. This divergence is estimated to be slightly smaller for European countries such

as Austria, Norway, Denmark and Sweden. However, variation across countries does not appear to be an

important feature of the results.

We carry out further robustness checks to test if the main results are sensitive to model specification

choices. Results for these exercises are presented in the technical appendix. First, we truncate the end of the

sample for each country to 2007 M12. The aim is to check if the recent financial crisis plays an important

role in driving the main results regarding the differences in the response to oil shocks across regimes. Second,

we follow Kilian and Park (2009) and identify the oil shocks using via a Cholesky decomposition with the

variables ordered as Pt, Yt, ot, st.5As shown in the technical appendix, the response to oil supply shocks in

these alternative models display the same feature as in the benchmark case —The regime 1 response of stock

prices is negative while stock prices are close to zero or positive after this shock in regime 2.

3 Explaining the non-linear response to oil supply shocks

The empirical analysis above suggests one key result: The response of stock prices to oil supply shocks is

larger during the regime characterised by low oil inflation. In this section, we use a DSGE model to discuss

a possible explanation for this result. Note that our aim is to show that the empirical results do have a

plausible economic explanation. Given the stylised nature of the model, it is, of course, not possible to

4We estimate the degree of non-linearity as the difference in the response across regimes at the 2 year horizon.
5This alternative model is estimated using these four variables only.
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rule out alternative mechanisms that are also consistent with the results. However, the key features of the

model proposed below (e.g. financial frictions) are now widely acknowledged as being crucial for an accurate

description of the transmission mechanism.

The model employed here is very similar to the one developed by Blanchard and Gali (2010). This is a

New Keynesian model where agents consume and supply labour. However, in this economy, consumption is

an aggregate of non durable and oil consumption. Furthermore, oil is used by intermediate good producers

in the production process. This implies that the CPI inflation is not only affected directly via oil prices

but also indirectly; via the domestically generated inflation as oil prices enter the producers’ marginal

cost. Intermediate good producers have monopoly power over setting their prices. A fraction of those firms

receives a random signal and set prices optimally, while the remaining fraction set prices based on a backward

indexation rule. Monetary authorities set the policy rate based on a Taylor type rule.

In addition to all these features we add to the model a working capital financial friction that responds

non-linearly to liquidity conditions. To be precise, the friction consists of two parts. The first part captures

the standard working capital friction (as in Christiano et al. (2005) and Christiano et al. (2015)), where

firms borrow a fraction of the wage and oil bill that needs to be paid in advance (before the production

takes place). In addition to this, we allow this cost to increase as liquidity in the economy dries out or

when the interest rate increases. This additional cost is at its minimum and constant when there is excess

liquidity in the economy (i.e. when the interest is below the effective zero lower bound). The friction aims

to capture the situation where firms try to get an advantage of cheap funding (low interest rates) and they

get over leveraged. As the availability of financial resources decreases this has a nonlinear effect on the cost

of additional finance as firms become more constrained.

The motivation behind introducing this friction is that equity prices not only reflect expectations about

future profits but also the firms’financial and risk conditions. In other words, this reduced-form financial

friction aims to reflect risk and liquidity premium dynamics at different levels of the policy rate (or liquidity).

Bernanke and Kuttner (2005) show that monetary policy has an effect on equity prices primarily through

its effect on excess returns. They find that excess returns decrease in response to an expansionary monetary

policy shock. In contrast, excess returns increase in response to a contractionary policy. Drechsler et al.
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Figure 9: The figure plots quarterly credit spread against deviation of policy rate from its steady-state value
(i.e. R̂t). Policy rate equals its steady-state value at R̂t = 1. The credit spread reaches its minimum value
(i.e. 50 basis points) when the policy rate hits the zero lower bound (i.e. R̂t = 0.99).

(2018) develop an asset pricing model to show the same. Expansionary monetary policy decreases risk

premium.

Several researchers have also provided evidence for the systematic risk-taking channel of monetary policy

(Borio and Zhu (2012), Jimenez et al. (2014), Dell’Ariccia et al. (2017), Colletaza et al. (2018)). Others have

also pointed to the protracted period of low interest rates, between 2002 to 2006, as a reason for buildup of

risk in the financial system (Acharya and Richardson (2009), Diamond and Rajan (2009)). The increase in

risk tolerance by financial institutions in periods of low policy rates, therefore, decreases risk premium.

Another strand of literature finds that an increase in policy rate has significant impact on default rates.

Jacobson et al. (2013) show this for Swedish firms. They further find that the effect is stronger in sectors

with highly leveraged firms. Gonzalez-Aguado and Suarez (2015) use a dynamic model to explain why an

increase in policy rate may increase the default probability.

We capture these dynamics by assuming that the credit spread is an increasing and concave function in

the policy rate. Figure 9 plots the credit spread function (see equation 16) for calibrated values in section 3.4.

When the policy rate is low, credit spreads are low as well. An environment of low interest rate and low credit
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spread encourages private sector to accumulate more debt. Subsequently, when policy rate increases, credit

spreads increase substantially due to an increase in default probability. Credit spreads may also increase as

financial institutions move away from investing in risky assets towards investing in safe assets.

However, worsening balance sheet conditions, following an increase in policy rate, also cause private sector

to take corrective measures such as portfolio readjustment, de leveraging etc. The assumption of concavity

in credit spreads is intended to capture this behaviour. The marginal increase in credit spread is higher

when interest rates are low than when interest rates are high.

In rest of this section, we first explain the behavior of firms in the model followed by the behavior of

households. We take third-order taylor approximation of the model solution to allow non-linearity in credit

spread to affect model dynamics in response to an oil price shock.

3.1 Non-Oil goods producing firms

There is a continuum of firms f ∈ [0, 1]. Each firm produces a single differentiated good in an imperfectly

competitive market. Firm-specific differentiated goods, Yf,t, are then combined to produce a final good, Yt.

The production function for Yt is given by:

Yt =

[∫ 1

0

(Yf,t)
θ−1
θ df

] θ
θ−1

(9)

where θ is the elasticity of substitution. Unlike differentiated goods producing firms, final good producing

firms are perfectly competitive. Profit maximisation by final goods producing firms gives the following

demand function for each differentiated good:

Yf,t =

(
Pf,t
Pnt

)−θ
Yt (10)

where Yt can also be interpreted as aggregate demand for differentiated goods and Pnt is the aggregate price

of non-oil goods. Under perfect competition, Pnt is given by:
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Pnt =

[∫ 1

0

(Pf,t)
1−θdf

] 1
1−θ

(11)

The differentiated goods producing firms use labor and oil in the production process. We assume that

oil is imported from the international market. We assume a Cobb-Douglas production function of the form:

Yf,t =
(
AtNf,t

)1−µ(
Of,t

)µ − Φ (12)

where At is stationary labor-augmenting technology shock, Nf,t is labor input used by firm f and Of,t is

imported oil used by firm f . µ and Φ are oil-output elasticity and fixed cost, respectively.

Each firm minimises the cost subject to equation (12):

min W̄tNf,t + P̄ ot Of,t (13)

where W̄t and P̄ ot are effective nominal wage and effective nominal oil price, respectively. We follow Christiano

et al. (2015) in assuming that firms finance a fraction of their input cost through borrowing. Effective input

prices (i.e. W̄t and P̄ ot ) reflect these borrowing costs and take the following form:

W̄t =
{

1− ψn + ψn[Rt + φ(R̂t)]
}
Wt (14)

P̄ ot =
{

1− ψo + ψo[Rt + φ(R̂t)]
}
P ot (15)

where Wt and P ot are market prices for labor and oil, respectively. R̂t is the deviation of interest rate from

its steady-state (i.e. Rt
R̄
). ψj , for j = n, o, is a fraction of the cost of input j financed through borrowing.
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When ψj equals zero, we recover the baseline model in Blanchard and Gali (2010).

The working capital channel in this paper differs from Christiano et al. (2015) in the argument φ(.). φ(.)

captures credit spread which firms pay on top of risk-free rate, Rt. We assume the following functional form

for credit spread:

φ(.) = κ+

√
R̂1−ε
t − γ

1000 ∗ (1− ε) (16)

where κ puts a minimum limit on the value of φ(.). For our purpose, κ ≥ 1. This ensures that the

credit spread does not take a negative value. γ determines the lowest value of the interest rate, relative

to its steady-state, at which the economy enters the state of lowest credit spreads. ε affects how quickly

diminishing marginal spread sets in. Figure 9 plots equation 16 as a function of R̂t.

Firms take effective input prices as given and choose the quantity of inputs which minimise costs subject

to the production function. The cost minimisation problem then gives the following expression for marginal

costs:

MCt =

(
1

1− µ

)1−µ(
1

µ

)µ(
W̄t

At

)1−µ(
P̄ ot
)µ

(17)

where MCt is marginal costs and is independent of f . Differentiated goods producing firms then set a price

which maximises her discounted profits.

We assume that firms set their prices according to the Calvo mechanism as explained in Calvo (1983).

Specifically, in a given period, only a fraction of firms can set their price to the desired level. We further

assume that firms which are not able to adjust their price index their price by last period’s inflation. Firms’

profit maximisation problem gives the following non-linear Phillips Curve:

g1,t = λt
MCt
Pnt

Y dt + βζEt

[
πιn,t
πn,t+1

]−θ
g1,t+1 (18)
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g2,t = λtΠ
∗
n,tY

d
t + βζEt

[
πιn,t
πn,t+1

]1−θ Π∗n,t
Π∗n,t+1

g2,t+1 (19)

θg1,t = (θ − 1)g2,t (20)

where β is discount factor, ζ is the fraction of firms which cannot change their price in a given period and ι

is the degree of indexation in firms pricing decision. Π∗n,t is the reset price and πn,t is aggregate inflation in

the non-oil sector.

Oil prices are determined in the international market and are exogenous to the domestic economy. The

empirical exercise in section 2 focuses on the effect of innovations to nominal oil prices. To be consistent, we

assume that the shock affects nominal oil price inflation rather than real oil price. The expression for real

oil price is:

pot =
pot−1

πt
πo,t (21)

where πo,t is oil price inflation and follows an AR(1) process of the form:

πo,t = ρoπo,t−1 + εo,t (22)

where εo,t is an i.i.d. shock ∼ N(0, σo).

3.2 Households

There is also a continuum of households h ∈ [0, 1]. Households choose the path for consumption and labor

supply which maximises their lifetime utility. We assume a CRRA utility function which is seperable in

consumption and hours worked:

maxEt

∞∑
t=0

βt
[
C1−σ
t

1− σ − ψ
N1+ϕ
t

1 + ϕ

]
(23)
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where σ and ϕ are the inverse of elasticity of substitution and inverse Frisch labor supply elasticity, respec-

tively. Ct is the final consumption good and Nt is hours worked. Ct includes both oil and non-oil goods and

takes the following form:

Ct =

[
(1− α)

1
ηCn,t

η−1
η + α

1
ηCo,t

η−1
η

] η
η−1

(24)

where Cn,t and Co,t represents consumption of non-oil and oil, respectively. As in the case of firms, oil used

in households consumption is imported as well. α is the weight on oil in households consumption basket. η

is the elasticity of substitution between oil and non-oil goods. Demand for oil and non-oil goods is given by:

Cn,t = (1− α)

(
Pn,t
Pt

)−η
Ct (25)

Co,t = α

(
Po,t
Pt

)−η
Ct (26)

The price index associated with equation (24) is:

Pt =

[
(1− α)Pn,t

1−η + αPo,t
1−η
] 1
1−η

(27)

Households maximise (23) subject to the following budget constraints:

PtCt + P eqt St +Bt ≤WtNt +Rt−1Bt−1 + (P eqt + Πeq
t )St−1 − Tt (28)

where Bt is bonds, St is equity shares and Tt is lump-sum taxes. Each equity share has a price of P eqt and

also pays a dividend of Πeq
t . We assume that firms are owned by households and, therefore, all of firms’profit
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is transferred to households in the form of dividend. The solution to households maximisation problem with

respect to St gives the following expression for equity prices:

peqt = βMt+1(peqt+1 + πeqt+1) (29)

where peqt is the real price of equity share and πeqt is dividend in real terms. Mt+1 is the stochastic discount

factor (i.e. λt+1/λt) between period t and t+ 1. λt is the marginal utility of wealth.

The complete set of model equations are given in the technical appendix to the paper.

3.3 Monetary Policy

The central bank conducts policy according to a Taylor-type rule. We also assume that the central bank

targets core inflation, πn,t, instead of aggregate inflation.6 Clark and Terry (2010) show that the Fed’s

responsiveness to oil price shocks has decreased since 1985. Furthermore, Blinder and Reis (2005) and

Mehra and Sawhney (2010) show that a Taylor-type rule with core inflation targeting tracks the observed

policy rate better than with inflation targeting.

Rt
R̄

=

(
Rt−1

R̄

)ρr[(
πn,t
π̄

)rπ(
Yt
Y ss

)ry]1−ρr

(30)

where R̄ and π̄ are steady-state interest rate and inflation, respectively. Y ss is steady-state output. ρr, rπ

and ry are constant parameters.

3.4 Model Calibration

We calibrate model parameters to study the affect of oil price shock on equity prices. Calibrated values

of model parameters are provided in Table 2. We first discuss parameters governing the working capital

channel. ψj equals 0.7. This is similar to the value assumed in Christiano et al. (2011). The calibrated

value of κ at 0.005 ensures that annual credit spread does not go below 100 basis points. ε and γ determine
6Our results are not sensitive to assuming core inflation targeting.
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Parameters Values Parameters Values
β 0.99 θ 11
ζ 0.60 ι 0.25
σ 2 σl 2
ψ 8.5 η 0.5
ψo 0.7 ψn 0.7
µ 0.02 α 0.02
κ 0.005 γ 5
ε 35 rπ 1.5
ry 0.7 ρr 0.7
ρo 0.5 σo 0.03

Note: This table

provides calibrated values of structural parameters in the model.

Table 2: Model Parameters

curvature of the spread function and also the policy rate at which credit spread reaches its minimum. We

calibrate the two parameters such that annual credit spread at the steady-state is close to 4%. Moreover,

credit spread reaches its minimum at the effective zero lower bound (i.e. R̂t = 0.99).

In line with literature, we assume complementarity between oil and non-oil consumption goods. Elasticity

of substitution between oil and non-oil goods (i.e. η) equals 0.5. The weight on oil in households consumption

(i.e. α) and output-oil elasticity in firms production function (i.e. µ) is calibrated to equal 0.02. Finally, the

persistance parameter of oil price inflation shock (i.e. ρo) takes a value of 0.5. We calibrate σo to match the

empirical response of a 3% increase in oil price inflation at impact. Therefore, σo equals 0.03. Calibrated

values for remaining parameters are in line with the New Keynesian literature.

3.5 Results

We use third-order taylor approximation of model solution to compute impulse responses to an oil price

inflation shock. We compute two sets of IRFs at different points on the credit spread function: one when

the policy rate is 0% (i.e. R̂t = 0.99) and another when the policy rate is 6% (i.e. R̂t = 1.02). These reflect

two different inflationary regimes. A low inflationary regime (with low oil price inflation) is consistent with

a lower policy rate and vice versa.

Figure 10 plots IRFs at different points on the credit spread function. An increase in oil price inflation

increases both aggregate and core inflation. Since monetary authorities want to stabilise inflation, policy

rate increases. The contractionary effect of an oil price shock decreases firms’profit. Since equity prices
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Figure 10: The figure plots IRFs to an exogenous shock to oil price inflation. The red line plots IRFs when
annual interest rate equals 0%. The blue line plots IRFs when annual interest rate equals 6%.

equal the sum of discounted value of firms’expected profit, equity prices fall as well.

However, the implication of oil price shock for equity prices depend significantly on where the economy is

on the credit spread function. In line with empirical results in this paper, equity prices decline significantly

more in a low inflationary and, therefore, low interest rate environment. When the policy rate is at 0%,

an increase in the policy rate increases credit spread by significantly more. As a result, borrowing costs

increase substantially. Since firms use borrowing to finance their working expenditure, higher borrowing

costs increase firms’marginal costs and, consequently, decrease firms’profit by more. On the other hand,

when policy rate is at 6%, a further increase in the policy rate has a limited effect on the credit spread and

borrowing costs increase by relatively less. Therefore, equity prices decline almost twice as much under a

low inflation and low interest rate environment than otherwise.

4 Conclusions

This paper uses a panel TVAR model to estimate the regime-dependent impact of oil shocks on stock prices.

The use of a hierarchical prior in the proposed model allows us to estimate the impulse responses for the
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average OECD country making use of both the time-series and cross-section dimension of the data. Our

estimates indicate strong evidence of non-linearity in the response of stock prices to oil supply shocks. In

particular, adverse oil supply shocks have a negative impact on stock prices when oil inflation is low. In

contrast, this effect is statistically equal to zero in the regime characterised by higher oil price inflation.

Using a simple DSGE model, we suggest that the explanation for this result may be tied to the behaviour

of credit spreads. When oil inflation and aggregate inflation is low, lower policy rates encourage firms to

get highly leveraged. An adverse oil shock in this situation leads to large increase in spreads, cutting profits

and equity prices. In contrast, at higher rates of oil/aggregate inflation, spreads are less affected by the oil

shock, ameliorating the impact on the stock market.
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Appendix

1 Estimation

Zit =

c1i +

P∑
j=1

b1i,jZit−j + uit

Sit + (1)

c2i +

P∑
j=1

b2i,jZit−j + uit

 (1− Sit)

where Sit = 1⇐⇒ zit−di ≤ z∗i .
Here i = 1, 2, ..M denotes the M countries included in the panel.
The covariance of errors is defined as

var (uit) = Σit = Sit � Σ1i + (1− Sit)� Σ1i

Σ1i = A−11i H1iA
−1′
1i

Σ2i = A−12i H2iA
−1′
2i

where A1i, A2i are lower triangular and H1i = diag (h1i) , H2i = diag (h2i) are diagonal matrices with the variances of the orthogonal

shocks
(
h1i = [h

(1)
1i , .., h

(N)
1i ], h2i = [h

(1)
2i , .., h

(N)
2i ]

)
on the main diagonal. Here � denotes element by element multiplication

1.1 Priors

Collect the slope coeffi cients in the following K̄ × 1 vectors β1,i = vec ([b1i,1, .., b1i,P ]) and β2,i = vec ([b2i,1, .., b2i,P ]) . Denote the
vectorised non-zero and non-one elements in A1i, A2i as a1i, a2i. The model assumes the following hierararchical priors

p
(
β1,i|β̄1, λ1

)
˜N
(
β̄1, λ1Λi

)
p
(
β2,i|β̄2, λ2

)
˜N
(
β̄2, λ2Λi

)
where β̄1 and β̄2 are the (weighted) cross-sectional average coeffi cients in the two regimes and Λi is set according to the Minnesota
procedure. The parameter λ controls the degree of pooling in the model. As λ → 0 the heterogeneity across states declines. In order
to set the variances Λi, we use dummy observations as in Banbura et al. (2010), setting the overall prior tightness parameter to 1.
The prior for λ1, λ2 is assumed to be inverse Gamma:p (λk) ˜IG (S0, V0) where S0 = 0 and V0 = −1 and k = 1, 2. As discussed in

Gelman (2006), this prior corresponds to a uniform prior on the standard deviation.

Similarly, a hierararchical prior is set for a1i, a2i:

p (a1,i|ā1, δ1) ˜N (ā1, δ1Ξi)

p (a2,i|ā2, δ2) ˜N (ā2, δ2Ξi)

where ā1 and ā2 are weighted cross-sectional averages and Ξi equals a matrix with 10×abs (ai,ols) on the main diagonal. ai,ols represents
the non-zero and non-one elements of preliminary estimate of the contemporaneous impact matrix obtained via OLS. The degree of
pooling is controlled by δ.
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†aj.pirzada@hotmail.com
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The prior for δ1, δ2 is assumed to be inverse Gamma: p (δk) ˜IG (s0, v0) where s0 = 0 and v0 = −1 and k = 1, 2.
We also assume a hierarchical prior for the threshold z∗i . That is:

p (z∗i |z̄, $) ˜N (z̄, $Ψi)

Here z̄ denotes the weighted cross sectional average of the threshold level and the degree of pooling is controlled by $. Ψi is set equal
to abs (median (zit−d))× 10. The prior for $ is IG (s̃0, ṽ0) where s̃0 = 0 and ṽ0 = −1
We assume a normal prior for the intercepts: p (cK) ˜N (c0,ΛC) where ΛC is a diagonal matrix with 10,000 on the main diagonal.

The prior for h1i, h2i is inverse Gamma: IG (h0, vh) where h0 = 0.1 and vh = 1.

1.2 Gibbs Sampling Algorithm

The Gibbs algorithm is based on Jarocinski (2010). It draws from the following conditional posterior distributions (Ξ∗ denotes all
remaining parameters):

1. G
(
β1,i|Ξ∗

)
. Denote the observations for country i in regime 1 as This conditional posterior is normal: N (M,V ) where

V =
(

(λ1Λi)
−1

+ Σ−11i ⊗X ′1,iX1,i

)−1
M = V

(
(λ1Λi)

−1
β̄1 + Σ−11i ⊗X ′1,i (Y1,i − c1,i)

)
where Y1,it and X1,it denote the left and the right hand side of the VAR model for country i with data selected for regime 1, i.e.
over periods when Sit = 1. The number of observations in the regime are denoted by T1,i.

2. G (c1,i|Ξ∗). The conditional posterior is normal: N(m, v) where

v =
(
Λ−1C + Σ−11i ⊗ x′1,ix1,i

)−1
m = v

(
Λ−1C c0 + Σ−11i ⊗ x′1,ivec

(
Y1,i −X1,iβ̃1,i

))
where x1,i = 1T1,i×1 and β̃1,i denotes β1,i reshaped to be comformable with X1,i.

2. G (a1i|Ξ∗). Denote the residuals in regime 1 as E1,it = Y1,i − X1,iβ̃1,i − c1,i. Then the model in regime 1 can be written as
A1iE1,it = H

1/2
1i U1,it where U1,it is N (0, 1). This is a system of linear equations. The kth equation is E1,it (k) = −αE1,it (−k) +

H
1/2
1i (K)U1,it (k) where k in the parenthesis denotes the kth column while −k denotes columns 1 to k − 1 and α denotes the

relevant elements of a1i. The draw from this conditional posterior thus requires drawing the coeffi cients of a series of linear
regressions. As is well known, the conditional posterior is normal with mean and variance M∗ and V ∗ :

M∗ =

((
δ1Ξ

(k)
i

)−1
+

1

H1i (k)
E1,it (−k)

′
E1,it (−k)

)−1((
δ1Ξ

(k)
i

)−1
ā
(k)
1 +

1

H1i (k)
E1,it (−k)

′
E1,it (k)

)
V ∗ =

((
δ1Ξ

(k)
i

)−1
+

1

H1i (k)
E1,it (−k)

′
E1,it (−k)

)−1
Note that the superscript (k) denotes the fact that priors corresponding to the parameters of the kth equation are used.

3. G (h1i|Ξ∗). As discussed in step 3, the model in regime 1 can be written as A1iE1,it = Ũ1,it where Ũ1,it˜N(0, h1i). The conditional
posterior is inverse Gamma with posterior scale parameter Ũ ′1,itŨ1,it + h0 and degrees of freedom T1,i + vh.

5. G
(
β2,i|Ξ∗

)
. The form of the conditional posterior is as defined in step 1.

4. G (c2,i|Ξ∗). The form of the conditional posterior is as defined in step 2.

5. G (a2,i|Ξ∗). The form of the conditional posterior is as defined in step 3.

6. G (h2,i|Ξ∗). The form of the conditional posterior is as defined in step 4.

9. G (z∗i |Ξ∗). The threshold value is drawn using a Metropolis Hastings step. We draw candidate value of z∗i,new from z∗i,new =

z∗i,old + Ψ
1/2
i ε, ε ∼ N(0, 1). The acceptance probability is given by F

(
Zit
∣∣z∗i,new,Ξ∗ ) /F (Zit ∣∣∣z∗i,old,Ξ∗), where F (.) denotes the

posterior density: F (Zit |z∗i ,Ξ∗ ) ∝ f (Zit |z∗i ,Ξ∗ ) p (z∗i |z̄, $) where f (.) is the likelihood function of the VAR model for country
i. Note that the likelihood function is simply the product of the likelihood in the two regimes. The scale Ψi is chosen to ensure
that the acceptance rate is between 20% and 50%.

7. G (di|Ξ∗). Chen and Lee (1995) show that the conditional posterior for d is a multinomial distribution with probability
f (Yt |di,Ξ∗ ) /

∑di,max
di=1

f (Yt |di,Ξ∗ ), where di,max denotes the maximum delay allowed for.

11. G (λ1|Ξ∗) . The form of the conditional posterior is inverse Gamma with scale parameter
∑M
i=1

(
β1,i − β̄1

)
Λ−1i

(
β1,i − β̄1

)′
+ S0

and degrees of freedom
(
M × K̄

)
+ V0
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12. G (λ2|Ξ∗) . The form of the conditional posterior is as defined in step 6.

13. G
(
β̄1|Ξ∗

)
. By the Bayes Theorem, G

(
β̄1|β1, λ1

)
∝ p

(
β1|β̄1, λ1

)
p
(
β̄1
)
with β1 = [ β1,1, β1,2, .., β1,N ]. This density is normal as

p
(
β1|β̄1, λ1

)
is normal and product of the normal priors for each i. With a flat prior for β̄1 this density is given by N

(
M̄, V̄

)
:

V̄ =

(
1

λ1

M∑
i=1

Λ−1i

)−1

M̄ = V̄

(
1

λ1

M∑
i=1

Λ−1i β1,i

)

14. G
(
β̄2|Ξ∗

)
. The form of the conditional posterior is as defined in step 13 above.

15. G (δ1|Ξ∗). As in step 11, this conditional posterior is inverse Gamma with scale parameter
∑M
i=1 (a1,i − ā1) Λ−1i (a1,i − ā1)′ + s0

and degrees of freedom
(
M ×

(
N×(N−1)

2

))
+ v0

16. G (δ2|Ξ∗). The form of the conditional posterior is as defined in step 15 above.

17. G (ā1|Ξ∗). The form of the conditional posterior is as defined in step 13. The conditional posterior is normal N (m̄, v̄) where:

v̄ =

(
1

δ1

M∑
i=1

Ξ−1i

)−1

m̄ = v̄

(
1

δ1

M∑
i=1

Ξ−1i a1,i

)

18. G (ā2|Ξ∗). The form of the conditional posterior is as defined in step 17 above.

8. G ($|Ξ∗). As above, this variance has an inverse Gamma conditional posterior with scale parameter
∑M
i=1 (z∗i − z̄) Ψ−1i (z∗i − z̄)

′
+

s̃0 and degrees of freedom M + v0.

9. G (z̄|Ξ∗). Given the normal prior on z∗i , the conditional posterior of z̄ is normal N (mz, vz) where:

vz =

(
1

$

M∑
i=1

Ψ−1i

)−1

mz = vz

(
1

$

M∑
i=1

Ψ−1i z∗i

)

1.2.1 A Monte-Carlo experiment

In order to test the algorithm and the code we conduct a simple Monte-Carlo experiment. The follow DGP is used:

Zit =

c1i +

2∑
j=1

b1i,jZit−j + uit

Sit + (2)

c2i +

2∑
j=1

b2i,jZit−j + uit

 (1− Sit)

where Zit = [Yi,t, Xi,t, Dit] and Sit = 1 if Yi,t−1 ≤ Y ∗i for i = 1, 2, ..., N . We assume that the number of cross-sections is N = 10.
The shock variances are defined as:

var (uit) = Σit = Sit � Σ1i + (1− Sit)� Σ1i

Σ1i = A−11i H1iA
−1′
1i

Σ2i = A−12i H2iA
−1′
2i

The non-zero and non-one elements of A1i, A2i denoted by a1i, a2i are generated from N (ā1, 0.001) and N (ā2, 0.001), respectively
where:

ā1 =

 0.2
0.1
−0.2

 , ā2 = −ā1

we assume that H1i = H2i = 1.
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The VAR coeffi cients in each regime are generated from the following normal distributions: N
(
β̄1, 0.001

)
and N

(
β̄2, 0.001

)

β̄1 =


0.7 −0.1 −0.1
0.1 0.7 0.1
−0.1 0.1 0.7
0.01 0.01 0.01
0.02 0.02 0.02
−0.01 −0.01 −0.01


and

β̄2 =


0.7 0.1 0.1
−0.1 0.7 −0.1
0.1 −0.1 0.7
0.01 0.01 0.01
0.02 0.02 0.02
−0.01 −0.01 −0.01


Finally, we assume that the threshold Y ∗i is drawn from Normal distribution: N (Y ∗, 0.001) where Y ∗ = −0.3.
We generate 400 observations for each cross section discarding the first 100 to remove the influence of initial conditions. Overall

100 panel datasets are generated and the Gibbs sampling algorithm described above is employed to estimate the model using 5,000
iterations. For each of the 100 Monte-Carlo iterations we compute the (linear) impulse response to a unit shock in each regime using
the posterior draws of the average coeffi cients β̄1, β̄2 and the average contemporaneous impact matrices Ā1i, Ā2i.
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Figure 1: Monte-Carlo results: The black lines represent the true impulse response. The red line and the shaded area is the Monte-Carlo median estimate and the 1 SD error
band. The top three rows of the figure show the estimated response in regime 1. The bottom three rows show the same response in regime 2.
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Figure 1 presents the estimated impulse responses in the two regimes along with their counterpart in the DGP. The estimates are
close to the true responses suggesting that the algorithm and code work fairly well.
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Figure 2: Response to Oil Supply shocks. Sample truncated to 2007.
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Figure 3: Response to Oil supply shocks using a Cholesky decomposition
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2 Results based on a version of the model with the sample truncated to 2007

Figure 2 presents the responses to oil supply shocks. The response of stock prices to this shock is negative in the first regime. This is
in contrast to the second regime, when the response is close to zero and mildly positive. This is supportive of the benchmark results.

3 Results based on a Cholesky decomposition

Following, Kilian and Park (2009)oil supply shocks, oil demand shocks and speculative demand shocks are identified via a Cholesky
decomposition with the variables ordered as Pt, Yt, ot, st.1 As discussed in Kilian and Park (2009), this ordering is consistent with the
presence of a vertical oil supply curve and a downward sloping oil demand curve, with the remaining shock to oil prices attributed to
speculative demand. Figure 3 shows that the response of stock prices to oil supply shocks is qualitatively similar to the benchmark
case.

4 DSGE MODEL EQUATIONS

4.1 Households

λt = (ct − hct−1)−σ − βh(ct+1 − hct)−σ (3)

λt = βλt+1
Rt
πt+1

(4)

cn,t = (1− α)p−ηn,tct (5)

co,t = αp−ηo,t ct (6)

1 = (1− α)p1−ηn,t + αp1−ηo,t (7)

wt = Ψ
Nϕ
t

λt
(8)

4.2 Finished Goods Firms

Yt =
(
AtNt

)1−µ(
Ot
)µ − Φ (9)

mct =

(
1

1− µ

)1−µ(
1

µ

)µ(
w̄t
At

)1−µ(
p̄o,t
)µ

(10)

Nt =

(
1− µ
µ

)(
p̄o,t
w̄t

)γ
OtAt

γ−1 (11)

w̄t =
{

1− ψn + ψn[Rt + φ(R̂t)]
}
wt (12)

p̄o,t =
{

1− ψo + ψo[Rt + φ(R̂t)]
}
po,t (13)

φ(R̂t) = κ+

√
R̂1−εt − γ

1000 ∗ (1− ε) (14)

1This alternative model is estimated using these four variables only.
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4.2.1 Nonlinear New Keynesian Philips Curve

g1,t = λt
mct
pn,t

Y dt + βζEt

[
πιn,t
πn,t+1

]−θ
g1,t+1 (15)

g2,t = λtΠ
∗
n,tY

d
t + βζEt

[
πιn,t
πn,t+1

]1−θ Π∗n,t
Π∗n,t+1

g2,t+1 (16)

θg1,t = (θ − 1)g2,t (17)

Yt = νp,tY
d
t (18)

νp,t = ζp

(
πιn,t−1
πn,t

)−θ
νp,t−1 + (1− ζp)(Π∗n,t)−θ (19)

1 = (1− ζp)(Π∗n,t)1−θ + ζp

(
πιn,t−1
πn,t

)1−θ
(20)

πn,t =
pn,t
pn,t−1

πt (21)

4.2.2 Real Equity Price

peqt = βMt+1(p
eq
t+1 + πeqt+1) (22)

πeqt = pn,tY
d
t − w̄tNt − p̄o,tOt (23)

Mt =
λt+1
λt

(24)

4.3 Oil Price

po,t =
po,t−1
πt

πo,t (25)

πo,t = ρoπo,t−1 + εo,t (26)

4.4 Monetary Policy

Rt
R̄

=

(
Rt−1
R̄

)ρr[(
πn,t
π̄

)rπ(
Yt
Y ss

)ry]1−ρr
(27)

4.5 Market Clearing

ct = pn,tYt − po,tOt (28)
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