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1 Introduction

This paper studies information design problems in dynamic games. Dynamic games offer novel

and unique opportunities for information design: information about the past, the present, and even

the future can be disclosed. As an example, consider the refinancing operations of central banks.

Typically, central banks organize weekly tender auctions to provide short-term liquidities. Besides

the choice of the auction format, another important design question is how much information to

release from one auction to the next. Should central banks disclose all past bids? Should central

banks disclose summary statistics of past bids and nothing else? Should central banks disclose their

internal forecasts of liquidity needs? As another example, committees, boards of shareholders,

members of parliaments and international organizations repeatedly vote on issues ranging from the

setting of interest rates to CEO remunerations through new legislations. Again, besides the choice

of the voting rules, another important design question is how much information to release from one

vote to the next. Should all past votes made public? Should only the fraction of votes in favor of a

reform made public? These questions echo the main theme of the paper: what are the implications

of providing economic agents with additional information in dynamic problems?

To address this question, we consider multi-stage games, as in Myerson (1986) and Forges

(1986). In a multi-stage game, a set of players interact over several stages and, at each stage,

players receive private signals – referred to as base signal – about past and current (payoff-relevant)

states, past actions and past signals, and choose actions. Repeated games and, more generally,

stochastic games are examples of multi-stage games. The approach we follow is to fix a multi-stage

game, which we call the base game, and to consider expansions of the base game, i.e., multi-stage

games where players receive additional signals about past and current states, past actions, and past

signals, including the additional ones, at each stage. We view any expansion of the base game as

the result of a choice of an information structure by an information designer.

Our main contribution is to characterize the distributions over states, base signals and actions

induced by all equilibria of all expansions of the base game. Our first characterization theorem

(Theorem 1) states an equivalence between (i) the set of all distributions over states, signals and ac-

tions induced by all communication equilibria of all expansions of the base game, (ii) the set of all
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distributions over states, signals and actions induced by all Bayes-Nash equilibria of all expansions

of the base game, and (iii) the set of all distributions over states, base signals and actions induced

by all Bayes correlated equilibria of the base game. At a Bayes correlated equilibrium of the base

game, at each stage, an “omniscient” mediator makes private recommendations of actions to play-

ers, conditional on past and current states and signals, past actions and past recommendations. In

other words, the mediator makes recommendations at each history of the base game. Moreover, at

each stage, players have an incentive to be obedient, if they have never disobeyed in the past and

expect others to have been obedient in the past and to continue to be in the future.

We provide an additional characterization theorem, which extends Theorem 1 to other equilib-

rium concepts, all imposing sequential rationality. Our second characterization theorem (Theorem

2) states an equivalence between (i) the set of all distributions over actions, signals and states in-

duced by all sequential communication equilibria of all expansions of the base game, (ii) the set

of all distributions over states, signals and actions induced by all conditional probability perfect

Bayesian equilibria of all expansions of the base game, and (iii) the set of all distributions over

actions, base signals and states induced by all sequential Bayes correlated equilibria of the base

game.1 The definition of a sequential Bayes correlated equilibrium is intricate (as is the definition

of a sequential communication equilibrium and of a conditional probability perfect Bayesian equi-

librium) and better left to the main body of the paper. It suffices to say that it requires a player to

be obedient, even at histories where some players have disobeyed in the past.

We interpret our characterization theorems as revelation principles for information design.2

Indeed, let us say that a distribution over states, base signals and actions is implementable if there

exist an expansion of the base game (corresponding to the choice of an information structure by

1Sugaya and Wolitzky (2017) formally introduce the concept of conditional probability perfect Bayesian equilib-

rium, as a strengthening of weak perfect Bayesian equilibrium.
2We view information design as the unrestricted choice of information structures. In mechanism design, the choice

of a mechanism also entails some choice of information structures. E.g., choosing an English auction to allocate an

asset entails disclosing information about bidders’ valuation through the observation of their bids. However, unlike

information design, the information disclosure is restricted; agent must be incentivized. In other words, in mechanism

design, only incentive-compatible information structures are feasible.
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the information designer) and an equilibrium of the expansion, which induces that distribution.

Theorem 1 (resp., Theorem 2) then states that a distribution over actions, signals and states is

implementable if and only if it is a Bayes correlated equilibrium distribution (resp., a sequential

Bayes correlated equilibrium distribution). As the revelation principle for mechanism design, our

characterization theorems allow us to focus on the distributions to be implemented, rather than the

information structures implementing them.

We like to stress two noteworthy features of our analysis. First, any solution concept, which

nests the concept of Bayes-Nash equilibrium and is nested by the concept of communication equi-

librium, e.g., normal-form correlated equilibrium (Aumann, 1974) or extensive-form correlated

equilibrium (Forges, 1986), also leads to the same characterization as in Theorem 1. A similar re-

mark applies to Theorem 2. Second, we need a restriction on the set of possible expansions, which

we call admissibility, for our results to be valid. Admissibility subsumes two important properties

of an expansion. First, admissibility states that the additional signals a player receive at a stage only

depend on past actions, past and current signals (including the past additional signals), and past

and current states. In other words, admissibility guarantees measurability with respect to the natu-

ral filtration on the histories induced by the multi-stage game. Second, it states that the additional

signals have no causal effects on the realizations of the states and base signals. Put it differently, it

guarantees that the additional signals are just signals, i.e., additional pieces of information. Admis-

sibility thus explains why our “omniscient” mediator only needs to know what has been realized

up to a stage before making recommendations at that stage. While this may seem an unnecessary

condition, it is actually essential. Without assuming admissibility, our characterizations fail. (See

Section 3 for an in-depth discussion.)

The paper contributes to the literature on information design, pioneered by Kamenica and

Gentzkow (2011), and recently surveyed by Bergemann and Morris (2018). The closest paper

to ours is Bergemann and Morris (2016). These authors characterize the set of distributions over

actions, signals and states induced by all Bayes-Nash equilibria of all expansions of static base

games, and show the equivalence with the distributions induced by the Bayes correlated equilibria

of the static base games. The present paper generalizes their work to dynamic problems, a non-
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trivial generalization. Indeed, in dynamic games, there are many possible generalizations of the

concept of Bayes correlated equilibrium, as introduced by Bergemann and Morris (2016). The

generalizations differ according to when the mediator is active, what it knows when it is active,

and what it recommends when it is active. For instance, a possible generalization was to have the

mediator recommend strategies at the first stage and to be inactive at all other stages. Another

possible generalization was to have the mediator randomly select a profile of strategies at the first

stage and to recommend actions to the players at each of their information sets, according to the

selected profile of strategies. The main challenge was to obtain the correct generalization for the

revelation principles to hold. We genuinely need the mediator to be active at all histories. In par-

ticular, even in dynamic games where we can assume that all the states and signals about the states

are drawn ex-ante, we still need the mediator to make recommendations at each history. It would

not be enough to have the mediator recommend strategies as a function of the realized states and

signals at the first stage only.

In addition, the present paper generalizes the analysis of Bergemann and Morris to other solu-

tion concepts, such as sequential communication equilibrium, which are perhaps more appropriate

in dynamic games. This generalization is particularly important for many economic applications.

Bargaining problems (e.g., Bergemann, Brooks and Morris, 2016), allocation problems with af-

termarkets (e.g., Calzolari and Pavan, 2006, Giavannoni and Makris, 2014, and Dworczak, 2017),

dynamic persuasion problems (Ely, 2017 and Renault, Solan and Vieille, 2017) are all instances of

dynamic problems, where sequential rationality is a natural requirement. For example, it is very

natural to assume that a buyer accepts any offer above his valuation in bargaining problems, as

Bergemann, Brooks, and Morris do, even when the offers are off the equilibrium path. In all these

instances, we need to invoke Theorem 2.

Doval and Ely (2017) is another generalization of the work of Bergemann and Morris (2016)

and nicely complements our own generalization. These authors take as given states, consequences

and state-contingent payoffs over the consequences, and characterize all the distribution over states

and consequences consistent with the players playing according to some extensive-form game. Our

work differs from theirs in two important dimensions. First, we take as given the base game (and,

4



thus, the order of moves). In some economic applications, it is a reasonable assumption. For

instance, if we think about the refinancing operations of central banks, the auction format and their

frequencies define the base game. If a first-price auction is used to allocate liquidities, it would not

make sense to consider games, where another auction format is used. In other applications, this is a

more problematic assumption. For instance, if we think about Brexit and the ongoing negotiations

between the European Union and the United Kingdom, it is difficult to have a well-defined base

game in mind. Second, unlike Doval and Ely, we are able to accommodate dynamic problems,

where the evolution of states and signals is controlled by the players through their actions. This

is a natural assumption in many economic problems, such as mergers with ex-ante match-specific

investments or inventory problems.

Finally, this paper contributes to the literature on correlated equilibrium and its generalizations,

e.g., communication equilibrium (Myerson, 1986, Forges, 1986), extensive-form correlated equi-

librium (von Stengel and Forges, 2015), or Bayesian solution (Forges, 1993, 2006).3 The concept

of Bayes correlated equilibrium is a generalization of all these notions.

2 Multi-stage games

The model follows closely Myerson (1986). There is a set I of n players, who interact over

T < +∞ stages, numbered 1 to T . (With a slight abuse of notation, we denote T the set of

stages.) At each stage, a payoff-relevant state is drawn, players receive private signals about past

and current states, past private signals and actions, and choose an action. We are interested in

characterizing the joint distributions over profiles of states, actions and signals, which arise as

equilibria of “expansions” of the game, i.e., games where players receive additional signals.

3The concept of extensive-form correlated equilibrium was first introduced in Forges (1986). The concept intro-

duced in von Stengel and Forges (2015) differs from the one in Forges (1986).

5



2.1 The base game

We first define the base game Γ, which corresponds to the game being played if no additional

signals are given to the players. At each stage t, a state ωt ∈ Ωt is drawn, player i ∈ I receives the

private signal si,t ∈ Si,t, which may depend probabilistically on the current and past states, past

signals and actions, and then chooses an action ai,t ∈ Ai,t. All sets are non-empty and finite.

We now introduce some notations. We write At = ×i∈IAi,t for the set of actions at stage t

and A = ×t∈T ×i∈I Ai,t for the set of profiles of actions. We let Hi,t = Ai,t−1 × Si,t be the set of

player i’s new information at the beginning of stage t ∈ {2, . . . , T}, Hi,1 = Si,1 the set of initial

information, and Hi,T+1 = Ai,T the set of terminal information.

We denote p1(h1, ω1) the joint probability of (h1, ω1) at the beginning of the first stage and

pt+1(ht+1, ωt+1|at, ht, ωt) the joint probability of (ht+1, ωt+1) at stage t + 1 given that at is the

profile of actions played at stage t and (ht, ωt) is the history of actions played, signals received

and states realized at the beginning of stage t. We assume perfect recall and, therefore, impose that

pt+1((bt, st+1), ωt+1|at, ht, ωt) = 0 if bt 6= at.

We denote HΩ the subset of ×T+1
t=1 (×i∈IHi,t × Ωt) that consists of all terminal histories of the

game, with generic element (h, ω).4 The history (h, ω) is in HΩ if and only if there exists a profile

of actions a ∈ A such that

pa(h, ω) := p1(h1, ω1) ·
∏
t∈T

pt+1(ht+1, ωt+1|at, ht, ωt) > 0.

For any vector (h, ω), we can denote various sub-vectors: hi = (hi,1, . . . , hi,t, . . . , hi,T+1)

the private (terminal) history of player i, hti = (hi,1, . . . , hi,t) the private history of player i at

stage t, ht = (h1,t, . . . , hn,t) the profile of actions played at stage t − 1 and signals received at

stage t, ht = (h1, . . . , ht) the history of signals and actions at stage t, ω = (ω1, . . . , ωT ) the

profile of realized states, and ωt = (ω1, . . . , ωt) the profile of states realized up to stage t, with

corresponding sets Hi = {hi : (h, ω) ∈ HΩ for some ω}, H t
i = {hti : (h, ω) ∈ HΩ for some ω},

Ht = {ht : (h, ω) ∈ HΩ for some ω}, H t = {ht : (h, ω) ∈ HΩ for some ω}, Ω = {ω : (h, ω) ∈
4The set ΩT+1 is defined to be a singleton.
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HΩ for some h}, Ωt = {ωt : (h, ω) ∈ HΩ for some h}. We write H tΩt for the restriction of HΩ

to the first t stages. We let Ĥ := ×i∈IHi and Ĥ t := ×i∈IH t
i . Similar notations will apply to other

sets. If there is no risk of confusion, we will not formally define these additional notations.

The payoff to player i is ui(h, ω) when the terminal history is (h, ω) ∈ HΩ. We assume

that payoffs do not depend on the signal realizations, i.e., for any two histories h = (a, s) and

h′ = (a′, s′) such that a = a′, ui(h, ω) = ui(h
′, ω) for all ω, for all i.5 Throughout, we refer to the

signals in S as the base signals.

2.2 Expansions

In an expansion of the base game, at each stage, players receive additional signals, which may

depend probabilistically on past and current states, past and current signals (including the past ad-

ditional ones), and past actions. Thus, players can receive additional information not only about

the realization of past (payoff-relevant) states (such as the past valuations for objects in auction

problems) but also about the past realization of actions (as in repeated games with imperfect mon-

itoring). Formally, at each stage t, player i receives the additional private signal mi,t ∈ Mi,t. All

sets of additional signals are non-empty and finite. We define the set Mi,T+1 as a singleton.

We let π1(h1,m1, ω1) be the probability of (h1,m1, ω1) at the first stage and

πt+1(ht+1,mt+1, ωt+1|at, ht,mt, ωt)

the probability of (ht+1,mt+1, ωt+1), when at is the profile of actions played at stage t and (ht,mt, ωt)

is the history of actions, signals and states at the beginning of stage t.

We denote HMΩ the set of all terminal histories with (h,m, ω) ∈ HMΩ if and only if there

exists a profile of actions a ∈ A such that

πa(h,m, ω) := π1(h1,m1, ω1) ·
∏
t∈T

πt+1(ht+1,mt+1, ωt+1|at, ht,mt, ωt) > 0.

We use the same notations as in the base game to denote relevant sub-vectors and their cor-

responding sets. With a slight abuse of language, we use the word “expansion” to refer to the
5This is without loss of generality as we can always redefine the states to include the signals.
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collection of additional signals M := (Mi,t)i,t and kernels π := (πt)t, as well as to the multi-stage

game ΓM,π. For simplicity, we omit the reference to the sets of additional signals and write Γπ for

the expansion of Γ.

2.3 Admissibility

We introduce a condition, called admissibility, which links the distributions over profiles of actions,

signals and states of the base game and its expansions.

Definition 1 An expansion is admissible if there exist kernels (ξt)t such that

π1(h1,m1, ω1) = ξ1(m1|h1, ω1)p1(h1, ω1),

for all (h1,m1, ω1), and

πt+1(ht+1,mt+1, ωt+1|at, ht,mt, ωt) = ξt+1(mt+1|ht+1,mt, ωt+1)pt+1(ht+1, ωt+1|at, ht, ωt), (?)

for all (at, h
t,mt, ωt, ht+1,mt+1, ωt+1), for all t.

Admissibility guarantees that the additional signals players receive at stage t depend only on

states and base signals realized up to (including) stage t and actions and additional signals realized

up to (excluding) stage t. In other words, admissibility guarantees measurability with respect to

the natural filtration induced by the multi-stage game.6 In addition, it states that the probability

of (ht+1, ωt+1) at stage t + 1 is independent of mt+1, conditionally on (at, h
t, ωt), and given by

pt+1(ht+1, ωt+1|at, ht, ωt). Thus, conditional on (at, h
t, ωt), the likelihood of (ht+1, ωt+1) does not

vary with the realization of mt, i.e., the realized additional signals have no causal effects on the

realization of the states and base signals. To put it simply, admissibility guarantees that additional

signals are just signals, i.e., additional pieces of information. It is easy to verify that an expansion

is admissible if and only if

margHt+1×Ωt+1
πt+1(·|at, ht,mt, ωt) = pt+1(·|at, ht, ωt),

6I.e., at each stage, states and base signals are realized, then additional signals are realized and then actions are

chosen.
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for all (at, h
t,mt, ωt).

In closing, it is worth noting that admissibility is stronger than consistency. An expansion is

consistent if margHΩπ
a = pa for all a ∈ A, i.e., for all a ∈ A,∑

(m1,...,mT )

(
π1(h1,m1, ω1) ·

∏
t∈T

πt+1(ht+1,mt+1, ωt+1|at, ht,mt, ωt)
)

=

p1(h1, ω1) ·
∏
t∈T

pt+1(ht+1, ωt+1|at, ht, ωt). (†)

In static problems, admissibility and consistency coincide. To see this, observe that consistency

requires that
∑

m π(h,m, ω) = p(h, ω) and, therefore, π(h,m, ω) = π(m|h, ω)p(h, ω), i.e., π is

admissible. In multi-stage games, however, admissibility imposes additional restrictions on the

kernels (πt)t than consistency, which are fully characterized in Proposition 2 in Appendix A. The

following is an example of an expansion, which is consistent but not admissible.

Example 1. There are two stages, Ω1 = Ω2 = {0, 1}, and no private signals and actions,

i.e., A1, S1, A2 and S2 are singletons (for simplicity, we omit them). The states are uniformly

and independently distributed, that is, p1(ω1) = p2(ω2|ω1) = 1/2 for all (ω1, ω2). Consider now

the following expansion: M1 = {0, 1}, M2 is a singleton, π1(m1, ω1) = 1/4 for all (m1, ω1) and

π2(ω2|m1, ω1) = 1 if and only if ω2 = (ω1 +m1) (mod 2). We can think of the second-stage state

as the first-stage state plus a shock.

We now verify consistency. We have ∑
m1

π1(m1, ω1)π2(ω2|m1, ω1) =

π1((ω2 − ω1) (mod 2), ω1)π2(ω2|(ω2 − ω1) (mod 2), ω1) = 1/4.

The expansion is therefore consistent. Yet, it is not admissible since π2(ω2|m1, ω1) 6= p2(ω2|ω1)

for all m1. In this example, m1 is not just an additional signal; it actually causes the second-stage

state. It is also worth noting that the expansion also violates the measurability requirement since

m1 = (ω2 − ω1) (mod 2), i.e., the probability of a first-stage signal depends on the realization of

the second-stage state. �
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3 Equivalence theorems

This section contains our main results. It provides characterization theorems, which differ by the

solution concepts adopted. In section 3.1, we consider first the concepts of Bayes-Nash equilibrium

and communication equilibrium. This allows us to present our first characterization theorem in the

simplest possible terms, without cluttering the analysis with issues such as consistency of beliefs,

sequential rationality, or truthfulness and obedience at off-equilibrium path histories. Along with a

number of illustrative examples, this helps us to highlight the role of admissibility. In section 3.2,

we then extend our analysis to other solution concepts, which all impose sequential rationality. A

reader more interested in this aspect of the analysis can directly jump to section 3.2 (and return to

section 3.1 for an in-depth discussion on the role of admissibility).

3.1 A first equivalence theorem

We now present three equilibrium concepts: Bayes-Nash equilibria, communication equilibria, and

Bayes correlated equilibria. Throughout, we fix an expansion Γπ of Γ.

Bayes-Nash equilibrium. A behavioral strategy σi is a collection of maps (σi,t)t∈T , with σi,t :

H t
iM

t
i → ∆(Ai,t). A profile σ of behavioral strategies is a Bayes-Nash equilibrium of Γπ if

∑
h,m,ω

ui(h,ω)Pσ,π(h,m,ω) ≥
∑

h,m,ω

ui(h,ω)P(σ′i,σ−i),π
(h,m,ω),

for all σ′i, for all i, with Pσ̃,π ∈ ∆(HMΩ) denoting the distribution over profiles of actions, signals

and states induced by σ̃ and π. We let BNE(Γπ) be the set of distributions over HΩ induced by

the Bayes-Nash equilibria of Γπ.

Communication equilibrium. Consider the canonical Myersonian extension of the multi-stage

Γπ, denoted C(Γπ). At each period t, player i observes the private signal (hi,t,mi,t), reports pri-

vately a signal (ĥi,t, m̂i,t) to a mediator, receives a private recommendation âi,t from the mediator

and chooses an action ai,t. We let γi,t : H t
iM

t
i ×H t−1

i M t−1
i × At−1

i → ∆(Hi,tMi,t) be a reporting

strategy at period t and τi,t : H t
iM

t
i × H t

iM
t
i × Ati → ∆(Ai,t) be an action strategy at period t.

We denote γ∗i,t the truthful strategy and τ ∗i,t the obedient strategy. A (canonical) communication

10



equilibrium of Γπ is a collection of kernels µt : ĤM
t
× At−1 → ∆(At) such that (γ∗, τ ∗) is an

equilibrium of the communication game, that is,∑
h,m,ω

ui(h,ω)Pµ◦(γ∗,τ∗),π(h,m,ω) ≥
∑

h,m,ω

ui(h,ω)Pµ◦((γi,τi),(γ∗−i,τ∗−i)),π(h,m,ω),

for all (γi, τi), for all i, with Pµ◦(γ̃,τ̃),π ∈ ∆(HMΩ) denoting the distribution over profiles of

actions, signals and states induced by µ ◦ (γ̃, τ̃) and π. Note that we do not require the reports

to the mediator to be jointly consistent, i.e., we do not require that (ĥ, m̂) ∈ HM . Indeed, the

mediator cannot force the players to make jointly consistent reports.7 We let CE(Γπ) be the set

of distributions over HΩ induced by the communication equilibria of Γπ. It is well-known that

BNE(Γπ) ⊆ CE(Γπ). See Myerson (1986) and Forges (1986) for more details on communication

equilibria.8

Bayes correlated equilibrium. Consider the following mediated extension of Γ, denotedM(Γ).

At each period t, player i observes the private signal hi,t, receives a private recommendation âi,t

from the mediator and chooses an action ai,t. We let τ̄i,t : H t
i ×Ati → ∆(Ai,t) be an action strategy

at period t and write τ̄ ∗i,t for the obedient strategy.

A Bayes correlated equilibrium is a collection of kernels µ̄t : H tΩt×At−1 → ∆(At) such that

τ ∗ is an equilibrium of the mediated game, that is,∑
h,ω

ui(h,ω)Pµ̄◦τ̄∗,p(h,ω) ≥
∑
h,ω

ui(h,ω)Pµ̄◦(τ̄i,τ̄∗−i),p(h,ω)

for all τ̄i, for all i, with Pµ̄◦τ̃ ,p ∈ ∆(HΩ) denoting the distribution over profiles of actions, base

signals and states induced by µ̄ ◦ τ̄ ∗ and p. We let BCE(Γ) be the set of distributions over HΩ

induced by the Bayes correlated equilibria of Γ.

It is instructive to compare the definition of Bayes correlated equilibrium and communication

equilibrium. In a communication equilibrium, the mediator relies on the information provided

7Remember that ĤM ⊃ HM is the set of reports the mediator can receive from the players.
8It is without loss of generality to restrict attention to canonical Myersonian extensions. The revelation principle

holds for the concept of Bayes-Nash equilibrium: any equilibrium distribution over actions, states and signals of any

Myersonian extension of Γπ , where the sets of messages players can send to (and receive from) the mediator are

arbitrary, is in CE(Γπ).
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by the players to make recommendations, while in a Bayes correlated equilibrium it is as if the

mediator knows the realized states, actions and base signals prior to making recommendations. In

fact, we can interpret a Bayes correlated equilibrium as a communication equilibrium of a fictitious

game, with an additional dummy player observing the realized states, actions and base signals.

Note that the sets BNE(Γπ), CE(Γπ) and BCE(Γ) are non-empty, as a consequence of the

finiteness of the game. We are now ready to state our first equivalence result.

Theorem 1 We have the following equivalence:

BCE(Γ) =
⋃

Γπ an admissible expansion of Γ

CE(Γπ) =
⋃

Γπ an admissible expansion of Γ

BNE(Γπ).

Theorem 1 states an equivalence between (i) the set of distributions over actions, base signals

and states induced by all Bayes correlated equilibria of Γ, (ii) the set of distributions over actions,

base signals and states we can obtain by considering all communication equilibria of all admissi-

ble expansions of Γ, and (iii) the set of distributions over actions, base signals and states we can

obtain by considering all Bayes-Nash equilibria of all admissible expansions of Γ. It is a revelation

principle for information design. Indeed, Theorem 1 states that any distribution over actions, base

signals and states a designer can implement by committing to an admissible information structure

is a Bayes correlated equilibrium distribution. We can therefore focus on the Bayes correlated equi-

librium distributions and abstract from the particular information structures implementing them. It

mirrors the focus on incentive compatible social choice functions in mechanism design theory.

We note here that we consider all (admissible) expansions, echoing the approach in the mecha-

nism design literature to consider all mechanisms. In particular economic applications, however, it

might be reasonable to impose additional constraints on the set of expansions, e.g., to require addi-

tional signals to be public. In those instances, we can still use our results to obtain “upper bounds,”

and to check whether these upper bounds are achievable within the set of constrained expansions.

The very same issue applies to mechanism design, and we are no different in that respect.

Theorem 1 generalizes the work of Bergemann and Morris (2016), who show the equivalence

between (i) and (iii) for static games. We generalize their work not only to multi-stage games, but

also to communication equilibria. It follows that any solution concept, which nests the concept of
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Bayes-Nash equilibrium and is nested by the concept of communication equilibrium, also induces

the set of distributions BCE(Γ). It is also worth noting that our definition of a Bayes correlated

equilibrium is weaker than applying the definition of Bergemann and Morris on the strategic form

of the base game, which would amount to making recommendations of strategies at the first stage,

as a function of the realized states and signals. See Example 4 for an illustration. Finally, the set

BCE(Γ) is convex.

The intuition for Theorem 1 is simple. Consider an expansion Γπ of Γ and a communication

equilibrium µ of Γπ. At truthful histories (i.e., on path), the Myersonian mediator of C(Γπ) knows

the true profile of signals (ht,mt) at stage t and makes recommendations conditional on this profile

of signals. In addition, it may be that this profile of signals is perfectly informative about ωt

(henceforth, the action profile at at stage t may be perfectly correlated with ωt). To replicate

the distribution induced by the communication equilibrium µ, we therefore need the mediator of

Γ to be omniscient, i.e., to know (ht, ωt) at stage t. With such an omniscient mediator, we can

construct kernels (µ̄t)t, which replicate the communication equilibrium µ. As for obedience, it is

enough to observe that a player has more strategies in Γπ than Γ, since he knows the additional

signals. Thus, if a player has a profitable deviation from obedience inM(Γ), then he also has a

profitable deviation from obedience in C(Γπ), a contradiction. The converse follows from standard

arguments, where recommendations are thought as additional signals.

Before applying Theorem 1, it is worth pausing over the role of admissibility. Admissibility

guarantees that the omniscient mediator only needs to know the realized states, base signals and

actions to replicate the distributions induced by any communication equilibrium of any expansion.

Dispensing with admissibility presents a host of difficulties, which are best illustrated with the help

of two simple examples.

Example 2. This example is an elaboration on Example 1. We first define the base game.

There are a single player, two stages, two states at each stage Ω1 = Ω2 = {0, 1}, two base signals

and actions at the first stage S1 = {0, 1} = A1, and no base signals and actions at the second

stage (i.e. A2 and S2 are singletons). We assume that the player is perfectly informed about the

first-stage state ω1 and believes that the second-stage state is uniformly distributed, independently

13



of first-stage actions, signals and states. Formally, p1(s1, ω1) = 1/2 if and only if s1 = ω1 and

p2(h2, ω2|a1, s1, ω1) = 1/2 for all (s1, ω1, a1, h2, ω2) such that h2 = a1. Finally, the player’s payoff

is one if his first-stage action matches the second-stage state, and zero otherwise.

Consider now the following expansion: M1 = {0, 1}, M2 is a singleton, π1(s1,m1, ω1) = 1/4

for all (s1,m1, ω1) such that s1 = ω1, and π2(h2, ω2|a1, s1,m1, ω1) = 1 if and only if ω2 =

(ω1 +m1) (mod 2) and h2 = a1. As in Example 1, the expansion is consistent, but not admissible.

In the expansion Γπ, the player achieves a payoff of one by perfectly correlating his first-stage

action with the second-stage state. Indeed, the signal s1 is perfectly informative of ω1 and, together

with the additional signalm1, fully reveals the second-stage state ω2. The player’s optimal strategy

is therefore to play a1 = 1 (resp., a1 = 0) with probability one if (s1 + m1) (mod 2) = 1 (resp.,

(s1 +m1) (mod 2) = 0).

The induced distribution over states, actions and signals is not a Bayes correlated distribution.

�

It is worth stressing out that the admissibility of an expansion depends on the description of

the base game. To see this, consider an alternative interpretation of Example 2, where both states

ω1 and ω2 are drawn at the first stage. This alternative interpretation induces a different base game,

where the set of states at the first stage is Ω̊1 = Ω1×Ω2 (and there are no states at the second stage).

Moreover, if we let p̊1(s1, (ω1, ω2)) = 1/4 if and only if s1 = ω1, then the player is perfectly

informed of ω1 and believes that ω2 is uniformly distributed, independently of first-stage signals,

actions, and states. Consider now the following expansion: M1 = {0, 1}, π̊1(s1,m1, (ω1, ω2)) =

1/4 for all (s1,m1, (ω1, ω2)) such that s1 = ω1 and ω2 = (ω1 + m1) (mod 2), and there are no

additional signals at the second stage. As in Example 2, s1 and m1 are perfectly informative about

ω1 and ω2, so that the player achieves a payoff of one. However, unlike Example 2, the expansion

of the re-interpreted base game is admissible.9 Therefore, Theorem 1 applies and the induced

distribution is a Bayes-correlated distribution of the new base game. We haste to stress, however,

that it is not always possible to do such an re-interpretation, as the next example demonstrates.

9For completeness, p̊2(h2|a1, s1, (ω1, ω2)) = π̊2(h2|a1, s1,m1, (ω1, ω2)) = 1 if and only if h2 = a1.

If we let ξ1(m1|s1, (ω1, ω2)) = 1 if and only if m1 = (ω2 − ω1) (mod 2), then π̊1(s1,m1, (ω1, ω2)) =

ξ1(m1|s1, (ω1, ω2))p̊1(s1, (ω1, ω2)), as required for admissibility.
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Example 3. This example differs from Example 2 in that the second-stage state ω2 is partially

controlled by the player through his first-stage action a1. This explains why we cannot reinterpret

the model as we did above.

We first define the base game. There are a single player, two stages, two actions A1 = {0, 1}

at the first stage, two states Ω2 = {0, 1} at the second stage, and all other sets are singletons. The

probabilities are: p2(ω2 = 1|a1 = 1) = 5/6 and p2(ω2 = 1|a1 = 0) = 1/2. Thus, unlike Example

2, the player’s first-stage action influences the likelihood of the second-stage state. The player’s

payoff is one (resp., zero) if the second-stage state is zero (resp., one), regardless of his action.

Consider now the following expansion: M1 = {0, 1}, M2 is a singleton, π1(m1 = 1) = 1/2,

π2(ω2 = 1|a1 = 1,m1 = 1) = 2/3, π2(ω2 = 1|a1 = 0,m1 = 1) = 1, π2(ω2 = 1|a1 = 1,m1 =

0) = 1, and π2(ω2 = 1|a1 = 0,m1 = 0) = 0. This expansion is consistent, but not admissible.

Player’s optimal payoff is 2/3 in the game Γπ: the optimal strategy consists in playing a1 = 1

(resp., a1 = 0) when m1 = 1 (resp., m1 = 0). The player’s optimal strategy consists in choosing

the action that maximizes the likelihood of the second-stage state being 0. The induced distribution

µ over actions and states is µ(a1 = 0, ω2 = 0) = 1/2, µ(a1 = 0, ω2 = 1) = 0, µ(a1 = 1, ω2 =

0) = 1/6, µ(a1 = 1, ω2 = 1) = 1/3. This is not a Bayes correlated distribution. In any Bayes

correlated equilibrium, the probability of (a1, ω2) is µ1(a1)p2(ω2|a1) and there is no µ1 that induces

the distribution µ.

Clearly, it is not possible to re-interpret the base game as we did above: the realization of the

second-stage state cannot precede the choice of the first-stage action. This would violate measura-

bility with respect to the natural filtration on the histories of the game. �

To sum up, in a model where the players do not control the realizations of the states and

signals about the states, we can re-interpret the model as if all states and signals are drawn ex-

ante and players gradually learn about them, as we did for Example 2. This would guarantee

admissibility. If, in addition, there is perfect observation of past actions, then admissibility is

equivalent to consistency. See Appendix C for details. We close this section with an example

illustrating how we can apply Theorem 1.
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Example 4. There are two players and two stages. Player 1 is active in the first stage and

chooses an action a1 ∈ A1; player 2 is inactive. Player 2 is active in the second stage and chooses

an action a2 ∈ A2; player 1 is inactive. There are no base signals and states, i.e., Ω1, S1, Ω2 and S2

are singletons. We are interested in characterizing the distributions µ ∈ ∆(A1 × A2) as we vary

the information players have. In particular, this implies varying the information player 2 has about

the action chosen by player 1 before choosing his own action. Formally, we consider expansions

(π1, π2), where π1 ∈ ∆(M1) and π2 : M1 × A1 → ∆(M2). In words, player 1 receives the

additional signal m1 at the first period and player 2 receives the additional signal m2 at the second

stage, which may depend on the first-period signal and action (m1, a1). Clearly, these expansions

are admissible.

From Theorem 1, we can restrict attention to the Bayes correlated equilibria of the game. By

definition, (µ1, µ2) is a Bayes correlated equilibrium if:∑
a1,a2,â1,â2

u1(a1, a2)µ1(â1)τ ∗1 (a1|â1)µ2(â2|a1, â1)τ ∗2 (a2|â2) ≥∑
a1,a2,â1,â2

u1(a1, a2)µ1(â1)τ1(a1|â1)µ2(â2|a1, â1)τ ∗2 (a2|â2),

for all τ1 : A1 → ∆(A1), and∑
a1,a2,â1,â2

u2(a1, a2)µ1(â1)τ ∗1 (a1|â1)µ2(â2|a1, â1)τ ∗2 (a2|â2) ≥∑
a1,a2,â1,â2

u2(a1, a2)µ1(â1)τ ∗1 (a1|â1)µ2(â2|a1, â1)τ2(a2|â2),

for all τ2 : A2 → ∆(A2), with τ ∗1 and τ ∗2 the obedient strategies. Any Bayes correlated equilibrium

(µ1, µ2) induces a distribution µ ∈ ∆(A1 × A2), given by µ(a1, a2) = µ1(a1)µ2(a2|a1, a1) for all

(a1, a2). Moreover, it is easy to verify that a distribution µ ∈ ∆(A1 × A2) is a Bayes correlated

distribution if and only if the following two constraints are satisfied:

(i) For all a1 such that
∑

a2
µ(a1, a2) > 0, we have∑

a2

u1(a1, a2)µ(a2|a1) ≥ max
a1∈A1

min
a2∈A2

u1(a1, a2).
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(ii) For all a2 such that
∑

a1
µ(a1, a2) > 0, we have∑

a1

u2(a1, a2)µ(a1|a2) ≥
∑
a1

u2(a1, a
′
2)µ(a1|a2),

for all a′2.

Condition (i) states that if player 1 is recommended to play a1, but plays a′1 6= a1 instead, the

mediator may recommend player 2 to punish player 1, i.e., to play a2 ∈ arg mina′2∈A2
u1(a′1, a

′
2).

Consequently, any recommendation made to player 1, which gives player 1 a payoff higher than

his (pure) maxmin payoff, can be sustained as a Bayes correlated equilibrium. Condition (ii) states

that all recommendations the mediator makes to player 2 must be best responses to player 2’s belief

about player 1’s action.

For a concrete example, consider the game below (player 1 is the row player):

L R

T 2, 2 0, 1

B 3, 0 1, 1

The set of Bayes correlated distributions is given by

{µ : µ(T, L) ≥ µ(B,L), µ(B,R) ≥ µ(T,R), µ(T, L) ≥ µ(T,R)}.

Indeed, if L (resp., R) is recommended to player 2, player 2 must conjecture that player 1 played

T (resp., B) with probability at least 1/2 for L (resp., R) to be a best response. We therefore

need µ(T, L) ≥ µ(B,L) and µ(B,R) ≥ µ(T,R). Moreover, the maxmin payoff to player 1 is 1.

Therefore, if action T is recommended to player 1, it must be that 2µ(T, L)/(µ(T, L)+µ(T,R)) ≥

1, i.e., µ(T, L) ≥ µ(T,R). The associated payoffs are depicted in the picture below (the dark gray

triangle):
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u2

u1
0 1 2 3

1

2

For instance, the payoff (5/2, 1) corresponds to the following signalling structure and equilib-

rium strategies. There are two equally likely signals t and b at the first stage; player 1 is privately

told the first-stage signal. There are two signals at the second-stage l and r; player 2 is privately

told the second-stage signal. Player 2 receives l if and only if (T, t) and (B, b) are the first-stage

profiles of signal and action. An equilibrium of that extended game consists in players playing ac-

cording to their signals. This gives us the distribution µ(T, L) = µ(B,L) = 1/2 and its associated

payoff (5/2, 1), as required.

Finally, note that if we apply the definition of Bergemann and Morris to the strategic-form of

the game, µ(B,R) = 1 is the unique outcome. Indeed, if the mediator recommends a strategy

to both players as a function of the realized signals and states, we simply obtain the correlated

equilibria of the game, since there are no signals and states (and the strategies are the actions).

This is also the unique distribution induced by the communication equilibria of the game.10 To see

this, note that it is never optimal for player 1 to play T when recommended to do so. Player 1 can

disobey and play B, and report to have played T to the mediator. �

3.2 A second equivalence theorem

The objective of this section is to enrich our analysis by requiring rational behavior both on and

off the equilibrium path. The main message is that Theorem 1 generalizes to stronger solution

concepts.

10This is also the unique distribution induced by the extensive-form correlated equilibria of the game, as defined by

von Stengel and Forges (2015).
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An important tool in modeling off-equilibrium path beliefs is the concept of conditional prob-

ability systems (henceforth, CPS). Fix a finite non-empty set X . A conditional probability system

β̃ on X is a function from 2X × 2X \ {∅} to [0, 1], which satisfies three properties: for all X, Y, Z

with X ⊆ X , Y ⊆ X and ∅ 6= Z ⊆ X ,

(i) β̃(Z|Z) = 1 and β̃(X|Z) = 1,

(ii) if X ∩ Y = ∅, then β̃(X ∪ Y |Z) = β̃(X|Z) + β̃(Y |Z),

(iii) if X ⊆ Y ⊆ Z and Y 6= ∅, then β̃(X|Z) = β̃(X|Y )β̃(Y |Z).

Conditional probability systems capture the idea of “conditional beliefs” even after zero-probability

events. In particular, ifX is the set of terminal histories of a game, a conditional probability system

induces a belief system, i.e., a belief over histories at each information set of a player. A condi-

tional probability system also captures the beliefs players have about the strategies and beliefs of

others. Finally, using a conditional probability system to represent the players’ beliefs imposes that

all differences in beliefs come from differences in information. We refer the reader to Myerson

(1986) for more on conditional probability systems.11

We now present three equilibrium concepts: sequential equilibrium, sequential communica-

tion equilibrium and sequential Bayes correlated equilibrium. Throughout, we fix an admissible

expansion Γπ of Γ. Remember that there exist (ξt)t such that

πt(ht,mt, ωt|at−1, h
t−1,mt−1, ωt−1) = ξt(mt|ht,mt−1, ωt)pt(ht, ωt|at−1, h

t−1, ωt−1).

Sequential equilibrium. Let Pσ,π(·|ht,mt, ωt) denote the distribution over HMΩ induced by

the profile of behavioral strategies σ and the expansion π, given the history (ht,mt, ωt). Formally,

11Myerson shows that for any conditional probability system β̃, there exists a sequence of probability measures Pn

on X such that (i) Pn({x}) > 0 for all x ∈ X and (ii) β̃ = limn Pn, that is, β̃(X|Y ) = limn
Pn(X∩Y )
Pn(Y ) for all X , for

all Y 6= ∅.

19



we have that

Pσ,π(h,m,ω|ht,mt, ωt) :=

1{(ht,mt,ωt) = (ht,mt, ωt)}σt(at|ht,mt)×
T∏
t′=t

πt′+1(ht′+1,mt′+1,ωt′+1|at′ ,ht
′
,mt′ ,ωt

′
)σt′+1(at′+1|ht

′+1,mt′+1).

Note that the probability Pσ,π(·|ht,mt, ωt) is well-defined even if (ht,mt, ωt) has zero probability

under Pσ,π, and it is equal to Pσ,π(·|ht,mt, ωt) when Pσ,π(ht,mt, ωt) > 0. Intuitively, this proba-

bility represents the beliefs an outside observer has at (ht,mt, ωt) if it is conjectured that players

continue to follow their equilibrium strategies even after deviations. We adopt the convention that

Pσ,π(h,m,ω) := Pσ,π(h,m,ω|h0,m0, ω0).

At any given history (ht,mt, ωt), player i’s expected payoff is

Ui(σ|ht,mt, ωt) :=
∑

h,m,ω

ui(h,ω)Pσ,π(h,m,ω|ht,mt, ωt).

Finally, at any private history (hti,m
t
i), player i’s expected payoff is

Ui(σ, β̂|hti,mt
i) :=

∑
ht,mt,ωt

Ui(σ|ht,mt,ωt)β̂(ht,mt,ωt|hti,mt
i),

where β̂ is a CPS on HMΩ.12

A sequential equilibrium of Γπ is a profile σ of behavioral strategies and a CPS β̂ on HMΩ,

which satisfy:

(i) Sequential optimality: For all t, for all i, for all (hti,m
t
i),

Ui(σ, β̂|hti,mt
i) ≥ Ui((σ

′
i, σ−i), β̂|hti,mt

i),

for all σ′i.

12Formally, β̂(ht,mt,ωt|hti,mt
i) := β̂({(h̄, m̄, ω̄) ∈ HMΩ : (h̄t, m̄t, ω̄t) = (ht,mt,ωt)}|{(h̄, m̄, ω̄) ∈

HMΩ : (h̄t
i, m̄

t
i) = (hti,m

t
i)}). We also write β̂(h,m,ω) for β̂({(h,m,ω)}|HMΩ). Similar notations apply to

all other “conditional probabilities.”
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(ii) CPS consistency: The CPS β̂ is consistent with (σ, π) and admissibility, that is, for all

(h,m, ω) ∈ HMΩ, for all (i, t),

β̂(ai,t|hti,mt
i) = σi,t(ai,t|hti,mt

i),

β̂(ht+1, ωt+1|at, ht, ωt) = pt+1(ht+1, ωt+1|at, ht, ωt),

β̂(mt+1|ht+1,mt, ωt+1) = ξt+1(mt+1|ht+1,mt, ωt+1).

(iii) Independence: There exists a sequence of fully supported strategy profiles (σn)n converging

to σ such that β̂(ht,mt, ωt|hti,mt
i) = limn→+∞ Pσn,π(ht,mt, ωt|hti,mt

i) for all (ht,mt, ωt),

for all t, i.

Moreover, if we substitute condition (iii) with: for all t, i, for all (ht,mt, ωt),

β̂(ht,mt, ωt|hti,mt
i) =

Pσ,π(ht,mt, ωt)

Pσ,π(hti,m
t
i)

,

whenever Pσ,π(hti,m
t
i) > 0, then we obtain the concept of conditional probability perfect Bayesian

equilibrium, as introduced by Sugaya and Wolitzky (2017). We let SE(Γπ) (resp., CPPBE(Γπ)) be

the set of distributions over HΩ induced by the sequential equilibria (resp., conditional probability

perfect Bayesian equilibrium) of Γπ.

Sequential communication equilibrium (Myerson, 1986). In what follows, we use notations,

which parallel the ones used in previous definitions, and thus do not rehash formal definitions.

We consider Myersonian extensions C(Γπ) of the game Γπ, where at each stage the set of recom-

mendations made to a player may be a strict subset of the set of actions available to the player.

Formally, for each history ((ĥti, m̂
t
i), â

t−1
i ) of past and current reports and past recommendations,

Ri,t((ĥ
t
i, m̂

t
i), â

t−1
i ) ⊆ Ai,t is the set of possible recommendations to player i. We refer to the

function Ri,t as the mediation range of player i at stage t. We denote H (R) the set of all terminal

histories consistent with the mediation ranges in C(Γπ), i.e., (h,m, ω, ĥ, m̂, â) ∈ H (R) if and

only if (h,m, ω) ∈ HMΩ and âi,t ∈ Ri,t((ĥ
t
i, m̂

t
i), â

t−1
i ) for all i, for all t.

We denote Pµ◦(γ,τ),π(·|ht,mt, ωt, ĥt, m̂t, ât) the distribution over H (R) induced by the pro-

file of strategies (γ, τ), the recommendation kernels µ and the expansion π, given the history
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(ht,mt, ωt, ĥt, m̂t, ât). Note that Pµ◦(γ,τ),π(·|ht,mt, ωt, ĥt, m̂t, ât) is equal to

Pµ◦(γ,τ),π(·|ht,mt, ωt, ĥt, m̂t, ât)

at all histories (ht,mt, ωt, ĥt, m̂t, ât) having positive probability under Pµ◦(γ,τ),π.

At any history (ht,mt, ωt, ĥt, m̂t, ât), player i’s expected payoff is

Ui(µ◦(γ, τ)|ht,mt, ωt, ĥt, m̂t, ât) :=
∑

h,m,ω,ĥ,m̂,â

ui(h,ω)Pµ◦(γ,τ),π(h,m,ω, ĥ, m̂, â|ht,mt, ωt, ĥt, m̂t, ât).

Finally, at any private history (hti,m
t
i, ĥ

t
i, m̂

t
i, â

t
i), player i’s expected payoff is:

Ui(µ ◦ (γ, τ), β|hti,mt
i, ĥ

t
i, m̂

t
i, â

t
i) :=∑

ht,mt,ωt,ĥt,m̂t,ât

Ui(µ ◦ (γ, τ)|ht,mt,ωt, ĥt, m̂t, ât)β(ht,mt,ωt, ĥt, m̂t, ât|hti,mt
i, ĥ

t
i, m̂

t
i, â

t
i),

where β is a CPS on H (R). Expected payoffs are defined similarly at the private histories

(hti,m
t
i, ĥ

t−1
i , m̂t−1

i , ât−1
i ).

Recall that (γ∗, τ ∗) denotes the profile of truthful and obedient strategies. We write Γ∗,ti for the

subset of reporting strategies of player i, where player i is honest up to (including) stage t, i.e., an

element of Γ∗,ti is of the form

(γ∗i,1 . . . γ
∗
i,t−1, γ

∗
i,t, γi,t+1, . . . , γi,T ),

for some (γi,t+1, . . . , γi,T ). Similarly, we write T ∗,ti for the subset of action strategies of player i,

where player i is obedient up to (including) stage t.

A collection of recommendation kernels µt : ĤM
t
×At−1 → ∆(At) is a sequential communi-

cation equilibrium of Γπ if there exist mediation ranges Ri,t : H t
i ×M t

i × At−1
i → 2Ai,t \ {∅} for

all (i, t) and a CPS β on H (R) such that the following are satisfied:

(i) Honesty: For all t, for all i, for all private histories (hti,m
t
i, ĥ

t−1
i , m̂t−1

i , ât−1
i ) such that (a)

(ht−1
i ,mt−1

i ) = (ĥt−1
i , m̂t−1

i ) and (b) âi,t′ ∈ Ri,t((ĥ
t′
i , m̂

t′
i ), ât

′−1
i ) for all t′ < t,

Ui(µ◦(γ∗, τ ∗), β|hti,mt
i, ĥ

t−1
i , m̂t−1

i , ât−1
i ) ≥ Ui(µ◦((γi, τi), (γ∗−i, τ ∗−i)), β|hti,mt

i, ĥ
t−1
i , m̂t−1

i , ât−1
i ),

for all (γi, τi) ∈ Γ∗,t−1
i × T ∗,t−1

i .

22



(ii) Obedience: For all t, for all i, for all private histories (hti,m
t
i, ĥ

t
i, m̂

t
i, â

t
i) such that (a)

(hti,m
t
i) = (ĥti, m̂

t
i) and (b) âi,t′ ∈ Ri,t((ĥ

t′
i , m̂

t′
i ), ât

′−1
i ) for all t′ ≤ t,

Ui(µ ◦ (γ∗, τ ∗), β|hti,mt
i, ĥ

t
i, m̂

t
i, â

t
i) ≥ Ui(µ ◦ ((γi, τi), (γ

∗
−i, τ

∗
−i)), β|hti,mt

i, ĥ
t
i, m̂

t
i, â

t
i),

for all (γi, τi) ∈ Γ∗,ti × T
∗,t−1
i .

(iii) CPS consistency: β is consistent with ((γ∗, τ ∗), µ, π) and admissibility, that is, for all (h,m, ω, ĥ, m̂, â) ∈

H (R), for all (i, t),

β(ai,t|hti,mt
i, ĥ

t
i, m̂

t
i, â

t
i) = τ ∗i,t(ai,t|hti,mt

i, ĥ
t
i, m̂

t
i, â

t
i),

β(ht+1, ωt+1|at, ht, ωt) = pt+1(ht+1, ωt+1|at, ht, ωt),

β(mt+1|ht+1,mt, ωt+1) = ξt+1(mt+1|ht+1,mt, ωt+1),

β(ât|ĥt, m̂t, ât−1) = µt(ât|ĥt, m̂t, ât−1),

and

β̂(ht,mt, ωt, ĥt, m̂t, ât|hti,mt
i, ĥ

t
i, m̂

t
i, â

t
i) =

Pµ◦(γ∗,τ∗),π(ht,mt, ωt, ĥt, m̂t, ât)

Pµ◦(γ∗,τ∗),π(hti,m
t
i, ĥ

t
i, m̂

t
i, â

t
i)

,

whenever Pµ◦(γ∗,τ∗),π(hti,m
t
i, ĥ

t
i, m̂

t
i, â

t
i) > 0.

In a sequential communication equilibrium, a player has an incentive to be honest and obedient

at all histories consistent with the mediation ranges, at which the player has been truthful in the

past. Put it differently, even at histories where some players have lied in the past or been disobe-

dient, a player has an incentive to be honest and obedient, if he has never lied in the past (but may

have been disobedient). It is worth stressing that the recommendation kernel µt maps to ∆(At)

and does not implicitly take into account the mediation ranges. Yet, the consistency requirement

implies that the probability of observing a history of recommendations and reports, inconsistent

with the mediation ranges, is zero when the players are honest and obedient. Indeed, since the CPS

is defined over H (R), consistency implies that∑
ât∈×iRi,t((ĥti,m̂ti),â

t−1
i )

µt(ât|ĥt, m̂t, ât−1) =
∑

ât∈×iRi,t((ĥti,m̂ti),â
t−1
i )

β(ât|ĥt, m̂t, ât−1) = 1,

23



which gives us the desired result, that is,∑
(ĥ,m̂,â): [∀(i,t): âi,t∈Ri,t((ĥti,m̂ti),â

t−1
i )]

Pµ◦(γ∗,τ∗),π(ĥ, m̂, â) = 1.

It is worth noting that a recommendation ât can have probability zero under µt at some history of

reports and recommendations and yet be in the mediation ranges.13 We let SCE(Γπ) be the set of

distributions over HΩ induced by the sequential communication equilibria of Γπ.

Few remarks are worth making. First, our definition of sequential communication equilib-

rium differs slightly from Myerson (1986) in that we assume that the mediator randomizes over

recommendations at every stage (a behavioral strategy), while Myerson assumes that the media-

tor randomizes over pure recommendation kernels at the ex-ante stage (a mixed strategy). From

Kuhn’s theorem (viewing the mediator as a player), both definitions induce the same set SCE(Γπ).

Second, we have restricted attention to canonical extensions of the game Γπ. In a recent work,

Sugaya and Wolitzky (2017) prove that this is without loss of generality, that is, the revelation

principle holds.14 Third, in a sequential communication equilibrium, a player may believe that the

mediator has send recommendation â at a previous stage, even though â is not in the support of

the recommendation kernels. In other words, it is as if the mediator can “tremble” in a sequential

13We provide more details on the calculation. By definition, we have that β(ât|ĥt, m̂t, ât−1) is equal to

β({(h,m,ω, ĥ, m̂, â) ∈H (R) : (ĥt, m̂t, ât) = (ĥt, m̂t, ât)}|{(h,m,ω, ĥ, m̂, â) ∈H (R) : (ĥt, m̂t, ât−1) = (ĥt, m̂t, ât−1)}).

The result then follows from the observation that⋃
ât∈×iRi,t((ĥt

i,m̂
t
i),â

t−1
i )

{(h,m,ω, ĥ, m̂, â) ∈H (R) : (ĥt, m̂t, ât) = (ĥt, m̂t, ât)} =

{(h,m,ω, ĥ, m̂, â) ∈H (R) : (ĥt, m̂t, ât−1) = (ĥt, m̂t, ât−1)}.

14More precisely, Sugaya and Wolitzky study general Myersonian extensions of multi-stage games, where at each

stage players report arbitrary messages to the mediator and receive arbitrary messages from the mediator. For the

concept of conditional probability perfect Bayesian equilibrium, they show that any equilibrium distribution over

states, signals and actions is in SCE(Γπ). Conversely, any distribution in SCE(Γπ) is an equilibrium distribution of

the canonical extension of Γπ .
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communication equilibrium. We will return to that point at the end of this section and in Sec-

tion 4. Finally, conditional probability perfect Bayesian equilibria are sequential communication

equilibria, which in turn are communication equilibria.

Sequential Bayes correlated equilibrium. We consider mediated extensionsM(Γ) of the game

Γ, where at each stage the set of recommendations made to a player may be a strict subset of the

set of actions available to the player. Formally, for each private history (hti, â
t−1
i ) of past and

current base signals, past actions and past recommendations, Ri,t(h
t
i, â

t−1
i ) ⊆ Ai,t is the set of

possible recommendations to player i. We refer to the function Ri,t as the mediation range of

player i at stage t. We denote H (R) the set of all terminal histories consistent with the mediation

ranges in the mediated extensionM(Γ), i.e., (h, ω, â) ∈ H (R) if and only if (h, ω) ∈ HΩ and

âi,t ∈ Ri,t(h
t
i, â

t−1
i ) for all i, for all t.

We denote Pµ◦τ ,p(·|ht, ωt, ât) the distribution over H (R) induced by the profile of strate-

gies τ , the recommendation kernels µ and the kernels p, given the history (ht, ωt, ât). Note that

Pµ◦τ ,p(·|ht, ωt, ât) is equal to Pµ◦τ ,p(·|ht, ωt, ât) at all histories (ht, ωt, ât) having positive proba-

bility under Pµ◦τ ,p.

At any history (ht, ωt, ât), player i’s expected payoff is

Ui(µ ◦ τ |ht, ωt, ât) :=
∑
h,ω,â

ui(h,ω)Pµ◦τ ,p(h,ω, â|ht, ωt, ât).

Finally, at any private history (hti, â
t
i), player i’s expected payoff is:

Ui(µ ◦ τ , β|hti, âti) :=∑
ht,ωt,ât

Ui(µ ◦ τ |ht,ωt, ât)β(ht,ωt, ât|hti, âti),

where β is a CPS on H (R). We write T ∗,ti for the subset of action strategies of player i, where

player i is obedient up to (including) stage t. We are now ready to define the concept of sequential

Bayes correlated equilibrium.

A collection of recommendation kernels µt : H tΩt × At−1 → ∆(At) is a sequential Bayes

correlated equilibrium of Γ if there exist mediation ranges Ri,t : H t
i × At−1

i → 2Ai,t \ {∅} for all

(i, t) and a CPS β on H (R) such that the following are satisfied:
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(i) Obedience: For all t, for all i, for all private histories (hti, â
t
i) such that âi,t′ ∈ Ri,t′(h

t′
i , â

t′−1
i )

for all t′ ≤ t,

Ui(µ ◦ τ ∗, β|hti, âti) ≥ Ui(µ ◦ (τ i, τ
∗
−i), β|hti, âti),

for all τ i ∈ T
∗,t−1

i .

(ii) CPS consistency: β is consistent with (τ ∗, µ, p), that is, for all (h, ω, â) ∈ H (R), for all

(i, t),

β(ai,t|hti, âti) = τ ∗i,t(ai,t|hti, âti),

β(ht+1, ωt+1|at, ht, ωt) = pt+1(ht+1, ωt+1|at, ht, ωt),

β(ât|ht, ωt, ât−1) = µt(ât|ht, ωt, ât−1),

and

β(ht, ωt, ât|hti, âti) =
Pµ◦τ∗,p(ht, ωt, ât)
Pµ◦τ∗,p(hti, âti)

,

whenever Pµ◦τ∗,p(hti, âti) > 0.

In a sequential Bayes correlated equilibrium, a player has an incentive to be obedient at all

histories consistent with the mediation ranges. It is worth noting that the recommendation kernel

µt maps to ∆(At) and does not implicitly take into account the mediation ranges. Nevertheless, the

consistency requirement implies that the probability of observing a history of recommendations,

actions, base signals and states, inconsistent with the mediation ranges, is zero when the players

are obedient. Indeed, we have ∑
(ĥ,ω̂,â): [∀(i,t): âi,t∈Ri,t(ĥti,â

t−1
i )]

Pµ◦τ∗,p(ĥ, ω̂, â) = 1,

since the CPS is defined over H (R). (See above for more details.) We let SBCE(Γ) be the set of

distributions over HΩ induced by the sequential correlated equilibria of Γ.

With all these preliminaries done, we can now state our second equivalence result.

Theorem 2 We have the following equivalence:

SBCE(Γ) =
⋃

Γπ an admissible expansion of Γ

SCE(Γπ) =
⋃

Γπ an admissible expansion of Γ

CPPBE(Γπ).
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Theorem 2 states an equivalence between (i) the set of distributions over actions, base signals

and states induced by all sequential Bayes correlated equilibria of Γ, (ii) the set of distributions

over actions, base signals and states we can obtain by considering all sequential communication

equilibria of all admissible expansions of Γ, and (iii) the set of distributions over actions, base

signals and states we can obtain by considering all conditional probability perfect Bayesian equi-

libria of all admissible expansions of Γ. This theorem states, in effect, that any distribution over

actions, base signals and states a designer can implement by committing to an admissible infor-

mation structure, where no player would expect to gain by disobeying his recommendations, even

after zero-probability histories (but consistent with the mediation ranges), is a sequential Bayes

correlated distribution.

We close this section with few remarks. First, the set SBCE(Γ) is convex. To see this, take two

distributions ν and ν ′ in SBCE(Γ). It follows from Theorem 2 that there exist two expansions Γπ

and Γπ′ and two associated sequential communication equilibria (µt, β, Ri,t)i,t and (µ′t, β
′, R′i,t)i,t,

which induce ν and ν ′, respectively. Take α ∈ [0, 1] and consider the expansion Γαπ+(1−α)π′ , where

the information structure π (resp., π′) is drawn with probability α (resp., 1 − α) and the players

are informed about the draw. If players coordinate on (µt, β, Ri,t)i,t (resp., (µ′t, β
′, R′i,t)i,t) when

the drawn information structure is π (resp., π′), we obtain the distribution αν + (1 − α)ν ′. From

Theorem 2, it is in SBCE(Γ). Second, the role of mediation ranges is to ensure the existence of

an equilibrium, as our economic application in Section 4 highlights. Third, we do not have the

equivalence with the set of distributions over actions, base signals and states we can obtain by

considering all sequential equilibria of all admissible expansions of Γ, that is,⋃
Γπ an admissible expansion of Γ

SE(Γπ) 6= SBCE(Γ),

as the following example demonstrates.

Example 5. This example is due to Laura Doval. The base game is as follows. There are

two players, labelled 1 and 2, no states and no base signals. Player 1 has two actions, a1 and a′1,

and player 2 has two actions, a2 and a′2. Player 1 moves first and player 2 moves second, without

observing the move of player 1. The payoffs are in the table below, with player 1 the row player.
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a2 a′2

a1 0, 0 1, 0

a′1 1, 0 −1,−1

We first argue that for all expansions, no sequential equilibria put probability one on (a1, a2).

Consider any expansion, with (M1,M2) the set of messages, and π1 ∈ ∆(M1) and π2 : M1×A1 →

∆(M2) the two probability kernels. Let (σ1, σ2) be a profile of strategies. The induced probability

of (a1, a2) is ∑
m1,m2

π1(m1)σ1(a1|m1)π2(m2|a1,m1)σ2(a2|m2).

Suppose it is equal to 1. Thus, we need σ1(a1|m1) = 1 for all m1 such that π1(m1) > 0 and

σ2(a2|m2) = 1 for all m2 such that
∑

m1
π1(m1)π2(m2|a1,m1) > 0, if we want to induce the

distribution degenerated on (a1, a2).

For player 1 to have an incentive to play a1, we need that∑
m2

(1− σ2(a2|m2))π2(m2|a1,m1) ≥
∑
m2

(2σ2(a2|m2)− 1)π2(m2|a′1,m1)

for all m1 such that π1(m1) > 0. This implies that∑
m1,m2

(1− σ2(a2|m2))π2(m2|a1,m1)π1(m1) ≥
∑
m1,m2

(2σ2(a2|m2)− 1)π2(m2|a′1,m1)π1(m1).

This is equivalent to:

0 ≥
∑

m2:
∑
m1

π1(m1)π2(m2|a1,m1)>0

∑
m1

π2(m2|a′1,m1)π1(m1)+

∑
m2:

∑
m1

π1(m1)π2(m2|a1,m1)=0

(2σ2(a2|m2)− 1)

(∑
m1

π2(m2|a′1,m1)π1(m1)

)
.

In words, player 2 must be playing a′2 with high enough probability after receiving off-path mes-

sages m2, i.e., such that
∑

m1
π1(m1)π2(m2|a1,m1) = 0. However, for player 2 to play a′2 with

strictly positive probability after any off-path message m2, we need player 2 to believe that a1

was played with probability one (since a2 is weakly dominant). In a sequential equilibrium, the
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probability that a′1 was played given the message m2 is given by the limit of∑
m1
π1(m1)σε1(a′1|m1)π2(m2|a′1,m1)∑

m1
π1(m1)σε1(a′1|m1)π2(m2|a′1,m1) +

∑
m1
π1(m1)σε1(a1|m1)π2(m2|a1,m1)

as ε→ 0, for some fully mixed strategy σε1 converging to σ1. Since
∑

m1
π1(m1)π2(m2|a1,m1) =

0, π1(m1)π2(m2|a1,m1) = 0 for all m1 and, therefore, the above limit is 1. Player 2 would never

play a′2 with strictly positive probability in a sequential equilibrium, hence player 1 will never play

a1. We cannot implement the outcome (a1, a2), as a sequential equilibrium of some expansion of

the base game.

We now argue that this distribution is implementable as a sequential Bayes correlated equilib-

rium. We simply need that µ1(a1) = 1, µ2(a2|a1, â1) = µ2(a′2|a′1, â1) = 1 for all â1 ∈ {a1, a
′
1},

and β(a1|a′2) = 1. Intuitively, we need that player 2 assigns probability 1 to a1 upon observing

the recommendation a′2, so that he optimally plays a′2 (and, thus, is obedient). To see that this is

possible, consider the sequence (τ ε, µε) converging to (τ ∗, µ) as ε → 0, given by µε1(a′1) = ε,

τ εi (ai|ai) = τ εi (a
′
i|a′i) = 1− ε for all i ∈ {1, 2}, µε2(a′2|a′1, â1) = 1− ε, and µε2(a′2|a1, â1) =

√
ε for

all â1 ∈ {a1, a
′
1}. Conditional on a′2, the probability of a′1 is

2ε(1− ε)2

2ε(1− ε)2 + (ε2 + (1− ε)2)
√
ε
.

The limit is zero as ε → 0. Thus, if we consider the conditional probability system β given by

limε→0 P(τε,µε), we have a sequential Bayes correlated equilibrium. �

Fourth, if we impose additional restrictions on the conditional probability systems in the def-

inition of a sequential Bayes correlated equilibrium, then we can obtain a partial converse (see

Appendix E for a formal statement). Indeed, it is easy to see that if we require the conditional

probability systems to be consistent with trembles of the players only, then this stronger version

of a sequential Bayes correlated equilibrium induces a subset of all the distributions over actions,

states and base signals that we can obtain by considering all sequential equilibria of all admissible

expansions.15 Finally, we can obtain an analogous equivalence theorem for the concept of weak
15More formally, the restriction requires that there exists a sequence (τn)n of completely mixed strategies converg-

ing to τ∗ such that β = limn→+∞ Pµ◦τn,p. Sugaya and Wolitzky (2017) call such a concept a machine sequential

equilibrium.
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perfect Bayesian equilibrium.16

4 An economic application: bilateral bargaining

We consider a variation on the work of Bergemann, Brooks and Morris (2013). There are one

buyer and one seller. The seller makes an offer a1 ∈ A1 ⊂ R+ to the buyer, who observes the

offer and either accepts (a2 = 1) or rejects (a2 = 0) it. If the buyer accepts the offer a1, the payoff

to the buyer is ω − a1, while the payoff to the seller is a1, with ω being the buyer’s valuation (the

payoff-relevant state). We assume that ω ∈ Ω ⊂ R++. If the buyer rejects the offer, the payoff

to both the seller and the buyer is normalized to zero. The buyer and the seller are symmetrically

informed and believe that the state is ω with probability p(ω) > 0. We assume that the set of offers

the seller can make is finite, but as fine as needed. For future reference, we write ωL for the lowest

state, ω−L for the largest offer a1 strictly smaller than ωL, and ωH for the highest state.

This model differs from Bergemann, Brooks and Morris (2013) in one important aspect. In

our model, both the seller and the buyer have no initial private information about the state, while

Bergemann, Brooks and Morris assume that the buyer is privately informed of the state ω. The

base game of Bergemann, Brooks and Morris thus corresponds to a particular expansion of our

base game. Similarly, Roesler and Szentes (2017) consider all information structures, where the

buyer has some signals about his own valuation (and the seller is uninformed). (See also Condorelli

and Szentes, 2018.) Unlike these two papers, we consider all admissible information structures. In

particular, the information the buyer receives may depend on the information the seller has received

as well as the offer made. In addition, the seller can be better informed than the buyer in our model.

We first characterize the Bayes correlated equilibria. The profile of recommendation kernels

16It is available upon request from the authors.
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(µ1, µ2) is a Bayes correlated equilibrium if the following constraints are satisfied:∑
a1,a2,â1,â2,ω

a1a2µ1(â1|ω)τ ∗1 (a1|â1)µ2(â2|a1, ω, â1)τ ∗2 (a2|a1, â2)p(ω) ≥∑
a1,a2,â1,â2,ω

a1a2µ1(â1|ω)τ1(a1|â1)µ2(â2|a1, ω, â1)τ ∗2 (a2|a1, â2)p(ω),

for all τ1 : A1 → ∆(A1), and∑
a1,a2,â1,â2,ω

(ω − a1)a2µ1(â1|ω)τ ∗1 (a1|â1)µ2(â2|a1, ω, â1)τ ∗2 (a2|a1, â2)p(ω) ≥∑
a1,a2,â1,â2,ω

(ω − a1)a2µ1(â1|ω)τ ∗1 (a1|â1)µ2(â2|a1, ω, â1)τ2(a2|a1, â2)p(ω)

for all τ2 : A1 × A2 → ∆(A2), where τ ∗1 and τ ∗2 are the obedient strategies.

For future reference, note that the sum of the payoffs (the surplus) is bounded from above by∑
ω1
ω1p1(ω1) := E(ω). Moreover, the surplus is E(ω) only if trade occurs with probability one in

all states.

We now reformulate these constraints. Any Bayes correlated equilibrium induces a kernel

µ : Ω → ∆(A1 × A2), given by µ(a1, a2|ω) = µ1(a1|ω)µ2(a2|a1, ω, a1) for all (a1, a2). As in

Example 4, it is easy to see that the incentive constraints are then equivalent to: for all a1 such that∑
ω,a2

µ(a1, a2|ω)p(ω) > 0, ∑
ω,a2

a1a2µ(a1, a2|ω)p(ω) ≥ 0,

and for all (a1, a2) such that
∑

ω µ(a1, a2|ω)p(ω) > 0,∑
ω

(ω − a1)a2µ(a1, a2|ω)p(ω) ≥
∑
ω

(ω − a1)(1− a2)µ(a1, a2|ω)p(ω).

The first inequality states that the seller’s equilibrium payoff must be higher than his min-max

payoff, which is zero. The second inequality states that the recommendations made to the buyer

must be optimal on the equilibrium path.

It is then immediate to check that the following payoff distributions: (i) µ(ω, 1|ω) = 1 for all

ω, (ii) µ(0, 1|ω) = 1 for all ω, and (iii) µ(ωH , 0|ω) = 1 for all ω, are equilibrium distributions,
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with corresponding payoff profiles (E(ω), 0), (0,E(ω)), and (0, 0). Moreover, in any equilibrium,

the payoff to the buyer and the seller is at least zero, and the sum of payoffs is at most E(ω). Since

the set of Bayes correlated payoffs is convex, the set of equilibrium payoffs is therefore

co {(0, 0), (E(ω), 0), (0,E(ω))},

which is depicted in the picture below.

seller’s payoff

buyer’s payoff
(E(ω), 0)

(0,E(ω))

(0, 0)

It is worth noting that the three payoff profiles (0, 0), (E(ω), 0) and (0,E(ω)) are Bayes-Nash

equilibrium payoffs of the bargaining game, where the seller and the buyer are perfectly informed

about the state. The set of Bayes correlated equilibrium payoffs thus corresponds to the correlated

equilibria of the bargaining game with complete information. As a consequence, had we assumed

that the buyer and seller had private signals about the state, the characterization of the Bayes

correlated equilibrium payoffs would have been the same.

We now characterize the set of sequential Bayes correlated equilibria. With some abuse of

notation, a sequential Bayes correlated equilibrium consists of recommendation kernels (µ1, µ2), a

conditional probability system β, and mediation ranges (R1, R2), which jointly satisfy the follow-

ing constraints. First, if the mediator recommends â1 to the seller, the seller must have an incentive

to be obedient, i.e., for all â1 ∈ R1,∑
ω,â2

â1â2µ2(â2|â1, ω, â1)β(ω|â1) ≥
∑
ω,â2

a1â2µ2(â2|a1, ω, â1)β(ω|â1)
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for all a1.17 Second, if the offer made to the buyer is a1 and the mediator recommends â2 ∈ R2(a1)

to the buyer, the buyer must have an incentive to be obedient, i.e.,∑
ω

(ω − a1)â2β(ω|a1, â2) ≥
∑
ω

(ω − a1)(1− â2)β(ω|a1, â2).

Third, the conditional probability system must be consistent.

There are immediate bounds on the equilibrium payoffs: the sum of the buyer and seller’s

payoffs is bounded from above by E(ω), the buyer’s payoff is bounded from below by 0, and the

seller’s payoff is bounded from below by ω−L . The following proposition states that there are, in

fact, no other restrictions on equilibrium payoffs.

Proposition 1 The set of sequential Bayes correlated equilibrium payoffs is

co {(ω−L , 0), (E(ω), 0), (ω−L ,E(ω)− ω−L )}.

The set of equilibrium payoffs is depicted in the picture below.

seller’s payoff

buyer’s payoff

(E(ω)− ω−L , ω
−
L )

(0,E(ω))

(0, ω−L )

We prove this proposition in what follows. As a preliminary observation, note that the conditional

probability system puts no restriction on the buyer’s beliefs after observing an off-path offer a1,

i.e., an offer such that
∑

ω µ1(a1|ω)p(ω) = 0. To see this, note that β(ω, a1) = β(ω, a1|a1)β(a1)

for any conditional probability system β. Moreover, from the consistency of β with (p, τ ∗, µ),

17The conditional probability system β is defined on (subsets of) Ω×A1 ×A1 ×A2 ×A2, where the first copy of

A1 and A2 corresponds to the recommendations. To ease the notation, we write β(ω|â1) for β({ω} × {â1} × A1 ×

A2 ×A2|Ω× {â1} ×A1 ×A2 ×A2). Similarly, for β(ω|a1, â2), β(ω, a1), β(a1) and β(ω, a1|a1).
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we have that β(ω, a1) = β(a1) = 0 whenever
∑

ω µ1(a1|ω)p(ω) = 0. Therefore, β(ω, a1|a1) is

arbitrary and, thus, is β(ω|a1). In particular, we can assume that the buyer believes that the state is

ωL with probability one. We refer to those beliefs as the most pessimistic beliefs. Similarly, there

are no restrictions on the buyer’s beliefs after observing an off-path offer a1 and a recommendation

â2.

We are now ready to state how to obtain the payoff profile (ω−L ,E(ω) − ω−L ). The mediator

recommends the seller to offer ω−L , regardless of the state. If the offer ω−L is made, the mediator

recommends the buyer to accept, regardless of the state and the recommendation made to the seller.

If any offer a1 > ω−L is made, the mediator recommends the buyer to reject the offer, regardless of

the state and the recommendation made to the seller. Since any such offer is off-path, the buyer has

an incentive to be obedient when he believes that the state is ωL with probability one. As we have

just argued, we can choose a well-defined conditional probability system capturing such beliefs.

Finally, if any offer a1 < ω−L is made, the mediator recommends the buyer to accept, regardless of

the state and the recommendation made to the seller. Finally, the mediation ranges areR1 = {ω−L},

R2(a1) = {1} if a1 < ωL, R2(ωL) ⊆ {0, 1}, and R2(a1) = {0} if a1 > ωL. It is worth pointing

out that an equilibrium would fail to exist without restricting the mediation ranges. For instance,

following an offer a1 < ωL and the recommendation to reject it, the buyer would not have an

incentive to obey the recommendation. We thus need mediation ranges in order to guarantee that

players indeed have an incentive to be obedient, even after off equilibrium path recommendations

(that are consistent with the mediation ranges, though).

We now turn our attention to the two other payoff profiles (E(ω), 0) and (ω−L , 0). The profile

(E(ω), 0) corresponds to full surplus extraction, which can be obtained with µ1(ω|ω) = 1 for all ω

and µ2(â2 = 1|a1, ω, â1) = 1 for all (a1, ω, â1) with a1 ≤ ω (and zero, otherwise). The mediation

ranges are R1 = Ω, R2(a1) = {0} if a1 > ωH , R2(a1) = {1} if a1 < ωL, and R2(a1) = {0, 1} if

a1 ∈ Ω.

Lastly, the profile (ω−L , 0) is easily implementable when E(ω) ∈ A1 (which we assume). The

mediator recommends the seller to offer E(ω), regardless of the state, and the buyer to accept

that offer with probability ω−L/E(ω), on path. Off-path, we again use the most pessimistic beliefs
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to give the seller a payoff of zero, if he deviates.18 The mediation ranges are R1 = {E(ω)},

R2(a1) = {1} if a1 < ωL, R2(a1) = {0, 1} if a1 = E(ω), and R2(a1) = {0}, otherwise. To

complete the proof of Proposition 1, it is enough to invoke the bounds on the payoff profiles and

the convexity of the set of sequential Bayes correlated equilibrium payoffs.

Discussion. This economic application sheds light on an important feature of our construction

(and Myerson’s definition of sequential communication equilibrium). As shown by Myerson, any

conditional probability system is the limit of fully supported probabilities. Accordingly, for any

conditional probability system β, there must exist a sequence (φn)n of probabilities, fully supported

on Ω× A1 × A1 × A2 × A2, such that

β(ω|a1) = lim
n→+∞

∑
â1,â2,a2

φn(ω, â1, a1, â2, a2)∑
ω,â1,â2,a2

φn(ω, â1, a1, â2, a2)
,

for all (ω, a1), where β(ω|a1) is the buyer’s belief about the state ω after observing the offer a1.

Thus, if we consider sequences such that

lim
n→+∞

∑
â1,â2,a2

φn(ω, â1, a1, â2, a2)∑
â1,â2,a2

φn(ωL, â1, a1, â2, a2)
= 0,

for all ω 6= ωL, then β(ωL|a1) = 1.19 For instance, if the buyer believes that the mediator is

infinitely more likely to “tremble to recommending a1” when the state is ωL than in any other

state, then an off-path offer of a1 is an overwhelming signal that the state is ωL.20 In other words,
18If E(ω) /∈ A1, the analysis is slightly more complicated, but follows the same logic. The mediator recommends

the seller to offer prices a1 such that the expectation of ω given that a1 is offered is exactly a1, and recommends the

buyer to randomize between accepting and rejecting with the appropriate probability.
19We can prove the existence of such sequences by construction. For all ω, let Aω := {â1 ∈ A1 : µ1(â1|ω) > 0}.

By definition, it is non-empty. Moreover, its complement is also non-empty when there are off-path offers (since

p(ω) > 0 for all ω). For each n, choose εn > 0 sufficiently small. For all ω 6= ωL, let µn1 (â1|ω) = µ1(â1|ω) −

(ε2
n/|Aω|) for all â1 ∈ Aω , µn1 (â1|ω) = ε2

n/|A1\Aω|, for all â1 ∈ A1\Aω . Let µn1 (â1|ωL) = µ1(â1|ωL)−(εn/|AωL
|)

for all â1 ∈ AωL
, µn1 (â1|ωL) = εn/|A1 \ AωL

|, for all â1 ∈ A1 \ AωL
. Finally, let τn1 (â1|â1) = 1 − εn for

all â1 and τn1 (a1|â1) = εn/(|A1| − 1). Choose any φn(ω, â1, a1, â2, a2) such that
∑
a2,â2

φn(ω, â1, a1, â2, a2) =

p(ω)µn1 (â1|ω)τn1 (a1|â1). It is then easy to verify that the ratios converge to zero as (εn)n → 0.
20Another instance is for the buyer to believe that the seller conditions his offer on both the recommendation and the

state, even though the seller does not know the state, and to interpret an off-path offer of a1 as an overwhelming signal

that the state is ωL. These beliefs may not be plausible, but they are entirely consistent with a conditional probability

system.
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the conditional probability system we have constructed is the limit of probabilities Pµn,τn,p, where

(µn, τn) is a fully supported strategy profile at each n.

If, however, we were to impose that the mediator does not tremble (and, thus, require that

the conditional probability system is the limit of the sequence (Pµ,τn,p)n for some fully supported

strategy τn), then the above construction would break down. In fact, we would lose the equiv-

alence between the set of distributions induced by all sequential communication equilibria of all

(admissible) expansions of the game and the set of distributions induced by all “trembling-free”

sequential Bayes correlated equilibria of the game. To see this, we first construct an expansion of

the base game with (ω−L ,E(ω)−ω−L ) as a sequential equilibrium payoff profile (hence, a sequential

communication equilibrium). To do so, assume that the seller is perfectly informed of the state,

offers ω−L regardless of the state, that the buyer believes that the state is ωL if an offer other than

ω−L is made, and that the buyer accepts an offer if and only if it is strictly below his expectation of

ω.21

We now argue that we cannot replicate this payoff profile, if our omniscient mediator does not

tremble. To replicate this payoff profile, we need trade to occur with probability one in all states,

since the sum of payoffs is E(ω). Consequently, the only offer recommended to (and made by) the

seller must be ω−L , i.e., we must have µ1(ω−L |ω) = 1 for all ω. If the mediator does not tremble,

then the only consistent posterior is the prior. To satisfy the obedience constraint, however, we

need the seller’s payoff to be lower than ω−L after any deviation to a1 > ω−L . If the seller deviates

and offers a1 ≥ E(ω), then the seller’s worst payoff is 0, since the mediator can, regardless of the

state, recommend the buyer to not accept the offer (and the buyer would have an incentive to be

obedient). If the seller deviates and offers a1 ∈ [ωL,E(ω)), the lowest payoff the mediator can give

to the seller is solution to the minization problem:

min
(λ`,p`)`=0,1

a1

[ ∑
`=0,1

λ`1
{∑

ω

p`(ω)ω > a1

}]
,

with (λ`, p`)`=0,1 a splitting of p. In words, the omniscient mediator makes recommendations to

21Let σ be the seller’s strategy such that σ(ω−L |ω) = 1 for all ω. For all ε > 0 sufficiently small, let σε(a1|ω) =

ε2p(ωL)
1−p(ωL) for all a1 6= ω−L , ω 6= ωL, σε(a1|ωL) = ε for all a1 6= ω−L , and σε(ω−L |ω) = 1 −

∑
a1 6=ω−

L
σε(a1|ω). By

construction, σε → σ as ε→ 0. Moreover, the posterior of ωL given a1 6= ω−L goes to 1 as ε→ 0.
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the buyer so as to minimize the probability of trading at price a1; the mediator does so by choosing

an optimal splitting of p (or, equivalently, an optimal kernel µ2). It is not hard to see that a lower

bound is

min
(λ`,E`)`=0,1

a1

[ ∑
`=0,1

λ`1
{
E` > a1

}]
,

subject to
∑

`=0,1 λ`E` = E(ω),
∑

`=0,1 λ` = 1, λ` ∈ [0, 1], and E` ∈ [ωL, ωH ] for all `. We can

think of E` as the expectation of ω, given the recommendation `. The solution to this problem is:

a1
E(ω)− a1

ωH − a1

.

Therefore, whenever

max
a1∈[ωL,E(ω))

a1
E(ω)− a1

ωH − a1

> ω−L ,

the seller cannot be incentivized to offer ω−L .22 In other words, even the harshest off-path punish-

ment would not deter the seller from offering another price than ω−L . In those instances, we would

not be able to replicate the payoff profile (ω−L ,E(ω)−ω−L ), even though it is an equilibrium payoff

of some expansion of the base game.

Appendices

A Admissibility

Proposition 2 An expansion (M,π) is admissible if and only if∑
mt,mt+1

πt+1(ht+1,mt+1, ωt+1|at, ht,mt, ωt)Qt(at, h
t,mt, ωt) =

pt+1(ht+1, ωt+1|at, ht, ωt)

(∑
mt

Qt(at, h
t,mt, ωt)

)
,

for all (at, h
t, ωt, ht+1, ωt+1), for all sub-probability Qt, for all t.

22Simple, albeit tedious, algebra shows that this inequality holds when ω−L <
(√

ωH −
√
ωH − E(ω)

)2

.
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Proof (⇐). Note that ∑
mt,mt+1

πt+1(ht+1,mt+1, ωt+1|at, ht,mt, ωt)Qt(at, h
t,mt, ωt) =

∑
mt,mt+1

πt+1(mt+1|at, ht+1,mt, ωt+1)πt+1(ht+1, ωt+1|at, ht,mt, ωt)Qt(at, h
t,mt, ωt) =

∑
mt

πt+1(ht+1, ωt+1|at, ht,mt, ωt)Qt(at, h
t,mt, ωt).

Consequently, if we choose two sub-probabilities Qt and Q
t
, degenerated on arbitrary mt and mt

respectively, we have that

πt+1(ht+1, ωt+1|at, ht,mt, ωt) = πt+1(ht+1, ωt+1|at, ht,mt, ωt) = pt+1(ht+1, ωt+1|at, ht, ωt),

i.e., Equation (?) is satisfied, with ξt+1(mt+1|ht+1,mt, ωt+1) = πt+1(mt+1|at, ht+1,mt, ωt+1) (we

drop the dependence on at in the definition of ξt+1 since conditioning on (ht+1,mt, ωt+1) is equiv-

alent to conditioning on (at, h
t+1,mt, ωt+1)).

(⇒). Immediate. �

B Proof of Theorem 1

The proof is purely constructive.

(⇒). We first prove that ⋃
Γπ an admissible expansion of Γ

CE(Γπ) ⊆ BCE(Γ).

Let Γπ be an expansion of Γ and µ a communication equilibrium of Γπ. Let Pµ◦(γ∗,τ∗),π be

the distribution over signals (including the additional ones), states, reports, and recommendations

induced by µ ◦ (γ∗, τ ∗) and π. Throughout, variables with a hat ˆ on top are either reports or

recommendations.

The proof consists in constructing recommendation kernels (µ̄t : H tΩt × At−1 → ∆(At))t

such that the following two properties.
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(i) Denoting Pµ̄◦τ̄∗,p the distributions over actions, signals, states and recommendations induced

by µ̄ ◦ τ̄ ∗ and p, we have that

margHΩPµ̄◦τ̄∗,p = margHΩPµ◦(γ∗,τ∗),π,

implying that∑
h,â,ω

ui(h, ω)Pµ̄◦τ̄∗,p(h, ω, â) =
∑

h,m,ω,ĥ,m̂,â

ui(h, ω)Pµ◦(γ∗,τ∗),π(h,m, ω, ĥ, m̂, â).

(ii) If there exist player i and strategy τ̄i such that∑
h,â,ω

ui(h, ω)Pµ̄◦τ̄∗,p(h, ω, â) <
∑
h,â,ω

ui(h, ω)Pµ̄◦(τ̄i,τ̄−i),p(h, ω, â),

then there exists a strategy τi such that∑
h,m,ω,ĥ,m̂,â

ui(h, ω)Pµ◦(γ∗,τ∗),π(h,m, ω, ĥ, m̂, â) <
∑

h,m,ω,ĥ,m̂,â

ui(h, ω)Pµ◦(γ∗,(τi,τ∗−i)),π(h,m, ω, ĥ, m̂, â),

a contradiction with µ being a communication equilibrium.

In the sequel, we write τt(at|(ht,mt), (ĥt, m̂t), ât) for ×i∈Iτi,t(ai,t|(hti,mt
i), (ĥ

t
i, m̂i

t), âti) and

τ ∗t (at|(ht,mt), (ĥt, m̂t), ât) for×i∈Iτ ∗i,t(ai,t|(hti,mt
i), (ĥ

t
i, m̂i

t), âti). With a slight abuse of notation,

we also write

τt(at|(ht,mt), (ĥt, m̂t), ât)

for

τi,t(ai,t|(hti,mt
i), (ĥ

t
i, m̂i

t), âti)× (×j∈I\{i}τ ∗j,t(aj,t|(htj,mt
j), (ĥ

t
j, m̂j

t), âtj)).

Similar notations are used for τ̄i,t. To ease notations, we write Pµ◦(γ∗,τ),π(h,m, ω, â) for

Pµ◦(γ∗,τ),π(h,m, ω, h,m, â).

Since we focus on truthful histories throughout, this should not create any confusion.

As a preliminary observation, observe that with any strategy profile (τ̄t)t∈T ofM(Γ), we can

associate a strategy profile (γ∗t , τt)t∈T of C(Γπ) such that τt coincides with τ̄t at truthful histories

and is independent of mt, i.e.,

τt(at|(ht,mt), (ĥt, m̂t), ât) = τ̄t(at|ht, ât)
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for all at, for all histories such that (ht,mt) = (ĥt, m̂t), for all mt, for all t. We write τ̄t ≡ (γ∗t , τt)

for such an association. The association is possible because players have more information in

C(Γπ) than inM(Γ). We associate τ̄ ∗t with (γ∗t , τ
∗
t ).

We now define inductively the recommendation kernels (µ̄t : H tΩt × At−1 → ∆(At))t. Fix

any strategy profile τ̄ := (τ̄t)t∈T and choose any τ := (τt)t∈T such that τ̄t ≡ (γ∗t , τt) for all t.

First, we construct µ̄1 such that Pµ̄◦τ̄ ,p((a1, h1), ω1, â1) =
∑

m1
Pµ◦(γ∗,τ),π((a1, h1),m1, ω1, â1)

for all (a1, h1, ω1, â1), that is,

p1(h1, ω1)µ̄1(â1|h1, ω1)τ̄1(a1|h1, â1) =∑
m1

π1(h1,m1, ω1)γ∗1(ĥ1, m̂1|h1,m1)µ1(â1|ĥ1, m̂1)τ1(a1|(h1,m1), (ĥ1, m̂1), â1) =∑
m1

π1(h1,m1, ω1)µ1(â1|h1,m1)τ̄1(a1|h1, â1),

where the last equality follows from τ̄ ≡ (γ∗, τ). We therefore have that

µ̄1(â1|h1, ω1) =

∑
m1
π1(h1,m1, ω1)µ1(â1|h1,m1)

p1(h1, ω1)
,

where p1(h1, ω1) > 0 since we consider histories inHΩ. It is immediate to verify that µ̄1(â1|h1, ω1) ≥

0 for all â1 and, due to admissibility,
∑

â1
µ̄1(â1|h1, ω1) = 1, for all (h1, ω1). Thus, µ̄1 is well-

defined. Moreover, its definition is independent of the choice of τ̄ and τ .

By induction, assume that (µ̄1, . . . , µ̄t) has been defined. We now construct µ̄t+1 such that

Pµ̄◦τ̄ ,p((at+1, h
t+1), ωt+1, ât+1) =

∑
mt+1

Pµ◦(γ∗,τ),π((at+1, h
t+1),mt+1, ωt+1, ât+1),

for all (at+1, h
t+1, ωt+1, ât+1), that is,

Pµ̄◦τ̄ ,p((at, ht), ωt, ât)×

pt+1(ht+1, ωt+1|at, ht, ωt)µ̄t+1(ât+1|ht+1, ωt+1, ât)τ̄t+1(at+1|ht+1, ât+1) =∑
mt+1

(
Pµ◦(γ∗,τ),π((at, h

t),mt, ωt, ât)×

πt+1(ht+1,mt+1, ωt+1|at, ht,mt, ωt)γ∗t+1(ĥt+1, m̂t+1|(ht+1,mt+1), (ĥt, m̂t), ât)

µt+1(ât+1|ht+1,mt+1, ât)τt+1(at+1|(ht+1,mt+1), (ĥt+1, m̂t+1), ât+1)
)
,
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which is equivalent to

Pµ̄◦τ̄ ,p((at, ht), ωt, ât)×

pt+1(ht+1, ωt+1|at, ht, ωt)µ̄t+1(ât+1|ht+1, ωt+1, ât) =∑
mt+1

(
Pµ◦(γ∗,τ),π((at, h

t),mt, ωt, ât)×

πt+1(ht+1,mt+1, ωt+1|at, ht,mt, ωt)µt+1(ât+1|ht+1,mt+1, ât)
)
,

if τ̄t+1(at+1|ht, ât) > 0 since τ̄ ≡ (γ∗, τ). (If τ̄t+1(at+1|ht, ât) = 0, then the above inequality is

trivially satisfied.)

From the induction step, this is equivalent to(∑
mt

Pµ◦(γ∗,τ),π((at, h
t),mt, ωt, ât)

)
pt+1(ht+1, ωt+1|at, ht, ωt)µ̄t+1(ât+1|ht+1, ωt+1, ât) =

∑
mt+1

(
Pµ◦(γ∗,τ),π((at, h

t),mt, ωt, ât)πt+1(ht+1,mt+1, ωt+1|at, ht,mt, ωt)µt+1(ât+1|ht+1,mt+1, ât)
)
.

(1)

It remains to verify we can indeed construct µ̄t+1 such that Equation (1) is satisfied for all strategies

τ ∈ T ⊥, where

T ⊥ := {τ ∈ T : [τi,t(·|hti,mt
i, h

t
i,m

t
i, â

t
i) = τi,t(·|hti,mt

i, h
t
i,m

t
i, â

t
i) ∀ mt

i,m
t
i, h

t
i, â

t
i, i, t]}

is the set of action strategies, which does not depend on the additional signals at truthful histories.

We first note that since we consider histories in HΩ, pt+1(ht+1, ωt+1|at, ht, ωt) > 0. Second,

we claim that there exists a strategy τ † ∈ T ⊥ such that∑
mt

Pµ◦(γ∗,τ†),π((at, h
t),mt, ωt, ât) > 0,

whenever∑
mt

π1(h1,m1, ω1)µ1(â1|h1,m1, â0)× · · · · · · × πt(ht,mt, ωt|at−1, h
t−1,mt−1, ωt−1)µt(ât|ht,mt, ât−1)︸ ︷︷ ︸

γ(ht,mt,ωt,ât)

> 0.

To prove the claim, simply let τ †t′(at′ |ht
′
,mt′ , ht

′
,mt′ , ât

′
) = 1 if and only if ht′+1 = (at′ , st′+1) for

all t′ ≤ t, that is, players play with probability one the actions specified in the history (ht,mt, ωt, ât).
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At all histories such that
∑

mt γ(ht,mt, ωt, ât) > 0, we let

µ̄t+1(ât+1|ht+1, ωt+1, ât) =∑
mt+1

Pµ◦(γ∗,τ†),π((at, h
t),mt, ωt, ât)πt+1(ht+1,mt+1, ωt+1|at, ht,mt, ωt)(∑

mt Pµ◦(γ∗,τ†),π((at, ht),mt, ωt, ât)
)
pt+1(ht+1, ωt+1|at, ht, ωt)

µt+1(ât+1|ht+1,mt+1, ât) =

∑
mt+1

γ(ht,mt, ωt, ât)∑
mt γ(ht,mt, ωt, ât)

πt+1(ht+1,mt+1, ωt+1|at, ht,mt, ωt)

pt+1(ht+1, ωt+1|at, ht, ωt)
µt+1(ât+1|ht+1,mt+1, ât) =

∑
mt+1

γ(ht,mt, ωt, ât)∑
mt γ(ht,mt, ωt, ât)

ξt+1(mt+1|ht+1,mt, ωt+1)µt+1(ât+1|ht+1,mt+1, ât),

for some ξt+1, where the last equality follows from admissibility. We can easily check that

µ̄t+1(ât+1|ht+1, ωt+1, ât) > 0, and∑
ât+1

µ̄t+1(ât+1|ht+1, ωt+1, ât) = 1,

and that its definition is independent of τ . It is then routine to check that for any other strategy

τ ∈ T ⊥, Equation (1) is satisfied.

Finally, at all histories such that
∑

mt γ(ht,mt, ωt, ât) = 0, we have that∑
mt

Pµ◦(γ∗,τ),π((at, h
t),mt, ωt, ât) = 0,

for all τ ∈ T ⊥. At these histories, we choose an arbitrary µ̄t+1(·|ht+1, ωt+1, ât) ∈ ∆(At+1).

We have thus defined recommendation kernels (µ̄t : H tΩt × At−1 → ∆(At))t such that∑
â

Pµ̄◦τ̄ ,p(h, ω, â) =
∑
m,â

Pµ◦(γ∗,τ),π(h,m, ω, â),

for all (h, ω). Properties (i) and (ii) then follow immediately, which proves that⋃
Γπ an admissible expansion of Γ

CE(Γπ) ⊆ BCE(Γ).

This completes the first part of the proof.

(⇐). We now prove that

BCE(Γ) ⊆
⋃

Γπ an admissible expansion of Γ

BNE(Γπ).
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Let µ̄ be a Bayes correlated equilibrium with distribution Pµ̄◦τ̄∗,p. We now construct an expan-

sion Γπ and a Bayes-Nash equilibrium σ∗ of Γπ, with the property that margHΩPσ∗,π = margHΩPµ̄◦τ̄∗,p.

The expansion is as follows. Let Mi,t = Ai,t for all (i, t),

π1(h1,m1, ω1) = p1(h1, ω1)µ̄1(â1|h1, ω1),

with m1 = â1, for all (h1,m1, ω1), and

πt+1(ht+1,mt+1, ωt+1|at, ht,mt, ωt) = pt+1(ht+1, ωt+1|at, ht, ωt)µ̄t+1(ât+1|ht+1, ωt+1, ât),

with (mt,mt+1) = (ât, ât+1), for all (at, h
t,mt, ωt, ht+1,mt+1, ωt+1). Clearly, the expansion is

admissible.

By construction, any strategy τ̄t : H t × At → ∆(At) of M(Γ) is equivalent to a strategy

σt : H t × M t → ∆(At) of Γπ, i.e., σt(at|ht,mt) := ×iσi,t(ai,t|hti,mt
i) = ×iτ̄i,t(ai,t|hti, âti)

with mt = ât, with the property that Pσ,π(ht,mt, ωt) = Pµ̄◦τ̄ ,p(ht, ât, ωt) when mt = ât, for

all (ht,mt, ωt), for all t.

To see this last point, note that the definition of π1 is clearly equivalent to Pσ,π(h1,m1, ω1) =

Pµ̄◦τ̄ ,p(h1, ω1, â1) with m1 = â1, for all (h1,m1, ω1). By induction, assume that Pσ,π(ht,mt, ωt) =

Pµ̄◦τ,p(ht, ωt, ât) withmt = ât, for all (ht,mt, ωt). We now compute the probability of (ht+1,mt+1, ωt+1).

We have that

Pσ,π(ht+1,mt+1, ωt+1) = Pσ,π(ht+1,mt+1, ωt+1|ht,mt, ωt)Pσ,π(ht,mt, ωt)

= πt+1(ht+1,mt+1, ωt+1|at, ht,mt, ωt)σt(at|ht,mt)Pσ,π(ht,mt, ωt)

= pt+1(ht+1, ωt+1|at, ht, ωt)µ̄t+1(ât+1|ht+1, ωt+1, ât)τ̄t(at|ht, ât)Pµ̄◦τ̄ ,p(ht, ât, ωt)

= Pµ̄◦τ̄ ,p(ht+1, ωt+1, ât+1),

with ât+1 = mt+1. Finally, since µ̄ is a Bayes correlated equilibrium ofM(Γ), the strategy σ∗ ≡ τ̄ ∗

is a Bayes-Nash equilibrium of Γπ and, thus,

BCE(Γ) ⊆
⋃

Γπ an admissible expansion of Γ

BNE(Γπ) ⊆
⋃

Γπ an admissible expansion of Γ

CE(Γπ).

This completes the proof.
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C A model with exogenous evolutions of the states.

We discuss a particular case of our general model, where the information about states and actions

is decoupled. Assume that at each stage, a player receives a pair of base signals (si,t, s̊i,t). The

signal si,t is informative about the past and current states and past base signals about the states,

while the second signal s̊i,t is informative about the past actions, past base signals and past states.

Formally, we have two processes (pt, p̊t), with pt+1(st+1, ωt+1|st, ωt) the probability of (st+1, ωt+1)

given (st, ωt), and p̊t+1(̊st+1|at, s̊t, st, ωt) the probability of s̊t+1, given (at, s̊t, st, ωt). It is worth

observing that the probability of (s, ω) is independent of any profile of actions a and given by

p(s, ω), with

p(s, ω) = p1(s1, ω1) ·
∏
t∈T

pt+1(st+1, ωt+1|st, ωt).

Crucially, the players do not control the evolution of the state. As before, we let pa(s, s̊, ω) be the

probability of (s, s̊, ω), given the action profile a.

An expansion consists of message spaces (Mi,t) and a process (πt)t, with

πt+1(st+1, s̊t+1,mt+1, ωt+1|at, st, s̊t,mt, ωt)

the probability of (st+1, s̊t+1,mt+1, ωt+1) given (at,mt, s̊t, st, ωt). As before, we let πa(s, s̊,m, ω)

be the probability of (s, s̊,m, ω), given the action profile a. Conditional on (s, ω), we define

π̊t+1(̊st+1,mt+1|a, s̊t,mt, s, ω) :=∑
(̊s,m):(̊st+1,mt+1)=((mt,mt+1),(̊st ,̊st+1)) π

a(s, s̊,m, ω)∑
(̊s,m):(̊st,mt)=(mt ,̊st) π

a(s, s̊,m, ω)
,

for all (a,mt, s̊t, s̊t+1,mt+1) with a positive denominator, and arbitrary otherwise. It is worth

noting that π̊t+1 only depends on at (and not (at+1, . . . , aT )) when the marginal of πa over S × Ω

is p, as we shall assume soon.

In that class of multi-stage games, the expansion is said to be weakly admissible if it satisfies

the following two properties:

(i) The marginal of πa over S × Ω is p, i.e.,
∑

s̊,m π
a(s, s̊,m, ω) = p(s, ω) for all a.
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(ii) There exist probability kernels (ξ)t such that

ξt+1(mt+1|at, s̊t+1,mt, s, ω)p̊t+1(̊st+1|at, s̊t, st, ωt) =

π̊t+1(mt+1, s̊t+1|at, s̊t,mt, s, ω),

for all (at, s̊t+1,mt, s, ω,mt+1).

Examples 1 and 2 are instances of that class of multi-stage games and satisfy weak admissibility.

It is also worth pointing out that if, in addition, we assume perfect observation of past actions, then

weak admissibility is equivalent to consistency, i.e.,
∑

m π
a(s, s̊,m, ω) = pa(s, s̊, ω).23

It is then immediate to replicate our analysis with recommendation kernels conditioning on

(s, ω), i.e., µt+1(ât+1|at, ât, s̊t, s, ω) is the probability of recommending ât+1 at stage t + 1, when

the profile of states and base signals is (s, ω) and the profile of past actions, past recommendations

and past base signals about actions is (at, ât, s̊t). In words, the omniscient mediator not only knows

all realizations of past actions, past and current base signals and states, but also all future states

and base signals about states.24

D Proof of Theorem 2

Preliminary observations on conditional probability systems. We start with some preliminary

observations on conditional probability systems. Let X be a finite set and β a CPS on X . The CPS
23We have perfect observation of past actions if for all at, there exists s̊t+1(at) such that

p̊t+1(̊st+1(at)|at, s̊t, st, ωt) = 1. Consistency implies that πa(s, s̊,m, ω) = πa(m|s, s̊, ω)pa(s, s̊, ω) and,

therefore,

∑
mt+1

π̊t+1(mt+1, s̊t+1|at,mt, s̊t, s, ω) =

∑̊
s:̊st+1=(̊st ,̊st+1) p

a(̊s|s, ω)
(∑

m:mt=mt πa(m|s, s̊, ω)
)

∑̊
s:̊st=s̊t p

a(̊s|s, ω)
(∑

m:mt=mt πa(m|s, s̊, ω)
) .

It is thus equal to one if s̊t+1 = s̊t+1(at), i.e., weak admissibility holds. The converse is clearly true.
24It is worth observing that weak admissibility is actually equivalent to admissibility in a modified base

game, where Ω∗1 = S × Ω, S∗t = St × S̊t, Ω∗t is a singleton for all t > 1, p∗1((s1, s̊1), (s, ω)) =

p̊1(̊s1)p(s, ω) and p∗t+1(st+1, s̊t+1|at, (st, s̊t), (s, ω)) = p̊t+1(̊st+1|at, s̊t, st, ωt). Note that this implies that

p∗t+1(s̃t+1, s̊t+1|at, (st, s̊t), (s, ω)) = 0 if s̃t+1 6= st+1. In words, in the modified base game, the states and base

signals (s, ω) are drawn at the beginning of the game, and players gradually learn about them.
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β satisfies the following two properties: for any X 6= ∅,

(i) β(X ′|X) = 1 if X ⊆ X ′.

(ii) β(X ′|X) = 0 if X ′ ∩X = ∅.

To prove (i), simply observe that 1 ≥ β(X ′|X) = β(X|X) + β(X ′ \ X|X) ≥ 1. To prove (ii),

note that 1 = β(X|X) = β(X ′|X) + β(X \X ′|X) = β(X ′|X) + 1 (since X ⊆ X \X ′).

Next, let Y be another non-empty finite set and XY a non-empty finite subset of X × Y . Let

β∗ be a CPS on XY . For every X ′ ⊆ X and ∅ 6= X ⊆ X , define

β(X ′|X) := β∗({(x, y) ∈ XY : x ∈ X ′}|{(x, y) ∈ XY : x ∈ X}).

We argue that β is a CPS onX if the set {(x, y) ∈ XY : x ∈ X} is non-empty for every non-empty

X 6= ∅.

We clearly have that β(X|X) = 1 and from (i) above that β(X|X) = 1. Consider any triple

(X,X ′, X ′′) such that X ⊆ X ′ ⊆ X ′′ and X ′′ 6= ∅. If X ∩X ′ = ∅, we have that

β(X ∪X ′|X ′′) = β∗({(x, y) ∈ XY : x ∈ X ∪X ′}|{(x, y) ∈ XY : x ∈ X ′′}) =

β∗({(x, y) ∈ XY : x ∈ X} ∪ {(x, y) ∈ XY : x ∈ X ′}|{(x, y) ∈ XY : x ∈ X ′′}) =

β(X|X ′′) + β(X ′|X ′′).

Finally, we have that

β(X|X ′′) = β∗({(x, y) ∈ XY : x ∈ X}|{(x, y) ∈ XY : x ∈ X ′′}) =

β∗({(x, y) ∈ XY : x ∈ X}|{(x, y) ∈ XY : x ∈ X ′})×

β∗({(x, y) ∈ XY : x ∈ X ′}|{(x, y) ∈ XY : x ∈ X ′′}) =

β(X|X ′)β(X ′|X ′′).

Therefore, β is a well-defined CPS. These observations will prove to be useful in the proof below

of Theorem 2

(⇒). We first show that
⋃

Γπ an admissible expansion of Γ SCE(Γπ) ⊆ SBCE(Γ). Throughout, we fix

an admissible expansion Γπ of Γ. Recall that since the expansion is admissible, there exist kernels
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(ξt)t such that

πt+1(ht+1,mt+1, ωt+1|at, ht,mt, ωt) = ξt+1(mt+1|ht+1,mt, ωt+1)pt+1(ht+1, ωt+1|at, ht, ωt),

for all (ht+1,mt+1, ωt+1), for all t.

Fix a distribution µd ∈ SCE(Γπ). From the revelation principle of Sugaya and Wolitzky (2017,

Proposition 3), there exist a Myersonian extensionM(Γπ) of Γπ, where at each stage t, player i

receives the signal (hi,t,mi,t) ∈ Hi,t × Mi,t, reports the message xi,t ∈ Xi,t to the mediator,

receives the message yi,t ∈ Yi,t from the mediator, and takes the action ai,t ∈ Ai,t, and a CPPBE

((τ ∗, σ∗), µ∗, β∗) ofM(Γπ), such that the marginal of Pµ∗◦(τ∗,σ∗),π overHΩ isµd.25 (Here, (τ ∗, σ∗)

is the profile of strategies of the players, µ∗ is the mediator strategy, and β∗ is the conditional

probability system.)

To prove that µd ∈ SBCE(Γ), we construct a “fictitious” mediated multi-stage gameM(Γ∗),

where (i) each stage t has two sub-stages, and (ii) the mediator receives the signal (ht, ωt) at the

beginning of each stage. The mediated gameM(Γ∗) is as follows: at each stage t ∈ T ,

First sub-stage:

- player i receives the signal hi,t; the mediator receives the signal (ht, ωt);

- player i makes the report xi,t ∈ {xi,t} to the mediator;

- the mediator sends the message mi,t ∈Mi,t to player i;

- player i takes the action ai,t ∈ {ai,t};

Second sub-stage:

- player i reports xi,t ∈ Xi,t to the mediator;

- the mediator sends the message yi,t ∈ Yi,t to player i;

25The converse also holds, that is, for every Myersonian extensionM(Γπ) of Γπ and every CPPBE ofM(Γπ), the

marginal of Pµ∗◦(τ∗,σ∗),π over HΩ is in SCE(Γπ).
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- player i takes the action ai,t ∈ Ai,t.

Thus, the mediator is perfectly informed of the realization of (ht, ωt), while player i is informed

of hi,t. At the history (at−1, h
t−1,mt−1, ωt−1, xt−1, yt−1, xt−1, at−1), the probability of (ht, ωt) is

pt(ht, ωt|at−1, h
t−1,mt−1, ωt−1).

Finally, the payoffs ofM(Γ∗) are as in Γ, that is, if the profile of actions and states is ((a, a), ω),

the payoff to player i is ui(a, ω). This completes the description of the “fictitious” multi-stage

game.

Throughout, we slightly abuse notations and do not refer to the trivial sequence of reports x and

sequences of actions a to describe the histories. E.g., we write (hti,m
t
i, x

t
i, y

t
i) for (hti,m

t
i, x

t
i, y

t
i , x

t
i, a

t
i, ).

This is inconsequential since players have a single possible report and possible action at each first

sub-stage of a stage.

A non-trivial strategy for player i at stage t is a pair (τi,t, σi,t), with τi,t(xi,t|hti,mt
i, x

t−1
i , yt−1

i )

the probability of reporting xi,t at the private history (hti,m
t
i, x

t−1
i , yt−1

i ) and σi,t(ai,t|hti,mt
i, x

t
i, y

t
i)

the probability of playing ai,t at the private history (hti,m
t
i, x

t
i, y

t
i). (Formally, we would also need

to specify that player i reports xi,t and takes the action ai,t at the first sub-stage of each stage, but

again this is irrelevant.) Thus, the strategies inM(Γ∗) are essentially the same as inM(Γπ).

By construction, we have that ((τ ∗, σ∗), (ξ, µ∗), β∗) is a CPPBE of M(Γ∗), where again we

slightly abuse the notations to define the conditional probability system, that is, β∗(h,m, ω, x, y, x, a) :=

β∗(h,m, ω, x, y) for all (h,m, ω, x, y, x, a).

To conclude the proof, we invoke again the revelation principle of Sugaya and Wolitzky (2017).

Note that it is possible to do so, because Sugaya and Wolitzky allow for the mediator to receive

private signals. Therefore, µd is also a sequential communication equilibrium distribution of the

canonical mechanism:

First sub-stage:

- player i receives the signal hi,t; the mediator receives the signal (ht, ωt);
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- player i reports h̃i,t to the mediator;

- the mediator recommends the trivial action ai,t to player i;

- player i takes the trivial action ai,t;

Second sub-stage:

- player i reports ĥi,t to the mediator;

- the mediator recommends âi,t to player i; the mediator’s recommendation is conditional on

(ht, ωt, ât−1) as well as the players’ past and current reports.

- player i takes the action ai,t.

By the revelation principle, the players have an incentive to be truthful and obedient at all

their private histories consistent with the mediation ranges at which they have been truthful in the

past. Clearly, at all truthful histories consistent with the mediation ranges, the players must have

an incentive to obey the recommendation of the informed mediator; that is, we have a sequential

Bayes correlated equilibrium. Hence, µd ∈ SBCE(Γ), as required.

(⇐). We show that SBCE(Γ) ⊆
⋃

Γπ an admissible expansion of Γ CPPBE(Γπ).

Let (µ,R, β) be a sequential Bayes correlated equilibrium, with induced probability Pµ̄◦τ̄∗,p.

We now construct an expansion Γπ and a conditional probability perfect Bayesian equilibrium

(σ∗, β̂) of Γπ.

The expansion is as follows. For all i, for all t, let Mi,t = Ai,t,

π1(h1,m1, ω1) = p1(h1, ω1)µ1(â1|h1, ω1)

with m1 = â1, for all (h1,m1, ω1, â1), and

πt+1(ht+1,mt+1, ωt+1|at, ht,mt, ωt) = pt+1(ht+1, ωt+1|at, ht, ωt)µt+1(ât+1|ht+1, ωt+1, ât),

withmt+1 = ât+1, for all (at, h
t,mt, ωt, ât, ht+1,mt+1, ωt+1, ât+1) such that (ht, ωt, ât) ∈ H tΩtR

t
.

The constructed expansion is clearly admissible.
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By construction, note also that any strategy τ̄t : H t × At → ∆(At) ofM(Γ) is equivalent to a

strategy σt : H t ×M t → ∆(At) of Γπ, i.e., σt(at|ht,mt) := τ̄t(at|ht, ât) with mt = ât. We write

σ ≡ τ for such an equivalence. We associate σ∗ with τ ∗. Again, this is a product of behavioral

strategies.

By construction, for any σ, we have that

Pσ,π(ht+1,mt+1, ωt+1|ht,mt, ωt) =∑
at

πt+1(ht+1,mt+1, ωt+1|at, ht,mt, ωt)σt(at|ht,mt) =∑
at

pt+1(ht+1, ωt+1|at, ht, ωt)µ̄t+1(ât+1|ht+1, ωt+1, ât)τ̄t(at|ht, ât) =

Pµ̄◦τ̄ ,p(ht+1, ωt+1, ât+1|ht, ωt, ât),

with ât+1 = mt+1 and τ ≡ σ. This implies then that, for all t, all (h,m,ω, â) and (ht, ωt, ât) ∈

H tΩtR
t
:

Pσ,π(h,m,ω|ht,mt, ωt) = Pµ̄◦τ̄ ,p(h,ω, â|ht, ωt, ât),

withm = â and mt = ât, whenever τ ≡ σ.

Finally, notice that (h,m, ω) ∈ HMΩ if and only if

p1(h1, ω1)µ̄1(â1|h1, ω1) ·
T−1∏
t=1

pt+1(ht+1, ωt+1|at, ht, ωt)µ̄t+1(ât+1|ht+1, ωt+1, ât) > 0,

with â = m, and AT+1 a singleton.

Claim: If (h, â, ω) ∈ HMΩ, then (h, ω, â) ∈ HΩR.

Proof of the claim. From the consistency of the CPS, we have that∑
ât+1∈×iRi,t+1(ht+1

i ,âti)

µ̄t+1(ât+1|ht+1, ωt+1, ât) =
∑

ât+1∈×iRi,t+1(ht+1
i ,âti)

β̄(ât+1|ht+1, ωt+1, ât).

Moreover,

β̄(ât+1|ht+1, ωt+1, ât) =

β̄({(h,ω, â) ∈ HΩR : (ht+1,ωt+1, ât+1) = (ht+1, ωt+1, ât+1)}|

{(h,ω, â) ∈ HΩR :(ht+1,ωt+1, ât) = (ht+1, ωt+1, ât)}).
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Therefore, ∑
ât+1∈×Ri,t+1(ht+1

i ,âti)

β̄(ât+1|ht+1, ωt+1, ât) = 1,

since ⋃
ât+1∈×Ri,t+1(ht+1

i ,âti)

{(h,ω, â) ∈ HΩR : (ht+1,ωt+1, ât+1) = (ht+1, ωt+1, ât+1)} =

{(h,ω, â) ∈ HΩR : (ht+1,ωt+1, ât) = (ht+1, ωt+1, ât)}.

This proves the claim. �

From the claim above, (h,m, ω) ∈ HMΩ implies that (h, ω, â) ∈ HΩR, with m = â. We

denote that subset HΩR
∗
. Note that it is non-empty. We then identify β̂ on HMΩ with β on the

subset HMR
∗
, that is,

β̂(X|Y ) := β({(h, ω, â) ∈ HMR
∗

: (h, â, ω) ∈ X}|{(h, ω, â) ∈ HMR
∗

: (h, â, ω) ∈ Y },

for all X ⊆ HMΩ and ∅ 6= Y ⊆ HMΩ. From the preliminary observations on conditional

probability systems, β̂ is a well-defined conditional probability system.

From these definitions and the consistency of β with (τ ∗, µ, p), we immediately have consis-

tency of the CPS β̂ with (σ∗, π).

The above properties of Pσ,π and β̂ imply that for all (hti, â
t
i) ∈ H t

iR
t

i:

∑
ht,mt,ωt

Ui((σi, σ
∗
−i)|ht,mt,ωt)β̂(ht,mt,ωt|hti,mt

i) =
∑

ht,ωt,ât

Ui(µ◦(τ i, τ ∗−i)|ht,ωt, ât)β(ht,ωt, ât|hti, âti),

with m = â and mt = ât. It follows that (σ∗, β̂) is a conditional probability perfect Bayesian

equilibrium of Γπ.

To complete the proof, it suffices to recall that CPPBE(Γπ) ⊆ SCE(Γπ) for all expansions Γπ

of Γ.
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E A variation on Theorem 2

We say that (µ,R, β) is a strong sequential Bayes correlated equilibrium if it is a sequential Bayes

correlated equilibrium and there exists a sequence (τ k)k of completely mixed strategies converging

to τ ∗ with

β = lim
k

Pµ̄◦τ̄k,p.

We let SBCE∗(Γ) be the distribution over HΩ induced by the strong sequential Bayes correlated

equilibria of Γ. Note that SBCE∗(Γ) ⊆ SBCE(Γ). We argue that

SBCE∗(Γ) ⊆
⋃

Γπ an admissible expansion of Γ

SE(Γπ) ⊆ SBCE(Γ).

To prove the above claim, we revisit the only if part of the proof of Theorem 2. Define the

sequence (σk)k with σk ≡ τ k for all k. By construction of the expansion and the equivalence of σk

with τ k, we have that

Pσk,π(h,m,ω|ht,mt, ωt) = Pµ̄◦τ̄k,p(h,ω, â|ht, ωt, ât),

withm = â and mt = ât for all (ht, ωt, ât), for all t, and, therefore,

β = lim
k

Pσk,π.

Since σkt = ×σni,t for all (t, k), (σk)k is a sequence of completely mixed strategies. This completes

the proof.
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 
 



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