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1 Introduction

A large literature documents that the default contribution rate and the default asset

allocation in defined contribution pension plans have a large affect on employees’

saving for retirement.1 This raises the question of what is the optimal default policy.

This question can be broken down into two parts. First, what is the optimal default?

Second, how does the optimal default compare to not setting a default and forcing

employees to make a decision? The latter default policy is known as “active decision”

(AD).

Although these questions have been studied previously, there is a gap in the ex-

isting literature. On the one hand, the use of defaults is often motivated by the need

to “nudge” people towards better options, e.g., to better contribution rates or better

asset allocations.2 In particular, a common view is that, left to their own devices,

individuals would make systematic mistakes in choosing options, e.g., by undersav-

ing. On the other hand, the literature on optimal default policies assumes either that

individuals know their optimal options or that they have unbiased beliefs about them.

The current paper aims to address this gap by presenting and analysing a model

with the following key features. First, for each employee, there is an optimal option,

x, which corresponds either to her optimal contribution rate or to the optimal fraction

of her pension plan portfolio invested in stocks (with the rest of the portfolio being

invested in bonds).

Second, each employee is biased in the sense that, if her optimal option is x, her

preferred option (i.e., the one she would choose) absent a default is x + b. One can

interpret the bias, b, as a mistake that is either due to some kind of irrationality or to

the lack of information.3 Consider the following examples: (i) if one considers β = 1

as the normative benchmark within the β-δ model (Phelps and Pollak (1968) and

Laibson (1997)),4 individuals with β < 1 would tend to save too little, especially if

1See Madrian and Shea (2001), Choi et al. (2002, 2003, 2004a, 2004b, 2006), Beshears et al.
(2008), Carroll et al. (2009), and Chetty et al. (2014). Bronchetti et al. (2013) observe no default
effect.

2For example, see Thaler and Sunstein (2003).
3This bias is similar in spirit to a bias in a model in Campbell (2016), which assumes that some

consumers mistakenly believe that their utility from a given financial product is higher than it really
is. Both in the current paper and in Campbell’s model, the bias induces suboptimal choices.

4For example, this is the position taken in O’Donoghue and Rabin (1999) and Carroll et al.
(2009). However, this position is controversial (see Bernheim (2009) and Bernheim and Rangel
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they are näıve about their future savings behaviour;5 (ii) if young people with ex-

ponential growth bias6 underestimate the long-term difference in wealth that results

from investing in stocks at a, say, seven percent annual return rather than in bonds at

a, say, one percent annual return, they would underweight stocks in their retirement

portfolios; (iii) if young people are not aware of the high historical equity premium7

or of the fact that historically equity returns have dominated bond returns over long

horizons, they are likely to underweight stocks in their retirement portfolios.8,9 Al-

ternatively, one can view the bias as reflecting an externality rather than a mistake.

For example, if a perfectly rational employee saves little for retirement because she

anticipates being bailed out by the government, she would not be undersaving from

the point of view of her own interest, but would be undersaving from the point of

view of the government.

Third, if the planner (e.g., the employer or government official designing the pen-

sion plan) uses a default, D, each employee updates her preferred option in the

direction of the default. In particular, an employee’s updated preferred option equals

αD + (1 − α)(x + b), where 0 < α < 1 captures the strength of the updating. This

feature of the model is motivated by several pieces of evidence. Madrian and Shea

(2001) find that employees hired before automatic enrolment for new hires allocated

three times as much to new hires’ default investment fund if they chose their asset

allocation after the introduction of automatic enrolment for new hires. Madrian and

Shea also report evidence that employees hired after automatic enrolment who had

(2009)).
5An empirical literature investigates whether people actually undersave (relative to the discounted

utility benchmark). The findings in this literature are mixed. (For an overview of some of the issues
as well as further references, see Poterba (2015).)

6For evidence for exponential growth bias, see Eisenstein and Hoch (2005), Stango and Zinman
(2009), as well as Levy and Tasoff (2016).

7There is some suggestive evidence of such unawareness: Beshears et al. (2017) report that
experimental subjects invest more heavily in stocks when they are shown data on historical returns.

8Bernartzi and Thaler (1999) report that experimental subjects invest more heavily in stocks
when shown 30-year rather than 1-year return distributions. Beshears et al. (2017) find that this
effect is not robust, at least when subjects are shown 5-year vs. 1-year return distributions.

9There is evidence that education (Campbell (2006) and Calvet, Cambell, and Sodini (2007)) and
IQ (Grinblatt, Keloharju, and Linnainmaa (2011)) have a positive effect on stock market partici-
pation. This is consistent with the view that nonparticipation, or, more generally, low investment
in equities, is often a mistake. Bach, Calvet, and Sodini (2016) show that wealthier households in
Sweden hold riskier financial portfolios. The associated higher average returns substantially increase
inequality in financial wealth. Thus, to the extent that limited exposure to stocks is a mistake, it is
one that contributes to inequality.
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opted out of the default contribution rate or default investment fund were still much

more heavily invested in the default investment fund than employees hired before

automatic enrolment. Using a clever econometric procedure to estimate employees’

preferred contribution rates, Beshears et al. (2016) find that these are affected by the

default contribution rate, especially in the case of young, low-income employees.10 Fi-

nally, if employees update their preferred contribution rates based on the default, this

would explain their reluctance to opt out of the default without any need to invoke

unrealistically high opt-out costs (see section II D in Bernheim et al. (2015)).11

Fourth, if an employee has to decide actively, either because she opts out of the

default or because the default policy is AD, she incurs a cost, c.

Fifth, employees are heterogeneous–their optimal options are assumed to be uni-

formly distributed on an interval of length 2ǫ, so that ǫ captures the degree of het-

erogeneity.

Finally, if an employee ends up with option x′ when her optimal option is x, this

entails a loss from deviations equal to |x− x′|. An optimal default policy is one that

minimises the total loss in the population.

After presenting the details of this model, which we will refer to as the baseline

model, in section 2, the paper proceeds as follows. Section 3 characterises the op-

timal default as a function of the parameters (α, b, c, ǫ). It is shown that, for each

configuration of the parameters, there is a unique optimal default, which belongs to

one of six qualitatively different types of defaults.

Section 4 characterises the optimal default policy. In particular, this section shows

that, for some values of the parameters, AD is better than the optimal default. This

occurs because a default is a blunt tool for influencing employees’ preferred options

and, as a result, the optimal default may end up making some employees more biased,

either by exacerbating their existing bias or by inducing a larger bias in the opposite

direction. Section 4 also reveals a complicated relationship between the parameters

and the optimal default policy. Some patterns in this relationship are discussed.

10Somewhat at odds with this, Madrian and Shea (2001) find that employees hired before auto-
matic enrolment for new hires had contribution rates that were unaffected by whether they chose
their contribution rates before or after the introduction of automatic enrolment for new hires.

11The two popular explanations for why individuals update their preferred options in light of the
default are that (i) they view the default as a recommendation by the employer or (ii) they use the
default as a psychological anchor (Tversky and Kahneman (1974)).
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Section 5 notes that, for each parameter, the total loss at the optimal default

policy need not be monotone in it. Thus, somewhat surprisingly, if employees pay

more attention to the default (a higher α), have a smaller bias (a lower |b|), or are

less heterogeneous (a lower ǫ), this doesn’t always lead to a lower total loss at the

optimal default policy.

For purposes of tractability, the baseline model is designed to be as simple as possi-

ble. As a result, it lacks realism in many ways. Section 6 discusses (without analysing

in depth) some variations of the baseline model that add realism in important ways.

One of the insights from this paper is just how complicated the analysis of the

optimal default policy is. Section 7 discusses this complexity. Section 8 concludes.

The most closely related papers from the literture are Carrol et al. (2009) and

Bernheim et al. (2015), which uses the behavioural welfare framework of Bernheim

and Rangel (2009). Adopting β = 1 as the normative benchmark, Carrol et al.

(2009) solve for the optimal default policy in a model in which employees with β-

δ preferences procrastinate opting out of suboptimal defaults. That model is quite

different from the baseline model. In Carroll et al. (2009), employees are not biased

and their preferred options are not influenced by the default. On the other hand, the

central issue in Carroll et al. (2009) is that employees procrastinate switching from

the default. This issue is not present in the baseline model. However, there is a close

correspondence between the parameter β which governs procrastination in Carroll et

al. (2009) and a parameter in a variation on the baseline model discussed in section

6.2.

Bernheim and Rangel (2009) introduce a framework for conducting welfare anal-

ysis in situations in which individuals make different choices under different frames.

Bernheim and Rangel’s approach is to first prune frames in which individuals’ choices

are based on a lack of understanding of the environment. The remaining frames

are treated as welfare relevant, i.e., contradictory choices under these frames are all

treated as equally valid from a normative perspective.

Bernheim et al. (2015) apply this framework to the question of optimal default

contribution rates. In particular, they consider three models of choice in which be-

haviour is frame-dependent: a model with partially naive β-δ employees (sophistica-

tion and complete näıveté being special cases), a model with inattentive employees,
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and an “anchoring” model in which employees update their preferred contribution

rates based on the default. Given a model of choice, two other ingredients in the wel-

fare analysis are the naturally occurring frame (i.e., the frame under which choices

are actually made) and the set of welfare-relevant frames from which the outcome in

the naturally occurring frame is evaluated. Because different defaults lead to differ-

ent outcomes under the naturally occurring frame and employees may evaluate these

outcomes differently under different welfare-relevant frames, it may not be possible to

unambiguously pin down an optimal default. Surprisingly, for the pertinent parame-

ter values, it is often possible to pin down the optimal default without much ambiguity

both in the model with partially naive β-δ employees and the model with inatten-

tive employees. However, in the anchoring model, one cannot make precise welfare

statements without dramatically restricting the set of welfare-relevant frames. This

normative ambiguity is especially relevant given that, according to Bernheim et al.,

the anchoring model provides the most plausible explanation for employees’ reluctance

to opt out of the default.12

Bernheim et al. (2015) and the current paper differ in a number of respects. First,

the current paper assumes a single welfare-relevant perspective. On the one hand,

this makes the current paper less general. On the other, it allows us to avoid dealing

with normative ambiguity. Second, a central issue in Bernheim et al. (2015) is that

inattentiveness or, just like in Carroll et al. (2009), β < 1 in the β-δ model with a

no-commitment frame impede opting out. This issue is not present in the baseline

model. However, it does play a central role in the variation on the baseline model

discussed in section 6.2. Third, the approach in Bernheim et al. does not allow us to

say much about the optimal default policy if employees’ preferred contribution rates

absent a default involve a bias.13 Fourth, while the analysis in Bernheim et al. (2015)

is largely geared towards default contribution rates, the current analysis is equally

applicable to the default allocation to stocks.

Two other related studies are Carlin et al. (2013) and Wisson (2016). In these

12Bernheim et al. suggest that, in the anchoring model, one might be able to use AD as the only
welfare-relevant frame because of its neutrality. This is clearly not appropriate in a context in which
employees’ preferred options absent a default involve a bias.

13In the model with partially naive β-δ employees and the model with inattentive employees,
each employee’s preferred contribution rate is the same in all frames. In the anchoring model, an
employee’s preferred contribution rate differs across frames, but the normative ambiguity does not
allow us to say much about the optimal default policy.
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papers, each individual doesn’t know her optimal option, but has an unbiased belief

about it and can learn about it if she incurs a cost. In Carlin et al. (2013), defaults

are informative and, thus, discourage individuals from learning about their optimal

options.14 Because learning involves a positive externality, AD may be optimal. In

Wisson (2016), individuals with β-δ preferences are excessively reluctant to incur the

cost of learning or free-ride by letting others incur this cost. As a result, the optimal

default policy may be an extreme default that induces individuals to incur the cost

of learning.

2 The Baseline Model

The baseline model has the following components. First, for each employee, there is

an optimal option, x, which corresponds either to her optimal contribution rate or

to the optimal fraction of her pension plan portfolio invested in stocks. Employees’

optimal options are assumed to be uniformly distributed on [r, r + 2ǫ] ⊆ [0, 1], where

ǫ > 0 captures the degree of heterogeneity. This assumption is clearly a simplification.

Notably, it excludes the realistic possibility that there is a positive mass of employees

with (i) optimal contribution rate equal to zero or to the maximum contribution rate

that benefits from an employer match or (ii) optimal allocation to stocks that equals

zero or one.

Second, each employee is biased in the sense that, if her optimal option is x, her

preferred option absent a default is x + b. We assume b ≤ 0, which is without loss

of generality.15 We opt for an additive bias because it greatly simplifies the analysis.

However, there is no reason to believe that an additive bias is more realistic than,

say, a multiplicative bias. In addition, with an additive bias, x + b < 0 for some

employees if |b| > r. Allowing some employees to choose x + b < 0 absent a default

is unrealistic given that employees typically cannot choose a negative contribution

rate or to short-sell stocks in their retirement portfolios. To avoid this possibility, we

14A similar mechanism is at work in Caplin and Martin (2017).
15If the employee has a tendency to set the contribution rate or the allocation to stocks too high,

we can simply think of x as the optimal fraction of her salary that she does not contribute towards
her pension plan or as the optimal fraction of her portfolio invested in bonds, respectively. With
this relabelling, the assumption b ≤ 0 would be appropriate.
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assume |b| ≤ r.16 This assumption may itself be unrealistic. E.g., it is plausible that,

say, young, cash-strapped individuals have an optimal contribution rate of zero, so

that r = 0 and |b| > r for any b < 0. Note that, even if |b| > r, the consequences of

incorrectly assuming |b| ≤ r would not be severe as long as |b| − r is small relative to

2ǫ.17

Third, if the planner uses a default, D, each employee updates her preferred option

to x̂ = αD+(1−α)(x+ b), where 0 < α < 1 captures the strength of the updating.18

This assumptions may be unrealistic if D is very far from x–in that case it is plausible

that the employee simply disregards x.

Fourth, if an employee has to decide actively, either because she opts out of the

default or because the default policy is AD, she incurs a cost, c ≥ 0. We will refer to

c as the opt-out cost, even though there is no opting out under AD. We interpret c as

reflecting only implementation costs, i.e., the time and effort required to contact the

relevant people in the human resources department, to fill in the necessary paperwork,

etc.19

Fifth, we assume a linear loss from deviations. If an employee ends up with

option x′ when her optimal option is x and (assuming there is a default) her updated

preferred option is x̂, this entails a loss from deviations equal to |x−x′| and a perceived

loss from deviations (from the point of view of the employee) equal to |x̂− x′|.20 In

reality, factors such as employer-match and tax-bracket thresholds, compounding of

returns, and nonlinear utility of consumption are all likely to render a nonlinear loss

from deviations more appropriate.

16Assuming |b| ≤ r will also ensure that the constraints in problem (2) below are not inconsistent
and that the optimal default is nonnegative, which will allow us to avoid some complications arising
from a corner solution.

17Suppose that |b| > r. In this case, incorrectly assuming |b| ≤ r is like ignoring the employees
with x ∈ [r, |b|) and treating the employees with x ∈ [|b|, r+2ǫ] as the whole population. Employees

with x ∈ [r, |b|) have mass min
( |b|−r

2ǫ
, 1
)

, so that ignoring them would not affect the welfare analysis
much as long as |b| − r is small relative to 2ǫ.

18The appendix considers the cases α = 0 and α = 1.
19Sections 6.1 and 6.2 consider other possibilities.
20We could set these losses equal to λ|x − x′| and λ|x̂ − x′|, respectively, where λ > 0. However,

the optimal default policy would be the same if λ = 1 and the opt-out cost is c and if λ = λ′ and the
opt-out cost is λ′c. Thus, λ = 1 is a normalisation. Note that this normalisation does not absolve
us from the need to estimate λ if we wish to plug in realistic parameter values into the model. In
particular, suppose that in reality the opt-out cost equals $30 and the loss from a one-unit deviation
equals λ 6= 1 in dollar terms. Then, we need to plug c = 30

λ
into our model.
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In this setup, how does an employee with optimal option x behave and what loss

does she incur? Under AD, the employee incurs the cost c and chooses x + b. As a

result, she incurs a loss equal to c+ |x+ b− x| = c− b.

How about if she faces a default, D? Letting ∆ = x−D, the loss associated with

staying with the default is |∆|. However, the perceived loss is |x̂−D| = (1−α)|∆+b|.

The employee stays with the default if c ≥ (1 − α)|∆ + b|, which can be written as

∆L ≤ ∆ ≤ ∆R, where ∆L = − c
1−α

− b and ∆R = c
1−α

− b. If the employee opts out,

she incurs the cost c and chooses x̂, so that her loss is c+|x−x̂| = c+α|∆−∆1|, where

∆1 =
1−α
α

b. ∆1 is the value of ∆ for which the employee’s bias is completely eliminated

after she observes the default, so that x̂ = x. The further away an employee’s ∆ is

from ∆1, the less suitable the default is for correcting her bias.

Given the remarks in the previous paragraph, the loss of an employee with optimal

option x who faces a default D is captured by the following function:

L(∆, α, b, c) =

{

|∆| if ∆L ≤ ∆ ≤ ∆R

c+ α|∆−∆1| otherwise
. (1)

This function depends on x and D only through ∆, which greatly simplifies the

analysis.

Figure 1 shows the graph of L(·, α, b, c) for each of the cases ∆L ≤ ∆1, ∆1 < ∆L ≤

0, and ∆L > 0. The following lemma establishes that key features of Figure 1 hold

more generally.

Lemma 1

1) L(·, α, b, c) is continuous at ∆R.

2) If ∆L ≤ ∆1, L(·, α, b, c) is continuous at ∆L.

3) If ∆1 < ∆L ≤ 0, L(∆L, α, b, c) < c < lim∆↑∆L
L(∆, α, b, c).

4) If ∆L > 0, L(∆L, α, b, c) ≤ lim∆↑∆L
L(∆, α, b, c), the inequality being strict if

and only if c > 0.
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ΔL ΔRΔ1 0
Δ

ΔL≤Δ1

ΔL ΔRΔ1 0
Δ

Δ1<ΔL≤0

ΔL ΔRΔ1 0
Δ

ΔL>0

Figure 1: Graph of L(·, α, b, c).

3 The Optimal Default

In this section, we set up and solve the planner’s problem for finding the optimal

default. The next section addresses the possibility that the optimal default policy is

AD.

We assume that the planner faces two constraints. First, we assume 0 ≤ D ≤ 1.

This simply reflects the natural constraint that the planner cannot set a default

contribution rate or a default allocation to stocks outside of [0, 1]. Second, we assume

that D must be such that, for at least some value of x ∈ [r, r + 2ǫ], employees are

willing to stay with the default. This assumption reflects the fact that, if the planner

were to set a default from which everybody opts out, she is likely to face employees’

resentment or even lawsuits.21

Given that the different possible optimal values of x lie in [r, r + 2ǫ], the cor-

responding ∆’s lie in [r − D, r + 2ǫ − D], the latter interval being a translation of

the former interval by D to the left. By choosing D, the planner shifts around the

interval [r−D, r+2ǫ−D] on the horizontal axis in each panel in Figure 1. Denoting

the upper endpoint of this interval as ∆̄ (i.e., ∆̄ = r + 2ǫ − D), we can think of

the planner as directly choosing ∆̄. For a given ∆̄, the position of the default, D,

relative to [r, r+2ǫ] can be inferred from the position of ∆ = 0 relative to the interval

[∆̄− 2ǫ, ∆̄]. E.g., if ∆ = 0 is below/in the lower end of/in the middle of/in the upper

end of/above [∆̄−2ǫ, ∆̄], then D is below/in the lower end of/in the middle of/in the

upper end of/above [r, r + 2ǫ].

The total loss in the population associated with a given value of ∆̄ equals 1
2ǫ

times

the area under L(·, α, b, c) over the interval [∆̄− 2ǫ, ∆̄]. The optimal ∆̄ solves:

21This constraint also significantly facilitates the analysis by making the planner’s objective func-
tion in problem (2) below unimodal.
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min
r + 2ǫ − 1 ≤ ∆̄ ≤ r + 2ǫ,

∆L ≤ ∆̄ ≤ ∆R + 2ǫ

1

2ǫ

∫ ∆̄

∆̄−2ǫ

L(∆, α, b, c)d∆. (2)

The first constraint is equivalent to 0 ≤ D ≤ 1. The second constraint captures the

requirement that at least some employees would be willing to stay with the default.

The following proposition characterises the solution to problem (2).

Proposition 1 Let ∆′ = c
1−α

− 2α
1−α

ǫ − b and ∆′′ = c
1+α

+ 2α
1+α

ǫ + 1−α
1+α

b. The unique

solution to problem (2) is:

∆̄(α, b, c, ǫ) =

=















































ǫ if ∆L ≤ −ǫ

∆L + 2ǫ if L(∆L, α, b, c) < L(∆L + 2ǫ, α, b, c) ≤ lim∆↑∆L
L(∆, α, b, c)

∆′ if ∆′ > ∆L,∆1 ≤ ∆′ − 2ǫ < ∆L

∆′′ if ∆L < ∆′′ ≤ ∆R,∆
′′ − 2ǫ < ∆L,∆

′′ − 2ǫ < ∆1

∆1 + ǫ if ∆1 + ǫ > ∆R

∆L if L(∆L − 2ǫ, α, b, c) ≤ L(∆L)

(3)

=























































ǫ if c ≥ (1− α)ǫ− (1− α)b

∆L + 2ǫ if c < (1− α)ǫ− (1− α)b, c ≥ ǫ

∆′ if c > αǫ, c ≥ 2ǫ+ 1−α
α

b, c < ǫ

∆′′ if c > −α(1− α)ǫ− (1− α)b, c ≥ (1− α)ǫ+ 1−α
α

b,

c < (1− α)ǫ− (1− α)b, c < 2ǫ+ 1−α
α

b

∆1 + ǫ if c < (1− α)ǫ+ 1−α
α

b

∆L if c ≤ αǫ, c ≤ −α(1− α)ǫ− (1− α)b

(4)

Expression (4) rewrites the conditions in each case in expression (3) in terms of the

underlying parameters. By way of notation, let Ψ(α, b, c, ǫ) =
∫ ∆̄(α,b,c,ǫ)

∆̄(α,b,c,ǫ)−2ǫ
L(∆, α, b, c)d∆,

so that 1
2ǫ
Ψ(α, b, c, ǫ) is the total loss associated with ∆̄(α, b, c, ǫ).

The first case in expressions (3) and (4) is illustrated in the two panels of Figure

2 (one panel for ∆L ≤ ∆1 and one for ∆1 < ∆L ≤ 0).22 This case corresponds to

a default placed in the middle of [r, r + 2ǫ], with nobody opting out. We call it the

all-stay centre (AS-C) default.

22∆L ≤ −ǫ rules out ∆L > 0.
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ΔL ΔR0 ϵ-ϵ
Δ

ΔL≤Δ1

ΔL ΔR0 ϵ-ϵ
Δ

Δ1<ΔL≤0

Figure 2: AS-C default (∆̄(α, b, c, ǫ) = ǫ). The shaded area equals Ψ(α, b, c, ǫ).

ΔL ΔR0 ΔL+2ϵ
Δ

Δ1<ΔL≤0

ΔL ΔR0 ΔL+2ϵ
Δ

ΔL>0

Figure 3: AS-L default (∆̄(α, b, c, ǫ) = ∆L +2ǫ). The shaded area equals Ψ(α, b, c, ǫ).

The second case in expressions (3) and (4) is illustrated in the two panels of Figure

3 (one panel for ∆1 < ∆L ≤ 0 and one for ∆L > 0).23 This case corresponds to a

low default placed either inside [r, r+2ǫ] near its lower endpoint (left panel) or below

[r, r + 2ǫ] (right panel). Either way, nobody opts out. We call this the all-stay low

(AS-L) default.

The third case in expressions (3) and (4) is illustrated in the two panels of Figure

4 (one panel for ∆1 < ∆L ≤ 0 and one for ∆L > 0).24 Note that ∆′ is the value of ∆

where the linear extension of the right branch of c + α|∆ − ∆1| shifted to the right

by 2ǫ and the linear extension of the right branch of |∆| intersect,25 which is why

L(∆′) = L(∆′ − 2ǫ) in the figure. This case corresponds to a default placed either

inside [r, r + 2ǫ] (left panel) or below [r, r + 2ǫ] (right panel).26 Employees with high

values of x stay while those with low values of x opt out. We call this the type-1

high-stay (HS1) default.

23c < (1−α)ǫ−(1−α)b and c ≥ ǫ imply c < (1−α)c−(1−α)b. The latter inequality is equivalent
to ∆1 < ∆L. Thus, the case ∆L ≤ ∆1 is ruled out.

24Obviously, ∆1 < ∆L rules out the case ∆L ≤ ∆1.
25I.e., ∆′ is the solution to ∆ = c+ α(∆− 2ǫ−∆1).
26In the right panel, we could also have ∆′ − 2ǫ < 0 (if ǫ were slightly larger).
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ΔL ΔRΔ1 0 Δ'Δ'-2ϵ
Δ

Δ1<ΔL≤0

ΔL ΔRΔ1 0 Δ'Δ'-2ϵ
Δ

ΔL>0

Figure 4: HS1 default (∆̄(α, b, c, ǫ) = ∆′). The shaded area equals Ψ(α, b, c, ǫ).

ΔL ΔR0 Δ''Δ''-2ϵ
Δ

ΔL≤Δ1

ΔL ΔR0 Δ''Δ''-2ϵ
Δ

Δ1<ΔL≤0

ΔL ΔR0 Δ''Δ''-2ϵ
Δ

ΔL>0

Figure 5: HS2 default (∆̄(α, b, c, ǫ) = ∆′′). The shaded area equals Ψ(α, b, c, ǫ).

The fourth case in expressions (3) and (4) is illustrated in the three panels of

Figure 5 (one panel for ∆L ≤ ∆1, one for ∆1 < ∆L ≤ 0, and one for ∆L > 0). Note

that ∆′′ is the value of ∆ where the linear extension of the left branch of c+α|∆−∆1|

shifted to the right by 2ǫ and the linear extension of the right branch of |∆| intersect,27

which is why L(∆′′) = L(∆′′ − 2ǫ) in the figure. This case corresponds to a default

placed inside [r, r + 2ǫ], nearer to the upper endpoint.28 Employees with high values

of x stay while those with low values of x opt out. We call this the type-2 high-stay

(HS2) default.

The fifth case in expressions (3) and (4) is illustrated in the three panels of Figure

6 (one panel for ∆L ≤ ∆1, one for ∆1 < ∆L ≤ 0, and one for ∆L > 0). It corresponds

to a default placed inside [r, r + 2ǫ], nearer to the upper endpoint. Employees with

intermediate values of x stay, while those with high or low values of x opt out. We

call this the middle-stay high interior (MS-HI) default.

The sixth case in expressions (3) and (4) is illustrated in the two panels in Figure

7 (one panel for ∆L > 0 and ∆L − 2ǫ ≥ ∆1 as well as one panel for ∆L > 0 and

27I.e., ∆′′ is the solution to ∆ = c− α(∆− 2ǫ−∆1).
28∆′′ − 2ǫ < ∆L is equivalent to ∆′′ < −(∆′′ − 2ǫ). Thus, ∆ = 0 is closer to ∆′′ than to ∆′′ − 2ǫ

in each panel of Figure 5.
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ΔL ΔRΔ10 Δ1+ϵΔ1-ϵ
Δ

ΔL≤Δ1

ΔL ΔRΔ1 0 Δ1+ϵΔ1-ϵ
Δ

Δ1<ΔL≤0

ΔL ΔRΔ1 0 Δ1+ϵΔ1-ϵ
Δ

ΔL>0

Figure 6: MS-HI default (∆̄(α, b, c, ǫ) = ∆1+ ǫ). The shaded area equals Ψ(α, b, c, ǫ).

ΔL ΔRΔ1 0 ΔL-2ϵ
Δ

ΔL>0 and ΔL-2ϵ≥Δ1

ΔL ΔRΔ1 0ΔL-2ϵ
Δ

ΔL>0 and ΔL-2ϵ<Δ1

Figure 7: NS-corner default (∆̄(α, b, c, ǫ) = ∆L). The shaded area equals Ψ(α, b, c, ǫ).

∆L − 2ǫ < ∆1).
29,30 This corresponds to a default placed so that only an employee

with x = r (i.e., with the lowest possible x) is willing to stay. Because the set of

employees with x = r has mass zero, we call this the none-stay corner (NS-corner)

default.

Note that three of the six types of defaults discussed above–namely the HS1, HS2,

and NS-corner defaults–are at odds with the suggestion in Thaler and Sunstein (2003)

that the optimal default minimise the number of people opting out.

The proof that the optimal default is given by expression (3) is based on the fact

that, as ∆̄ moves away from ∆̄(α, b, c, ǫ) on [∆L,∞) in each panel of Figures 2-7,
∫ ∆̄

∆̄−2ǫ
L(∆, α, b, c)d∆ monotonically increases.

To conclude this section, let RAS-C, RAS-L, RHS1, RHS2, RMS-HI, and RNS-corner

denote the regions of the parameter space in which the conditions in case 1-6, respec-

tively, in expressions (3) and (4) hold. For a region of the parameter space, R, let

R(α, ǫ) denote its section for fixed α and ǫ in (|b|, c)-space. The left panel in Figure 9

illustrates RAS-C(0.35, 0.1), RAS-L(0.35, 0.1), etc. The right panel is analogous, except

that α is fixed at 0.65 instead of at 0.35. (For now ignore the shading near the origin

in each panel in the figure.) The figure also shows in square brackets the value of

29∆L ≤ 0 implies L(∆L − 2ǫ, α, b, c) > L(∆L) (see Figure 1). Thus, L(∆L − 2ǫ, α, b, c) ≤ L(∆L)
implies ∆L > 0.

30In the left panel, we could also have ∆L − 2ǫ < 0 (if ǫ were slightly larger).

14



∆̄(α, b, c, ǫ) in each region. This figure is discussed further in the next section.

4 Optimal Default Policy

The optimal default policy is either ∆̄(α, b, c, ǫ) or AD depending on whether 1
2ǫ
Ψ(α, b, c, ǫ)

or the total loss under AD, c − b, is smaller, respectively. Before characterising the

optimal default policy, let us pause and consider the question: Why would AD ever

be optimal? The reason is that a default is a blunt tool for influencing employees’

preferred options. As a result, the optimal default may end up making some employ-

ees more biased, either by exacerbating their existing bias or by inducing a larger (in

absolute value) bias in the opposite direction. In particular, for an employee with

∆ > −b, the default is below x + b (∆ > −b is equivalent to D < x + b), so that

it exacerbates her bias; for an employee with ∆ < 2−α
α

b, the default is so far above

x that it not only undoes her bias, but also biases her by more than |b| in the other

direction (∆ < 2−α
α

b is equivalent to x̂ > x − b). The default attenuates the bias of

an employee with 2−α
α

b < ∆ < −b (2−α
α

b < ∆ < −b is equivalent to |x− x̂| < |b|).

Given a default, we can classify each employee into one of the following four

categories depending on how she fares under it relative to under AD.31

A) The employee’s bias is made worse by the default, she opts out, and makes a

worse choice than under AD.

B) The employee’s bias is made worse by the default, she stays with the default,

and she is worse off than under AD.

C) The employee’s bias is made worse by the default, she stays with the default,

and she is better off than under AD.

D) The employee’s bias is attenuated by the default, which implies that she is

better off than under AD.32

31We omit from this classification employees who fare equally well under the default and under
AD. We can safely do this, because these employees are of measure zero.

32If the employee opts out, she is clearly better off than under AD. If she stays with the default and
∆ ≥ 0, she is better off than under AD: ∆ < −b (which holds if the employee’s bias is attenuated)
and ∆ ≥ 0 imply |∆| < c− b. If she stays with the default and ∆ < 0, she is again better off than
under AD: (2−α)b < α∆ (which holds if the employee’s bias is attenuated), −c−(1−α)b ≤ (1−α)∆
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Figure 8: Example in which AD is better than the optimal default. Employees
with ∆ ∈ (2−α

α
b, c − b) are better off under the optimal default. Employees with

∆ ∈ [∆̄(α, b, c, ǫ)− 2ǫ, ∆̄(α, b, c, ǫ)] \ [2−α
α

b, c− b] are better off under AD.

When the interests of employees in categories A) and B) outweigh the interests of

those in categories C) and D), AD is the optimal default policy. To illustrate such a

case, consider Figure 8. In the figure, employees with ∆̄(α, b, c, ǫ) − 2ǫ ≤ ∆ < 2−α
α

b

or ∆R < ∆ ≤ ∆̄(α, b, c, ǫ) fall in category A); employees with c − b < ∆ ≤ ∆R fall

in category B); employees with −b < ∆ < c − b fall in category C); employees with
2−α
α

b < ∆ < −b fall in category D). The figure is drawn so that the interests of

employees in categories A) and B) outweigh the interests of those in categories C)

and D)–the two dark gray areas taken together are larger than the light gray area.

Let us now characterise the optimal default policy.

Proposition 2

1) The equation 1
2ǫ
Ψ(α, b, c, ǫ) = c − b implicitly defines a unique function cAD :

{(α, b, ǫ) ∈ (0, 1)× (−∞, 0]× (0,∞) : b ≥ −αǫ
2
} → [0,∞).

2) The set of optimal default policies is

(which holds given that the employee stays with the default), and ∆ < 0 imply |∆| < c− b (to see
this, add the first two inequalities).
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{∆̄(α, b, c, ǫ)} if c > cAD(α, b, ǫ) or b < −αǫ
2

{∆̄(α, b, c, ǫ),AD} if c = cAD(α, b, ǫ)

{AD} if c < cAD(α, b, ǫ)

.

3) cAD is increasing in b and nondecreasing in α. cAD(α,−αǫ
2
, ǫ) = 0 and cAD(α, 0, ǫ) =

{

ǫ
√

α(1− α) if α < 0.5

0.5ǫ if α ≥ 0.5
.

The left panel of Figure 9 shows the graph of cAD(0.35, ·, 0.1) in (|b|, c)-space as

the northern boundary of the shaded region around the origin. The right panel is

analogous, except that α is fixed at 0.65. AD is optimal in the shaded region, which

we will denote by RAD(α, ǫ), and ∆̄(α, b, c, ǫ) is optimal outside of it (or on its northern

boundary).

Figure 9 holds ǫ constant at 0.1. The following proposition tells us how each panel

in the figure changes when ǫ varies.

Proposition 3 For k > 0, (i) the AS-C/AS-L/HS1/HS2/MS-HI/NS-corner default

is the optimal default given (α, b, c, ǫ) if and only if it is the optimal default given

(α, kb, kc, kǫ) and (ii) AD is an optimal default policy given (α, b, c, ǫ) if and only if

it is an optimal default policy given (α, kb, kc, kǫ).

The proposition implies that, for any arbitrary ǫ, we can obtain a version of each

panel of Figure 9 by stretching each of the regions in the panel by a factor of ǫ
0.1

away

from the origin.

Note that Figure 9, coupled with the last observation, reveals a complicated re-

lationship between, on the one hand, the parameters and, on the other hand, the

optimal default and the optimal default policy. Below, some key patterns are identi-

fied.33 Whenever possible, an explanation for the observed pattern is provided.34

1. Fixing α, b, and c, the MS-HI default is the optimal default (i.e., ∆̄(α, b, c, ǫ) =

∆1+ ǫ) for ǫ large enough. This holds because, as ǫ → ∞, ∆1+ ǫ > ∆R, so that

the fifth case in expression (3) applies.

33Given that the inequalities in each case in expression (4) are linear in b and c, it is straightforward
to verify that these patterns hold more generally, not just for the values of α and ǫ used in Figure 9.

34Regarding any statement below that holds if ǫ or |b| is large enough, one should keep in mind
that the constraints |b| ≤ r and r + 2ǫ ≤ 1 may render the values of ǫ or |b|, respectively, that are
large enough infeasible.
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RAS-L(α, ϵ)
[ L+2 ϵ]

RAS-C(α , ϵ)
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RHS1(α, ϵ)
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RNS-corner(α, ϵ)
[ L]

RHS2(α, ϵ)
[ ' ' ]

RMS-HI(α,ϵ)

[� 1+ϵ]

0.1 0.2 0.3
|b|

0.05

0.1

0.15

c

α=0.35, ϵ=0.1

RAS-L(α, ϵ)
[ L+2ϵ]

RAS-C(α, ϵ)
[ϵ]

RHS1(α, ϵ)
[ ' ]

RNS-corner(α , ϵ)
[ L]

RHS2(α, ϵ)
[ ' ' ]

RMS-HI(α,ϵ)
[ 1+ϵ]
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|b|

0.05

0.1
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α=0.65, ϵ=0.1

Figure 9: RAS-C(α, ǫ), RAS-L(α, ǫ), RHS1(α, ǫ), RHS2(α, ǫ), RMS-HI(α, ǫ), RNS-corner(α, ǫ), and RAD(α, ǫ). RAD(α, ǫ) is the
shaded region. ∆̄(α, b, c, ǫ) is given in square brackets.
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2. Fixing α, b, and c, AD is the optimal default policy for ǫ large enough. This

holds because, as ǫ → ∞, (i) the MS-HI default is the optimal default (by

the previous point), (ii) the average value of L(·, α, b, c) over [∆̄(α, b, c, ǫ) −

2ǫ, ∆̄(α, b, c, ǫ)] = [∆1−ǫ,∆1+ǫ] becomes arbitrarily large, so that 1
2ǫ
Ψ(α, b, c, ǫ)

becomes arbitrarily large, and (iii) the total loss associated with AD, c − b, is

unaffected by ǫ. Intuitively, when ǫ is large, even with the optimal default most

employees’ ∆’s lie both outside of [2−α
α

b,−b] and outside of [∆L,∆R], so that

they fall in category A) above.35

3. AD is optimal at (α, kb, kc, ǫ) for small enough k > 0. By Proposition 3, this

statement is equivalent to the statement “AD is optimal at (α, b, c, ǫ
k
) for small

enough k > 0”, which holds by the previous point. Intuitively, when b and c

are small, even with the optimal default most employees’ ∆’s lie both outside of

[2−α
α

b,−b] and outside of [∆L,∆R] (employees are willing to opt out given the

low opt-out cost), so that they fall in category A) above.

4. Fixing α, ǫ, and b, the AS-C default is the optimal default policy for c high

enough. This holds because (i) ∆L ≤ −ǫ for c high enough, so that the AS-C

default is the optimal default (see expression (3)), (ii) under the AS-C default,

the total loss, ǫ
2
, does not depend on c, and (iii) the total loss under AD, c− b,

grows without bound as c increases.

5. Fixing (α, ǫ) and fixing c at a small enough value, the NS-corner default is the

optimal default policy for |b| large enough. To see why this holds note the

following. For |b| large enough, ∆L − 2ǫ ≥ 0, so that L(∆L, α, b, c) − L(∆L −

2ǫ, α, b, c) = ∆L − c− α(∆L − 2ǫ−∆1) = 2(αǫ− c). Thus, for c ≤ αǫ, L(∆L −

2ǫ, α, b, c) ≤ L(∆L, α, b, c), so that the last case in expression (3) applies and

the NS-corner default is the optimal default (i.e., ∆̄(α, b, c, ǫ) = ∆L). Moreover,

for |b| large enough, [∆L − 2ǫ,∆L) = [− c
1−α

− b − 2ǫ,− c
1−α

− b) ⊂ (2−α
α

b,−b).

This means that, with ∆̄(α, b, c, ǫ) = ∆L, the bias of (almost) all employees is

attenuated, so that they are better off than under AD.

35Moreover, some of these employees’ ∆’s lie far outside of [ 2−α
α

b,−b], so that the default severely
exacerbates their bias and they opt out to highly unsuitable options.
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6. Fixing ǫ and increasing α, RAD(α, ǫ) expands. This occurs because cAD is non-

decreasing in α.

7. Fixing ǫ and increasing α, the region in which the AS-C default is the opti-

mal default policy (i.e., RAS-C(α, ǫ) \ RAD(α, ǫ)) expands. This occurs for the

following reasons. As α increases, ∆L = − c
1−α

− b ≤ −ǫ for more values of b

and c (employees are more reluctant to opt out), so that the AS-C default is

the optimal default for more values of b and c. This explains why RAS-C(α, ǫ)

expands. However, as α increases, couldn’t the expansion of RAD(α, ǫ) eat into

RAS-C(α, ǫ), so that RAS-C(α, ǫ)\RAD(α, ǫ) fails to expand? The answer is ”No”

for the following reason. Suppose that the AS-C default is better than AD for

some (α, b, c, ǫ). Increasing α cannot reverse this because the total loss under

the AS-C default, ǫ
2
, and the total loss under AD, c− b, do not depend on α.

8. Fixing ǫ and increasing α, the region in which the AS-C or AS-L default is the

optimal default policy (i.e.,
(

RAS-C(α, ǫ) ∪ RAS-L(α, ǫ)
)

\RAD(α, ǫ)) expands.

9. Fixing ǫ and increasing α, the region in which the AS-L default is the optimal

default policy (i.e., RAS-L(α, ǫ) \RAD(α, ǫ)) contracts.

10. Fixing α and increasing ǫ, RAD(α, ǫ) expands, while RAS-C(α, ǫ) \RAD(α, ǫ) and
(

RAS-C(α, ǫ) ∪RAS-L(α, ǫ)
)

\RAD(α, ǫ) contract. This follows from the observa-

tion immediately following Proposition 3.

5 Nonmonotonicity of the Total Loss

For each parameter, the total loss at the optimal default, 1
2ǫ
Ψ(α, b, c, ǫ), need not

be monotone in it. The same applies to the total loss at an optimal default policy,

min
(

1
2ǫ
Ψ(α, b, c, ǫ), c− b

)

. Thus, somewhat surprisingly, a higher α, a lower |b|, and

a lower ǫ do not always lead to a lower total loss at the optimal default or at the

optimal default policy.36 These nonmonotonicities are illustrated via examples in the

appendix.

36Increasing c shifts up the graph of L(·, α, b, c), but also gives the planner more leverage because
opting out of the default is more costly. Thus, it is not too surprising that the total loss at the
optimal default and at the optimal default policy is nonmonotone in c.
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6 Variations on the Baseline Model

6.1 Decision Costs

In the baseline model, we interpreted c as reflecting only implementation costs. Thus,

we were implicitly assuming that employees face no decision costs, i.e., the time

and cognitive costs of collecting information and thinking about what is the optimal

option. Given the plausibility of nontrivial decision costs, it is tempting to reinterpret

c as reflecting both implementation and decision costs. However, this is problematic

because of the following features of the baseline model. First, all employees staying

with a default avoid incurring c. However, this rules out the possibility that some

employees incur the decision costs and conclude that staying with the default is a

good idea. Second, employees’ preferred options are not affected by whether they

incurred the decision costs, which seems unrealistic.

To accommodate decision costs, one needs to modify the baseline model. A key

obstacle lies in modelling an employee’s decision whether to incur the decision costs.

6.2 “Irrational” Opt-Out Costs

Within a standard model, employees’ strong reluctance to switch from pension plan

default contribution rates implies opt-out costs in the thousands of dollars, which

seem excessive.37 The baseline model with a high α can produce a strong reluctance

to switch without a need for excessive opt-out costs.38 This holds because, for any

fixed c, limα→1∆L = −∞ and limα→1∆R = ∞.

Nevertheless, it is worth considering an alternative to the baseline model in which

a part of an employee’s opt-out cost is considered “irrational” and isn’t counted as

a loss in the planner’s welfare function. In particular, suppose that the opt-out cost

is given by c = cR + cI (where cR, cI ≥ 0 are the rational and irrational components,

respectively) and let us modify L(∆, α, b, c) as follows:

L(∆, α, b, cR, cI) =

{

|∆| if ∆L ≤ ∆ ≤ ∆R

cR + α|∆−∆1| otherwise
.

37See section 2.1.7 in DellaVigna (2009) and section IIB in Bernheim et al. (2015).
38Similalrly, the anchoring model in Bernheim et al. (2015) can produce a strong reluctance to

switch without a need for excessive opt-out costs.
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L(∆, α, b, cR, cI) takes into account that employees base their decision whether to

opt out on c = cR + cI (∆L and ∆R are as defined before), but counts only cR as a

loss. In the same spirit, the planner considers cR − b, rather than c− b, as the total

loss from AD.

In this model, cI > 0 plays a similar role to β < 1 in Carroll et al. (2009). In

particular, both cI > 0 in the current model and β < 1 in Carroll et al. (2009)

capture a reluctance to switch from the default that the planner does not consider

normatively relevant. Analogously, cI > 0 plays a similar role to β < 1 in Bernheim

et al. (2015) if only the full-commitment frame is considered welfare relevant.

Alternatively, cI can be viewed as capturing a reluctance to switch due to inat-

tentiveness as in Bernheim et al. (2015) if only the frame without inattentiveness is

considered welfare relevant.

6.3 The Presence of Sophisticated Employees

In the baseline model, all employees share the same parameters α, b, and c. Such

homogeneity is probably unrealistic. For example, it is natural to assume that some

employees are more sophisticated and have a smaller bias (in absolute value). Also,

Beshears et al. (2016) present evidence that low-income and young employees, who

are plausibly less sophisticated, (i) are less likely to opt out of the default contribution

rate, holding fixed the preferred contribution rates, and (ii) are probably more likely

to update their preferred contribution rates in light of the default contribution rate.

In the context of the baseline model, we can think of these employees as having a

higher c and α.

A simple way to incorporate homogeneity along these dimensions is to assume

that a fraction, ρ, of the population is sophisticated in the sense that they have zero

bias and do not update their preferred options in light of the default. Sophisticated

employees can also have their own opt-out cost parameter, cS, which would be smaller

than the cost parameter for unsophisticated employees, cU . Given that sophisticated

employees are less affected by the default in such a model, a natural guess is that the

optimal default policy would be geared more towards the interests of unsophisticated

employees, at least if ρ is not too high.
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6.4 Endogenous Updating

In the baseline model, employees’ updating rule is ad hoc. Instead, one could in prin-

ciple consider a game-theoretic model in which employees use the default to update

their beliefs about information that the planner might have and the planner sets the

default with this in mind. In such an approach, employees update their beliefs in

an endogenous fashion, which reduces the number of free parameters–there would no

longer be a need for α.

It is worth noting that such a game-theoretic approach also has some disadvan-

tages. First, one needs to make assumptions about the structure of information, i.e.,

about what the planner knows and what employees know. Second, in reality employ-

ees seem to update their preferred options based on the default even though planners’

incentives are not aligned with employees’ best interest.39 This puts a strain on the

assumption of equilibrium beliefs and suggests that a simple updating rule may be

more realistic.40 Third, it will likely be much harder to solve the model.

6.5 Delayed Opt-Outs

In the baseline model, employees make a once-and-for-all decision to opt out or not.

In reality, many employees opt out eventually even if they don’t do so immediately.

One could incorporate the possibility of such delayed opt-outs into the baseline model

without explicitly going to a dynamic model by modifying L(∆, α, b, c) as follows:

L(∆, α, b, c, γ(·)) = γ((1−α)(∆+b))|∆|+
(

1−γ((1−α)(∆+b))
)(

c+α|∆−∆1|
)

, (5)

where (1−α)(∆+b) is the difference between the employee’s updated preferred option

and the default, and γ((1−α)(∆+b)) is the fraction of future work life with the current

employer that the employee will spend at the default. This expression assumes that,

39For example, many employers benefit from high participation in their pension plans (e.g., because
it is associated with reduced reporting requirements). This provides an incentive for setting a low
default contribution rate, regardless of what contribution rate is optimal for employees. Also, the
fear of lawsuits provides an incentive for employers to set the default asset allocation in a very
conservative fashion, again regardless of employees’ best interest.

40On the other hand, Altmann et al. (2013) provide evidence that, at least in a simple game in the
lab, the extent to which people are willing to stay with the default is sensitive to the default-setter’s
incentives (as well as to the quality of their and the default-setter’s information).

23



if the employee eventually opts out, she opts out to her updated preferred option,

which entails a loss of c+ α|∆−∆1|. The function γ(·) can be estimated from data

on how the size of switches away from the default depends on the length of time since

she joined the pension plan.

An alternative approach would be to have a dynamic model in the spirit of Carroll

et al. (2009) in which the timing of the decision to opt-out is endogenous. Such a

model would eliminate the need for an exogenous γ(·). Also, if the opt-out cost is

randomly drawn each period, it is likely that employees who are more content with

the default (i.e., employees with smaller values of (1− α)|∆+ b|) would tend to wait

for a lower value of the realised opt-out cost before opting out. A dynamic model can

capture this while the model based on expression (5) does not. On the other hand, a

dynamic model needs to make strong assumptions about how the employee behaves41

and is likely to be harder to solve.

6.6 Jointly Setting the Default Contribution Rate and the

Default Asset Allocation

Let the first and second component of (DP1, DP2) denote a default policy regarding

the contribution rate and regarding the asset allocation, respectively. The baseline

model can be applied separately for determining the optimal DP1 and for determining

the optimal DP2. However, this neglects the fact that the cost of opting out of a

default contribution rate is likely to be much smaller if the employee is simultaneously

opting out of a default asset allocation (and vice versa). Thus, it might be necessary

to think about how to optimally set DP1 and DP2 jointly.

6.7 A More Realistic Model

Any model that is simple enough to analyse is likely to be unrealistic in many ways.

Therefore, it might be necessary to build a more realistic model combining many of

the variations on the baseline model considered above as well as other features, such

as a nonuniform distribution of optimal options, a more realistic updating rule,42 or

41E.g., how does she discount the future? Does she correctly anticipate her own future behaviour?
42For example, we could assume that α, rather than being a constant, is a function of |x+ b−D|.

E.g., α(|x + b −D|) = γ1e
−γ2|x+b−D|, where γ1 ∈ [0, 1] is a “level” parameter and γ2 ∈ [0,∞) is a
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(possibly) a multiplicative bias. Such a model would also have to incorporate a more

realistic function capturing the loss from deviations, ideally one that is derived from

a life-cycle model of consumption and takes into account features such as employer-

match and tax-bracket thresholds. Although such a model will surely be too complex

to analyse theoretically, it should not be too hard to solve numerically if one can take

a stand on the relevant parameters, ideally based on empirical work as discussed in

section 8.

7 Complexity

One of the insights from this paper is just how complicated the analysis of optimal

default policies is. The baseline model was built to be as simple as possible. Yet,

its analysis is still complicated in many ways. First, the optimal default is one of six

qualitatively different kinds of defaults.

Second, I have been unable to find intuitions for the statements in Lemma 1, which

is about the graph of L(·, α, b, c). This is important because the proof of Proposition

1 relies heavily on the geometry of this graph. In a similar vein, I have been unable

to find intuitions for the shapes and positions of many of the regions in Figure 9 or

for how they shift as α or ǫ change. Although explanations were provided for some

of the observed patterns, many of these explanations relied either on the geometry of

the graph of L(·, α, b, c), on Proposition 1, on Proposition 2 (whose proof is opaque,

as explained below), or on Proposition 3 (whose proof relies in part on Proposition

1).

Third, the partial derivatives of Ψ with respect to each parameter are very complex

(see Lemma 2 in the appendix). The complexity arises because, when we change a

parameter, (i) L(·, α, b, c) shifts in complicated ways and (ii) the limits of integration

under L(·, α, b, c), ∆̄(α, b, c, ǫ) and ∆̄(α, b, c, ǫ)− 2ǫ also shift.43

Fourth, the proof of Proposition 2 is based largely on Lemma 3 in the appendix,

which puts bounds on the partial derivatives of Ψ. Unfortunately, there is no ap-

parent intuition for this lemma, and hence for Proposition 2, largely because of the

complexity of the partial derivatives of Ψ.

parameter governing how quickly the employee’s weight on the default declines.
43The shift in ∆̄(α, b, c, ǫ) can often, but not always, be ignored based on envelope-theorem logic.
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Fifth, we saw that the total loss at the optimal default or at an optimal default

policy can be nonmonotone in each parameter in counterintuitive ways. This, too, is a

consequence of the complex (often, opposing) forces governing the partial derivatives

of Ψ.

Most of the variations of the baseline model considered in section 6 are likely to

be even more complicated.

8 Concluding Remarks

The current paper attempts to fill a gap in the existing literature by analysing a

model in which employees are biased in their perception of their optimal options.

Within this model, we have gained several insights. First, we have shown that six

qualitatively different kinds of defaults can be optimal. Second, we have observed an

adverse effect of defaults on some employees’ preferred options that can make AD the

optimal policy. Third, we have discussed some patterns in the relationship between

the parameters and the optimal default policy. Fourth, we have shown that the total

loss at the optimal default and at the optimal default policy can be nonmonotone in

the parameters in counterintuitive ways. Fifth, we have learned that the analysis of

even this apparently simple model can be very complex.

Having said all this, the baseline model lacks realism in many ways. To be able

to provide practical guidance to default-setters in the real world, two main challenges

remain. First, we need to analyse variations on the baseline model along the lines

discussed in section 6.

Second, much empirical work is needed to estimate parameters corresponding to

the size of the bias, the strength of updating from the default,44 implementation

costs, decision costs, (possibly) irrational costs, the degree of heterogeneity in terms

of optimal options, the fraction of sophisticated employees, the γ(·) function from

section 6.5 on delayed opt-outs, and any parameters in a life cycle model from which

a more realistic loss from deviations can be derived. Deciding what value to use for

the bias in the models is likely to be especially hard and controversial. For example,

there is no consensus in the existing literature on whether people undersave (see

44Beshears et al. (2016) estimate employees’ preferred contribution rates for different defaults.
This could allow us to pin down the strength of updating.
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footnote 5). The question of whether people underweight stocks in their pension plan

portfolios also hinges on complex issues, such as whether there is an equity premium

puzzle, what is a reasonable expected return on the stock market going forward, and

individuals’ levels of risk aversion.
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9 Appendix: Examples Illustrating the Nonmono-

tonicity of the Total Loss

As noted in section 5, for each parameter α, b, c, or ǫ, the total loss at the optimal

default, 1
2ǫ
Ψ(α, b, c, ǫ), need not be monotone in it. This is illustrated in Figure 10.
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Figure 10: Nonmonotonicity of the total loss at the optimal default (solid line) and
at the optimal default policy (lower envelope of solid and dashed lines).

For each parameter α, b, c, or ǫ, the total loss at the optimal default policy,

min
(

1
2ǫ
Ψ(α, b, c, ǫ), c− b

)

, need not be monotone in it either. In each panel of Figure
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10, the total loss at an optimal default policy is given by the lower envelope of the

solid and dashed lines. This lower envelope is clearly nonmonotone in each panel.

10 Appendix: Partial Derivatives of Ψ

Let Ψp denote the partial derivative of Ψ with respect to the parameter p ∈ {α, b, c, ǫ}.

Let −p denote the three parameters other than p and, with the usual abuse of nota-

tion, we will write ∆̄(p,−p), Ψ(p,−p), and Ψp(p,−p).

In this section, we study Ψα,Ψb,Ψc, and Ψǫ. We do this for two reasons. First,

Lemma 3 at the end of this section will play a crucial role in the proof of Proposi-

tion 2. Second, the complexity of these partial derivatives sheds some light on the

nonmonotonicity of total losses discussed in section 5.

Let us start with the following result.

Lemma 2 Letting p ∈ {α, b, c} and fixing −p, for almost all p, Ψp(p,−p) exists and45

Ψp(p,−p) =














































































0 if (α, b, c, ǫ) ∈ RAS-C

(∆L + 2ǫ− |∆L|)
∂∆L

∂p
if (α, b, c, ǫ) ∈ RAS-L

(

c + α|∆L −∆1| − |∆L|
)

∂∆L

∂p
+

∫

(−∞,∆1]∩[∆L,∆R]′∩[∆̄(α,b,c,ǫ)−2ǫ,∆̄(α,b,c,ǫ)]
∂(c−α(∆−∆1))

∂p
d∆+

∫

[∆1,∞)∩[∆L,∆R]′∩[∆̄(α,b,c,ǫ)−2ǫ,∆̄(α,b,c,ǫ)]
∂(c+α(∆−∆1))

∂p
d∆ if (α, b, c, ǫ) ∈

RHS1 ∪RHS2 ∪ RMS-HI
(

c + α(∆L −∆1)− L(∆L − 2ǫ, α, b, c)
)

∂∆L

∂p
+

∫ ∆1

min(∆1,∆L−2ǫ)
∂(c−α(∆−∆1))

∂p
d∆+

∫ ∆L

max(∆1,∆L−2ǫ)
∂(c+α(∆−∆1))

∂p
d∆ if (α, b, c, ǫ) ∈ RNS-corner

.

(6)

Fixing (α, b, c), for almost all ǫ, Ψǫ(α, b, c, ǫ) exists and

45In the expression below, [∆L,∆R]
′ denotes the complement of [∆L,∆R].
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Ψǫ(α, b, c, ǫ) =

{

2L(∆̄(α, b, c, ǫ), α, b, c) if (α, b, c, ǫ) /∈ RNS-corner

2L(∆L − 2ǫ, α, b, c) if (α, b, c, ǫ) ∈ RNS-corner

. (7)

For p ∈ {α, b, c, ǫ}, the formulas for Ψp in the lemma follow from (i) the Leibniz

intergal rule, (ii) the fact that, for ∆ ∈ (∆L,∆R),
∂L(∆,α,b,c)

∂p
= ∂|∆|

∂p
= 0, and, in

some cases, (iii) envelope-theorem-style considerations which allow us to ignore the

dependence of ∆̄(α, b, c, ǫ) on p when computing Ψp(α, b, c, ǫ).

The lemma illustrates the complex mechanics governing Ψp (p ∈ {α, b, c, ǫ}), me-

chanics that differ in different regions of the parameter space. To appreciate this

complexity, let us consider the geometric intuition behind the different cases in ex-

pressions (6) and (7).

Geometric intuition for the first case in expression (6):

This case corresponds to the first case in expression (3) and, hence, to ∆̄(α, b, c, ǫ)

illustrated in Figure 2. The area of the two shaded triangles under L(·, α, b, c) in the

figure does not depend on p ∈ {α, b, c}, so that Ψp = 0.

Geometric intuition for the second case in expression (6):

This case corresponds to the second case in expression (3) and, hence, to ∆̄(α, b, c, ǫ)

illustrated in Figure 3. As p increases in this figure, both limits of integration in the

figure, ∆L and ∆L + 2ǫ, increase at rate ∂∆L

∂p
. As the right limit of integration in-

creases, the shaded area under L(·, α, b, c) increases at rate ∆L +2ǫ. As the left limit

of integration increases, the shaded area under L(·, α, b, c) decreases at rate |∆L|. The

upshot is the second piece in expression (6).

Geometric intuition for the third case in expression (6):

This case corresponds to Figures 4-6. Three things happen as p increases in these

figures.46

First, ∆L increases at rate ∂∆L

∂p
. Given that ∆L ∈ (∆̄(α, b, c, ǫ)−2ǫ, ∆̄(α, b, c, ǫ)),47

an increase in ∆L causes the shaded area under L(·, α, b, c) in the figures to increase

46In this case, envelope-theorem-style considerations allow us to ignore the dependence of
∆̄(α, b, c, ǫ) on p.

47This can be seen graphically in Figures 4-6. It is not hard to see this more formally by studying
the inequalities in the third, fourth, and fifth cases in expression (3).
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at rate lim∆↑∆L
L(∆, α, b, c) − |∆L| = c + α|∆L − ∆1| − |∆L|, which is the absolute

size of the jump of L(·, α, b, c) at ∆L. This is reflected in the term before the two

integrals.

Second, the leftmost segment of L(·, α, b, c), which equals c − α(∆ − ∆1), shifts

up at rate ∂(c−α(∆−∆1))
∂p

. We are interested in the upward shift of c − α(∆ − ∆1)

only for values of ∆ that are both less than ∆1 and outside [∆L,∆R] (which is where

L(∆, α, b, c) = c−α(∆−∆1)) and are, of course, also in [∆̄(α, b, c, ǫ)−2ǫ, ∆̄(α, b, c, ǫ)].

This explains the domain of integration for the first integral.

Third, the part of L(·, α, b, c), which equals c + α(∆ − ∆1), shifts up at rate
∂(c+α(∆−∆1))

∂p
. We are interested in the upward shift of c+α(∆−∆1) only for values of

∆ that are both larger than ∆1 and outside [∆L,∆R] (which is where L(∆, α, b, c) =

c+α(∆−∆1)) and are, of course, also in [∆̄(α, b, c, ǫ)−2ǫ, ∆̄(α, b, c, ǫ)]. This explains

the domain of integration for the second integral.

Geometric intuition for the fourth case in expression (6):

This case corresponds to the last case in expression (3) and, hence, to ∆̄(α, b, c, ǫ)

illustrated in Figure 7. Three things happen as p increases in this figure.

First, both limits of integration in the figure, ∆L − 2ǫ and ∆L, increase at rate
∂∆L

∂p
. As the right limit of integration increases, the shaded area under L(·, α, b, c)

increases at rate c+α(∆L−∆1). As the left limit of integration increases, the shaded

area under L(·, α, b, c) decreases at rate L(∆L − 2ǫ, α, b, c). This is reflected in the

term before the two integrals in the last piece in expression (6).

Second, the leftmost segment of L(·, α, b, c) which equals c− α(∆−∆1) shifts up

at rate ∂(c−α(∆−∆1))
∂p

. We are interested in the upward shift of c − α(∆−∆1) only if

the lower limit of integration in Figure 7 (i.e., ∆L−2ǫ) is below ∆1 (which is the case

in the right panel) and, then, only for values between ∆L − 2ǫ and ∆1. This explains

the domain of integration for the first integral.

Third, the part of L(·, α, b, c) which equals c + α(∆ − ∆1) shifts up at rate
∂(c+α(∆−∆1))

∂p
. We are interested in the upward shift of c + α(∆−∆1) only for values

of ∆ either between ∆1 and ∆L (in the case illustrated in the right panel of Figure

7) or between ∆L − 2ǫ and ∆L (in the case illustrated in the left panel of Figure 7).

This explains the domain of integration for the second integral.

Geometric intuition for the first case in expression (7):
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This case corresponds to Figures 2-6. The mechanics governing Ψǫ in this case

depend on whether (α, b, c, ǫ) ∈ RAS-L.

If (α, b, c, ǫ) ∈ RAS-L, increasing ǫ shifts the right limit of integration in Figure 3

to the right at rate d(2ǫ)
dǫ

= 2. Thus, the shaded area under L(·, α, b, c) in the figure

increases at rate 2L(∆̄(α, b, c, ǫ), α, b, c).

If (α, b, c, ǫ) ∈ RAS-C, RHS1, RHS2, or RMS-HI, increasing ǫ shifts the left/right

limit of integration in Figures 2, 4, 5, and 6 to the left/right at rate 1. As a result,

the shaded area under L(·, α, b, c) in these figures increases at rate L(∆̄(α, b, c, ǫ) −

2ǫ, α, b, c) + L(∆̄(α, b, c, ǫ), α, b, c) = 2L(∆̄(α, b, c, ǫ), α, b, c).

Geometric intuition for the second case in expression (7):

This case corresponds to the last case in expression (3) and, hence, to ∆̄(α, b, c, ǫ)

illustrated in Figure 7. As ǫ increases in this figure, the only thing that happens is

that the left limit of intergration shifts left at rate d(2ǫ)
ǫ

= 2. As a result the shaded

area under L(·, α, b, c) expands at rate 2L(∆L − 2ǫ, α, b, c).

Despite the complex mechanics governing the partial derivatives of Ψ, we can

nevertheless put bounds on Ψα, Ψb, and Ψc (in some regions of the parameter space).

Lemma 3 Each of the following statements holds whenever the derivative of Ψ in-

volved in the statement exists.

1) b > −αǫ
2

implies Ψα(α, b, c, ǫ) ≥ 0.

2) b > −αǫ
2

implies Ψb(α, b, c, ǫ) > −2ǫ.

3) Ψc(α, b, c, ǫ) ≤ 2ǫ, the inequality being strict whenever c > 0.

Unfortunately, there is no apparent intuition for the lemma. The proof of each

part goes through different regions of the parameter space and, for each region, uses

the relevant piece in expression (6). In some regions, there is a geometric intuition

for why the relevant piece in expression (6) satisfies the given inequality. In other

regions, the different terms in the relevant piece in expression (6) have different signs

and only the algebra reveals that their relative magnitudes are such that the given

inequality holds.
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Figure 11: Graph of L(·, α, b, c) when α = 0.

11 Appendix: The Cases with α = 1 and α = 0

Let us start with the case α = 1. In this case, L(∆, α, b, c) = |∆|. The following

proposition characterises the optimal default and the optimal default policy for this

case.

Proposition 4 Assume α = 1. The unique solution to problem (2) is ∆̄ = ǫ. The

set of optimal default policies is















{∆̄ = ǫ} if ǫ
2
< c− b

{∆̄ = ǫ,AD} if ǫ
2
= c− b

{AD} if ǫ
2
> c− b

.

The validity of the proposition should be obvious given (i) the shape of the graph

of L(·, α, b, c) when α = 1 and (ii) the fact that ǫ
2
equals the total loss associated with

the AS-C default.

Let us turn to the case when α = 0. In this case,

L(∆, α, b, c) =

{

|∆| if ∆L ≤ ∆ ≤ ∆R

c− b otherwise
.

The left/right panel in Figure 11 depicts the graph of L(·, α, b, c) for the case when

∆L ≤ 0/∆L > 0.

We can state the following.

Proposition 5 Assume α = 0. The set of solutions to problem (2) is
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{∆̄ = ǫ} if ∆L ≤ −ǫ

{∆̄ = ∆L + 2ǫ} if ∆L > −ǫ,∆R −∆L ≥ 2ǫ

{∆̄ ∈ [∆R,∆L + 2ǫ]} if 0 ≤ ∆R −∆L < 2ǫ

(8)

=















{∆̄ = ǫ} if c ≥ ǫ− b

{∆̄ = ∆L + 2ǫ} if c < ǫ− b, c ≥ ǫ

{∆̄ ∈ [∆R,∆L + 2ǫ]} if 0 ≤ c < ǫ

. (9)

An optimal default is always an optimal default policy. AD is an optimal default

policy if and only if ∆R = ∆L (which can equivalently be written as c = 0).

That expression (8) gives the optimal defaults follows from considering, for each

of the four cases in expression (8), how to place the interval [∆̄ − 2ǫ, ∆̄] in each of

the panels of Figure 11 in order to minimise the area under the curve.48 Note that

any ∆̄ given by expression (8) satisfies the constraints in problem (2). In particular,

∆̄ ≥ 0 ≥ r + 2ǫ− 1; |b| ≤ r implies ∆L ≤ r, which implies ∆̄ ≤ r + 2ǫ; also, clearly,

∆L ≤ ∆̄ ≤ ∆R + 2ǫ.

Expression (9) merely rewrites the conditions in each case in expression (8) in

terms of the underlying parameters. Given that ∆R −∆L < 2ǫ implies ∆L > −ǫ, it

is obvious that the four cases in expression (8) cover the whole parameter space, so

that each of expressions (8) and (9) completely characterises the optimal default as

a function of the parameters.

Whenever ∆R > ∆L, any optimal default has the property that a positive measure

of employees stay with the default and experience a loss strictly less than c− b whilst

any employees opting out experience a loss of c − b, so that any optimal default is

clearly better than AD. When ∆R = ∆L, all employees, except those with ∆ = −b

(who are of measure zero), opt out of any default and experience a loss of c−b. Thus,

both AD as well as any ∆̄ satisfying the constraints in problem (2) is an optimal

default policy.49

48Only the left panel applies in the first case in expression (8).
49When ∆L = ∆R, [∆R,∆L + 2ǫ] = [−b,−b+ 2ǫ] ⊆ [r + 2ǫ− 1, r + 2ǫ]. The set inclusion follows

because (i) −b ≥ 0 ≥ r + 2ǫ− 1 and (ii) |b| ≤ r implies −b+ 2ǫ ≤ r + 2ǫ. Thus, we can ignore the
constraint r + 2ǫ− 1 ≤ ∆̄ ≤ r + 2ǫ.
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12 Appendix: Proofs and Further Results

Some of the proofs will make use of Figure 12. This figure is similar to Figure 9 except

that (i) it does not depict RAD(α, ǫ), (ii) it applies to any values of α ≤ 0.5 and ǫ,

and (iii) it shows the lines corresponding to the equations ∆L = 0 (lower dotted line)

and ∆L = ∆1 (upper dotted line). In the region below the lower dotted line ∆L > 0;

in the region above the upper dotted line ∆L < ∆1; in the region between the two

dotted lines ∆1 < ∆L < 0. If α ≥ 0.5, the figure would be similar except that points

with height αǫ would lie above points with height (1− α)ǫ.

12.1 Proof of Lemma 1

Proof of Statement 1):

lim
∆↓∆R

L(∆, α, b, c) = c + α(∆R −∆1) = ∆R = L(∆R)

Q.E.D.

Proof of Statement 2):

When ∆L ≤ ∆1,

lim
∆↑∆L

L(∆, α, b, c) = c− α(∆L −∆1) = −∆L = L(∆L)

Q.E.D.

Proof of Statement 3):

When ∆1 < ∆L ≤ 0,

L(∆L, α, b, c) = −∆L = c− α(∆L −∆1) < c < c + α(∆L −∆1) =

lim
∆↑∆L

L(∆, α, b, c)

Q.E.D.
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|b|
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c

Figure 12: RAS-C(α, ǫ), RAS-L(α, ǫ), RHS1(α, ǫ), RHS2(α, ǫ), RMS-HI(α, ǫ), and
RNS-corner(α, ǫ). These regions should be read off the figure ignoring the dotted lines.
In the region below the lower dotted line ∆L > 0; in the region above the upper
dotted line ∆L < ∆1; in the region between the two dotted lines ∆1 < ∆L < 0. The
figure assumes α < 0.5. If α ≥ 0.5, the figure would be similar except that points
with height αǫ would lie above points with height (1− α)ǫ.

Proof of Statement 4):

When ∆L > 0,

lim
∆↑∆L

L(∆, α, b, c)− L(∆L, α, b, c) = c+ α(∆L −∆1)−∆L = 2c ≥ 0

The last inequality is strict if and only if c > 0. Q.E.D.
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12.2 Proof of Proposition 1

Let us start by showing that the inequalities in each case in expression (3) are equiv-

alent to the inequalities in the corresponding case in expression (4). For cases in

expression (3) in which no inequalities involve the function L(·, α, b, c) (i.e., for the

first, third, fourth, and fifth cases) this is trivial–one only needs to write out the

variables in the inequalities in terms of the underlying parameters. We consider the

remaining cases in the following claims.

Claim 1 L(∆L, α, b, c) < L(∆L + 2ǫ, α, b, c) ≤ lim∆↑∆L
L(∆, α, b, c) if and only if

c < (1− α)ǫ− (1− α)b, c ≥ ǫ.

Proof:

∣

∣

∣

∣

∣

lim∆↑∆L
L(∆, α, b, c) ≥ L(∆L + 2ǫ, α, b, c)

L(∆L) < L(∆L + 2ǫ, α, b, c)
⇐⇒

∣

∣

∣

∣

∣

c+ α|∆L −∆1| ≥ L(∆L + 2ǫ, α, b, c)

L(∆L) < L(∆L + 2ǫ, α, b, c)
⇐⇒

∣

∣

∣

∣

∣

c + α|∆L −∆1| ≥ ∆L + 2ǫ

L(∆L) < ∆L + 2ǫ
⇐⇒













∣

∣

∣

∣

∣

∣

∣

∣

∆L < ∆1

c− α(∆L −∆1) ≥ ∆L + 2ǫ

−∆L < ∆L + 2ǫ

or

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∆L ≥ ∆1

∆L ≤ 0

c + α(∆L −∆1) ≥ ∆L + 2ǫ

−∆L < ∆L + 2ǫ

or

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∆L ≥ ∆1

∆L > 0

c+ α(∆L −∆1) ≥ ∆L + 2ǫ

∆L < ∆L + 2ǫ













⇐⇒













∣

∣

∣

∣

∣

∣

∣

∣

∆L < ∆1

∆L ≤ −ǫ

∆L > −ǫ

or

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∆L ≥ ∆1

∆L ≤ 0

c ≥ ǫ

∆L > −ǫ

or

∣

∣

∣

∣

∣

∣

∣

∣

∆L ≥ ∆1

∆L > 0

c ≥ ǫ













⇐⇒
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∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∆L ≥ ∆1

∆L ≤ 0

c ≥ ǫ

∆L > −ǫ

or

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∆L ≥ ∆1

∆L > 0

c ≥ ǫ

∆L > −ǫ













⇐⇒

∣

∣

∣

∣

∣

∣

∣

∣

∆L ≥ ∆1

c ≥ ǫ

∆L > −ǫ

⇐⇒

∣

∣

∣

∣

∣

∣

∣

∣

c ≤ −1−α
α

b

c ≥ ǫ

c < (1− α)ǫ− (1− α)b

⇐⇒

∣

∣

∣

∣

∣

c ≥ ǫ

c < (1− α)ǫ− (1− α)b

The second “ ⇐⇒ ” holds because c + α|∆L − ∆1| ≥ L(∆L + 2ǫ, α, b, c) implies

∆L+2ǫ ≤ ∆R (see Figure 1), while L(∆L, α, b, c) < L(∆L+2ǫ, α, b, c) implies ∆L+2ǫ ≥

0 (again, see Figure 1).

The last “ ⇐⇒ ” holds because, in the penultimate system, the last two inequali-

ties imply the first.50 Q.E.D.

Claim 2 L(∆L−2ǫ, α, b, c) ≤ L(∆L) if and only if c ≤ αǫ, c ≤ −α(1−α)ǫ−(1−α)b.

Proof:

L(∆L−2ǫ, α, b, c) ≤ L(∆L) implies ∆L > 0 (see footnote 29) and, hence, L(∆L) =

∆L.

Assume that ∆L − 2ǫ ≥ ∆1. Then:

L(∆L − 2ǫ, α, b, c) ≤ ∆L ⇐⇒

c+ α(∆L − 2ǫ−∆1) ≤ ∆L ⇐⇒

c ≤ αǫ.

Moreover, ∆L − 2ǫ ≥ ∆1 (which can be written as c ≤ −2(1 − α)ǫ − 1−α
α

b) and

c ≤ αǫ imply c ≤ −α(1− α)ǫ− (1− α)b. Thus, L(∆L − 2ǫ, α, b, c) ≤ ∆L holds if and

only if c ≤ αǫ and c ≤ −α(1− α)ǫ− (1− α)b.

50This is easiest to see to plotting the regions in which c ≤ − 1−α
α

b, c ≥ ǫ, and c < (1−α)ǫ−(1−α)b
in (b, c)-space while holding α and ǫ constant at arbitrary values. A similar remark applies to other
instances below when we say that some inequalities imply other inequalities.
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Next, assume that ∆L − 2ǫ < ∆1. Then:

L(∆L − 2ǫ, α, b, c) ≤ ∆L ⇐⇒

c− α(∆L − 2ǫ−∆1) ≤ ∆L ⇐⇒

c ≤ −α(1− α)ǫ− (1− α)b.

Moreover ∆L − 2ǫ < ∆1 (which can be written as c > −2(1 − α)ǫ − 1−α
α

b) and

c ≤ −α(1− α)ǫ− (1− α)b imply c ≤ αǫ. Thus, L(∆L − 2ǫ, α, b, c) ≤ ∆L holds if and

only if c ≤ αǫ and c ≤ −α(1− α)ǫ− (1− α)b. Q.E.D.

We now show that ∆̄ = ∆̄(α, b, c, ǫ) minimises the objective function in problem

(2) subject to the constraint ∆̄ ≤ ∆L. To see this, write:

∫ ∆̄

∆̄−2ǫ

L(∆, α, b, c)d∆ =

∫ ∆̄

−∞

L(∆, α, b, c)d∆−

∫ ∆̄−2ǫ

−∞

L(∆, α, b, c)d∆ =

∫ ∆̄

−∞

L(∆, α, b, c)d∆−

∫ ∆̄

−∞

L(∆− 2ǫ, α, b, c)d∆ =

∫ ∆̄

−∞

(

L(∆, α, b, c)− L(∆− 2ǫ, α, b, c)
)

d∆.

It is apparent from Figures 2-6 that L(∆, α, b, c) < L(∆ − 2ǫ, α, b, c) for all

∆L ≤ ∆ < ∆̄(α, b, c, ǫ). Thus,
∫ ∆̄

−∞

(

L(∆, α, b, c) − L(∆ − 2ǫ, α, b, c)
)

d∆ is decreas-

ing in ∆̄ over [∆L, ∆̄(α, b, c, ǫ)].51 Similarly, it is apparent from Figures 2-7 that

L(∆, α, b, c) > L(∆ − 2ǫ, α, b, c) for all ∆ > ∆̄(α, b, c, ǫ). Thus,
∫ ∆̄

−∞

(

L(∆, α, b, c) −

L(∆−2ǫ, α, b, c)
)

d∆ is increasing in ∆̄ over [∆̄(α, b, c, ǫ),∞). Thus,
∫ ∆̄

∆̄−2ǫ
L(∆, α, b, c)d∆

has a unique minimum over [∆L,∞) at ∆̄ = ∆̄(α, b, c, ǫ).

Next, we show that ∆̄ = ∆̄(α, b, c, ǫ) also satisfies the constraints r+2ǫ−1 ≤ ∆̄ ≤

r + 2ǫ and ∆̄ ≤ ∆R + 2ǫ, so that these constraints are not binding. It is apparent

from Figures 2-7 that (i) ∆̄(α, b, c, ǫ) ≥ 0, so that ∆̄(α, b, c, ǫ) ≥ r + 2ǫ − 1 and (ii)

∆̄(α, b, c, ǫ) ≤ ∆R + 2ǫ. To see that ∆̄(α, b, c, ǫ) ≤ r + 2ǫ as well, note that |b| ≤ r

51In the sixth case in expressions (3) and (4), the latter statement is trivially true because the
interval [∆L, ∆̄(α, b, c, ǫ)] consists of a single point.

42



implies ∆L ≤ r52 and consider each of the six cases in expressions (3) and (4). In

the first, fourth, and fifth cases, the default, D, corresponding to ∆̄(α, b, c, ǫ) lies in

the interval [r, r+ 2ǫ] (see Figures 2, 5, and 6), so that D ≥ 0, which is equivalent to

∆̄(α, b, c, ǫ) ≤ r+2ǫ. In the second case, ∆̄(α, b, c, ǫ) = ∆L+2ǫ ≤ r+2ǫ. In the third

case, ∆̄(α, b, c, ǫ) = ∆′ = c
1−α

− 2α
1−α

ǫ− b < 2ǫ
1−α

− 2α
1−α

ǫ− b = 2ǫ− b ≤ 2ǫ− b+ r+ b =

r + 2ǫ.53 In the sixth case, ∆̄(α, b, c, ǫ) = ∆L ≤ r < r + 2ǫ.

Finally, observe that RAS-C(α, ǫ), RAS-L(α, ǫ), etc., cover the whole (|b|, c)-space

according to Figure 12, so that each of expressions (3) and (4) completely characterises

the optimal default as a function of the parameters. Q.E.D.

12.3 Three Technical Lemmas

In this section we state and prove three technical lemmas. The first and third will

be used in some of the remaining proofs of results from the main text. The second

lemma is used in the proof of the third.

Before turning to these lemmas, note that, if we use the definition of Ψ(α, b, c, ǫ)

and divide cases 2-6 in expression (3) (or expression (4)) into subcases corresponding

to the panels in Figures 3-7, we can write:

52|b| ≤ r ⇐⇒ 0 ≤ b+ r =⇒ − c
1−α

≤ r + b ⇐⇒ ∆L ≤ r.
53The first inequality follows because c < ǫ in the third case in expression (4)
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Ψ(α, b, c, ǫ) =























































































































∫ ǫ

−ǫ
L(∆, α, b, c)d∆ if (α, b, c, ǫ) ∈ RAS-C

∫ ∆L+2ǫ

∆L
L(∆, α, b, c)d∆ if (α, b, c, ǫ) ∈ RAS-L ∩R∆1<∆L≤0

∫ ∆L+2ǫ

∆L
L(∆, α, b, c)d∆ if (α, b, c, ǫ) ∈ RAS-L ∩R∆L>0

∫ ∆′

∆′−2ǫ
L(∆, α, b, c)d∆ if (α, b, c, ǫ) ∈ RHS1 ∩R∆1<∆L≤0

∫ ∆′

∆′−2ǫ
L(∆, α, b, c)d∆ if (α, b, c, ǫ) ∈ RHS1 ∩R∆L>0

∫ ∆′′

∆′′−2ǫ
L(∆, α, b, c)d∆ if (α, b, c, ǫ) ∈ RHS2 ∩R∆L≤∆1

∫ ∆′′

∆′′−2ǫ
L(∆, α, b, c)d∆ if (α, b, c, ǫ) ∈ RHS2 ∩R∆1<∆L≤0

∫ ∆′′

∆′′−2ǫ
L(∆, α, b, c)d∆ if (α, b, c, ǫ) ∈ RHS2 ∩R∆L>0

∫ ∆1+ǫ

∆1−ǫ
L(∆, α, b, c)d∆ if (α, b, c, ǫ) ∈ RMS-HI ∩R∆L≤∆1

∫ ∆1+ǫ

∆1−ǫ
L(∆, α, b, c)d∆ if (α, b, c, ǫ) ∈ RMS-HI ∩R∆1<∆L≤0

∫ ∆1+ǫ

∆1−ǫ
L(∆, α, b, c)d∆ if (α, b, c, ǫ) ∈ RMS-HI ∩R∆L>0

∫ ∆L

∆L−2ǫ
L(∆, α, b, c)d∆ if (α, b, c, ǫ) ∈ RNS-corner ∩ R∆L−2ǫ≥∆1

∫ ∆L

∆L−2ǫ
L(∆, α, b, c)d∆ if (α, b, c, ǫ) ∈ RNS-corner ∩ R∆L−2ǫ<∆1

(10)

In the expression above and the rest of this section, we let an “R” with an inequal-

ity as a subscript denote the region of the parameter space in which the inequality

holds. Also, given −p and 1 ≤ i ≤ 13, let p(−p, i) denote the set of admissible values

of p that satisfy the inequalities in the ith case in expression (10).54

Lemma 4 Given −p fixed at an arbitrary value, the set of admissible values of p

can be partitioned into finitely many intervals, such that each interval is contained in

p(−p, i) for some i (1 ≤ i ≤ 13).

Proof:

For each i (1 ≤ i ≤ 13), p(−p, i) is defined by inequalities that are linear or

quadratic in p.55 Each linear inequality can be written in the form “p less than

(or equal to) C” or the form “p greater than (or equal to) C” and each quadratic

inequality can be written in the form “p greater than (or equal to) C1 and p less

54The admissible values for α/b/c/ǫ are 0 < α < 1/−r ≤ b ≤ 0/c ≥ 0/0 < ǫ ≤ 1−r
2

.
55See expression (4) and write out ∆L ≤ ∆1, ∆1 < ∆L ≤ 0, ∆L > 0, ∆L − 2ǫ ≥ ∆1, and

∆L − 2ǫ < ∆1 in terms of the underlying parameters. (To make each inequality linear or quadratic
in p, we may need to multiply each side to get rid of any denominators.)
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than (or equal to) C2” or the form “p less than (or equal to) C1 or p greater than (or

equal to) C2”, where C,C1, C2 are constants given that −p is fixed. Thus, p(−p, i)

equals the intersection of a finite number of sets (one for each inequality), each of

which consists of one or two intervals. It follows that p(−p, i) is the union of a finite

number of intervals Ii,1, . . . , Ii,J(i). Furthermore, because the set of admissible values

of p equals
⋃13

i=1 p(−p, i), it can equivalently be written as
⋃13

i=1

(
⋃J(i)

j=1 Ii,j
)

. Thus, the

set of admissible values of p is the union of finitely many intervals each of which is

contained in p(−p, i) for some 1 ≤ i ≤ 13. Although the intervals {Ii,j}1≤i≤13,1≤j≤J(i)

may overlap, any overlaps between them can easily be eliminated by breaking them

down into smaller intervals. Q.E.D.

Lemma 5 Denoting by cl(·) the closure of a set, expression (10) can equivalently be

written as:
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Ψ(α, b, c, ǫ) =






































































































































































































































































ǫ2 if (α, b, c, ǫ) ∈ cl(RAS-C)
∆2

L

2
+ (∆L+2ǫ)2

2
if (α, b, c, ǫ) ∈ cl(RAS-L) ∩R∆1≤∆L≤0

2ǫ(∆L + ǫ) if (α, b, c, ǫ) ∈ cl(RAS-L) ∩R∆L≥0

(∆L −∆′ + 2ǫ)∆
′+c+α∆L−(1−α)b

2
+

+
∆2

L

2
+ ∆′2

2
if (α, b, c, ǫ) ∈ cl(RHS1) ∩R∆1≤∆L≤0

(∆L −∆′ + 2ǫ)∆
′+c+α∆L−(1−α)b

2
+

+ (∆′−∆L)(∆
′+∆L)

2
if (α, b, c, ǫ) ∈ cl(RHS1) ∩R∆L≥0

(∆L −∆′′ + 2ǫ)∆
′′−∆L

2
+

∆2
L

2
+ ∆′′2

2
if (α, b, c, ǫ) ∈ cl(RHS2) ∩R∆L≤∆1

(∆1 −∆′′ + 2ǫ) c+∆′′

2
+

+(∆L −∆1)
2c+α∆L−(1−α)b

2
+

+
∆2

L

2
+ ∆′′2

2
if (α, b, c, ǫ) ∈ cl(RHS2) ∩R∆1≤∆L≤0

(∆1 −∆′′ + 2ǫ) c+∆′′

2
+

+(∆L −∆1)
2c+α∆L−(1−α)b

2
+

+ (∆′′−∆L)(∆
′′+∆L)

2
if (α, b, c, ǫ) ∈ cl(RHS2) ∩R∆L≥0

(∆L −∆1 + ǫ) c−α(∆1−ǫ)+(1−α)b−∆L

2
+

+
∆2

L

2
+

∆2
R

2
+

+(∆1 + ǫ−∆R)
∆R+c+α(∆1+ǫ)−(1−α)b

2
if (α, b, c, ǫ) ∈ cl(RMS-HI) ∩ R∆L≤∆1

ǫ2c−α(∆1−ǫ)+(1−α)b
2

+

+(∆L −∆1)
2c+α∆L−(1−α)b

2

∆2
L

2
+

∆2
R

2
+

+(∆1 + ǫ−∆R)
∆R+c+α(∆1+ǫ)−(1−α)b

2
if (α, b, c, ǫ) ∈ cl(RMS-HI) ∩ R∆1≤∆L≤0

ǫ2c−α(∆1−ǫ)+(1−α)b
2

+

+(∆L −∆1)
2c+α∆L−(1−α)b

2
+

+ (∆R−∆L)(∆R+∆L)
2

+

+(∆1 + ǫ−∆R)
∆R+c+α(∆1+ǫ)−(1−α)b

2
if (α, b, c, ǫ) ∈ cl(RMS-HI) ∩ R∆L≥0

2ǫ(c+ α∆L − (1− α)b− αǫ) if (α, b, c, ǫ) ∈ cl(RNS-corner) ∩R∆L−2ǫ≥∆1

(∆L −∆1)
2c+α∆L−(1−α)b

2
+

+(∆1 −∆L + 2ǫ)2c−α(∆L−2ǫ)+(1−α)b
2

if (α, b, c, ǫ) ∈ cl(RNS-corner) ∩R∆L−2ǫ≤∆1

(11)

Proof:

Consider expression (4). When c = (1 − α)ǫ − (1 − α)b, ∆L + 2ǫ = ∆′′ = ǫ,

46



so that the first inequality in the second case and the third inequality in the fourth

case can be written as weak inequalities. When c = αǫ, ∆′ = ∆L, so that the first

inequality in the third case can be written as a weak one. When c = ǫ, ∆′ = ∆L+2ǫ,

so that the third inequality in the third case can be written as a weak one. When

c = −α(1−α)ǫ−(1−α)b, ∆′′ = ∆L, so that the first inequality in the fourth case can

be written as a weak one. When c = 2ǫ+ 1−α
α

b, ∆′′ = ∆′, so that the last inequality in

the fourth case can be written as a weak one. When c = (1−α)ǫ+ 1−α
α

b, ∆′′ = ∆1+ǫ,

so that the inequality in the fifth case can be written as a weak one. The upshot is

that, for each case in (4), we can replace all strict inequalities with weak ones.

Consider RHS1, the region of the parameter space in which the third case in ex-

pression (4) applies. We have cl(RHS1) = cl(Rc>αǫ∩Rc≥2ǫ+ 1−α
α

b∩Rc<ǫ) ⊆
(

cl(Rc>αǫ)∩

Rc≥2ǫ+ 1−α
α

b ∩ cl(Rc<ǫ)
)

=
(

Rc≥αǫ ∩ Rc≥2ǫ+ 1−α
α

b ∩Rc≤ǫ

)

. The inclusion follows because

the closure of the intersection is a subset of the intersection of the closures. Given

that (i) we can write the conditions in the third case of (4) either as (α, b, c, ǫ) ∈ RHS1

(this is just as in (4)) or as (α, b, c, ǫ) ∈
(

Rc≥αǫ∩Rc≥2ǫ+ 1−α
α

b∩Rc≤ǫ

)

(see the last para-

graph) and (ii) RHS1 ⊆ cl(RHS1) ⊆
(

Rc≥αǫ∩Rc≥2ǫ+ 1−α
α

b∩Rc≤ǫ

)

, it follows that we can

also write the conditions for this case as (α, b, c, ǫ) ∈ cl(RHS1). Using an analogous

logic for the other cases, we can write expression (4) as:

∆̄(α, b, c, ǫ) =















































ǫ if (α, b, c, ǫ) ∈ cl(RAS-C)

∆L + 2ǫ if (α, b, c, ǫ) ∈ cl(RAS-L)

∆′ if (α, b, c, ǫ) ∈ cl(RHS1)

∆′′ if (α, b, c, ǫ) ∈ cl(RHS2)

∆1 + ǫ if (α, b, c, ǫ) ∈ cl(RMS-HI)

∆L if (α, b, c, ǫ) ∈ cl(RNS-corner)

(12)

Using the definition of Ψ(α, b, c, ǫ) and dividing cases 2-6 in expression (12) into

exhaustive subcases, we get:
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Ψ(α, b, c, ǫ) =























































































































∫ ǫ

−ǫ
L(∆, α, b, c)d∆ if (α, b, c, ǫ) ∈ cl(RAS-C)

∫ ∆L+2ǫ

∆L
L(∆, α, b, c)d∆ if (α, b, c, ǫ) ∈ cl(RAS-L) ∩ R∆1≤∆L≤0

∫ ∆L+2ǫ

∆L
L(∆, α, b, c)d∆ if (α, b, c, ǫ) ∈ cl(RAS-L) ∩ R∆L≥0

∫ ∆′

∆′−2ǫ
L(∆, α, b, c)d∆ if (α, b, c, ǫ) ∈ cl(RHS1) ∩ R∆1≤∆L≤0

∫ ∆′

∆′−2ǫ
L(∆, α, b, c)d∆ if (α, b, c, ǫ) ∈ cl(RHS1) ∩ R∆L≥0

∫ ∆′′

∆′′−2ǫ
L(∆, α, b, c)d∆ if (α, b, c, ǫ) ∈ cl(RHS2) ∩ R∆L≤∆1

∫ ∆′′

∆′′−2ǫ
L(∆, α, b, c)d∆ if (α, b, c, ǫ) ∈ cl(RHS2) ∩ R∆1≤∆L≤0

∫ ∆′′

∆′′−2ǫ
L(∆, α, b, c)d∆ if (α, b, c, ǫ) ∈ cl(RHS2) ∩ R∆L≥0

∫ ∆1+ǫ

∆1−ǫ
L(∆, α, b, c)d∆ if (α, b, c, ǫ) ∈ cl(RMS-HI) ∩ R∆L≤∆1

∫ ∆1+ǫ

∆1−ǫ
L(∆, α, b, c)d∆ if (α, b, c, ǫ) ∈ cl(RMS-HI) ∩ R∆1≤∆L≤0

∫ ∆1+ǫ

∆1−ǫ
L(∆, α, b, c)d∆ if (α, b, c, ǫ) ∈ cl(RMS-HI) ∩ R∆L≥0

∫ ∆L

∆L−2ǫ
L(∆, α, b, c)d∆ if (α, b, c, ǫ) ∈ cl(RNS-corner) ∩R∆L−2ǫ≥∆1

∫ ∆L

∆L−2ǫ
L(∆, α, b, c)d∆ if (α, b, c, ǫ) ∈ cl(RNS-corner) ∩R∆L−2ǫ≤∆1

(13)

Evaluating each of the thirteen pieces in expression (13) by computing the area

under L(·, α, b, c) over [∆̄(α, b, c, ǫ)−2ǫ, ∆̄(α, b, c, ǫ)] as the sum of the areas of various

triangles and/or trapezoids yields expression (11). Q.E.D.

Lemma 6 For any two admissible values p′ < p′′ of p ∈ {α, b, c, ǫ} and any fixed

value of −p, Ψ(·,−p) is absolutely continuous on [p′, p′′].

Proof:

Given −p and 1 ≤ i ≤ 13, let q(−p, i) denote the set of values of p that satisfy

the inequalities in the ith case in expression (11). Note the following.

First, given Lemma 4, the fact that p(−p, i) ⊆ q(−p, i), and the fact that q(−p, i) is

closed, it follows that we can decompose [p′, p′′] into finitely many intervals [p1, p2], . . . , [pn−1, pn],

such that p′ = p1 < p2 . . . < pn−1 < pn = p′′ and each interval is contained in q(−p, i)

for some i (1 ≤ i ≤ 13).

Second, at any fixed value of −p, each piece in expression (11) is absolutely con-

tinuous in p on any closed and bounded interval because:

48



(i) the sum and product of two functions that are absolutely continuous on a closed

and bounded interval is absolutely continuous on this interval;

(ii) if a function is absolutely continuous on a closed and bounded interval and is

nowhere equal to zero on that interval, its inverse is also absolutely continuous

on that interval;

(iii) a linear function is absolutely continuous;

(iv) when p ∈ {b, c, ǫ}, each of ∆L, ∆R, ∆1, ∆
′, and ∆′′ is a linear function of p, and

is hence absolutely continuous in p;

(v) when p = α, each of ∆L, ∆R, ∆1, ∆
′, and ∆′′ can be obtained through addition,

multiplication, and taking inverses of nowhere-zero linear functions of p, so that

each of ∆L, ∆R, ∆1, ∆
′, and ∆′′ is absolutely continuous in p on any closed and

bounded interval;

(vi) each of the thirteen pieces in expression (11) is obtained from ∆L, ∆R, ∆1,

∆′, ∆′′, and the parameters through addition and multiplication, so that it is

absolutely continuous in p on any closed and bounded interval.

Thus, Ψ(·,−p) is absolutely continuous on each interval [pk, pk+1] (1 ≤ k ≤ n− 1).

It readily follows that Ψ(·,−p) is continuous on [p′, p′′]: if Ψ(·,−p) is continuous

on each of two adjacent intervals [pk−1, pk] and [pk, pk+1], it must be continuous on

[pk−1, pk+1] and, by repeating this argument for 2 ≤ k ≤ n− 1, on [p′, p′′].

It remains to show that Ψ(·,−p) is absolutely continuous on [p′, p′′]. Let p ∈

(p1, pn] and let k′ be such that p ∈ (pk′, pk′+1]. Then,

Ψ(p,−p) = Ψ(p′,−p) +
∑k=k′

k=2

(

Ψ(pk,−p)−Ψ(pk−1,−p)
)

+Ψ(p,−p)−Ψ(pk′,−p) =

Ψ(p′,−p) +
∑k=k′

k=2

( ∫ pk
pk−1

Ψp(p̃,−p)dp̃
)

+
∫ p

pk′
Ψp(p̃,−p)dp̃ =

Ψ(p′,−p) +
∫ p

p′
Ψp(p̃,−p)dp̃

The penultimate equality follows from the absolute continuity of Ψ(·,−p) on each

[pk−1, pk]. The last equality follows from the continuity of Ψ(·,−p) on [p′, p′′]. The fact

that Ψ(p,−p) = Ψ(p′,−p) +
∫ p

p′
Ψp(p̃,−p)dp̃ for any p ∈ (p′, p′′] means that Ψ(·,−p)

is absolutely continuous on [p′, p′′]. Q.E.D.
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12.4 Proof of Lemma 2

Consider
∫ u(p)

l(p)
f(∆, p)d∆. Whenever (i) f(∆, p) and ∂f

∂p
(∆, p) are continuous and (ii)

l(p) and u(p) are continuously differentiable, we can use the Leibniz integral rule:

∂

∂p

∫ u(p)

l(p)

f(∆, p)d∆ =

∫ u(p)

l(p)

∂f

∂p
(∆, p)d∆− f(l(p), p)

dl

dp
(p) + f(u(p), p)

du

dp
(p)

Whenever we need to apply the Leibniz integral rule, f(∆, p) will be linear in ∆

and p so that (i) will hold; l(p) and u(p) will be linear in p or will be of the form
1−α
α

b, − c
1−α

− b, or c
1−α

− b, so that (ii) will hold.

Given Lemma 4, the set of values of p (p ∈ {α, b, c, ǫ}) that are not in the interior

of some case in expression (10) has measure 0. Thus, it suffices to prove the validity

of expressions (6) and (7) for any value of p that lies in the interior of one of the

cases in expression (10). For any such p, Ψp(p,−p) can be computed by taking the

derivative of the ith piece of Ψ in expression (10). Thus, we can prove the lemma by

showing, for each i (1 ≤ i ≤ 13), that the ith piece in expression (10) has a derivative

which equals the corresponding piece in expression (6) or (7).

For each i (1 ≤ i ≤ 13), we can proceed as follows. First, we decompose

[∆̄(α, b, c, ǫ)−2ǫ, ∆̄(α, b, c, ǫ)] into (finitely many) nonoverlapping intervals, I1, I2, . . .,

over each of which L(·, α, b, c) is linear. Then, we express
∫ ∆̄(α,b,c,ǫ)

∆̄(α,b,c,ǫ)−2ǫ
L(∆, α, b, c)d∆

as
∫

I1
L(∆, α, b, c)d∆+

∫

I2
L(∆, α, b, c)d∆+ . . . Finally, we apply the Leibniz integral

rule to each of the latter integrals.

Going through this procedure for all thirteen cases in expression (10) is rather

tedious and we omit this here. Instead, to show how the procedure works, we offer a

proof for the tenth case in expression (10), which is a special case of the third case in

expression (6) and the first case in expression (7).

The tenth piece in expression (10) can be decomposed as follows.
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∫ ∆1+ǫ

∆1−ǫ

L(∆, α, b, c)d∆ =

=

∫ ∆1

∆1−ǫ

L(∆, α, b, c)d∆+

∫ ∆L

∆1

L(∆, α, b, c)d∆+

+

∫ 0

∆L

L(∆, α, b, c)d∆+

∫ ∆R

0

L(∆, α, b, c)d∆+

∫ ∆1+ǫ

∆R

L(∆, α, b, c)d∆ =

=

∫ ∆1

∆1−ǫ

(

c− α(∆−∆1)
)

d∆+

∫ ∆L

∆1

(

c+ α(∆−∆1)
)

d∆+

+

∫ 0

∆L

(−∆)d∆+

∫ ∆R

0

∆d∆+

∫ ∆1+ǫ

∆R

(

c+ α(∆−∆1)
)

d∆.

Applying the Leibniz integral rule to each integral separately, we get:

Ψp(α, b, c, ǫ) =

=

∫ ∆1

∆1−ǫ

∂
(

c− α(∆−∆1)
)

∂p
d∆−

(

c+ αǫ
)d(∆1 − ǫ)

dp
+ c

d∆1

dp
+

+

∫ ∆L

∆1

∂
(

c+ α(∆−∆1)
)

∂p
d∆− c

d∆1

dp
+
(

c+ α(∆L −∆1)
)d∆L

dp
+∆L

d∆L

dp
+

+∆R

d∆R

dp
+

∫ ∆1+ǫ

∆R

∂
(

c+ α(∆−∆1)
)

∂p
d∆−

(

c+ α(∆R −∆1)
)d∆R

dp
+
(

c + αǫ
)d(∆1 + ǫ)

dp
=

=
(

c+ α(∆L −∆1) + ∆L

)d∆L

dp
+

∫ ∆1

∆1−ǫ

∂
(

c− α(∆−∆1)
)

∂p
d∆+

+

∫ ∆L

∆1

∂
(

c+ α(∆−∆1)
)

∂p
d∆+

∫ ∆1+ǫ

∆R

∂
(

c+ α(∆−∆1)
)

∂p
d∆+ 2

(

c+ αǫ
)dǫ

dp
.

The latter expression equals the third piece in expression (6) when p ∈ {α, b, c}

and equals the first piece in expression (7) when p = ǫ. Q.E.D.

12.5 Proof of Lemma 3

b > −αǫ
2
implies (α, b, c, ǫ) ∈ RAS-C∪ (RHS2∩R∆L≤∆1

)∪RMS-HI (see Figure 12). Thus,

for the purposes of proving parts 1) and 2) of Lemma 3, we can restrict attention to

these regions.
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Proof of statement 1):

If (α, b, c, ǫ) ∈ RAS-C, the first piece in expression (6) applies, so that Ψα(α, b, c, ǫ) =

0.

Now, suppose (α, b, c, ǫ) ∈ RHS2 ∩ R∆L≤∆1
. This corresponds to the left panel in

Figure 5 and the third case in expression (6), so that:

Ψα(α, b, c, ǫ) = −

∫ ∆L

∆′′−2ǫ

(∆ + b)d∆ > 0

The inequality follows because ∆′′ − 2ǫ < ∆L and ∆ + b < 0 for ∆ ∈ [∆′′ − 2ǫ,∆L].

Next, suppose (α, b, c, ǫ) ∈ RMS-HI ∩ R∆L≤∆1
. This corresponds to the left panel

in Figure 6 and the third case in expression (6), so that:

Ψα(α, b, c, ǫ) = −

∫ ∆L

∆1−ǫ

(∆ + b)d∆+

∫ ∆1+ǫ

∆R

(∆ + b)d∆ > 0

The inequality follows because ∆1 − ǫ < ∆L (see the left panel in Figure 6),

∆ + b < 0 for ∆ ∈ [∆1 − ǫ,∆L], ∆R < ∆1 + ǫ, and ∆ + b > 0 for ∆ ∈ [∆R,∆1 + ǫ].

Finally, suppose (α, b, c, ǫ) ∈ (RMS-HI ∩ R∆1<∆L≤0) ∪ (RMS-HI ∩ R∆L>0). This cor-

responds to the centre and right panels in Figure 6 and the third case in expression

(6), so that:

Ψα(α, b, c, ǫ) =

(

c+ α|∆L −∆1| − |∆L|
)

(−
c

(1− α)2
)−

∫ ∆1

∆1−ǫ

(∆ + b)d∆+

∫ ∆L

∆1

(∆ + b)d∆+

∫ ∆1+ǫ

∆R

(∆ + b)d∆ >

(

c+ α|∆L −∆1| − |∆L|
)

(−
c

(1− α)2
)−

∫ ∆1

2∆1−∆R

(∆ + b)d∆+

∫ ∆L

∆1

(∆ + b)d∆ >

(

c+ α|∆L −∆1| − |∆L|
)

(−
c

(1− α)2
)−

∫ ∆1

2∆1−∆R

(∆1 + b)d∆+

∫ ∆L

∆1

(∆1 + b)d∆ =

(

c+ α|∆L −∆1| − |∆L|
)

(−
c

(1− α)2
)− (∆1 + b)(∆R −∆L)

The first inequality follows because ∆1 − ǫ < 2∆1 − ∆R ≤ ∆1
56, ∆ + b < 0 for

56To see this, note that ∆1 − ǫ < 2∆1 −∆R can be written as ∆1 + ǫ > ∆R and 2∆1 −∆R ≤ ∆1

can be written as ∆1 ≤ ∆R.
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∆ ∈ [∆1 − ǫ, 2∆1 −∆R], and ∆ + b > 0 for ∆ ∈ [∆R,∆1 + ǫ]. The second inequality

holds because ∆ = ∆1 maximises ∆ + b over [2∆1 − ∆R,∆1] and minimises ∆ + b

over [∆1,∆L].

If ∆1 < ∆L ≤ 0, the last line simplifies to − 2c
(1−α)2

(

α∆L + (1−α)2

α
b
)

, which is

greater than or equal to 0. If ∆L > 0, the last line simplifies to 2c
1−α

(∆L −∆1), which

is also greater than or equal to 0. Q.E.D.

Proof of statement 2):

Suppose (α, b, c, ǫ) ∈ RAS-C. This corresponds to the first case in expression (6),

so that Ψb(α, b, c, ǫ) = 0 > −2ǫ.

Next, suppose (α, b, c, ǫ) ∈ RHS2 ∩ R∆L≤∆1
. This which corresponds to the left

panel in Figure 5 and the third case in expression (6), so that:

Ψb(α, b, c, ǫ) =

∫ ∆L

∆′′−2ǫ

(1− α)d∆ > 0 > −2ǫ

Next, suppose (α, b, c, ǫ) ∈ RMS-HI ∩ R∆L≤∆1
. This corresponds to the left panel

in Figure 6 and the third case in expression (6), so that:

Ψb(α, b, c, ǫ) =

∫ ∆L

∆1−ǫ

(1− α)d∆−

∫ ∆1+ǫ

∆R

(1− α)d∆ ≥ 0 > −2ǫ

The first inequality follows because, as can be seen in the left panel of Figure 6,

the distance between ∆L and (∆1−ǫ) is greater than or equal to the distance between

∆R and (∆1 + ǫ).

Finally, suppose (α, b, c, ǫ) ∈ (RMS-HI ∩ R∆1<∆L≤0) ∪ (RMS-HI ∩ R∆L>0). This cor-

responds to the centre and right panels in Figure 6 and the third case in expression

(6), so that:

Ψb(α, b, c, ǫ) =

−
(

c+ α|∆L −∆1| − |∆L|
)

+

∫ ∆1

∆1−ǫ

(1− α)d∆−

∫ ∆L

∆1

(1− α)d∆−

∫ ∆1+ǫ

∆R

(1− α)d∆

If ∆1 < ∆L ≤ 0, the last line simplifies to −2∆L, which is greater than or equal

to 0 and, hence, greater than −2ǫ. If ∆L > 0, the last line equals 0, which is greater

than −2ǫ. Q.E.D.
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Proof of statement 3):

Suppose (α, b, c, ǫ) ∈ RAS-C. This corresponds to the first case in expression (6),

so that Ψc(α, b, c, ǫ) = 0 < 2ǫ.

Next, suppose (α, b, c, ǫ) ∈ RAS-L, which corresponds to Figure 3 and the second

case in expression (6). We have:

Ψc = (∆L + 2ǫ− |∆L|)(−
1

1− α
) < 0 < 2ǫ

The first inequality holds because ∆L +2ǫ > |∆L|, which can be seen in Figure 3.

Next, suppose (α, b, c, ǫ) ∈ RHS1 ∪RHS2 ∪RMS-HI. This corresponds to Figures 4-6

and the third case in expression (6), so that:

Ψc(α, b, c, ǫ) =

(

c+ α|∆L −∆1| − |∆L|
)

(

−
1

1− α

)

+
∫

(−∞,∆1]∩[∆L,∆R]′∩[∆̄(α,b,c,ǫ)−2ǫ,∆̄(α,b,c,ǫ)]

1d∆+

∫

[∆1,∞)∩[∆L,∆R]′∩[∆̄(α,b,c,ǫ)−2ǫ,∆̄(α,b,c,ǫ)]

1d∆ ≤

∫

(−∞,∆1]∩[∆L,∆R]′∩[∆̄(α,b,c,ǫ)−2ǫ,∆̄(α,b,c,ǫ)]

1d∆+

∫

[∆1,∞)∩[∆L,∆R]′∩[∆̄(α,b,c,ǫ)−2ǫ,∆̄(α,b,c,ǫ)]

1d∆ =

∫

[∆L,∆R]′∩[∆̄(α,b,c,ǫ)−2ǫ,∆̄(α,b,c,ǫ)]

1d∆ ≤ 2ǫ

When c > 0, the last inequality is strict because (i) [∆̄(α, b, c, ǫ)− 2ǫ, ∆̄(α, b, c, ǫ)]

has length 2ǫ and (ii) [∆̄(α, b, c, ǫ)− 2ǫ, ∆̄(α, b, c, ǫ)]∩ [∆L,∆R] has positive measure.

Finally, suppose (α, b, c, ǫ) ∈ RNS-corner. This corresponds to Figure 7 and the

fourth case in expression (6), so that:

Ψc(α, b, c, ǫ) =

(

c+ α(∆L −∆1)− L(∆L − 2ǫ, α, b, c)
)

(

−
1

1− α

)

+

∫ ∆1

min(∆1,∆L−2ǫ)

1d∆+

∫ ∆L

max(∆1,∆L−2ǫ)

1d∆ =

(

c+ α(∆L −∆1)− L(∆L − 2ǫ, α, b, c)
)

(

−
1

1− α

)

+ 2ǫ ≤

(

c+ α(∆L −∆1)− L(∆L, α, b, c)
)

(

−
1

1− α

)

+ 2ǫ ≤ 2ǫ

The first inequality follows because L(∆L−2ǫ, α, b, c) ≤ L(∆L, α, b, c). The second
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inequality holds because (i) L(∆L − 2ǫ, α, b, c) ≤ L(∆L, α, b, c) implies ∆L > 0 (see

footnote 29) and (ii) the size of the jump in L(·, α, b, c) at ∆L is nonnegative when

∆L > 0 (by Lemma 1). In fact, the second inequality is strict whenever c > 0 because,

in that case, the size of the jump in L(·, α, b, c) at ∆L is positive when ∆L > 0 (by

Lemma 1). Q.E.D.

12.6 Proof of Proposition 2

To prove the Proposition, we make use of a sequence of claims.

Claim 1 1
2ǫ
Ψ(α, b, 0, ǫ) ≥ −b if and only if b ≥ −αǫ

2
.

Proof:

When c = 0, expression (4) simplifies to:

∆̄(α, b, 0, ǫ) =

{

∆1 + ǫ if b > −αǫ

−b if b ≤ −αǫ
,

and L(∆, α, b, 0) = α|∆−∆1|. Thus,

1

2ǫ
Ψ(α, b, 0, ǫ) =

{

1
2ǫ

∫ ∆1+ǫ

∆1−ǫ
α|∆−∆1|d∆ if b > −αǫ

1
2ǫ

∫ −b

−b−2ǫ
α|∆−∆1|d∆ if b ≤ −αǫ

=















αǫ
2

if b > −αǫ
b2

2αǫ
+ b+ αǫ if − 2αǫ < b ≤ −αǫ

−b − αǫ if b ≥ −2αǫ

.

Note that 1
2ǫ
Ψ(α, ·, 0, ǫ) is continuous, constant with value αǫ

2
on (−αǫ, 0], decreas-

ing with absolute slope less than 1 on (−2αǫ,−αǫ], and decreasing with absolute slope

1 on (−∞,−2αǫ]. Thus, the graph of −b crosses the graph of 1
2ǫ
Ψ(α, ·, 0, ǫ) only once

from below at b = −αǫ
2
. Q.E.D.

Claim 2 limc→∞
1
2ǫ
Ψ(α, b, c, ǫ) < limc→∞(c− b).

Proof:
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lim
c→∞

1

2ǫ
Ψ(α, b, c, ǫ) = lim

c→∞

1

2ǫ

∫ ǫ

−ǫ

|∆|d∆ = lim
c→∞

1

2ǫ
ǫ2 =

ǫ

2
< ∞ = lim

c→∞
(c− b)

The first equality follows because, as c approaches ∞, (α, b, c, ǫ) must eventually

enter into and remain in RAS-C (see Figure 12). Thus, as c goes to ∞, the losses

under the optimal default are limited, while the losses under AD grow without bound.

Q.E.D.

Claim 3 The function 1
2ǫ
Ψ(α, b, c, ǫ)− (c− b) is decreasing in c.

This lemma basically follows from statement 3) in Lemma 3. Given that there

is no simple intuition for statement 3) in Lemma 3, there is no simple intuition for

Claim 3.

Proof:

Fix c1, c2, where 0 ≤ c1 < c2. By the absolute continuity of Ψ(α, b, c, ǫ) (see

Lemma 6), and hence of 1
2ǫ
Ψ(α, b, c, ǫ)− (c− b), in c on [c1, c2]:

1

2ǫ
Ψ(α, b, c2, ǫ)− (c2 − b)−

( 1

2ǫ
Ψ(α, b, c1, ǫ)− (c1 − b)

)

=
∫ c2

c1

( 1

2ǫ
Ψc(α, b, c, ǫ)− 1

)

dc.

By statement 3) in Lemma 3, the integrand in the last integral is negative for

almost all c, so that the integral is negative as well. Q.E.D.

Now, we are ready to prove statements 1) and 2) in Proposition 2.

Proof of statements 1) and 2) in Proposition 2:

Suppose b ≥ −αǫ
2
. It follows directly from Claims 1-3 and the continuity of

1
2ǫ
Ψ(α, b, c, ǫ)− (c−b) in c57 that there exists a unique value of c, denoted cAD(α, b, ǫ),

such that 1
2ǫ
Ψ(α, b, cAD(α, b, ǫ), ǫ) = cAD(α, b, ǫ) − b. Furthermore, it follows directly

from Claim 3 that (i) AD is optimal if and only if c ≤ cAD(α, b, ǫ) and (ii) ∆̄(α, b, c, ǫ)

is optimal if and only if c ≥ cAD(α, b, ǫ).

57Absolute continuity implies continuity.
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Now, suppose b < −αǫ
2
. It follows directly from Claims 1 and 3 that ∆̄(α, b, c, ǫ)

is the unique optimal default policy. Q.E.D.

It remains to prove statement 3) in Proposition 2. Let w(α, b, c, ǫ) = 1
2ǫ
Ψ(α, b, c, ǫ)−

(c− b). We break down the proof of statement 3) into a sequence of claims.

Claim 4 cAD(α, b, ǫ) is increasing in b.

This claim follows mainly from Claim 3 and statement 2) in Lemma 3. Given

that there is no simple intuition for Claim 3 and statement 2) in Lemma 3, there is

no simple intuition for Claim 4.

Proof:

Fix α, b′, b′′, ǫ, such that −αǫ
2

≤ b′ < b′′ ≤ 0. Assume that cAD(α, b′, ǫ) ≥

cAD(α, b′′, ǫ). We will arrive at a contradiction.

By the definition of cAD, we have:

w(α, b′, cAD(α, b′, ǫ), ǫ) = w(α, b′′, cAD(α, b′′, ǫ), ǫ).

Subtracting w(α, b′, cAD(α, b′′, ǫ), ǫ) from both sides:

w(α, b′, cAD(α, b′, ǫ), ǫ)− w(α, b′, cAD(α, b′′, ǫ), ǫ) =

w(α, b′′, cAD(α, b′′, ǫ), ǫ)− w(α, b′, cAD(α, b′′, ǫ), ǫ).

By the absolute continuity of Ψ(α, ·, cAD(α, b′′, ǫ), ǫ), and hence of w(α, ·, cAD(α, b′′, ǫ), ǫ),

on [b′, b′′], we can write the latter equality as:

w(α, b′, cAD(α, b′, ǫ), ǫ)− w(α, b′, cAD(α, b′′, ǫ), ǫ) =

∫ b′′

b′

∂w

∂b
(α, b, cAD(α, b′′, ǫ), ǫ)db

or, equivalently as:

w(α, b′, cAD(α, b′, ǫ), ǫ)−w(α, b′, cAD(α, b′′, ǫ), ǫ) =

∫ b′′

b′

( 1

2ǫ
Ψb(α, b, c

AD(α, b′′, ǫ), ǫ)+1
)

db
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By Claim 3, w(α, b, ·, ǫ) is decreasing, so that the left-hand side is nonpositive.

By statement 2) in Lemma 3, the integrand on the right-hand side is positive for all

b ∈ (b′, b′′), so that the right-hand-side is positive. We have arrived at a contradiction.

Q.E.D.

Claim 5 cAD(α, b, ǫ) is nondecreasing in α.

This claim follows mainly from Claim 3 and statement 1) in Lemma 3. Given

that there is no simple intuition for Claim 3 and statement 1) in Lemma 3, there is

no simple intuition for Claim 5.

Proof:

Fix α′, α′′, b, ǫ, such that −2b
ǫ

≤ α′ < α′′ < 1. Assume that cAD(α′, b, ǫ) >

cAD(α′′, b, ǫ).58 We will arrive at a contradiction.

By the definition of cAD, we have:

w(α′, b, cAD(α′, b, ǫ), ǫ) = w(α′′, b, cAD(α′′, b, ǫ), ǫ)

Subtracting w(α′, b, cAD(α′′, b, ǫ), ǫ) from both sides:

w(α′, b, cAD(α′, b, ǫ), ǫ)− w(α′, b, cAD(α′′, b, ǫ), ǫ) =

w(α′′, b, cAD(α′′, b, ǫ), ǫ)− w(α′, b, cAD(α′′, b, ǫ), ǫ)

By the absolute continuity of Ψ(·, b, cAD(α′′, b, ǫ), ǫ), and hence of w(·, b, cAD(α′′, b, ǫ), ǫ),

on [α′, α′′], we can write the latter equality as:

w(α′, b, cAD(α′, b, ǫ), ǫ)− w(α′, b, cAD(α′′, b, ǫ), ǫ) =

∫ α′′

α′

∂w

∂α
(α, b, cAD(α′′, b, ǫ), ǫ)dα

or, equivalently as:

w(α′, b, cAD(α′, b, ǫ), ǫ)− w(α′, b, cAD(α′′, b, ǫ), ǫ) =

∫ α′′

α′

1

2ǫ
Ψα(α, b, c

AD(α′′, b, ǫ), ǫ)dα

58− 2b
ǫ
< α′ and − 2b

ǫ
< α′′ guarantee that cAD is defined at (α′, b, ǫ) and (α′′, b, ǫ), respectively.
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By Claim 3, w(α, b, ·, ǫ) is decreasing, so that the left-hand side is negative. By

statement 1) in Lemma 3, the integrand on the right-hand side is nonnegative for

all α ∈ (α′, α′′), so that the right-hand-side is nonnegative. We have arrived at a

contradiction. Q.E.D.

Claim 6 cAD(α,−αǫ
2
, ǫ) = 0

Proof:

Consider the equation 1
2ǫ
Ψ(α,−αǫ

2
, c, ǫ) = c− αǫ

2
. By Claim 1, c = 0 solves it. By

statement 1) in Proposition 2, cAD(α,−αǫ
2
, ǫ) is the unique value of c that solves it.

Thus, it must be that cAD(α,−αǫ
2
, ǫ) = 0. Q.E.D.

Claim 7 cAD(α, 0, ǫ) =

{

√

α(1− α)ǫ if α < 0.5

0.5ǫ if α ≥ 0.5

Proof:

If b = 0, (α, b, c, ǫ) is either in RAS-C or in RMS-HI ∩ R∆L≤∆1
(see Figure 12).59

Thus, (α, 0, cAD(α, 0, ǫ), ǫ) is either in RAS-C or in RMS-HI ∩R∆L≤∆1
.

First, assume (α, 0, cAD(α, 0, ǫ), ǫ) ∈ RAS-C, i.e., −
cAD(α,0,ǫ)

1−α
≤ −ǫ or, equivalently

cAD(α, 0, ǫ) ≥ (1 − α)ǫ. In this case, the first piece in expression (11) for Ψ applies,

so that cAD(α, 0, ǫ) is defined by cAD(α, 0, ǫ) = ǫ
2
. If α ≥ 0.5, cAD(α, 0, ǫ) = ǫ

2
is

consistent with cAD(α, 0, ǫ) ≥ (1− α)ǫ. Thus, cAD(α, 0, ǫ) = ǫ
2
if α ≥ 0.5.

Next, assume (α, 0, cAD(α, 0, ǫ), ǫ) ∈ RMS-HI ∩ R∆L≤∆1
, i.e., ǫ > cAD(α,0,ǫ)

1−α
and

− cAD(α,0,ǫ)
1−α

≤ 0. The latter two inequalities can be stated equivalently as 0 ≤

cAD(α, 0, ǫ) < (1 − α)ǫ. In this case, the ninth piece in expression (11) for Ψ ap-

plies. This piece simplifies to 2cǫ − c2

1−α
+ αǫ2 given that b = 0. Thus, cAD(α, 0, ǫ)

solves 1
2ǫ

(

2cǫ − c2

1−α
+ αǫ2

)

= c. Thus, cAD(α, 0, ǫ) = ǫ
√

α(1− α). If α < 0.5,

cAD(α, 0, ǫ) = ǫ
√

α(1− α) is consistent with 0 ≤ cAD(α, 0, ǫ) < (1 − α)ǫ. Thus,

cAD(α, 0, ǫ) = ǫ
√

α(1− α) if α < 0.5. Q.E.D.

59Although it is not clear from the figure, the point (α, b, c, ǫ) = (α, 0, (1 − α)ǫ, ǫ) satisfies the
condition in the first case in expression (4), so that this point is in RAS-C.
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12.7 Proof of Proposition 3

Part (i) follows from replacing (α, b, c, ǫ) with (α, kb, kc, kǫ) in expression (4)60 and

observing that the conditions in the ith (1 ≤ i ≤ 6) case in expression (4) hold for

(α, kb, kc, kǫ) if and only if they hold for (α, b, c, ǫ).

Turning to part (ii), note that it follows from expression (1) that L(∆, α, kb, kc) =

kL(∆
k
, α, b, c). Utilising this, we have:

Ψ(α, kb, kc, kǫ) =
∫ ∆̄(α,kb,kc,kǫ)

∆̄(α,kb,kc,kǫ)−2kǫ

L(∆, α, kb, kc)d∆ =

∫ k∆̄(α,b,c,ǫ)

k∆̄(α,b,c,ǫ)−2kǫ

kL(
∆

k
, α, b, c)d∆ =

k2

∫ k∆̄(α,b,c,ǫ)

k∆̄(α,b,c,ǫ)−2kǫ

L(
∆

k
, α, b, c)d

∆

k
=

k2

∫ ∆̄(α,b,c,ǫ)

∆̄(α,b,c,ǫ)−2ǫ

L(∆̃, α, b, c)d(∆̃) =

k2Ψ(α, b, c, ǫ),

where the last equality utilises a change of the variable of integration.

Thus, c−b ≤ 1
2ǫ
Ψ(α, b, c, ǫ) (i.e., given (α, b, c, ǫ), AD is an optimal default policy)

if and only if kc− kb ≤ 1
2kǫ

Ψ(α, kb, kc, kǫ) (i.e., given (α, kb, kc, kǫ), AD is an optimal

default policy). Q.E.D.

60Note that, although expression (4) doesn’t make this explicit, ∆L, ∆1,∆
′, and ∆′′ change when

we change the parameters.
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