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Abstract

This paper introduces a VAR with stochastic volatility in mean where the residuals of the volatil-

ity equations and the observation equations are allowed to be correlated. This implies that exogene-

ity of shocks to volatility is not assumed apriori and structural shocks can be identified ex-post by

applying standard SVAR techniques. The paper provides a Gibbs algorithm to approximate the pos-

terior distribution and demonstrates the proposed methods by estimating the impact of financial un-

certainty shocks on the US economy.
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1 Introduction

This paper describes the estimation of a VAR with stochastic volatility in mean (VARSVOL) where the

residuals of the transition equations are allowed to be correlated with those of the observation equation.

This generalises existing VARSVOL models where it is typically assumed that shocks to stochastic volatility

are independent of shocks to the endogenous variables.1From an economic point of view, such a correlation

may reflect shocks that affect the level and conditional variance of a variable. For example, one might expect

recessions to be periods of low growth and high output uncertainty. In econometric terms, allowing for such

a correlation implies that the model has a structure akin to a reduced form VAR where the structural shocks

∗Queen Mary College. Email: h.mumtaz@qmul.ac.uk
1Some exceptions to this existing literature are discussed below.
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are identified in a second step. This allows the researcher to distinguish amongst uncertainty and level shocks

by using SVAR techniques rather than imposing exogeneity of the former apriori.

While generalising the VARSVOL model in this manner makes the state-space more complex, we show

that an extended version of the existing MCMC algorithms can be used to approximate the posterior distri-

bution. The algorithm works well on simulated data.

As an application, we estimate a small VAR for the US economy that incorporates financial and macro-

economic variables. The time-varying variances in the model have shocks that are allowed to be contempo-

raneously correlated both mutually and with the residuals of the observation equations. In order to identify

a financial uncertainty shock from these residuals, we use three identification schemes based respectively on

short run, medium run and inequality restrictions. Our results indicate that financial uncertainty shocks can

have a negative impact on output growth.

The paper is organised as follows: The model is described in section 2 with the estimation algorithm

summarised in section 2.1. Details of this Gibbs algorithm are provided in the appendix. Finally, the

empirical exercise is described in section 3.

2 Empirical model

We consider the following state-space model:

h̃t = α+ θh̃t−1 +

Q∑
j=1

djZt−j + S1/2ηt (1)

Zt = c+

P∑
j=1

βjZt−j +

K∑
k=1

bkh̃t−k +H
1/2
t et (2)

where Zt is a matrix of N endogenous variables.

The stochastic volatilities are denoted by h̃t = [h1t, h2t, ..hN,t] and Ht = diag
(

exp
(
h̃t

))
. The shocks

to the transition equation 1 have a variance S = diag(s̃) with s̃ = [s1, s2, .., sN ]. Note that θ can be a full

matrix with the elements of h̃t allowed to have a dynamic relationship amongst themselves.

2



The observation equation of the system is the VAR model in equation 2. As evident, h̃t is allowed to

have a lagged impact on the endogenous variables.

The disturbances εt =

 ηt

et

 are distributed normally N(0,Σ) where the diagonal elements of Σ are

restricted to equal 1:

Σ =

 Ση Σ′ηtet

Σηtet Σet


In other words, the time-varying covariance matrix of the reduced form residuals of the system in equations

1 and 2 can be written as Ωt =

 S1/2 0

0 H
1/2
t


 Ση Σ′ηtet

Σηtet Σet


 S1/2 0

0 H
1/2
t


′

. Thus the model

allows for correlation between the shocks to the level of the endogenous variables and volatilities.

There are two main differences between the model proposed here and VARSVOL models used in recent

papers such as Mumtaz and Surico (n.d.), Mumtaz and Theodoridis (2015b), JO (2014) and Mumtaz and

Zanetti (2013). First, the model allows for lagged feedback effects from the endogenous variables to the

stochastic volatilties (see also Mumtaz and Theodoridis (2015a)). Second, the covariance beween level

shocks and those to second moments is allowed to be non-zero. This implies that in order to identify

structural shocks ut from the M = 2N reduced form disturbances in the system additional assumptions are

required. In particular, the structural shocks can be estimated as ut = A−10,tεt where A0,tA
′
0,t = Ωt. The

contemporaneous impact matrix A0,t could be obtained using one of the techniques developed in the large

literature on structural VARs. For example, timing restrictions could be incorporated by calculating A0,t as

the Cholesky decomposition of Ωt.

In a recent related contribution, Carriero et al. (2016) estimate a VARSVOL model that incorporates both

unobserved idiosyncratic volatility and a measure of uncertainty that is common across VAR equations and

possibly observed. They show that the time-varying volatility allows them to identify the contemporanoeus

impact of level shocks on uncertainty. The current paper differs from Carriero et al. (2016), in that it does

not attempt to directly estimate the contemporaneous impulse response. Instead, our focus is on the reduced

form of the model with identification confined to a second step. The model proposed above is a multivariate

extension of stochastic volatility models with leverage considered in Omori et al. (2007) and Pitt et al. (2014).
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2.1 Gibbs sampling algorithm

We approximate the marginal posterior distribution of the parameters and states B,S,Σ, h̃t using a Gibbs

sampling algorithm. While we provide the details of prior and conditional posterior distributions in the

appendix, a sketch of the algorithm is provided here. The algorithm samples from the following conditional

posterior distributions:

1. G
(
B|S,Σ, h̃t

)
. The conditional posterior distribution of the coeffi cientsB = vec ([α, θ, d1, .., dQ, c, β1, .., βP , b1, .., bK ])

can be obtained by writing equations 1 and 2 as SUR system with conditionally normal disturbances

with covariance matrix Σ. With a normal prior, the conditional posterior of B is also normal. The

Kalman filter can be used find the mean and the variance of the conditional posterior taking into

account the time-variation in Ht.

2. G
(
S|B,Σ, h̃t

)
. The correlation amongst the disturbances of the transition equation η̃t = S1/2ηt

implies that the conditional posterior for the elements of S is non-standard. Thus we use a Metropolis

step to sample from this distribution. A candidate density that displays satisfactory performance in

simulations is the inverse Gamma (IG) distribution centered at the posterior moments calculated under

the assumption that η̃t are uncorrelated, i.e. IG (v1, T1) where the parameter v1 is set to η̃′itη̃it + v0

and T1 = T0 + T where v0, T0 denote prior moments and T is the sample size. In practice, this can

also be combined with a IG distribution centered on the previous draw to obtain a mixture proposal

density κIG (v1, T1) + (1 − κ)IG
(
v (Sj−1) , T

(
V̄
))
where v (Sj−1) , T

(
V̄
)
denotes the parameters of

the IG consistent with a mean of Sj−1 and standard deviation of V̄ . The latter proposal may be useful

if η̃ are highly correlated. Note that given B,Σ, h̃t and a draw of S from the candidate density, the

likelihood can be easily calculated with the process described in the appendix.

3. G
(

Σ|B, h̃t, S
)
. Given B and the variances S, h̃t, the residuals εt. The draw of the restricted covariance

matrix is obtained via the independence Metropolis algorithm described in Chan and Jeliazkov (2009).

4



4. G
(
h̃t|Σ, B, S

)
. The observation equation of the state-space system can be written as:

Zt −H1/2
t µet|ηt = c+

P∑
j=1

βjZt−j +

K∑
k=1

bkh̃t−k + ẽt

var (ẽt) = Ωt = H
1/2
t Σet|ηtH

1/2′
t

where µet|ηt denotes the conditional mean of et and Σet|ηt is the conditional variance:

µet|ηt = ηtΣ
−1
ηt

Σ′ηtet

Σet|ηt = Σet − ΣηtetΣ
−1
ηt

Σ′ηtet

We treat ηt as a state variable in this step and write the transition equation as

Ft = C + ΨFt−1 +Nt

where Ft =



ηt+1

ηt

h̃t

.

h̃t−k


. Note that the residual of the transformed observation equation ẽt is uncor-

related with Nt. As described in the appendix, we employ a particle Gibbs step (see Andrieu et al.

(2010) and Lindsten et al. (2014)) to sample Ft from its conditional posterior distribution.

We conduct a small Monte-Carlo experiment to evaluate the performance of the algorithm. We generate

data from the following DGP

 lnh1t

lnh2t

 =

 0.85 −0.1

0.1 0.85


 lnh1t−1

lnh2t−1

+

 −0.05 0.01

−0.05 0.01


 lnh1t−1

lnh2t−1

+
s
1/2
11 e1t

s
1/2
22 e2t
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Figure 1: Impulse response to a 1 unit uncertainty shock. Black line represents true responses. The red line
and shaded area represent the median estimate anf the 95% error band across the Monte-Carlo replications

 Yt

Xt

 =

 0.3

−0.3

+

 0.5 −0.1

0.1 0.5


 Yt−1

Xt−1

+

 −0.1 0.1

−0.1 0.1

 lnh1t−1

lnh2t−1

+

 h
1/2
1t e3t

h
1/2
2t e4t




e1t

e2t

e3t

e4t


˜N





0

0

0

0


,



1 0.2 0.3 −0.4

0.2 1 0.6 0.2

0.3 0.6 1 −0.2

−0.4 0.2 −0.2 1




where eit, vit˜N(0, 1) for i = 1, 2, .., 4. We set s11 = 1 and s22 = 1. We generate 500 observations and

discard the first 100 to remove the effect of initial conditions. The experiment is repeated 50 times. At each

iteration we estimate the model using an MCMC run of 10000 iterations, with a burn-in of 5000 iterations.

The particle Gibbs step employs 20 particles. For the retained draws, we calculate the response to unit

shocks to the equations for h1t and h2t with the residuals orthogonalised using a Cholesky decomposition.
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Figure 1 shows a comparison between the true impulse responses and the estimates based on the Monte-

Carlo. The true responses are fairly close to the median estimates and lie within the 95% error bands. This

provides some evidence that that the algorithm displays a reasonable performance.

3 Empirical results

We use the proposed model to estimate the impact of financial uncertainty shocks on the US economy. The

model is estimated using 3 variables: (1) the spread between BAA corporate bond yield and the ten year

treasury bill rate (S), (2) quarterly real GNP growth (Y ) and (3) quarterly GNP deflator inflation (P ). We

employ a long sample of data running from 1920Q1 to 2015Q4. This allows us to exploit a larger number

of events of high financial volatility aiding in shock identification. Prior to 1983, the data on real GNP and

GNP deflator is obtained from from Gordon (1986) with data on subsequent years obtained from the Federal

Reserve Bank of St Louis (FRED) database (codes GNPC96 and GNPDEF). The source for the BAA yield

is also FRED (code BAA), while the 10 year rate is obtained from Global Financial database.

In terms of model specification, we set the lag lengths P,K,Q to 4, 2, 2 respectively. The prior distrib-

utions are fairly standard and described in detail in the appendix. We employ 150,000 MCMC iterations,

discarding the first 25,000 as burn-in with inference based on every 25th remaining draw. The ineffi ciency

factors (available on request) are fairly low providing some evidence in favour of convergence.

Before discussing the identification of the financial uncertainty shock, we consider the reduced form

estimates. The posterior median of Σ is displayed in the form of a heat map in Figure 2. It is interesting to

note that the contemporaneous relationship between the shocks to h1t, the variance of the shock to the spread,

and h2t, the variance of the shock to output growth is positive and relatively large with the 68% highest

posterior density interval (HPDI) given by [0.61, 0.87]. In contrast, the covariance between shocks to h1t,h2t

and the residual of the equation for h3t (the variance of the shock to inflation) is imprecisely estimated with

the HPDI including a value of 0. The contemporaneous relationship between shocks to h1t and h2t and the

residual of the equation for S is estimated to be positive with the HPDI given by [0.33, 0.59] and [0.27, 0.60],

respectively. In contrast, the null hypothesis of zero covariance between the volatility residuals and those

of the output and inflation equation cannot be rejected. These results are consistent with the view that
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Figure 2: Elements on and below the diagonal of the posterior mean of Σ
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Figure 3: Posterior median estimates of the square root of stochastic volatilities. Shaded areas represent
NBER recessions.

uncertainty shocks and financial shocks are closely related.

Figure 3 shows that early 1930s saw the largest peaks in the volatility of shocks to output and the spread,

with h1t substantially larger than the remaining variances. In the post-1970 period, episodes of recession

appear to be associated with a positive co-movement between h1t and h2t while the volatility of the shock

to inflation is estimated to be smoother.

In order to identify financial uncertainty shocks, we adopt three approaches:

1. Cholesky: As a simple benchmark, the contemporaneous impact matrix is calculated using the Cholesky

decomposition assuming the ordering h1t, h2t, h3t, S, Y, P with the first shock labelled as financial un-

certainty.

2. ‘Max FEV’: Following Uhlig (2004), we place restrictions on the contribution of the shocks to the

forecast error variance (FEV). We start from the observation that, the conditional variance of the

spread is driven by a number of structural shocks including a the financial uncertainty shock ε∗t :

h1t = f (ε∗t , ε̃t) (3)
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Here, ε̃t denotes other structural disturbances (e.g. demand, supply, financial and policy shocks) that

can also potentially lead to a change in volatility h1t and are proxied by the innovations in the VAR

model. In order, to seperate ε∗t from ε̃t we assume that the former makes the largest contribution to

the FEV of h1t at short and medium horizons (assumed to be up to 20 quarters after the shock). In

other words, shocks that explain the bulk of short and medium term movements in the conditional

variance of the spread are labelled as financial uncertainty shocks.2 .

3. Sign restrictions: In the spirit of Ludvigson et al. (2015), we impose sign restrictions on the shocks εt.

In particular we assume that the contemporaneous impact matrix implies shocks to h1t, h2t and Yt

that satisfy the following conditions:

(a) Shocks to h1t (financial uncertainty shocks) and h2t (Macro uncertainty shocks) have a negative

correlation with the residual obtained via an AR(1) regression using stock returns. Denoting these

correlation coeffi cients as ρ1 and ρ2 and lettingρ1,2 =
√
ρ21 + ρ22, this conditions further requires

ρ1 < −0.05, ρ2 < −0.05, |ρ1|− 2 |ρ2| > 0 and ρ1,2 > 0.2. These conditions ensure that uncertainty

shocks have a negative correlation with the reduced form shock to returns, with shocks labelled

as financial uncertainty displaying a correlation that is larger in magnitude. As discussed in

Ludvigson et al. (2015), these restrictions are consistent with the view that uncertainty shocks

affect risk premia and should, therefore, be correlated with returns.

(b) Financial uncertainty shocks are restricted to be at least 2 standard deviations larger than their

mean at least once during the great depression period (1929-1933) and the recent financial crisis

(2007Q4-2009Q2). This restriction is also imposed on the stock market crash in 2007Q4. We

assume that shocks to Y during 2007Q4-2009Q2 must be less than two standard deviations in

order to rule out draws that imply implausibly large positive output shocks over that period.

Figure 4 displays the posterior median estimates of the financial uncertainty shock under the three

identification schemes. The estimates using the Cholesky and max FEV schemes are fairly similar with

major peaks during the 1930s, 1950s, 1980s and the recent financial crisis. The estimate based on narrative

2To calculate the implied structural impact matrix we use the linear approximation to the impulse responses. As shown in
Uhlig (2004), the maximisation can be written as an eigenvector eigenvalue problem and an analytical solution is available.
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Figure 4: Estimated financial uncertainty shocks (posterior median). The shaded area are recessions while
vertical lines indicate key historical events. ‘ME’conflict refers the Arab Israeli war in 1973.

sign restrictions is more volatile and reaches its largest values during the recent recession.

The estimated impulse response to the financial uncertainty shock based on the three identification

schemes are shown in Figure 5. The shock leads to a rise in conditional output volatility but appears to have

little impact on inflation variance. The spread rises in response with the largest increase estimated when sign

restrictions are used. The median response of output growth is negative under all identification schemes.

However, the error bands for this response are large when sign restrictions are used for identification.

Figure 6 shows that the contribution of the shock identified via sign restrictions to the FEV is small in all

cases except the spread. This might suggest that the narrative restrictions are insuffi cient to fully seperate

uncertainty from financial shocks. In the case of max FEV identification, the contribution to volatility and

output growth is estimated to be larger.

In summary, the impulse responses and FEV decomposition indicates that, unsurprisingly, identification

assumptions play a big role in determining the results. However, on average across identification schemes,

there is moderately strong evidence that financial uncertainty shocks have negative real and financial conse-

quences.
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Figure 5: Impulse response to a financial uncertainty shock
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Figure 6: Contribution of the financial uncertainty shock to the FEV
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4 Conclusions

This paper introduces a VAR with stochastic volatility in mean where the disturbances of the observation

and transition equation are allowed to be correlated. This removes the need to assume exogeneity of volatility

shocks apriori or to estimate the model in structural form. While the literature has shown that both of these

approaches are feasible and useful in certain cases, the model developed in this paper provides an alternative

that is closer to standard VAR models. In future work it may be interesting to extend the proposed model

by incorporating time-varying parameters as it is likely that the reduced correlation amongst volatility and

level shocks and their structural impact has changed over time.
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A Appendix: Model Estimation

Consider the VAR model

h̃t = α+ θh̃t−1 +

Q∑
j=1

djZt−j + S1/2ηt (4)

Zt = c+

P∑
j=1

βjZt−j +

K∑
k=1

bkh̃t−k +H
1/2
t et (5)

where Zt is a matrix of endogenous variables, h̃t = [h1t, h2t, ..hN,t], Ht = diag
(

exp
(
h̃t

))
and s̃ =

[s1, s2, .., sN ] S = diag(s̃). The disturbances εt =

 ηt

et

 are distributed normallyN(0,Σ),Σ =

 Ση Σ′ηe

Σηe Σe


where the diagonal elements of Σ are restricted to equal 1. For example for M = 4, N = 2 : Σ =

1 Σ12 Σ13 Σ14

Σ21 1 Σ23 Σ24

Σ31 Σ32 1 Σ34

Σ41 Σ42 Σ43 1


A.1 Prior distributions and starting values

A.1.1 VAR coeffi cients

Let Γ = vec
(
[c;βj ; bk]

)
. Following Banbura et al. (2007), we employ a Normal prior. The priors are

implemented by the dummy observations yD and xD that are defined as:

yD =



diag(γ1s1...γnsn)
τ

0N×(P−1)×N

..............

0EX×N


, xD =



JP⊗diag(s1...sn)
τ 0NP×EX

0N×(NP )+EX

..............

0EX×NP IEX × 1/c


(6)

where γ1 to γn denote the prior mean for the parameters on the first lag obtained by estimating individual

AR(1) regressions, τ measures the tightness of the prior on the VAR coeffi cients, and c is the tightness
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of the prior on the exogenous and pre-determined regressors. EX denotes the number of exogenous and

pre-determined regressors in each equation. N denotes the total number of endogenous variables and P is

the lag length. We set τ = 0.1. We use a different value of c for the coeffi cients on the lagged volatilities

and for the coeffi cients on the lagged volatilities c is set equal to 0.1. A flat prior is used for the intercept

terms and the corresponding tightness is set equal to c = 1000. Note that these dummies do not directly

implement a prior belief on the VAR error covariance matrix which is time-varying in our setting.

The priors for the coeffi cients are thus: N (Γ0, P0) where Γ0 = (x′DxD)
−1

(x′DyD) and P0 = S⊗(x′DxD)
−1

where S is a diagonal matrix with an estimate of the variance of Zt (obtained using the training sample

described below) on the main diagonal.

A.1.2 Elements of Ht

Following Cogley and Sargent (2005) we use a training sample (of 20 pre-sample observations) to set the

prior for the elements of the transition equation of the model. Let v̂ols denote the OLS estimate of the VAR

covariance matrix estimated on the pre-sample data. The prior for h̃t at t = 0 is defined as lnh0 ∼ N(lnµ0, I4)

where µ0 are the diagonal elements of the Cholesky decomposition of v̂
ols.

A.1.3 Elements of Σ

Chan and Jeliazkov (2009) decompose Σ as Σ = L−1DL−1′ with the diagonal elements of D denoted by λk

and akj denoting the lower triangular elements of L−1. The prior for akj is assumed to be N(0, 1) while the

prior on D is implicit via the restriction that Σ have diagonal elements that equal 1.

A.1.4 Parameters of the transition equation

The prior for VAR coeffi cients Γ̃ = vec ([α; θ; dj ]) is set as above for Γ. We assume an inverse Gamma prior

for s̃ : IG(v0, T0), v0 = 0.001, T0 = 1.
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A.2 Simulating the posterior distributions

A.2.1 Coeffi cients

Conditional on S,Ht and Σ, the model can be written as a SUR system with heteroscedasticity

Yt = XtΠt + Et (7)

var (Et) = GtΣG
′
t

where Gt = diag

(
[s̃1/2, exp

(
h̃t

)1/2
]

)
, Yt =



h1t

h2t

.

Zt


, Xt =



x1t 0 0 0

0 x2t 0 0

0 0 . 0

0 0 0 .


where xit denotes the

coeffi cients in the ith equation of the system. Given a draw for the time-varying error covariance matrix, the

coeffi cients have a conditional posterior that is normal: N
(
ΠT\T , PT\T

)
. Following Carter and Kohn (2004)

we use the Kalman filter to estimate the mean and variance of the conditional posterior where we account

for the fact that the covariance matrix of the VAR residuals changes through time. To use the Kalman filter

we define the transition equation as

Πt = Πt−1

The Kalman filter is initialised at Π0 and P0|0 which are based on the priors for the coeffi cients introduced

above and the recursions are given by the following equations for t = 1, 2..T
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Πt\t−1 = Πt−1\t−1

Pt\t−1 = Pt−1\t−1

ηt\t−1 = Yt −XtΠt\t−1

ft\t−1 = XtPt\t−1X
′
t + (GtΣG

′
t)

Kt = Pt\t−1X
′
tf
−1
t\t−1

Πt\t = Πt\t−1 +Ktηt\t−1

Pt\t = Pt\t−1 −KtXtPt\t−1

The final iteration of the Kalman filter at time T delivers ΠT\T and PT\T .

A.3 Element of S

Given the residuals et, and Σ the transition equations can be written as VAR:

h̃t − S1/2µηt|et = α+ θh̃t−1 +

Q∑
j=1

djZt−j + η∗t (8)

var (η∗t ) = S1/2Σηt|etS
1/2′

µηt|et = etΣ
−1
e Σηe

Σηt|et = Ση − Σ′ηeΣ
−1
e Σ′ηe

Note that η∗t is uncorrelated with the residuals of the observation equation. The proposal density q (.) is

defined as:

Sj = κIG (v1, T1) + (1− κ)IG
(
v (Sj−1) , T

(
V̄
))

where the parameter v1 is set to η̃′itη̃it + v0 and T1 = T0 + T where T is the sample size and η̃it denotes the

residuals of the ith transition equation. Letting the mean of the IG distribution equal Sj−1 and standard
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deviation V̄ , the implied parameters of the second component of q (.) are defined as:

v (Sj−1) = 2Sj−1

(
1 +

S2j−1
V̄ 2

)

T
(
V̄
)

= 2

(
2 +

S2j−1
V̄ 2

)

In the benchmark model, we set κ = 0.5 and V̄ is chosen to obtain a satisfactory acceptance rate. The draws

accepted with probability:

α =
g (Et|Sj) q (Sj−1)

g (Et|Sj−1) q (Sj)

where g (Et|Sj) denotes the posterior distribution evaluated at the jth draw of S given all other parameters

at their values drawn in previous steps. With the model in the form of a VAR (equation 8), the likelihood

can be evaluated easily.

A.3.1 Elements of Σ

Chan and Jeliazkov (2009) describe how to sample covariance matrices with restrictions on some of the

elements and we follow their method in implementing the draw from this conditional posterior. Chan and

Jeliazkov (2009) decompose Σ as Σ = L−1DL−1′. They show that when the diagonal elements of Σ are

restricted to equal 1, then the diagonal elements of D (denoted by λk) satisfy

λ1 = 1 (9)

λk = 1−
k−1∑
j=1

(
akj
)2
λj , k = 2, 3, ..N

where akj are lower diagonal elements of L−1. They propose an independence Metropolis step to sample akj

with a proposal density of the form:

f
(
akj |εt

)
= N (µk, τVk)
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where V =
(
A−10 +

∑T
t=1 UtD̂

−1Ut

)
and µ = V

(
A−10 a0 +

∑T
t=1 UtD̂

−1εt

)
. Here Ut is defined as the matrix:

Ut = −



0 . . . 0

εt,1 0 . . .

0 εt,1 εt,2 . . .

0 . . εt,1 εt,2 εt,3 0 .

. . . .

. . . .

. . . 0

0 . . . 0 0 εt,1 . εt,N



and the diagonal elements of D̂ can be obtained by iterating between the equation for µ and equation 9.

The draw is accepted with probability:

α =
g (εt|Σnew) f (aold|εt)
g (εt|Σold) f (anew|εt)

with λk restricted to be greater than zero to ensure that Σ is positive definite. The expression for the

likelihood function used to construct the posterior g (εt|Σ) is given in equation 2.7 in Chan and Jeliazkov

(2009).

A.3.2 Elements of Ht

Conditional on the VAR coeffi cients and the parameters of the transition equation, the model has a multi-

variate non-linear state-space representation. It is convenient to express the state-space as:

Ft = C + ΨFt−1 +Nt

Zt −H1/2
t µet|ηt = c+

P∑
j=1

βjZt−j +

K∑
k=1

bkh̃t−k + ẽt

var (ẽt) = Ωt = H
1/2
t Σet|ηtH

1/2′
t
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where

Ft =



ηt+1

ηt

h̃t

.

h̃t−k



C =



0

0

α+
∑Q
j=1 djZt−j

.

0



Ψ =



0 0 . . 0

1 0 . . .

S1/2 0 θ . 0

0 1 . . 0

. . 1 . 0



Nt =



ηt+1

0

0

0

0


µet|ηt denotes the conditional mean of et while Σet|ηt is the conditional variance. These can be easily

calculated using results for multi-variate normal distributions. Partitioning Σ as:

Σ =

 Ση Σ′ηe

Σηe Σe


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the conditional mean and variance are given by:

µet|ηt = ηtΣ
−1
η Σ′ηe

Σet|ηt = Σe − ΣηeΣ
−1
η Σ′ηe

Moreover:

var (Nt) = Q̃ =



Ση . . . 0

0 . . .

0 . . .

0 . .

0 . 0 0


Following recent developments in the seminal paper by Andrieu et al. (2010), we employ a particle

Gibbs step to sample from the conditional posterior of Ft. Andrieu et al. (2010) show how a version of

the particle filter, conditioned on a fixed trajectory for one of the particles can be used to produce draws

that result in a Markov Kernel with a target distribution that is invariant. However, the usual problem

of path degeneracy in the particle filter can result in poor mixing in the original version of particle Gibbs.

Recent development, however, suggest that small modifications of this algorithm can largely alleviate this

problem. In particular, Lindsten et al. (2014) propose the addition of a step that involves sampling the

‘ancestors’or indices associated with the particle that is being conditioned on. They show that this results

in a substantial improvement in the mixing of the algorithm even with a few particles.3As explained in

Lindsten et al. (2014), ancestor sampling breaks the reference path into pieces and this causes the particle

system to collapse towards something different than the reference path. In the absence of this step, the

particle system tends to collapse to the conditioning path. We employ particle Gibbs with ancestor sampling

in this step.

Let F (i−1)t denote the fixed the fixed trajectory, for t = 1, 2, ..T obtained in the previous draw of the

Gibbs algorithm. We denote all the parameters of the model by Ξ, and j = 1, 2, ..M indexes the particles.

The conditional particle filter with ancestor sampling proceeds in the following steps:

3See Nonejad (2015) for a recent application of this algorithm.
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1. For t = 1

(a) Draw F
(j)
1 \F

(j)
0 ,Ξ for j = 1, 2, ..M − 1. Fix F (M)

1 = F
(i−1)
1

(b) Compute the normalised weights p(j)1 =
w
(j)
1∑M

j=1 w
(j)
1

where w(j)1 denotes the conditional likelihood:∣∣∣Ω(j)1 ∣∣∣−0.5−0.5 exp

(
ẽ1

(
Ω
(j)
1

)−1
ẽ′1

)
where Ω

(j)
1 = H

(j)
1 Σet|ηtH

(j)′
1 withH(j)

1 = diag
(

exp
(
h̃
(j)
1,[0]

))
and ẽ1 = Z1 − (H

(j)1/2
1 µet|ηt + c+

∑P
j=1 βjZt−j +

∑K
k=1 bkh̃

(j)
1,[−k]) The subscript [0] denotes the

contemporaneous value in the state vector while [−k] denote the k lagged states.

2. For t = 2 to T

(a) Resample F (j)t−1 for j = 1, 2, ..M − 1 using indices a(j)t with Pr
(
a
(j)
t = j

)
∝ p

(j)
t−1

(b) Draw F
(j)
t \F

(a
(j)
t )

t−1 ,Ξ for j = 1, 2, ..M − 1 using the transition equation of the model. Note that

F
(a
(j)
t )

t−1 denotes the resampled particles in step (a) above.

(c) Fix F (M)
t = F

(i−1)
t

(d) Sample a(M)
t with Pr

(
a
(M)
t = j

)
∝ p(j)t−1 Pr

(
F
(i−1)
t \F (j)t−1, C,Ψ, Q̃

)
where the density Pr

(
F
(i−1)
t \F (j)t−1, C,Ψ, Q̃

)
is computed as

∣∣∣Q̃∣∣∣−0.5−0.5 exp

(
N
(j)
t

(
Q̃
)−1

N
(j)
t

)
. This constitutes the ancestor sampling step.

If a(M)
t = M then the algorithm collapses to the simple particle Gibbs.

(e) Update the weights p(j)t =
w
(j)
t∑M

j=1 w
(j)
t

where w(j)1 denotes the conditional likelihood:
∣∣∣Ω(j)t ∣∣∣−0.5 −

0.5 exp

(
ẽt

(
Ω
(j)
t

)−1
ẽ′t

)

3. End

4. Sample F (i)t with Pr
(
F
(i)
t = F

(j)
t

)
∝ p

(j)
T to obtain a draw from the conditional posterior distribution

We use M = 20 particles in our application. The initial values µ0 defined above are used to initialise

step 1 of the filter.
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 
 










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