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1 Introduction

Since Black and Scholes (1973) originally developed their option pricing
model, many extensions have been suggested incorporating stochastic volatil-
ity or jumps into the model to improve its empirical performance, ade-
quately.! These extensions were mainly motivated by evidence that the con-
ditional mean or volatility of stock returns vary over time. In this paper, we
suggest a discrete-time European call option pricing model which considers
that the mean and volatility changes of stock returns are driven by a com-
mon state variable modelled by a Markov chain, according to the Markov
Regime Switching (MRS) model of Hamilton (1989). The state variable is
assumed to randomly change between two regimes of the market: the bear
and bull according to some transition probabilities. The bull regime is iden-
tified by our data as having higher mean and lower volatility, while the bear
the inverse: lower mean and higher volatility.

The MRS extension of the Black-Scholes (BS) model that we introduce
in this paper was motivated by recent evidence of MRS type of changes in
stock (asset) returns.”> The model can incorporate many characteristics of
the stock (asset) prices or returns into option pricing. First, it can account
for negative skewness or leptokurtosis of stock returns [see Ghysels, Harvey
and Renault (1996), for a survey], since it implies a conditional density of
the future stock return which is a mixture of normal distributions.®? Second,
it can capture systematic shifts (or serial correlation in stock returns) [see
Lo and Wang (1995), inter alia], since the state variable is considered to

be time-dependent. Third, it can allow for discontinuous shifts in both the

ISee Merton (1976), Hull and White (1987), Heston (1993), Lo and Wang
(1995), and Bates (1996), inter alia.

2See Turner, Startz and Nelson (1989), Hamilton and Susmel (1994), and
Bollen, Gray and Whaley (2000), inter alia.

31t can also justify growing efforts of using mixtures of normal distributions to
calculate risk neutral densities of stocks prices [see Bahra (1996), and Soderlind
and Svenson (1997), inter alia].



mean and volatility of stock returns [see Lamourex and Lastrapes (1992),
inter alia], because of the discrete-time nature of the state variable. Finally,
it can encounter for leverage effects in stock prices [see Turner, Startz and
Nelson (1989), inter alia], since it allows the conditional mean and volatility
of the underlying stock to be related through the same, state variable.

The analytic formula of the MRS option pricing model that the paper
derives can be thought of as a weighted average of option prices which have a
similar functional form with the BS model and are conditional on the number
of periods that the market will stay in the bear regime until the expiration
date of the option. This number of periods is known as the sojourn time
of the Markov chain process and its distribution over which the conditional
option prices are averaged out captures the effects of the stock market regime
shifts on the European call option price, over its entire life. These type of
effects can not be hedged out under risk neutral arbitrage arguments, since
there is no asset that is perfectly correlated with them.*

The paper suggests two versions of the MRS: with constant and time
varying transition probabilities between the regimes. The second version
was motivated by recent evidence of time varying transition probabilities in
asset returns [see, Gray (1996), inter alia). To model the time variation in
the transition probabilities we adopt a non-linear generalized autoregressive
scheme which bounds the transition probabilities between zero and one, and
updates the previous period transition probabilities according to the previous
period innovation of the stock return. The incorporation of the innovation
term into the above scheme can be thought of as introducing learning effects
into the MRS option pricing model.

The paper evaluates the performance of the MRS model to adequately
price option data in two ways: First, by investigating if it can explain the
mispecification of the BS model, known as the BS volatility smile, and sec-

ond by checking if it can reduce the BS option price biases, compared with a

4See also Merton (1973, 1976), Cox and Ross (1976), and Naik (1993).



benchmark extension of the BS model which ez post considers for any type of
mispecification of the volatility smile, across moneyness and maturity. The
results of our empirical analysis provide strong evidence that the version
of the MRS model with time-varying transition probabilities can substan-
tially improve the performance of the BS, especially for shorter term I'TM
or ATM categories of options where the extensions of the BS model with
jumps or stochastic volatility can not significantly outperform it.” For these
categories, we find that this version of the MRS model performs equally well
to the benchmark extension of the BS model. We show that responsible for
this successful performance of the MRS option pricing model is its ability to
generate stock returns with adequate enough degree and persistency of neg-
ative skewness. This can be attributed to the tendency of the stock market
to stay in the bull regime for most periods of time.

The paper is organized as follows. In Section 2 we set the assumptions of
the MRS model and derive an analytic solution of the European call price.
In Section 3 we evaluate the ability of the MRS model to explain some of the
main stylized facts of the option pricing literature and to price traded option

data adequately. Section 4 concludes the paper.

See Baksi, Cao and Chen (1997), and Ait-Sahalia and Lo (1998), for recent

evidence.



2 The MRS Option Pricing Model

2.1 Distribution properties of the MRS model of stock

returns
2.1.1 Model setup

Let the logarithm of the stock price, defined y; = logY;, follow the MRS

stochastic process:

1
Yt+1 = Yt + Mypy1 — §Uf+1 + Oty1€e41, (1)

with feor = o + 1 Si1, 0p = 05 + 03841, and €1 ~ NIID(0,1),

where S; denotes the state (regime) that the stock market lies in, at time t.
Equation (1) implies that the one-period stock return, defined Y;,,/Y;) — 1,
has conditional on the current stock market information set, Z;, mean and
volatility parameters which are equal to p, ; and 04,1, respectively.
Consider that S; follows a Markov chain and that there are two regimes
driving the stock market, i.e. S; € {0, 1}. The movements between the two

regimes are dictated by the transition matrix of probabilities, P, given by

=1—
P — Doo Do bu (2)
Po1 = 1 — poo P

where p;; declares the transition (switching) probability of moving from state
1 to state 5. The first regime, denoted by “0”, is characterized by the pair
of mean and volatility parameters (p,, 02), while the second by the pair
(po + 1,03 + o2). This definition of the regimes means that the first has
the lowest volatility. Given that this regime will be identified by our stock



data as having the highest mean, it will be referred to as the bull market

regime, henceforth. The second regime will be referred to as the bear regime.

2.1.2 Probability density of the MRS model

An option pricing formula for the MRS model can be obtained if we char-
acterize the conditional on Z; probability density function (pdf) of the stock
log-price (or its implied log-return), implied by the model, over the option
maturity interval, 7. To this end, consider that Z; includes, in addition to all
historical stock prices, the present and past values of the state variable, S;,
ie. Zy = {yt, St, Yt—1,Si—1, . . . . This assumption means that the stock mar-
ket investors recognize the current regime of the stock market. The future
realizations of the regime are considered to be unknown and independent of
the innovation term ¢;, for all £. The last assumption means that the investors
are surprised by regime changes [see Turner, Startz and Nelson (1989)].

For notation convenience, write (1) as

Ytr1 = Yt + [yyq T Otp1€641 (3)

where [i, 1 = fig + f3.Se1, with fig = py — 305 and i, = py — 305. The
conditional on Z; pdf of the stock log-price, y;., (or its implied 7-period log-
return, defined ¢, = yryr — yi), denoted as fy (yer|Z:t), can be studied by

writing (after forward substitution) equation (4) as

Yerr = Yo + Tl + [y Z Strn + wir, (4)
h=1

where wy; = Y} | Orin€rin.

Equation (4) indicates that it not feasible to derive a known pdf for y;. .,
which could facilitate the derivation of a closed form option formula for the
MRS model. This happens since y;., contains the sum of products of ran-

dom variables, w; ;, plus the sum of the future sequence of states { S5 };_;,



> -1 St+n- This sum, defined as

Lty = Z Stih, (5)
h—1

is a random variable which is known as the sojourn time of the Markov
Chain [see Darroch and Morris (1968), and Norris (1997)]. Given that Sy,
is a binary process taking values 0 and 1, Z;, takes values, (, in the set
{0, ...,7}. The values of ¢ reflect the number of periods that the stock market
spends in regime “1” between the periods ¢t + 1 and t 4 7.

Although it is difficult to derive a known function form of f, (yi+-|Z;), we
can obtain an analytic formula of it which enables us to calculate its values.
This can be done by applying Bayes’ rule and noticing that ¢, and S; are
independent. In so doing, define the extension of the information set Z; with

the sequence of the values of Z; ., {Z;, = (},

Hir(() =T U{Zir = (). (6)

The assumptions of independency between ¢; and S;, and across ¢;, for all
t, imply that the conditional on H, ({) distribution of w;, is normal, given
by
h=1

wtﬂ"Ht,T(<) ~ N <07 TU(2) + 0'% Z St+i> . (7)

By Bayes’ rule and the result of equation (7), we can write f, (y4-|Z;) as

Fy el T) =D fy Wear, ([ Heo (O) Pr[Ze = (|T] (8)
¢=0



where

fy (yt+T7 €|Ht+7—(<)) = [271.0. (C)Z}_% exp {_ [yt+7' — Y~ (C)] } 7 (9)

1(¢) = Tig+ Gy, (10)
o(Q)* = Tog+ (ol (11)

Equation (8) indicates that the pdf f, (ys+-|Z:), implied by the MRS
model, constitutes a mixture of the (7 + 1) normal pdf f, (vir,C|H:-(())-
These densities are conditional on the sojourn time values, {, and are appro-
priately weighted with the corresponding conditional probabilities of these
values, denoted Pr[Z,; = (|Z;]. The pdf f, (y11-|Z:) can be evaluated based
on estimates of the vector of parameters of the MRS stochastic process (1),
denoted by ©" = (p, 141, 00, 01, Poo, P11), and the probabilities of the sojourn
time values, Pr[Z;, = (|Z:]. Estimates of © can be obtained by estimat-
ing (1) by the Maximum Likelihood (ML) method, suggested by Hamilton
(1989). The values Pr [Z; , = (|Z:] can be obtained using the functional form
of the pdf of Z,,, derived by Pedler (1971) [see also Darroch and Morris
(1968)].5 An alternative way of calculating Pr [Z; , = (|Z;] is to use Kedem’s

6Pedler shows that the conditional on a given state, S; = i, probability that
Zi+r = (, denoted Pr[Z;r = (|S; = i], is given by

Pr(Zir =(Si=1i] = pgoply  {F (-7 + ¢ —(1i0)
—dpF (—T+C+i,—C+1-41D}),  (12)

where i € {0,1}, d = poop11 — Po1pP10, | = ggé—ﬁ‘l}, and F (a;b;c;l) denotes the
hypergeometric function

(@), (b), I

Fla:b:e:l) = k\V)r"
((Z, ; Gy ) ’;] (C)H KJ!?
where (a),, (b),, and (c), are the Pochhammer terms, which are defined as (a); =
a(a+1)...(a+k—1) [see Abadir (1999) for a survey of Hypergeometric functions].



(1981) algorithm.
There two special cases of the pdf f, (yi+-|Z;), given by equation (8),
which are interesting to analyze. The first is for 7 = 1 -the case of the

one-period log-return ;1. Then, f, (y:+-|Z;) reduces to

Sy (@

- s (e — (i + ¢
- Z [27T (‘73 + CU%)} exp {_ yt’12 (U%'uj_ (051 } Pr[Si1 = (T,
¢=0

T:) (13)

since Z;; = Sir1 when 7 = 1. Equation (13) shows that the conditional
distribution of the period log-return g, ; is not normal, as it is often assumed
in the stochastic volatility or jumps extensions of the BS model. But, it is
a mixture of two normal distributions, each of which depends on the partic-
ular regime of the economy: “0” or “1”, at time ¢ 4+ 1. Evidence that the
distribution given by (13) can fit into the stock market data better than the
normal can be found in the studies of Turner, Startz and Nelson (1989), and
Bahra (1996), inter alia.

The second special case of (8) is for 7 going to infinity, 7 — oo. Then,
fy (Y1++|Z;) becomes normal. This is proved in the Appendix, and is estab-

lished in the following proposition.

Proposition 1 Let stochastic process (1), with its underlying assumptions,

hold. Then, as T — o0:

Yerr|Ze ~ N (yt + Tlhoos Tffgo) , (14)

- - - 2 2, 4 4 2 2 2
where fi, = (fig + T1fly), 0o = (Mom0% + 05 + m07 + 20507m1), and 0%

defined in the Appendiz.

The above proposition claims that a random walk model with constant
drift, given by fi.,, and variance of the disturbance term, given by o2 , im-

plies a pdf which can approximate the pdf of the MRS model, for sufficiently

9



large 7. The result of the proposition is consistent with evidence that devi-
ations of stock returns from the normal distribution become less apparent,
as investment horizon, 7, increases [see Campbell, Lo and MacKinlay (1997)

for a survey of the literature].

2.1.3 Moments over longer horizons

The density function f, (yi-|Zt), given by (8), being a mixture of normal
density functions can allow for different degrees of skewness and excess (over
the normal distribution) kurtosis of the 7-period log-return, g, [or the stock
return (Y;i./Y:) — 1]. To verify this, we next derive the centered moments
of fy (yt+r|Zy), for fixed 7.

Let M, (1) = E;[yisr — Ewyror|” be the r-th order centered moment of
Y conditional on [;, where the conditional expectations operator E; =
E [-|Z;] is used for notational convenience. It can be easily seen from equation
(4) that the centered first (r = 1) moment M; (1) is zero, for all 7, since
Ey|Zyyr — EyZyyr) = 0. The centered moments for » > 2 are given in the

following Proposition.

Proposition 2 Let stochastic process (1), with its underlying assumptions,

hold. Then, the centered moments M, (1), for r > 2 are given by
M, ()

= ZZ(;)ZLT“(C—E Z07]) " a0 ()" Pr(Zer = (IT) - (15)

¢=0 xk=0

where ¢, is the k-th centered moment of the standardized normal distribution,
and Et [Ztﬂ—] = 22:0 C Pr [Ztﬂ— = C|It] .

The proof of the proposition is given in the Appendix.”

"Note that the moments of the stock return (Y;.,/Y; — 1) can be derived by
replacing fi; with p into (15).

10



The moments M, (1) can be used to examine the behavior of skewness
and kurtosis of the return ¢, ., over different investment horizons, 7. Since
Utr is compounded by one-period log-returns, it is instructive at this point
to investigate the generating sources of skewness and kurtosis based on g ;.
To this end, we derive the first four centered unconditional moments of yjm.s
These can be obtained from (15) by setting 7 = 1 and evaluating the involved

expectations at the ergodic levels of probabilities. This yields®

= Mo+ Tifly,

= momfif +op +mot,

= (7§ — 7)) &} + 3momifuy,

= momy (7?8 + 71'?) fif + 6mom i3 (Jg + 7T10'%)

+3mo0y + 3mi(0f + 02)2. (16)

As was expected, the moments given by (16) indicate that the conditional
on Z; pdf of ¢, can allow for different degrees of skewness, defined Sk =
Ms; (1) /M, (1)%, and excess kurtosis, defined Ku = M; (1) /M, (1)* — 3, de-
pending on the values of the vector of parameters ©.!° The functional form
of the third moment, Mj3 (1), indicates that a necessary and sufficient con-
dition for the existence of skewness is that fi; # 0. This condition requires
the existence of a regime shift in the conditional mean of the stock return
(Yis1/Y:) — 1. In contrast to the coefficient of skewness, the fourth moment

M, (1) indicates that there is not a unique cause of excess kurtosis in the stock

8For the one period return, g1, extensions of these moments for a finite (more
than two) number of states and various alternative presentations of (1) are given
by Timmermann (1999).

9Conditional on the current state of the economy, S;, moments can be ob-
tained by replacing the ergodic probabilities, 7;, where ¢ € {0, 1}, with the filter
probabilities Pr[S; = i|Z;] [see Hamilton (1989)]

1Note that the functional forms given by (16) are consistent with those of
Timmermann (1999), who considers a different parameterization of (1).

11



return. This can be attributed either to shifts in the mean or variance.'!

2.2 Option Pricing with the MRS model
2.2.1 Option pricing formula

Having obtained an analytic form of the conditional on the information set,
T, density function of the stock log-price, y:i,, (or its implied return g ),
implied by the MRS model (1), in this subsection we introduce an option
pricing formula of a European call, for the model. In so doing, we assume
that interest rates are deterministic and we impose the following risk neutral

local-arbitrage condition on the 7-period stock return, (Y, ,/Y;) —1
Tr(T) = Ty + i ErZy 1, (17)

where 74(7) is the T-period free-risk (deterministic) interest rate [see Heston
and Nandi (1997), inter alia]. In words, this condition states that the current
T-period interest rate is equal to the conditional on Z; expected return of the
T-period stock return. Under this condition, the conditional mean of the

log-return g, » will satisfy the following restriction

o = 7(r(7) = 508) + (s Zar — 1 B [Zer). (15)

Let Cy(7) denote the value of a European Call, at time ¢, that matures at

date t 4+ 7 and has exercise price K. The European call option can be valued

HNote that the above coefficients of skewness and kurtosis can become time-
varying if the probabilities in (16) are evaluated at their conditional levels. Evi-
dence of time varying skewness has been recently provided by Harvey and Siddique
(2000).

12



as

Cy(r) = e ™OE, (Y, — K)7]

+00 Y, ,;— K -
= e—m(r)/ H—f(yt-‘rT’It) AYsirs (19)
K

where E,(+) and f (-) denote the risk neutral measures of the expectation and
probability density function of the call option payoff function (Y., — K)* =
max{Y;., — K,0}.

Equation (19) indicates that an analytic formula of call price C;(7) can be
derived when the risk neutral density function (RND), f (y4-|Z;), is specified.
To this end, we consider that the location parameter of f (y,..|Z;) satisfies
restriction (18), implied by the risk neutral local-arbitrage condition (17).
The other distribution parameters of f, (y..-|Z;) are assumed to be identical
to those of f, (yi+-|Z:) [see also Brennan (1979), inter alia]. This specification
of f (y1+-|Z;) means that there is only one source of risk that is priced in stock
market equilibrium. This comes from the innovation error ¢;. The risk of
a regime change in the stock return is assumed to be diversifiable.'? Based
on this specification of f (y,,,|Z;), an analytic formula of the European call

price, Cy(7), is obtained in the following proposition.

Proposition 3 Let the log-price, y;, of the underlying stock follow the MRS
process (1), with its assumptions, and f (Yt+-|Zs) be the RND function. Then,

the European call option price, Cy(T), is given by

Cy(r) = ") i Ci(7,Q) Pr[Z; = (|T4], (20)

¢=0

12 Analogues assumptions are made by Merton (1976), Hull and White (1987),
and Naik (1993) in derivating analytic formulas of option prices when the un-
delying stock undertakes Poisson driven jumps in the mean, and continuous or
discontinuous changes in the volatility function, respectively.

13



where
Cy(r,¢) = e MHmCELZeD (4 ()] — K® [dy (C)] Pr [Zer = (| T4]

log(Y:/K)+7(re(1)—202)+(f C—E¢[Zs +
dy (¢) = 2D MBI 4 (), dy () = di () — o ()

and ®(-) denotes the cumulative normal distribution.

The proof of the proposition is given in the appendix.

Proposition 3 demonstrates that the European call option price implied
by the MRS model (1) can be thought of as a weighted average of the option
prices Cy(7,(), for all ¢, which are conditional on the number of periods
that the stock market can stay in regime “1” until the expiration date of
the option. Each conditional option price is weighted with the corresponding
probability of ¢ to occur.'® The distribution of ( over which the conditional
option prices are averaged out captures the effects of possible regime shifts
on the option price, over the entire life of the option. These effects can not
disappear under the risk neutral arbitrage condition (18), since there is no
asset that is perfectly correlated with the state variable .S;.

There are two interesting special cases where (20) can be simplified. The
first is when there is no regime change, i.e. S; = 0 with probability one,
for all t. Then, Pr[Z;., = 0|Z;] = 1, and hence (20) reduces to the familiar,
one-state BS formula. The second special case of (20) is when 7 is sufficiently

large. Then, C;(7) can be sufficiently approximated by

Cy(r) = e ™D LD [dy ()] — K [dy ()]}, (21)

where d; = log(¥2/ K):O(OT\?F(T)_%U@ + 00oy/T and dy = dy — 0o+/7. This result

is the outcome of Proposition 1, stating that the MRS model (1) can be suf-
ficiently approximated by a random walk model with drift zi., and volatility

13Note that the functional form of (1) is a consequence of the fact the MRS
model implies a probability density function of the future stock price which is a
mixture of normal densities.

14



O, a8 T — 00. It implies that the BS model may be successfully employed
in pricing a European call option with very long maturity.

The MRS option pricing model, given by (20), differs from other models
considering discontinuous shifts in volatility subject to Markov chains [see
Naik (1993)] or driven by a threshold model [see Duan et al (1999)], recently
introduced in the literature, with respect to the following main points. First,
it differs from both the above models since it considers that the conditional
density of the one-period stock return is not normal, which is assumed by the
other models, but a mixture of normal distributions [see equation (13)]. This
is due to the assumption that both the conditional mean and volatility of the
MRS model (1) depend on the future value of the state variable S;;, rather
than the current. For this property, the MRS model can account for the
effects of skewness and leptokurtosis into option pricing, even for one-period
to maturity options.'* Second, it differs from Duan’s et al model, since it
enables us to account for the leverage effects by allowing the mean of the stock
return to be negatively correlated with the volatility, when ©; < 0. In Duan’s
et al model, the shifts in the mean are assumed to be positively correlated
to the volatility ones according to the predictions of the conditional CAPM.
To account for leverage effects, Naik introduced jumps into the mean of his

model, when the regime changes.

2.2.2 Option pricing with time-varying transition probabilities

The above MRS option pricing model considers that the transition proba-
bilities between the regimes are constant. In this subsection we extend the
model to allow for time varying transition probabilities following recent ev-
idence that these type of MRS models can better describe assets prices [see
Gray (1996)].

To model time variation in the transition probabilities we consider the

HMNote that for one-period to maturity options the other models reduce to the
BS model with deterministic volatility.

15



following model:
Dijt = g (Oéij + kijpiji—1 + ¢z‘jut71) ) i # 7 €10,1}, (22)

where p;;; denotes the time-varying transition probabilities, the error term

Uy is defined as u;_1 = 04_1€6;_1, and

0, ifz<0
g:R—10,1:9(x) =1 2*(62* - 15z +10), if0<z<1 , (23)
1, ifx>1

for any real value of z.

Equation (22) is a composite function of two component functions: The
first is the linear model ay; + kijpij -1 + ¢;;us—1 Which revises the transition
probabilities p;;, from their previous period values, p;;;_1, according to the
previous period error term wu;_;.'> This term introduces a feedback learning
mechanism into the MRS model. Note that if ¢;; = k;; = 0, the MRS model
with time varying probabilities degenerates to that with constant transition
probabilities. The second component function of (22), g(z), ensures that the
mapping from the set of real numbers, R, into the closed interval [0, 1] of the
values of p;; ; is achieved in a sufficiently smooth way. The fifth order spline of
g(x) is chosen in such a way that g(x) to be a continuous twice differentiable
function. The derivation of g(x) and some of its main properties are discussed
in the Appendix.!

The specification of the time varying transition probabilities, given by

(22), does not alter the functional form and intuition of the RND function,

5Note that this autoregressive scheme of the transition propabilities is similar in
spirit to the ARCH/GARCH models of volatility [see Engle (1982) and Bollerslev
(1986)].

16The second order differentiability of g(x) enable us to obtain linear forecasts
of the transition probabilities and their conditional variance by applying Taylor’s
expansion [see an earlier version of the paper].

16



f (ye+-|T;), and the option pricing formula (20), given that f (y..|Z;) is eval-
uated, as before, maintaining the assumption that the price of the regime
change risk is zero. It only modifies the way of calculating the values sojourn
time probabilities, Pr[Z;, = (|Z;]. To calculate these probabilities we will
employ a Monte Carlo simulation method.!” This method is described in
the Appendix. Its application requires estimates of the vector of parameters,
©, and the current values of p;;; and ;. The latter can be obtained by an
appropriate modification of Hamilton’s (1989) filter to accommodate (22).

3 Evaluation of the MRS option pricing model

The aim of this section is to evaluate the ability of both versions of the MRS
model: with constant (MRS-CN) and time varying (MRS-TV) transition
probabilities to explain some of the main stylized facts of the option pricing
literature, and to reduce the BS option pricing biases, considerably. Our
empirical analysis has the following order. First, we investigate which version
of the model can generate those distribution characteristics of the S&P500
index return which can better match the shape of the BS volatility smile
observed in reality, across different areas of moneyness and maturity. To see
this, we are based on ML estimates of the parameters of each specification
of the model using a sample of S&P500 index price data from January 1,
1988 to December 31, 1993. Having seen this, we next compare the empirical
performance of the alternative specifications of the model in reducing the BS
option pricing biases with a benchmark extension of it which assumes that
the BS volatility is a deterministic function of the maturity and strike price
of the option. This is done based on Af t-Sahalia and Lo’s (1998) option

price data set. This set consists of daily observations of pairs of European

ITA closed for solution of Pr[Z;, = (|Z;] does not seem possible to be obtained
due to the involved nonlinearity of g(x) and the dependency of p;;ip, across
h=12.,7.

17



call and put option prices for S&P500 index options, traded on the Chicago
Board Options Exchange between January 4, 1993 and December 31, 1993.1%

3.1 Investigating the properties of the MRS model
3.1.1 Fitting the MRS model into the S&P500 returns

The estimation results of the parameters of the MRS-CN and MRS-TV spec-
ifications for the one-period log-return are reported in Table B.1. Panel A of
the table gives the estimates of the MRS-CN specification, while Panel B of
the MRS-TV. The estimates of © are obtained based on the EM algorithm
[see Titterington, Smith and Makov (1985), and Hamilton (1990)]. The re-
sults of the table clearly indicate that the MRS-TV specification outperforms
the MRS-CN, since it has higher log-likelihood function value. This can be
also verified by the statistical significance of the estimates of the coefficients
¢;; and k.

Both versions of the MRS model agree that there are two distinct stock
market regimes. The first, denoted by “1”, constitutes the bear market
regime, and it characterized by a lower mean, fi, + fi;, (which is not different
than zero) and higher volatility (02 + 0?)'/2 of the log-return ;. The
second, denoted by “0”, is the bull market regime, and it is characterized by
higher mean, f,, and lower volatility oy. These results confirm that there
is an inverse relationship between the mean and volatility parameters across
the two regimes which is recognized in the literature as evidence of leverage

effects in the stock price.?”

180ption price data on the S&P500 index have been used by many other authors
in empirical invetsigations of the option pricing puzzles [see Bates (1996), Jackw-
erth and Rubinstein (1996), Baksi, Cao and Chen (1997) , and Dumas, Fleming
and Whaley (1998), inter alia).

YWe also find that this characterization of the two regimes also holds for the
stock return (Yzy1/Y:) — 1.

20See also Turner, Startz and Nelson (1989).
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The estimates of the parameters of the time-varying transition probabil-
ities equation (22) are consistent with the interpretation of (22) as a mech-
anism of introducing feedback learning effects of the stock market into the
MRS model. The signs of a;; and ¢,; reveal that the effect of the error term
u;—1 on the probability p;;; is inversely related to the state of the economy,
for any t¢. In particular, the negative sign of ¢,; means that a positive value
of u;_1 will decrease the transition probability from the bull to bear market
regime, po;. This can be interpreted as reflecting a positive reaction of the
stock market investors to news of higher returns, as part of their learning
behavior. By similar reasoning, we can explain the positive sign of ¢,,.

To see how the transition probabilities vary within our sample period, in
Figure C.1 we graphically present the estimates of po; ; and po+ (see the lower
and upper parts of the figure, respectively). The graphs of the figure reveal
significant fluctuations of the transition probabilities, especially of pio; -the
transition probability from the bear to bull market state. This probability
oscillates around values closed to zero for most of the time periods before
the end of 1990. Afterwards, it shifts and oscillates around values closed to
unity indicating that there is an apparent structural break in the series of
D10, occurred after the end of 1990. The break point of pp: may reflect the
considerable improvement of the stock market uncertainty conditions after
the 1987 crash situation.?! The decrease of investors’ uncertainty about the
prevailing stock market regime conditions after the end of 1990 can be also
confirmed by Figure C.1.B, which presents the in-sample estimate of the
probability that the market stays in the bull regime, “0”, i.e. Pr[S; = 0|I],
over the whole sample period. This graph indicates that the stock market
seems to stay most of the time in the bull regime after the end of 1990. This
is particularly true for the year 1993 where the estimates of p;;; will be used
for option pricing.

Summing up, the results of this subsection support the view that the ver-

2 For similar evidence see Schwert (1998).
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sion of the MRS model with time-varying transition probabilities constitutes
a better specification of the S&P500 data generating process than the version

with constant probabilities.

3.1.2 Distributional properties of the alternative MRS specifica-

tions

Given the estimates of the parameters of the alternative specifications of the
MRS model, in this subsection we present graphs of the pdf f, (yi-|Z:), for
each one of the specifications, separately, and for 7 = {1, 63,126,252} [see
Figures C.2.A-D].?? We also present graphs of their corresponding skewness
and excess kurtosis coefficients with respect to 7 [see Figures C.3]. The
values of f, (yi+-|Z;) are calculated based on the standardized version of the
density function formula (8).23 The values of the skewness and leptokurtosis
coefficients are calculated based on the centered moment formula (15). To
estimate the sojourn time probabilities Pr [Z;., = (|Z;] involved in the above
formulas, we used Kedem’s (1981) algorithm, for the MRS-CN specification,
and the Monte Carlo simulation method described in the Appendix, for the
MRS-TV.

Inspection of the figures leads to the following conclusions. First, the pdf
of both versions of the MRS model are leptokurtic and negatively skewed, as
evidence based on time series or option prices data reveals >* As the moment
analysis of Section 2.2 indicates, the negative skewness of f, (y;+-|Z:) can be

attributed to the negative value of [i;, implied by the estimate of i, + 1,

22For interesting comparisons with the pdf implied by the BS model, the figures
also contain the standardised normal density function.

2The densities are standardised based on their first and second moments given
by (15).

24See [see Jarrow and Rudd (1982), Jackwerth and Rubinstein (1996), Bahra
(1996), Ait-Sahalia and Lo (1998), and Abadir and Rockinger (1999), inter alia).
Note that the graphs of f, (y14-|Z¢) can be compared with those of the RND
function fy (Yt+r|Zt), since we assume that risk neutrality does not change the
shape of the pdf, but only its location parameter.
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and the fact that the ergodic probability 7 is bigger than 7. This means
that negative skewness can be interpreted as evidence that the stock mar-
ket tends to stay in the bull regime for a higher number of periods than in
the bear regime. As 7 increases, the densities f, (yi+-|Z:), for both versions
of the model, approach the normal density, and the skewness and leptokur-
tosis coefficients tend to zero, which are consistent with the predictions of
Proposition 1.

The second conclusion which can be drawn from the above figures is that
the version of the MRS model with time-varying transition probabilities pro-
duces higher and more persistent degrees of negative skewness and leptokur-
tosis than that with constant, especially of skewness. Although the deviations
of the skewness coefficient from zero seem to follow a similar nonlinear, con-
vex pattern with 7, for both versions of the model, they substantially differ
in terms of their magnitude and their rate of convergence towards zero, as 7
increases. The MRS-TV specification can generate higher and more persis-
tent degrees of skewness than the MRS-CN. This is due to the time-varying
nature of the transition probabilities and the learning effects, involved in the

MRS-TV specification, which amplify the degree of negative skewness.

3.1.3 Explaining the volatility smile of the BS model

Evidence of leptokurtosis and negative skewness of the pdf (or its risk neutral
version) of the 7-period log-return ¢ , is often offered as an explanation of the
volatility smile of the BS model [see Ghysels, Harvey and Renault (1996), and
Att-Sahalia and Lo (1998), inter alia]. This is a convex relationship between
the implied volatility of the BS model when is fitted into traded option price
data and the stock/strike price ratio, Y;/K, known as moneyness.

The aim of this subsection is to examine which version of the MRS option
pricing model can better explain two main features of the smile.?” The first

is its inverse relationship with the maturity interval, 7, i.e. the fact that

25See Bates (1996), and Bakshi, Cao and Chen (1997), inter alia.
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it appears stronger for shorter term maturity options rather than longer.
The second is that it becomes stronger as we move from deep in-the-money
(ITM) or out-the-money (OTM) to at-the-money (ATM) options. To see
this, in Figure C.4.A-D we present graphs of the volatility smile implied by
BS when is fitted into option price data generated according to the MRS-CN
and MRS-TV specifications. This is done for values of 7 which correspond
to those of Figures C.2.

Inspection of the graphs of the figures clearly indicate that the version of
the MRS model with time-varying transition probabilities can better resemble
the shape of the BS volatility smile based on actual data [see Bakshi, Cao
and Chen (1997) inter alia], especially at the short or medium end of the
maturity structure of the call option prices, i.e. 7 = {66, 126}. The graphs
of the volatility smile functions show that the MRS-TV specification can
generate smiles of greater amplitude than the MRS-CN meaning that it can
account for a higher degree of mispecification of the BS model. Given the
calibration analysis of the previous subsection, this property of the MRS-
TV specification can be attributed to its ability to generate stock returns
with higher degree of negative skewness and leptokurtosis than the MRS-

CN, especially of skewness.

3.2 An empirical appraisal of the MRS option pricing

model

Having established that both versions of the MRS model can explain some
of the main stylized facts of the stock and option pricing literature, in this
subsection we assess their empirical performance to adequately price traded
options. To examine this, we compare the pricing performance of the alter-
native versions of the model with the standard BS model and an extension
of it based on a deterministic function of volatility in the maturity inter-
val and the strike price of the option [see Rubinstein (1994), and Dumas,
Fleming and Whaley (1998), inter alia]. This extension of the BS model can
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be though of as the benchmark against to which the alternative versions of
the MRS model should be compared with, since it considers for a variety of
mispecifications of the volatility function across different levels of moneyness
and maturity.

The relative performance of all the above, alternative option pricing mod-
els is judged by calculating the percentage and absolute pricing errors be-
tween the traded option prices, C;(7), and those predicted by the MRS-
CN and MRS-TV specifications, denoted by CMES=CN (1) and CMES=TV (1),
respectively, the standard BS, C2%(7), and the BS with the deterministic
volatility function, CZ5~PV¥(7).26 This is done across different levels of mon-
eyness and maturity. To separate any possible effects of dividend payments
or risk aversion on the parameter estimates of the option prices formulas,
the risk-neutral interest rate, r;(7), adjusted for the dividend rate, 6;(7), i.e.
r¢(T) — 6¢(7), is calculated by the spot-forward arbitrage relationship

ro(r) — b(r) = 2B/, (24)

T

where Fy(7) is the date-t forward price of the S&P500 of maturity 7 [see
Att-Sahalia and Lo (1998)].

3.2.1 Pricing errors

The values of the percentage and absolute measures of the alternative option
pricing models considered are reported in Table B.2. Following Bakshi, Cao

and Chen (1997), the table presents results for six moneyness and three term-

26The percentage pricing errors are sample averages of the traded prices minus
those predicted by the models, divided by the traded prices. This measure of
the errors is suitable in indicating the direction (sign) of the misspecification of
the option pricing models. The absolute pricing errors are sample averages of the
absolute differences between the traded prices and the predicted by the models.
One advanrage of this measure, compared with the percentage, us that is a better
indicator of the actual magnitude of the pricing errors, since it is not sensitive to
very small option prices which tend to amplify the percentage measure.
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to-expiration option price categories. In particular, a call is categorized to
be far OTM if V;/K < 0.94; OTM if Y;/K € (0.94,0.97); ATM if Y;/K
€ [0.97,1.03]; ITM if Y;/K € (1.03,1.06); and far ITM if Y¥;/K > 1.06.
By the term-to-expiration, a call option contract is classified as short term
if 7 < 60 calendar days; medium-term if 7 € (60, 180); and long-term if
7 > 180 and thus shape the pattern of option mispricing across moneyness
or maturity.

The results of the table clearly indicate that the MRS-TV version of the
MRS model, in contrast to the MRS-CN, constitutes an important improve-
ment upon the BS model in reducing the option prices biases. This is sup-
ported by the values of both the percentage and absolute measures of option
pricing errors, reported in the table. The MRS-TV specification leads to an
overall reduction of the BS percentage pricing errors by about 60 percent and
the absolute errors by more than 100%. The improvements of the MRS-TV
model are very important especially for ATM or I'TM short term call options
where other extensions of the BS model, such as the stochastic volatility
model with or without jumps do not seem to significantly outperform the
model [see Bakshi, Cao and Chen (1997)]. Note that for these moneyness
areas, the MRS-TV model performs even better than the BS-DVF model,
which can be though of as the in-sample benchmark model. The only cat-
egory of options where the BS seems to outperform the MRS-TV model is
that of medium or longer term far ITM options.?”

The superiority of the specification of the MRS model with time—varying
transition probabilities to reduce the BS option pricing biases, substantially,
for the ATM and ITM short or medium term options can be attributed
to the ability of this specification to produce stock returns with adequate

enough degree of skewness, especially for short-medium period returns, as

2TOne reason for this may be that the option prices of this moneyness cate-
gory are almost equal to their intrinsic values, and thus the effects of the regime
changes in the mean and volatility encountered by the MRS models do not have
any profound effect on option prices.
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the calibration analysis of Section 3.1.2 and 3.1.3 reveals. This happens since
the model allows for regime shifts in its conditional or volatility which are
quite persistent, over time, due to the time-varying nature of the transition

probabilities.

4 Conclusions

This paper introduces a pricing model for a European call option when the
price of the underlying stock (asset) follows a random walk model with
Markov Chain type of shifts in its drift and volatility parameters accord-
ing to the regime that the stock market lies in, at any period of time. The
option price formula that the paper derives is a weighted average of option
prices conditional on different paths of future regime changes in the stock
market. The functional form of this formula is a consequence of the fact the
Markov Regime Switching (MRS) model implies a probability density func-
tion of the future stock price which is a mixture of normal densities, each
depending on a path of future regime changes of the stock market. Being a
mixture of normal distributions, the probability density of the future stock
price, underlying the option, can allow for different degrees of skewness and
kurtosis. This is shown by deriving the moments of the probability density
function of the MRS model, over different investment horizons.

In evaluating the ability of the MRS model to explain some of the main
stylized facts of the option pricing literature, we fit two versions of the model
into the S&P500 stock index return, for the period between 1988 and 1993.
The first assumes constant transition probabilities between the bull and bear
regimes of the market, while the second time-varying based on a model which
incorporates learning effects into the MRS model. The paper shows that the
version of the MRS with time varying transition probabilities fits better into
the S&P500 return in terms of the log-likelihood maximum value. This ver-

sion of the model can generate leptokurtic stock returns with higher degree
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and persistency of negative skewness than the version with constant transi-
tion probabilities, and can thus better explain the shape of the BS volatility
smile, observed in reality.

When applying both versions of the MSR model to traded options data
to assess their empirical performance relative to the BS model, we find evi-
dence that the version of the model with time varying transition probabilities
considerably reduces the option pricing biases of the BS. The reductions are
substantial for categories of moneyness and maturities of option prices, such
as short term at-the-money or in-the-money options. Note that for these
moneyness categories, extensions of the BS model, such as the stochastic
volatility model with or without jumps, require either more frequent and more
significant number of jumps in the underlying stock price changes or more
persistent and negatively correlated with the stock price changes volatility
shocks in order to generate stock returns with a substantial degree of nega-
tive skewness to be consistent with the data [see Bates (1996), Bakshi, Cao
and Chen (1997), and Ait-Sahalia and Lo (1998)].
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A Appendix

In this Appendix, we prove the results of Propositions 2.1-2.3 and derive the
functional form of equation (23) given in the main text. We also give a brief
description of the simulation method that we use to calculate the probabilities
of the sojourn time values, Pr[Z; ; = (|Z;], employed in the evaluation of the

MRS-TV option pricing model.

A.1 Proof of Proposition 2.1

The proposition follows immediately by (4) noticing the two asymptotic (over

7) results. The first result is:

Zt,T —TT1 d

— N(0,1), (25)
« d 7

where “ — 7 signifies convergence in distribution. This result follows by
application of the Central Limit Theorem (CLT) for dependent Bernoulli
trials to Z;, [see Kedem (1980)]. If there are two regimes, “0” and “17, it

can be shown that the unconditional (ergotic) mean of Z; ; is given by 7m;

mo71(Poo+p11)
2—(poo+p11) *

The second result that is used to prove the proposition is:

and has asymptotic (long run variance) give by 0% =

22:1(00 + 015t+h)€t+h
\/7' (08 + o} + 2030%m)

<4 N(0,1). (26)

This result follows by the assumptions that ¢, is NIID [see the definition of
(1)], and S; and €, are independent, for all . These two assumptions imply
that (624025, 1)érn is an independent process which has mean equal to zero
and asymptotic variance (0§ + w107 + 20202m;). This enables us to apply the
CLT to the standardized sum of (o9 + 01.S¢41)€tsn.
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A.2 Proof of Proposition 2.2

Using the independence assumption between S; and ¢, for all ¢, write the

centered moment, M, (1), as

M, (1)
= / Yerr — Bt [Yesr))" fy Weir | Te) AYtir

—00

- Z {/—oo (Yerr — ye — Thy — Py By [ZHTDT Ty (yt+T|Ht,T(()) dyt+r}

¢=0 Lm0

Pr [Zt,T = (|Zt} ) (27)

where E; [yi+r] = yt + Tl + [iy B¢ [Z: -] by the underlying assumptions of (1).

Using Binomial expansion, write (Y, — yr — Tfig — i1 Bt [Z2+])" as

(?Jt+r — Y — Ty — [y By [Zt,r])r
= [Werr — 2(Q) + i1 (¢ — Ee[Zi])]

T

= Z (/:) Werr — 1 ()" (111 (C = By [Ze2])] " (28)

k=0

Substituting (28) into (27) yields

M = Y5 (1) - Bz

¢=0 k=0

/ e — O fy Wen [ Hor (O)) s Pr [Z0r = CIT) (29)

—00

Notice that the integral in the last equation is the xk-th centered moment of

a normal distribution, with mean fi (¢) and variance o (¢)?, i.e.

/ T e — O fy Gen Hur(O) s = a0 (OF . (30)

—00
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Substituting (30) into (29) proves the result of the proposition.

A.3 Proof of Proposition 2.3

The proposition can be proved by writing (20) using the assumption of in-

dependency between S; and ¢;, as

Ci(T)
— eiTTt(T)EA’t [(KJ”T J— K)+]
—7re(T 0, =K
= e H—Y—fy (yt+T|It) dyi i+
K t+1

(31)

T —+o00 Y ;= K N
— i) {/ H—fy (Yesr | He 7 (C)) dyt+f} Pr{Zi, = (|7
¢=0

Substituting

oy K,
/ Yer Z K o [H (C)) s

K K‘H’
= et em Bz DR 5 10 ()] — KD [dy (O)]

into (31) proves the result of the proposition.

A.4 Derivation of the g(z) function

(32)

The g function is chosen to satisfy two types of conditions: The first consists

of the boundary conditions: g (z) =0,Vz < 0and g (z) = 1,Vx > 1. The sec-

ond is the smoothness condition that g(x) is continuous and has continuous

first and second derivatives everywhere, i.e. g(z) € C?. The boundary condi-

tions imply that p;;; takes values in the closed interval [0, 1]. The smoothness

conditions ensure that a linear, first order approximation of the conditional

expectation or variance of (22), at time t, is feasible by applying a Taylor

series expansion.
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Consider that g(z) has the following form

0, ifxz<O0
g(x) =% g, (z), f0O<z<1,
1, ifr>1

For the function g, (x), the boundary conditions imply
gs(0) =0, and g, (1) =1, (33)
while the smoothness conditions

gs €C%, g.(0) =g, (1) =0, and g7 (0) = g7 (1) = 0. (34)

Given that polynomial functions are sufficiently smooth, a natural choice
for gs(x) would be a polynomial spline which satisfies the above boundary
and smoothness conditions. Based on these conditions, we can derive the
parameters of a polynomial spline form of gs(x) by solving a system of differ-
ential equation with the method of undetermined coefficients. Note that the
degree of the polynomial should be high enough so that all first and second
order derivatives to exist and for a system that determines the argument
values to be constructed. Since we have six conditions (two boundary and
four smoothness), the most parsimonious spline gs(z) that we consider is of
fifth order.

The solution of the system of equations (33) and (34) yields (23). The
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first and second derivatives of g(z) are given by

( 0, ifz<0
g (x) = { 3022 (x—1)?, if0<z<1 ,and
L 0, ifz>1
( 0, ifz<0
" (x) = < 60x(z—1)2x—1), ifo<ax<1 . (35)
\ 0, ifz>1

A.5 Monte Carlo simulation estimation method of the
probability Pr[Z, . = (|Z;]

The Monte Carlo procedure that we employ in the paper to calculate the
distribution of the sojourn time, Pr[Z;, = (|Z;], for the case of time varying
transition probabilities, consists of the following steps.

1. We draw values of S; and €;,, for h = 1,2, ..7, from the Bernoulli and
normal distributions, respectively, based on the ML estimates of the vector
of parameters © and the starting values Pr[S; = i|Z;], ¢ € {0,1} of the state
variable S;.

2. Given the values of S; and ¢;,;, we calculate the value of the distur-
bance term u;. The values of w; and p;;; are used to update the time-varying
transition probabilities, p;;.1, as equation (22) dictates. The obtained val-
ues of p;;;+1 together with those of S; are consequently used to derive the
sequence of the filter probabilities Pr[S;,; = i|Z;] of the MRS model and the
values of the state variable sequence {Siip}7_;-

3. From the values of the sequence {S;i1};_;, we finally obtain the so-
journ time variable value by Z,, = >, _| Stih.

Repeating steps 1-3 N times, which is the number of the total Monte
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Carlo simulation, enables us to calculate the distribution of Z, ; as

PriZ,, = (= SR (Z, ) =), (36)

where N is the indicator function. As N, we use N = 10000 replications.
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B Tables

B.1 Estimates of the MSR models

The table reports the ML estimates of the parameters of the MRS
process: AlogY; = fi,,; + 0116441, with constant (see Panel A)
and time varying (see Panel B) transition probabilities using the
S&P500 index prices for the period 1988-1999. Standard errors
are in parentheses. In Panel A, all the reported values are in
percentage terms. In Panel B, only p’s and ¢’s are in percentage

terms.

Panel A: MSR model with constant transition probabilities

fo o+ i 00 Voi+oi  po D1o
0.049 -0.003 0.648 1.514 2.207 14.07
(0.019)  (0.105) (0.014)  (0.056)  (0.494) (2.696)
Log-likelihood: 5399.41

Panel B: MSR model with time varying transition probabilities

o  fgtm oo \Jog+ot
0.051 0.000 0.525 1.249
(0.008)  (0.000) (0.013)  (0.060)

Qo1 Ko1 bo1 Q10 K10 P19
0.174 0.656  -5.308  0.176 0.661 6.702
(0.003) (0.002) (0.281) (0.000) (0.000) (0.070)

Log-likelihood: 5432.81
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B.2 Percentage and absolute errors of the BS and MSR

models

The table compares the relative performance of the MRS-CN
and MRS-TV models with the Black-Scholes (BS) model and

the Black-Scholes model, where the volatility is a determinis-

tic function of the maturity and the moneyness level, BS-DVF.

Moneyness Percentage Absolute
F/K Model | <60  60-180 180> All <60 60-180 180> Al
<094 BS-DVF || -60.41 -36.99 106.9 860 | 0.143 0.254 1.105 0.529
BS || -527.7 -668.0 -502.7 -582.2 | 1.029 2.682 5.273 3.256
MSR-CN || -505.9 -599.9 -470.9 -536.0 || 1.077 2.654 5.152 3.211
MSR-TV || -67.60 -156.7 -137.5 -132.1 || 0.220 0.730 1.381 0.855
0.94-0.97 BS-DVF || 40.91 2.80 -5.21  20.15 || 0.253 0.418 1.200 0.374
BS || -481.4 -244.9 -79.70 -347.7 || 2.137 4.076 6.192 3.265
MSR-CN || -423.4 -218.5 -74.47 -307.6 || 1.934 3.815 5.934 3.031
MSR-TV || -123.1 -73.39 -15.25 -94.02 || 0.588 1.200 1.211 0.916
0.97-1.00 BS-DVF | 40.39 2.42 -7.57 22.07 || 0.691 0.591 1.170 0.680
BS || -150.2 -71.80 -40.80 -111.7 || 2.610 4.201 5.615 3.440
MSR-CN || -120.9 -65.64 -38.44 -93.43 || 2.200 3.817 5.292 3.046
MSR-TV || -34.50 -17.44 -2.66 -25.63 || 0.702 0.997 0.795 0.827
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Continued

Moneyness Percentage Absolute
F/K Model <60 60-180 180> All <60 60-180 180> Al
1.00-1.03 BS-DVF 6.50 0.02 -7.51 3.22 0.627 0.602 1.613 0.659
BS || -20.20 -22.60 -19.60 -21.16 || 1.771 3.088 4.027 2.412
MSR-CN || -15.11 -19.58 -17.86 -17.08 || 1.366 2.685 3.687 2.011
MSR-TV || -0.10 0.02 2.93 0.08 0.519 0.671 0.994 0.602
1.03-1.06 BS-DVF || 1.08 -0.35 -5.06 -1.11 || 0.368 0.490 1.419 0.705
BS || -2.60 -7.00 -11.30 -6.43 |[ 0.612 1.607 3.293 1.682
MSR-CN || -1.46 -5.12 -10.02 -5.02 || 0.442 1.232 2.938 1.397
MSR-TV || 2.41 3.84 2.63 291 || 0.613 1.055 1.837 1.098
>1.06 BS-DVF | -0.17 -0.10 -0.82  -0.16 || 0.179 0.277 0.598 0.248
BS| 040 -0.10 -0.20 0.10 || 0.266 0.485 0.626 0.399
MSR-CN || -0.49 -0.23 0.03 -0.33 | 0.242 0.431 0.580 0.358
MSR-TV 1.25 2.28 4.17 1.93 0.598 1.404 2.352 1.097
All BS-DVF | 14.49 0.66 -3.95 6.25 0.410 0.404 1.015 0.479
BS || -110.9 -99.22 -124.9 -107.4 || 1.357 2.264 3.866 2.051
MSR-CN || -96.27 -88.85 -116.7 -95.44 || 1.132 2.033 3.598 1.818
MSR-TV || -21.14 -11.00 1.00 -14.09 || 0.584 0.974 1.228 0.831
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C Figures

C.1 Transition and filter probabilities of the MSR-TV

model
The figure illustrates the time varying transition Probabilities
Po1,+ (see lower part of A) and pyo; (see upper part of A), and the

filter probability that the stock market stays in regime “0”, i.e.
Pr [S; = 0|Z] [see part B.

A. Transition probabilities p;;
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B: Filter probability Pr [S; = 0|Z]
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C.2 Probability Density functions of the BS and the
MRS-CN and MRS-TV models

The figure presents graphs of the pdf of the MRS-CN and MRS-
TV specifications, for 7 = {1,66,126,252}, and the normal dis-
tribution (implied by the BS model) using as volatility parameter
its sample estimate o gg = 0.0085. The interest rates are assumed
to be zero, for convenience. The values of the sojourn time prob-
abilities Pr[Z; ; = (|Z;], used to estimate the pdf of the MRS-CN
model, are calculated by Kedem’s (1980) algorithm for the MSR-
CN specification and based on Monte Carlo simulation for the
MRS-TV specification.

A. Probability Density function for 7 =1
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B. Probability Density function for 7 = 66
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C. Probability Density function for 7 = 126
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D. Probability Density function for 7 = 252
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C.3 Skewness and kurtosis coefficients with 7

The figure presents graphs of the skewness (see A) and excess
kurtosis (see B) coefficients of the stock returns implied by the
MRS-CN (dashed line) and MRS-TV (solid line) models, respec-
tively, over different investment horizons, 7. The sojourn time

probabilities Pr[Z; , = (|Z;] are calculated as in Figure C.2.
A. Skewness coefficient with 7

0.10

-0.80

47



B. Excess Kurtosis coefficient with 7
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C.4 BS Implied Volatilities when data are generated
according to the MRS-CN and MRS-TV models

The figure presents graphs of the BS implied volatility smiles,
across different moneyness levels, when data are generated by
the MRS-CN and MRS-TV versions of the MRS model based on
the parameter estimates given in Table B.1. The volatility values
are expressed in percentage terms. The volatility parameter asso-
ciated with the BS model is 0.85%. The numbering of the graphs
corresponds to that of Figure C.2. Pr[Z, . = (|Z;] are calculated
as in Figure C.2

A. Tmplied BS volatility for 7 =1
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B. Implied BS volatility for 7 = 66
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C. Implied BS volatility for 7 = 126
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D. Implied BS volatility for 7 = 252
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