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1 Introduction

There is a voluminous amount of work investigating if the general equilibrium
model of Lucas (1978), assuming that the economy is exogenously driven by a
dividend process, can explain the variations of stock market prices [for a sur-
vey see Cochrane (1997)]. In this paper, we study such a model can account,
in a satisfactory manner, for the variability of the European option market
prices, across different levels of moneyness or time to maturity. Studying this
can indicate whether fundamental economic variables, such as the dividend,
can consistently explain the variations of stock and option market prices, or
not. In order to show this, we adopt a variant of Lucas’ model assuming
that the dividend growth rate follows a process which incorporates Markov
Chain type of shifts in its mean and volatility according to Hamilton’s (1989)
Markov Regime Switching (MRS) model.!

The choice of the MRS model to represent the exogenous process driving
the economy can be justified by recent evidence suggesting that this model
can satisfactorily represent distributional features of dividend and stock re-
turns, such as negative skewness and excess kurtosis (leptokurtosis) [see Cec-
cheti, Lam and Mark (1990, 1993), and Bonomo and Garcia (1996), inter
alia]. These characteristics of stock returns are found to be necessary in
interpreting the volatility smile implied by the BS model, when fitted into
actual option price data [see Ghysels, Harvey and Renault (1996), Bakshi,
Cao and Chen (1997), and Ait-Sahalia and Lo (1998), inter alia).

'Note that the adoption of a general equilibrium framework to price the Euro-
pean call option enable us to derive an analytic solution of the call option price
which considers for the risk of a regime shift in the economy [see also Naik and
Lee (1990), Naik (1993), Amin and Ng (1993), and Ma (1998), inter alia]. To de-
rive such solutions, models of option prices which apply Black and Scholes’s (BS)
arbitrage (risk neutral) arguments in the presence of continuous or discontinuous
shifts (or jumps) of the underlying stock return make the restrictive assumption
that the price of risk of the shifts is zero [see Merton (1976), and Hull and White
(1987), inter alia].



The analytic formula of the European call option price that the paper
derives for the MRS dividend general equilibrium model, can be though of
as a weighted average of equilibrium option prices conditional on all different
paths of the regime changes of the economy, over the entire life of the option
until its expiration date, and the state of the economy at the expiration date,
itself. The weights attached to the conditional option prices are given by the
joint probabilities of the above events to occur. The dependence of the option
price on the particular regime of the economy at the expiration date of the
option reflects the influence of the consumption smoothing motive effect of
the regime changes on the stock and option prices, for that date [see Ceccheti,
Lam and Mark (1990)].

The ability of the introduced option pricing model to explain the varia-
tions of European call option prices is examined by investigating the follow-
ing: First, its potential to interpret the BS volatility smile, across different
moneyness areas, and second, its consistency in pricing traded option data
across different maturity and moneyness levels. Addressing the above two
questions is important in appraising the influence of risk aversion on option
pricing with regime (or discontinuous) shifts in the conditional mean and
volatility of the underlying stock. If the price of risk of such type shifts is
large, then option pricing models which assume that this source of risk is zero
may lead to serious pricing and hedging biases [see Naik and Lee (1990), Cao
(1998), and Ait-Sahalia and Lo (2000)].

The paper provides a number of useful results which may have important
implications in asset pricing or hedging theory. First, it shows that the
degree of risk aversion of a regime shift or an innovation in dividend process
does not seems to seriously affect the shape of the BS volatility smile. This
exists even for risk neutral preferences. Its shape is mainly determined by
the existence of regime switches in the dividend or stock return process. For
option pricing models based on risk neutral, local-arbitrage arguments (see fn

1), this result would imply that the empirical failure of the BS model may be



attributed to the misspecification of the stochastic process driving the stock
price underlying the option, and not to the risk premium effects associated
with discontinuous changes (shifts) of stock returns.

Second, the paper provides strong evidence that there may exist apparent
inconsistencies in pricing stock and option market data with the dividend
general equilibrium model. This is shown using as metric of comparison
between the two markets the risk aversion coefficient, for constant relative
risk aversion preferences. In particular, the paper shows that the estimate of
the risk aversion coefficient implied by the option price data is much smaller
than that replicating basic statistics (moments) of the stock data, namely the
mean of the price/dividend ratio, and the volatility, skewness and kurtosis
coefficients of the one-period stock log-returns of the S&P500 index. This
happens even though the model can interpret some of the main stylized facts
of the stock and option prices markets, such as the BS volatility smile and
evidence of negative skewness and excess kurtosis of stock returns. One
explanation of the above inconsistencies of the model across the two markets
might be that agents of different degree of risk aversion enter into each or
across the two markets.

The paper is organized as follows. Section 2 lays out the assumptions
of the MRS dividend model and gives the analytical solution of a European
call option price. Section 3 examines the ability of the model to interpret
the volatility smile of the BS model and derives estimates of the risk aver-
sion coefficient implied by the model based on stock and option prices data.

Finally, Section 4 presents a brief summary and overall conclusions.

2 The structure of the economy.

2.1 The stochastic environment of the economy

Consider an economy of the structure of Lucas (1978) where there is a rep-

resentative infinitely lived agent who can competitively trade the following
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assets: a single risky stock, a finite number of pure discount bonds, and a
finite number of European call and put options. In each period, ¢, the stock
pays a dividend, D;, in the form of a perishable consumption good, C;. The
bonds constitute claims of the consumer on one-unit of consumption good
at a future date ¢t + 7. The call (or put) options entitle the consumer to
buy (or sell) the stock in a future date at a prespecified value, known as
strike price, K. In equilibrium, we assume that the consumption good mar-
ket clears so that consumption equals dividends [C; = D], for all ¢, and the
that representative agent holds only the stock. The other assets are in zero
net supply.

The equilibrium prices of the above assets can be obtained by solving
representative agent’s utility maximization problem after making some as-
sumptions about the stochastic process driving the exogenous variable D;
[see, Bailey and Stulz (1989), Naik and Lee (1990), Amin and Ng (1993),
and Cao (1998), inter alia]. In so doing, we postulate that the dividend
growth rate, (D;.1/D;) — 1, follows the Markov Regime Switching (MRS)
model:

D, ,—D
% = Myp1 T Ot41€141, (1)
‘

with p, 1 = po + 1S, 07 = og + 035 and & ~ Niid(0,1), where S,
represents the state (regime) that the economy lies in, at each period of time
t. The algebraic equivalent of (1) that we will use to derive analytic solutions

of the asset prices is

Aby1 = fig g + Orp1€641, (2)

where ¢, is the logarithm of D; and fi,; = fig + [1;5¢, where [i5 = 11y — %a%
and iy = i, — 3o,
The timing of the state variable S; in (1), or (2), is chosen in order to

reflect the fact that in real economies dividend payments are announced in



advance [see Cecchetti, Lam and Mark (1990)]. Following recent evidence
by Cecchetti, Lam and Mark (1990), and Bonomo and Garcia (1996), inter
alia, we consider that the economy switches between two regimes: “0” and
“1” following a Markov Chain. This means that S; takes two values: 0 and
1, i.e. Sy € {0,1}. Regime “0”, which is restricted by (2) to have the lower
volatility, o2, will be identified by our data as the expansion regime of the
economy, implying that fi, > 0. Regime “1”, which has the higher volatility,
o2 + o2, will be identified as the recession regime, meaning that ji; < 0.
The movements between the two values of S; are dictated by the transition

matrix of probability, P, given by

=1
P— Poo D1o P11 , (3)

po1 = 1 — poo P11

where p;; = Pr[S,11 = j|S; = 1] declares the transition probability of moving
from state 7 to state j. By the Markov property, equation (3) implies that
the probability that after 7 periods of time the economy will lie in a given
state i, i.e. Sy, = 4, with ¢« € {0,1} will be given by the i-th entry of the

vector

€t+T|t - PTgt\t, (4)

where &, = (Pr[S; = i|Z4]),c 0,1y is @ (2 x 1) dimension vector with elements
the starting probabilities that the economy lies in regimes “0” or “1”, respec-
tively, at time ¢, given the information set of the agent, Z;. Note that when
S is known, at time ¢, &, will be given by &,, = (0,1)’, or &, = (1,0)’".
When it is unknown, its elements, Pr[S; = i|Z;], can be inferred by the cur-
rent and past realizations of 6; using Hamilton’s (1989) filter, assuming that
the information set becomes Z; = {8;,6¢_1,...}. The long run values of
& rt» @ T goes to infinity, known as the ergodic probabilities, are indepen-
dent of Pr[S; = i|Z;], and are given by the (2 x 1) vector m = (mi);cq0,1y



and m = ;=20 __ yespectively [see Hamilton
2—poo—p11’

1-pn1

with elements Ty = 2 poo—p11

(1989)].

In order to obtain analytic forms of bond and option prices, for different
maturity intervals, 7, based on the above assumptions of the economy, it will
be proved necessary to calculate the probabilities of the expected log-dividend
change Aé,, ., over the interval 7, conditional on the current information set,
7Z;. As we will see later, these probabilities will be jointly determined by the
probabilities of the values of the state variable S; .., at time ¢ + 7, and the
sojourn time variable measuring the number of periods that the economy

spends in regime “1”, over 7, defined as
Zur =3 S o)
i=0

The sojourn time variable, Z, ., takes values, ¢, in the set {0, ..., 7}, since S,
is a binary time process, with values 0 and 1. The conditional on Z; probabil-
ities of the values of Z; ., defined Pr [Z, ; = (|Z;], can be calculated as follows.
When the current regime is known, they are the same with the probabilities
Pr(Z;, = (|S: = i, since Z; contains S;. The functional form of the latter has
been derived by Darroch and Morris (1968) and Pedler (1971), inter alia.?

2In particular, Pedler shows that Pr[Z;,, = (|S; = i] is given by

Pr(Zer =S =i] = piopiy  {F (=7 +¢, —C 1;0)
—dp F (=7 + ¢ +i,~C+1—i; 1)},

i = {0,1}, where d = poop11 — po1p10, | = %, and F'(a,b;c;l) denotes the
hypergeometric function

F(a,b;c;l) = Z 7(@)(2)(17)5 g>

k=0

where (a),, (b),, and (c), are the Pochhammer terms, [e.g. (a), =
a(a+1)---(a+k—1)]. An algorithm calculating Pr[Z;+, = ¢|S; = i] has been



When S; is unknown, S; is not part of Z;. Then, Pr[Z; ; = (|Z;] can be calcu-
lated by Bayes’ rule as Pr [Z; , = C|Z:] = >, Pr[Z,, = (|S: = | Pr [S; = i|Z4],
where the information set now becomes Z; = {6, 61, ... }.

2.2 Equilibrium asset prices

Assume that the representative consumer maximizes his/her lifetime utility
and specify the within-period constant relative risk aversion (CRRA) utility

function:

C,—1

u(Ct): 1+~

, (6)
where 7 < 0 is the coefficient of relative risk aversion. With v = 0, one
obtains a risk neutral agent and with v — —1, one obtains an agent with
logarithmic preferences.> Given (6), the equilibrium prices of the stock, de-
noted P;, a discount bond of maturity 7, denoted B; ,, and a European call

option of the same maturity, denoted G, should satisfy the following Euler

equations:
P,=D;"Y  FE (D)), (7)
j=1
B, = D;"0"E, (D},,), (8)
and,
Gir = D; BBy [ D}, (Prr — K)'], (9)

suggested by Kedem (1980).
3Log-utility has been adopted by many authors in providing closed form solu-
tions of asset pricing models [e.g. Cox, Ingersoll and Ross (1985)].



respectively, where [E;(-) is used for the conditional on Z; mathematical ex-
pectation, E(-|Z;), and (P, — K)" = max{P,,., — K,0}. In our analy-
sis, Z; will be assumed to contain the current and past values of dividends,
{64, 64-1, ...}, as well as the current and past realizations of Sy, {S;, Si_1, ...}
When is necessary, results will also be given for the case that S; is consid-
ered as unknown.? In this case, S; will be assumed to be independent of the

innovation term ¢, for all ¢.°

2.2.1 Stock and Bond prices

For S; known, Cecchetti, Lam and Mark (1990), and Moore and Schaller
(1996) show that the solution of (7) is given by the following proposition.

Proposition 1 Assume that the log-dividend, 6, follows the stochastic pro-
cess (2), with its underlying assumptions, and that the Euler equation (7)
holds. Then, the stock price, P;, is given by

1
P== [5690+915t — B%e290M9 (oo + p1y — 1)} Dy, (10)
g
where

g = 14 Be*%9 (pyg + p1y — 1) — Be” (p11e + poo)

N 1
go = (L+7)fig +5(1+7) g,
2 2

1
g = (1+7)u1+5(1+7) o5

and Dy declares the [observed] dividend value at time t.

Equation (10) indicates that the price/dividend ratio is not constant, but

depends on the value of the state variable, S;. There are however some values

4This assumption is often made when estimating (2) [see Hamilton (1989)].
®Note that the independence of S; from ¢; means that the economic agent is
surprised by changes in S; [see Turner, Startz and Nelson (1989)].
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of the risk aversion coefficient, v, where this ratio becomes constant, and thus
is independent from S;. This happens when g; = 0 which is satisfied when
y=—-lory=—(1+ i—‘?) hold.® Using the definition of fi; = p; — 207, the
last condition on 7 can be also written as v = —%.

Following analogous economic reasoning with 1Ce(:(:heti, Lam and Mark
(1990), the above two conditions on 7, rendering the price/dividend ratio
independent from the state variable, can be attributed to the fact that the
consumption smoothing effect of the regime changes of the dividend on the
stock price is entirely offset by their intertemporal effects on the price of con-
sumption good. The first type of effect arises from the risk aversion attitude
of the agent to smooth his/her current and future paths of consumption, over
all possible realizations of the dividend process, while the second is due to

the effect of dividend changes on the supply of the consumption good.”

6Note that the first condition, v = —1, is due to the shift in the mean, while
the second, v = —(1 + 27“&), is due to the shift in the volatility.
1

"To see how these the above two effects operate, consider that the agent expects
that the economy will be in the expansion regime, at the future date t+7, identified
by the higher mean and lower volatility of the dividend growth rate process. Then,
the consumption smoothing motive effect will lead the agent to substitute out
future for current consumption, due to his/her risk averse attitude to avoid , over
time. This will have a negative effect on the stock price, since the agent will
sell off part of his/her stock holdings to finance current consumption. The effects
of a future expansion of the economy in the future on the current price of the
consumption good will have as a consequence a lower price of the asset, because of
the higher (and less volatile) supply of the consumption good, at date ¢ + 7. This
will lead to extra savings which, in contrast to the consumption smoothing motive
effect, will increase the current demand of the stock and, hence, its price.

Note that for v = —1, the cancelling out of the consumption smoothing motive
and the intertemporal price effect happens independently of whether the economy
is in the recession or expansion regime, at date t + 7. For v = —27"1%, it requires

the higher volatility regime, “1”, to be the expansion regime, to compensate the
representative agent for bearing the risk of very big fluctuations in his/her con-
sumption.
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The bond price B; ., satisfying the Euler equation (8), can be calculated

as shown in the following proposition.

Proposition 2 Assume that 6; follows the stochastic process (2), with its
underlying assumptions, and that the Euler equation (8) holds. Then, By, is
given by
Bt,T _ 67'67'(720'(2)/2+’Yﬂ0) Z 6((720%/2+7/11) Pr [Zt—H' — <|It] ] (11)
¢=0

PRrROOF: The proof of the proposition is given in the appendix.

Equation (11) indicates that B;, can be thought of as the weighted av-
erage of bond prices corresponding to all possible, different values of the
sojourn time variable, Z;,, over the maturity horizon 7. The attached
weights are given by the conditional on Z; probabilities of these values.
Note that when there is no regime shift, i.e. let us say that the econ-
omy lies in regime “0” with probability one, then B, is constant, given
by Bir = 37 exp {7 [v?03/2 + 7iio) }, for all t.

2.2.2 European call option prices

To obtain an analytic formula of the European call option price, Gy -, implied
by the Euler equation (9), we first need to derive the conditional on Z; prob-
ability density function of the 7-period log-return of the stock, defined as
Qt.r = Di+r — Dt, Where p; = log P,. This function, denoted by f (q:,|Z;), will
be referred to as the Risk Averse Density [RAD] function, henceforth, since
v is assumed to be different than zero. The RAD function can be derived
by writing (10), after taking logarithms of (2) and iterating the resulting

equation forwards, as

Piyr =P (St—H') + 6t + Tﬂo + ﬂth,T + Wt,rs (12)
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where p(Siy,) = log {é [ﬁeg‘ﬁgls"“ — B%€290791 (pog + p1y — 1)}} takes val-
ues p(i), i € {0,1}, and wy, = Y|, 041i€4;. Equation (12) implies that the

T-period return is given by

Gtr = DPt+r — Dt
= p(Strr) = p(S) + Tho + iy Zir + Wi,z (13)

An analytic formula of the RAD function can be obtained from (13) by

defining the following two extensions of the information set, Z;:

Ht,T(C) = It U {Zt,T - C}? and (14)
Gir(C,i) = Hir(Q)U{Stsr =i}, with ¢ € {0,...,7} and i € {0,1}(15)

H:-(¢) extends Z; with the sojourn time variable values, ¢, and G, .((, 1)
extends H;,(¢) with the values of Si,,. Given the above extensions of Z;,

we can calculate f (g:-|Z:) by applying Bayes’ probability rule, as

FlanlZ) = 32 3 S Gp ()]G (C.)

<Py €. Suer = 9T, 19
where
F G 9 G069
- ) oo { eGSR
with

=
~—~
2
B
~
~.
S~—
=N
S~—
I

p (i) = p(St) + Tg + [11€, and
o*(¢) = TG+ 0iC.
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Equation (17) indicates that the RAD function of ¢, is a mixture of the
2 X (7 + 1) normal density functions f(q:r,C,p(i)|Gt-(¢,7)). These func-
tions calculate the probabilities of g, , for given values of the sojourn time
variable, Z, -, and the future state variable S;,,, at time ¢ + 7. The weights
attached to each of these densities, f(qir,(,p(7)|Gi-(C,17)), are given by
the corresponding joint probabilities of the values of Z; . and S, denoted
by Pr(Z;,; = (, St1r = i|Z;]. The values of the RAD function can be calcu-
lated given values of the vector of parameters of the MSR model (2), 8" =
(fig, ft1, 00,01, Poo, P11), the risk aversion and the time preferences coefficients,
v and (3, respectively, and the joint probabilities Pr[Z;, = (, Sirr = i|Z4].
The latter can be obtained by using Kedem’s (1980) algorithm.

Note that for the values of 7: v = —1 or v = —(1 + i—’?), the RAD
function (17) reduces to

T

F(@erlT) = (e, G pHer (Q) Pr[Zer = (T (18)

¢=0

whete f (gi.r,C, plHir(Q)) = (2m0% ()2 exp { 2O with i (¢) =
Ty + f,¢, since p (i) — p(S;) = 0. The functional form of the RAD given
by (18) does no longer depend on the particular regime of the economy at
the future date, ¢ + 7, alone. It only depends on the realizations of the
sojourn time variable, Z;,, over 7. This happens since the price/dividend
ratio becomes independent of the state variable, for the above values of ~.
In this case, the distribution properties of the log-return ¢, will be solely
determined by those of the log-dividend change Ad;. .

Having obtained the RAD function of the 7-period return ¢ ., we next
derive an analytic solution of the European call price, G; ., implied by the

Euler equation (9). This is given by the following proposition.

Proposition 3 Assume that the log-dividend, 6, follows the stochastic pro-
cess (2), with its underlying assumptions, and that the Euler equation (9)

13



holds. Then, the Furopean call price, Gy ,, is given by
1 T
Gt’T - 57 Z Z Gt’T(i’ O Pr [Ztﬂ' =, St+7' = Z.|It] ’ (19)
i=0 (=0
where
Gi.(i,j) = 07 {p(z) Dte(w+1)2(Ta%+€a§)/2+(7+1)([L0T+ﬁ1<)(I) ]

)

(7+1) (08 + Co) + figT + fuC + In (242
dl = ’

/703 + (o}
d2 = dl — \/TU%—FCU%,

and @ [-] is the cumulative normal distribution.

PROOF: The proof is given in the Appendix.

Equation (19) implies that the European call price, G; ., in an economy
where the log-dividend growth rate follows Markov type of regime changes
can be thought of as a weighted average of equilibrium option prices condi-
tional on all possible values of the sojourn time variable ¢ until the expiration
date of the option, t + 7, and the values of the state variable S; .., at t + 7,
itself. The result of the proposition is a consequence of the functional form
of the RAD function (17). The weights attached to the conditional option
prices are therefore similar with those attached to the RAD function, and

they are given by the joint probabilities Pr[Z;, = (, Sysr = i|Z;].°

8Note that the MRS option pricing model, given by (19), has an analogous
formula to that of Naik and Lee’s (1990) model, which assumes that the dividend
process allows for independent, Poisson driven jumps in the mean. The Naik and
Lee model implies an option pricing formula which is average of option prices
conditional on the number of all possible dividend jumps between ¢ and t + 7.

14



There are two interesting cases of (19) which can be simplified. The first
is when v = —1 (logarithmic preferences) or v = —(1+ 20%1), and corresponds
1

to the RAD function (18). Then, G, is given by the following corollary.

Corollary 4 When v = —1 ory = —(1 + 2&), then equation (19) becomes

91

Gir =Y Cur(Q)Pr[Zi; = (|2 (20)

where

Gir(C) = {p@ dy] — Ke(rodcot) 2o tincg [dg}} ,

L RTHRCn(B)
1 — )

Vot + (o?
d2 = dl—\/TU%—FCO’%.

Equation (20) indicates that the European call price, G; ., does no longer

separately depend on the particular state of the economy at date, t 4+ 7, as
in (19), when v becomes v = —1 or v = —(1 + %) As mentioned before,
this is due to the fact that the RAD function does no longer depend on S, .,
separately, for these values of ~.

The second special case of (19) is when there is no regime shift in the
economy. Let say S; = 0, with Pr [S; = 0] = 1, for all . Then, equation (19)

reduces to the formula given in the following corollary.

Corollary 5 If Pr[S; = 0] = 1, then equation (19) yields

G,, =B, {eﬂ((w%)agwo)pt(p [di] — K® [dz}}, (21)
where By, is the T-maturity bond price when Pr[S, =0] = 1, and d; =
% —+ (’)/+1)0'0\/F andd2 :dl —0'0\/7_'.
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Equation (21) implies that the underlying RAD function of the log-return
will be normal when there is no regime shift in the dividend process. In this
case, both the log-dividend and log-stock price follow a random walk with
constant drift and volatility parameters. As the BS formula, the option
formula given by (21) will therefore imply a constant volatility parameter,
when is fitted into traded option price data. Note that for v = 0, p, = r and

equation (21) reduces to the familiar BS formula.

3 An evaluation of the general equilibrium
MRS option pricing model

This section has two mains goals. The first is to calibrate the MRS dividend
general equilibrium model, introduced in the previous section, with the aim
of investigating if it can explain some well known, stylized facts of the stock
and option pricing literature, such as evidence of negative skewness and lep-
tokurtosis of stock returns and the shape of the BS volatility smile. This
is done based on maximum likelihood (ML) estimates of the parameters of
the MRS process (2) using as aggregate dividend the series implied by the
S&P500 composite monthly index between January 1, 1980 and December
31, 1993. This dividend series is deflated using the CPI index. The second
objective of the section is to examine whether the MRS model can consis-
tently explain the variation of option price data, across different moneyness
areas and maturity, with that of stock price data. In order to see this, we
are based on Ait-Sahalia and Lo’s (1998, 2000) option price data set. This
set covers the period between January 1 to December 31, 1993. To obtain

real values, the option prices are appropriately deflated by the CPI.
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3.1 Fitting the MRS process into the S&P500 aggre-
gate dividend

The ML estimates of the parameters of the MRS model can be found in
Table 1. The estimates reported in the table assume that S; is unknown, as
in Hamilton (1989).° The probability of S; = 1, i.e. Pr[S; = 1|Z;], is given
in Figure 1.

The results of both the table and figure clearly show that there are two
distinct shifts in the mean and volatility parameters of the real log-dividend
change.!’ The pairs of these parameters are: (i, o) = (0.05,0.24), for the
expansion regime, and (fig + ji; = —0.05,/02 + 03 = 0.49), for the recession
regime, respectively. Note that the mean of the recession regime, i, + fi1, is
not significantly different from zero.

The estimates of the transition probabilities, pg; and pyg, imply a frequent
number of switches between the two regimes and a low degree of persistency
of each regime.!! This can be also confirmed by the graph of Pr[S; = 1|Z;],
giving the probability that the economy stays in regime “1”, at each point
of time.

To see whether the MRS dividend model (2) can replicate the sample mo-
ments of the data, in Table 2 we report estimates of the first four uncentered
moments of the one-period dividend growth rate implied by the MRS model

(2) and their sample counterparts.!? The standard deviations of the sample

9This means that S; is not considered as part of the information set, Z;. Es-
timation of the model treating Sy as known is also performed, but this did not
significantly change the main results of the paper. This estimation was done along
the lines suggested by Moore and Schaller (1996).

10 Analogous results were obtained for the dividend growth rate.

UThe persistency coefficient, defined as A = 1 — pg1 — p1o, is A = 38.26% . This
value of A is much smaller than one, which indicates a low degree of persistency
of each regime.

2The theoretical momments are calculated by using Chourdakis and Tzavalis
(1999) formulas of the first four centered moments of the MRS process (2) [see
also Timmermann (2000)].
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moments can be found in parentheses. The result of the table demonstrate
that the MRS model can satisfactorily match both the signs and magnitudes
of the sample moments. Specifically, the reported standard deviations indi-
cate that the point estimates of the sample moments do not differ more than
two standard deviations from their corresponding theoretical values, implied
by the model.

Summing up, the results of this subsection suggest that the MRS can
adequately describe the real dividend series, implied by the S&P500 index.
Given this, we next investigate if the MRS model can explain certain distri-
bution features of stock returns, such as negative skewness and excess (over

the normal) kurtosis.

3.2 Properties of the RAD function

Evidence of negative skewness and excess kurtosis of stock returns is often
offered in the option pricing literature as an explanation of the BS volatility
smile, implied by option price data [see Ait-Sahalia and Lo (1998), inter alia.
In this subsection, we investigate whether the MRS general equilibrium model
can generate stock log-returns with the above distribution characteristics and
analyze the influence of the risk aversion coefficient, ~, on them.

To show this, we calculate the following unconditional (evaluated at the
ergodic levels of probability) statistics: the mean of the price/dividend ratio,
P,/ Dy, the standard deviation (known as volatility), and the skewness and

13 This is done for

kurtosis coefficients of the one-period log-return, g ;.
different values of  and 7, and based on the ML estimates of the vector
of parameters 0. To calculate P;/D, we use the weighted average of (10),
over the values of S;: 0 and 1, using as weights the ergodic probabilities of

these values to occur. To estimate the other statistics we are based on the

I3Note that the last three statistics can also indicate the generating sources of
excess volatility, negative skewness and leptokurtosis of the T-period stock return,
qt,r, since gz r consists of one-period returns.
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following second, third and fourth unconditional moments of ¢; ;:

Ml(z) = mom [A®+ (A+ /]1)2] + op + mo7,

M = mom (w0 — m) iy [ +3 (A + ) A]
+3momy (A + ji,)° 02, and

MY = m2a2p (7§ +73) + moms {[A+ fum]* + [A + fiymo]*}
tmomy {[A+ fiymi)* of + [A + fymo)* (of + 03) }
+momii (205 + 07) +3{7To<73+7T1 (0(2)4‘0%)2}7 (22)

where A = p(0) — p(1).!* The proof of the moment functional forms given
by (22) can be found in the Appendix.!

Figures 2(a)-(d) graphically present the values the statistics of interest
with respect to v, for v € (0,—50).16 The horizontal lines of the graphs give
the sample counterparts of the statistics, based on the stock price data. In
all graphs, we consider that 3 = 0.985.17 As it will be shown later, the MRS
model fits better into the option prices data for this value of 5. Inspection
of the graphs leads to the following conclusions:

(i) There is an inverse relationship between the stock price and the

risk aversion coefficient. This relationship is due to the fact that, as risk aver-

14We derive the unconditional moments for comparison reasons with the sample
moments of the data.

1°Note that for v = —1 or v = —(1 + 2(%1) (implying that A = 0), the moment
functions given by (22) reduce to those of the one-period change of the log-dividend
[see Chourdakis and Tzavalis (1999)]. This happens since the price/dividend ratio
does no longer depend on the state variable, for the above values of 7. Then, as
mentioned before, the distribution features of the stock price resemble those of the
dividend.

6Note that this interval of the values of v is broad enough to accomodate for
the very high degrees of risk aversion, which have been derived in similar studies.

17"Graphs with different values of § are also produced, but they did not signifi-
cantly change the pattern of the statistics with . These graphs are not presented
in the paper for reasons of space. They are available upon request.
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sion increases, the consumption smoothing motive effect of dividend changes
on the stock price dominates the intertemporal consumption good price ef-
fect. As a consequence of this, the stock price will decline with ~.

(ii) There is a positive relationship between the volatility of the re-
turn ¢;; and the risk aversion, stating that an increase of the degree of risk
aversion will increase the volatility of g,;. This implies that small changes
in the dividend process will lead to substantial changes in ¢ 1, when v takes
large negative values. These changes in the stock return are required to com-
pensate the representative agent for any large intertemporal consumption
loses that arise from changes in the dividend regime.

(iii) In contrast to the relationships of the price/dividend ratio and
volatility with +, the relationship between the skewness coefficient of the
return g,; and 7y is less straightforward to be interpreted. The skewness
coefficient, defined as SK; = Ml(g) / <M1(2) )3/2, is a U-shaped function of v
which takes both positive and negative values. For our estimates of 6, the
minimum value of this function is located at v = —4.80. For v < —4.80, SK;
exponentially declines with the size of v, and converges to an asymptote.'®

The negative value of SK; means that the probability of obtaining a value
of the stock return ¢;; which is less than its expected value is smaller than
50%. This can be attributed to the risk averse attitude of the representative
agent which requires a compensation for a possible shift to the recession
regime, in the next period. If there is no such a shift (i.e. f; = 0), then
equation (22) implies that the skewness coefficient will become zero.

The increase of the size of SK; with risk aversion, documented in the
graph of SK; for v > —4.80, can be attributed to the fact that the negative
degree of skewness which is required by the agent to be compensated for a
possible switch to the recession regime becomes higher with the degree of

risk aversion. If the risk aversion attitude is not strong enough, then SK;

18 Analogous shapes of SK; were observed for different combinations of values
of the transition probabilities, p;;, or the conditional mean parameters, 1o and ;.
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can be positive, even though the distribution of the log-dividend growth is
skewed to the left.

The decrease of the absolute size of SK; with the degree of risk aversion
can not be given an economic explanation. It is due to the fact that the

3/2
denominator of SKj, given by (M1(2)> , increases faster with the size of v

rather than the numerator, Ml(?’). This means that the variance of the stock
return ¢;; will dominate the effects of risk aversion on Ml(g), as 7y increases.

(iv) In contrast to the skewness, the kurtosis coefficient, defined
KU, = M1(4) / (Ml(z))2, seems to have an almost N-shaped relationship with
~. For our estimates of 8, KU, achieves its maximum value at v = —3.0,
and then starts declining to an asymptote. As in (iii), we can attribute the
declining part of KU, to the different speed of convergence of the numerator
and denominator of KU; with . The increasing part of KUy, for v > —3.0,
can be attributed to the risk averse attitude of the agent to require extreme
changes in stock prices as a compensation for large (or extreme) negative
changes in the dividend process.

Overall, the results of this section indicate that the MRS model can gen-
erate stock returns with negatively skewed and excess kurtotic distributions
which are necessary for the interpretation of the BS volatility smile. The
value of the risk aversion coefficient seems to affect both the sign and mag-

nitude of the skewness and excess kurtosis coefficients.

3.3 Can the MRS model interpret the BS volatility
smile?

As mentioned before, the negative skewness and excess kurtosis of the stock
return has been offered as an explanation of the volatility smile implied by
the BS model. This constitutes a U-shaped relationship between the volatil-
ity implied by the BS model and the ratio of stock/strike prices, P;/K,

known as moneyness, something which the BS model predicts to be flat.
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Evidence suggests that the smile tends to be stronger as we move from far-
in-the money (far-ITM) or far-out-of-the-money (far-OTM) options to at-
the-money (ATM) or ITM options [and Bakshi, Cao and Chen (1997), inter
alia]. These features of the smile mean that the BS model will overprice the
ATM or I'TM options and underprice the far-I'TM or far-OTM call options.

The goal of this subsection is to examine if the MRS option pricing model
can generate shapes of BS volatility smile similar with those found in the
literature of option pricing and to investigate the influence of risk aversion
on them. This is a worthy exercise since it can reveal what is more responsible
for the shape of the BS volatility smile: a MRS type of misspecification of
the data generating process assumed by the BS model or the influence of risk
aversion.

To examine the above questions, in Figure 3 we graphically present the
volatility smile implied by the BS model, for 7 = 1, when fitted into option
price data generated by (19). The figure presents graphs of the BS volatility
smile for values of 7 in the set {0,—10,—15,—30}, K € (0.90,1.10) and
6 = 0.985. The chosen values of v span a broader set of theoretically plausible
values of it. They also enable us to investigate the influence of risk aversion on
option pricing with regime switches by comparing the shape of the volatility
smile for v = 0 (risk neutrality) with that when v # 0. Note that the values
of v: —10, —15 and —30 can also indicate whether the shape of the volatility
smile is consistent with the values of v replicating the sample statistics of
the return ¢; ;, given by the horizontal lines of the graphs of Figure 2(a)-(d).

We compute option prices, using for @ the ML estimates of the MRS
model (2), reported in Table 1. Since S; is treated as unknown in estimation,
the option prices generated by the MRS model are taken to be the weighted
average of the conditional option prices, given by (19), over the values of S;: 0
and 1, using as weights the filtered by the information set [, = {6;,6;-1,...}
probabilities of these values to occur. To fit the BS formula into the generated

data, we use the one-period interest rate implied by the bond pricing formula
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(11), for 7 = 1.

The graphs of the figure clearly indicate that the MRS option pricing
model can explain the behavior of BS volatility smile, across different mon-
eyness levels. The graphs exhibit a U-shape pattern across moneyness, as
evidence suggests. The risk aversion coefficient does not seem to have an
important influence on the shape of the smile. When the magnitude of v
increases, the smile shifts slightly to the left. This shift can be attributed to
the joint effect of the price/dividend ratio and skewness changes with ~y. Its
economic intuition could be that the risk averse agent wish to pay a higher
call option premium to the writer of the option in order to hedge his/her
portfolio against a possible consumption loss due to a switch to the recession
regime, as the degree of risk aversion increases.

These results support the view that the shape of the BS volatility smile
can be mainly attributed to a MRS type of misspecification of the stock price
process underlying the option. The influence of risk aversion on the pattern

of the smile does not seem to be very important.

3.4 Testing the MRS option pricing model- Implied ~

Having established that the MRS option pricing model can explain some of
the main stylized facts of the stock pricing literature and the shape of the
BS volatility smile, in this subsection we evaluate the empirical performance
of the MRS dividend equilibrium model by testing if it can price traded
Furopean call option data, across different values of moneyness and maturity,
consistently with the stock market data. To see this, we estimate the risk
aversion coefficient, 7, implied by the option pricing formula (19), for % €
(0.80,1.40) and 7 = {1,2,6, 12} months. If the model is correctly specified,
then the estimates of v will be flat across all values of % and 7.

The estimates of v are graphically presented in Figures 4(a)-(b). They
are retrieved by fitting the option pricing formula (19) into the traded option
price data. We use the ML estimates of @, given in Table 1, as inputs for the
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formula and we assume that g = 0.985. Assuming [ as known considerably
facilitates the estimation procedure. This value of (3 is chosen since it is found
to give on average the minimum function value of the estimation method,
across all different values of % and 7 considered.

Inspection of the graphs of the figure clearly indicate that there exists
some type of misspecification of the MRS dividend option pricing model (19)

in fitting the traded option price data. The implied estimates of v are not

B
K

and 0. In fact, the absolute value of v becomes smaller as we move from the

flat, across =t or 7, as the model predicts, but vary between the value —.8
ITM to the OTM areas, and it tends to zero, as 7 increases. On average,
the estimates of v seem to be close to those found by Ait-Sahalia and Lo
(2000) by employing a non-parametric estimation method of the risk aversion
coefficient, without making any assumptions about the form of agent’s utility
function.

The above estimates of v substantially differ from those replicating the
basic distributional characteristics of the log-return ¢; ; [see Figures 2(a)-(d)].
This can be also thought of as an empirical failure of the MRS dividend asset
pricing model. The failure of the model can be attributed to the fact that
there is not a common value of v which can match basic statistics of stock
returns, as shown in Figures 2(a)-(d), with those of the option prices. As
a consequence of this, the RAD function implied by stock market data will

always differ from the one based on option price data.

4 Conclusions

In this paper, we introduce a general equilibrium pricing model of a European
call option. The model is based on the assumption that the economy is
exogenously driven by a dividend process following Markov Chain types of
shifts in the mean and volatility. The paper derives an analytic formula of the

European call option price which shows that the European call price can be
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though of as a weighted average of equilibrium option prices conditional on all
different paths of regime changes of the economy, over the life of the option,
and the state of the economy at the expiration date of the option. The derived
option pricing formula and its implied probability density function are used
to evaluate the ability of the Markov regime switching model to explain some
of the main stylized facts of the stock and option pricing literature and to
adequately price European call option data.

The paper provides a number of new results which may have important
implications for asset pricing theory. It shows that the MRS extension of
Lucas’ dividend general equilibrium model can not consistently price stock
and European option market price data. This is shown using as a metric of
comparison between the two markets the risk aversion coefficient implied by
the model, when fitted into actual data. The paper provides strong evidence
that the risk aversion coefficient of the model implied by option price data
is much smaller than that matching basic statistics of stock market data.
These differences can be translated into serious asset pricing and hedging
biases. They can be attributed to different type of investors entering into
or across the two markets, with the options market attracting agents that
are more risk neutral. It can be argued that the smaller values of the risk
aversion coefficient implied by the option data (especially for OTM options)
are due to the fact that a higher number of risk neutral investors enter into
this market, who are driven by speculative motives of regime changes in the

stock market.
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A Proofs of Propositions

In this appendix, we prove Propositions 2 and 3, and equation (22), given
in the main text. The proofs of the above propositions are based on the

following Lemma.

Lemma 6 Assume that the log-dividend, 6;, follows the stochastic process
(2), then B, {D{, .} can be calculated by

B {D/\,}

= Dyer(Pei/zin) §™ c(Pot/2om) prz, = (|7)). (23)
¢=0

PROOF: Iterate forwards (2). This yields
T—1
Otyr = O + Ty + f1y Z Stvi + Wi, (24)

=0

where wy, = Y1, 041464 From equation (24), we can find the conditional
on Z; probability density function of é;,., denoted f (6;1-|Z¢), as follows.

First, notice that the conditional on H; - (¢) distribution of w; , is normal,
Wt—O—T’Ht,T(C) ~ N (O? 7—0-3 + CJ%) ) (25>

due the assumption that €,,; and S;.; are independent, for all . Using Bayes’
rule and the result of equation (25), f (6:+-|Z:) can be calculated by

F(Seir|T) = > f BrarHur (Q)) Pr [ Zesr = ¢ITH] (26)
¢=0
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where

f (e H:-(C)) = [27“72 (C)}ié exp {_%} , (27a)

f(¢) = b+ Thg+ 1,C,

and o?(¢) = Tos+ 03

Given the functional form of f (6+,|Z:), the expectation E; (D}, ;) can be

calculated as follows,

Et {DZ—O—T
+00
= / e fs (6440 |Ty) dbpsr
T “+00
= {/ 675t+*f(5t+T\HtJ(§))d5t+T}
¢=0 -
x Pr [Ztﬂ— = (|It} . (28)

Substituting the solution of the integral [*°° €7+ f (&,Hy,(()) dby, given
by

—+o00
/ e f (8ysr H: - (C)) b r
[6¢47—6¢—(TRo+Si )}2

—+00 Otr—
N / 27 (T05 + Co?)] o 67 i Aregreot) dbyr

—00

_ Dgeé(w%wf%)ﬂww@l), (29)
into equation (28) yields (23).

A.1 Proof of Proposition 2

The result of Proposition 2 follows, immediately, by substituting equation
(24) into (8).
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A.2 Proof of Proposition 3

To prove the proposition write [, [Dz (P — K )+], after taking loga-
rithms of (10), as

Et [Dz—Q—T (Pt+T - K>+:|

= ZZE Ve (Prr — K) ' 1Gir(C,0)] Pr 2y, = ¢, Siyr = il

'LOCO

_ Z ZE [e%‘m e — K) 16 (¢, @')} Pr(Z,. = C, Sier = i|T)]

zO{O

N Z Z/ WMT ( )65t+T o K) f (bt4+1Ge+ (¢, 7)) db v

i=0 ¢=0 ¥ IlK/p(i)

x Pr [Zt’-,- = C, St+7- = Z|It}
1 T
= Y N 4 (Ci) = KIg (¢ Pr(Zer =, Sher = i|T4], (30)

i=0 ¢=0

14 (¢,1) is given by

14(G,0) = / p (i) e f (61401Gr (C, 1)) bty (31)

too [6017—A())]?

6(7+1)5f+77 202(¢)
= p(i) dbtir,
by VEED
In( £
p(i)

where [i(¢) = 6; + Tjiy + ;. Its solution is

Ia(G i) = p(i)e

02(6)(7+1)22--2('r+1)ﬁ(0 o [[ﬁ (¢) +1n (p(?(Dt> + 0 Q) (v + 1)]
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The definition and solution of I ((,1%) is as follows:

+oo

I5(Ci) = / 0 £ (6141G1(C, 1)) dbrir

Q)+ In (2922) + 4 (ro + Cod)
7 (¢)

20'2 ~
_ QVT(OMM(()(I)

. (33)
Substituting (32) and (33) into proves (30).

A.3 Proof of equation (22)

The unconditional moments of one-period return, g1, can be derived by

writing g1 as
Gt = p(Sis1) = p(Se) + fig + [ St + (o5 + <7%5t)1/2 Et41- (34)
The unconditional expectation of (34) is
Baii = g + fy . (35)

To derive the higher centered moments of ¢ 1, subtract (34) from (35). This
yields

@1 — Baiy = p(Se1) — p(Se) + iy [Se — mi] + (o5 + U%St)l/z Eip1- (36)

From (36), we can derive the following centered moments:
MP s
h :

M1(2) = E [%,1 - EQt,1]2
2
= B [P (Sts1) = p(Se) + fiy [Sy — m] + (o + U%St)l/z €t+1]
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= SOS wmi o G) — p @)+ i (i = )P+ Y i (oF + 0%)

i=0 j=0 i=0
= 7T07T1[ A—i—,ul ]+U(2)+7710'%,

Ml(?’) as:

E g —Bga* =) ) mimy p i)+ fu (i = )] +

=0 7

+3> > mimi[p(G) = p (i) + iy (i — m1)] (05 + 03i)

i=0 7=0

= momy (o — m1) iy [} + 3 (A + i) A] + 3momy (A + fiy)” o7,

and M1(4) as

11
B g1 — Bg]* = Z Zﬂﬂr] p (i) + i (i —m)]" +
i=0 7=0
1

+6> > mim;lp(§) — p (i) + iy (i — ™)) (0F + 07i)

i=0 j=0

1
+ 327@- (03 + in)2

i=0
20y (w4 71) 4+ mom {[A + fum]* + [A+ ﬁ1w0]4}

+mamii (208 + 01) + momi {[A+ fumi ]’ of + [A + fumo)” (of + 01) }
+3 {71'00’0 + (ag + U%)Z}.
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Table 1: Estimates of the real dividend MSR process parameters

fip fotfy oo Nog+ol  po P10
0.05 —-0.05 0.24 0.49 12.74 49.00
(0.002) (0.09) (0.01) (0.09) (5.32) (21.55)
Log-likelihood: 737.72

Notes: Standard errors are in parentheses. The values of the co-
efficients [, fig+ i1, 00, /02 + 0%, as well as their standard errors
are monthly rates in percentage terms. The transition probabili-

ties pg; and pyo; are also in percentage terms.

Table 2: Theoretical and actual moments

Moments Actual data MSR data
First (x102) | 0.018 (0.02) 0.050
Second (x10%) 0.097 (0.16) 0.101
Third (x10°) | —0.0030 (0.01) —0.0097
Fourth (x10®) 0.037 (0.01) 0.052

Notes: Standard deviations of the sample moments are in paren-

theses.
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Figure 1: Filter Probabilities Pr[S; = 1|I]
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Figure 2: Descriptive Statistics
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Figure 2: Descriptive Statistics (continued)
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Figure 3: Implied volatility smiles, for 7 =1
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Notes: Solid line [—|: v = 0; Empty diamonds [-{-|: v = —10; Full
diamonds: [-4-]: 7 = —15; and Full squares [-B-]:y = —20. 7 = 1 means

one-period, which is a month for our data set.
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Figure 4: Implied v
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Figure 4: Implied 7 (continued)
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Implied ~ (continued)

Figure 4
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Figure 4: Implied 7 (continued)
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