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Abstract

Under some conditions, large dimensional networks or systems can generate long
memory in their components. We build on this theoretical result for modeling and
forecasting series displaying long range dependence. We shrink the parameters of each
equation of a VAR(1) system to values implied by the theoretical conditions, by means
of ridge and Bayesian estimations. Our proposal significantly outperforms univariate
time series long memory models when forecasting a daily volatility measure for 250 U.S.
company stocks, as well as seasonally adjusted monthly streamflow series recorded at
97 locations of the Columbia river basin.
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1 Introduction

Ever since Granger (1966) and Nelson and Plosser (1982), the question of the degree of

persistence in macroeconomic and financial variables has exhibited regular puzzles. Long

memory (i.e., a dependence between observations decaying hyperbolically with their distance

in time, see Beran, 1992) is often encountered in economic and financial time series (at least

since Smith, 1938, and Cox and Townsend, 1947; see, e.g., Baillie, 1996, for an introduction)

and long memory models are found to provide a good empirical representation of persistence

that is stronger than ARMA models but weaker than unit-root processes.1 The econometric

literature has found that its origin can take several forms, such as aggregation (Granger, 1980,

Abadir and Talmain, 2002, Leipus and Surgailis, 2003), linear modeling of a nonlinear process

(e.g., Robinson and Zaffaroni, 1998, Miller and Park, 2010, Chen, Hansen and Carrasco,

2010), structural changes (e.g., Diebold and Inoue, 2001, Gourieroux and Jasiak, 2001,

Perron and Qu, 2010) as well as resulting from agents’ self-referential learning behaviors and

forward expectations (Chevillon and Mavroeidis, 2017, 2018).

Recently, long memory has been shown to arise in individual series that are linked

within an infinite dimensional network or system. Chevillon, Hecq, and Laurent (2018)

have proved that long memory can result from the marginalization of a large dimensional

system. More specifically, they provide a parametric framework under which the variables of

an n-dimensional vector autoregressive model of order 1, i.e., a VAR(1), can be individually

modelled as a fractional white noise (see Granger and Joyeux, 1980) as n tends to infin-

ity. Long memory may therefore be a feature of univariate or low dimensional models that

vanishes when considering larger systems in their entirety: while the infinite dimensional

system is Markovian, modeling the series individually requires infinite lags. In the context

of network dynamics, Schennach (2018) has found a related result of hyperbolic response

1Typically, long memory is characterized by the hyperbolic decay of autocovariances. Fractional integra-
tion constitute the main model for stationary or mean reverting long memory process.
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of outputs to distant input shocks. These sources of long memory differ from other sources

mentioned in the literature, in particular the aggregation mechanism of Granger (1980).

In this paper, we address the question of whether and how the asymptotic theoretical

results of Chevillon, Hecq and Laurent (2018, CHL henceforth) and Schennach (2018, Schen-

nach henceforth) can be put to use in empirical work. Given the large dimensional nature

of their models, inference in empirical works is likely to be imprecise. Hence, rather than

attempting to test the specification of a large scale model using a finite data set, we provide

an assessment of the proximity of the models to the data generating process by means of fore-

casting exercises. We provide in particular a set of techniques using classical and Bayesian

inference which allow an empirical modeler to benefit from the asymptotic theoretical results

of CHL and Schennach. The success of these modeling techniques can be interpreted as an

empirical validation of the theoretical results of CHL and Schennach about long memory

originating from interactions within large dimensional systems.

Given their asymptotic nature (in the cross-sectional dimension n, not in the sample

size T ), the results of CHL and Schennach involve systems so large that inference may be

infeasible or highly imprecise in finite samples. Our approach hence relies on a parsimonious

dynamic modeling using a large number of variables, so our benchmark system is the vector

autoregressive model of order 1 It is well known that such a VAR(1) can be estimated equa-

tion by equation, each equation being an AR(1) (autoregressive of order 1) model augmented

by the first lag of all the other variables in the system. We refer to these equations as AR(1)-

X models. Our objective is to evaluate whether in large dimensions, such AR(1)-X models

may constitute a viable alternative to pure long memory models like the autoregressive frac-

tionally integrated moving average (ARFIMA) model, or to models designed to approximate

well the long memory feature of time series, like the heterogeneous autoregressive (HAR)

model of Corsi (2009).

By careful estimation of the AR(1)-X models, we evaluate whether the source of long

3



memory identified by CHL and Schennach is empirically relevant and is specifically useful

for forecasting variables displaying long memory. We propose two methods to estimate an

AR(1)-X model augmented with long-memory prone constraints. These shrink the param-

eters towards values implied by a set of characteristics derived from CHL and Schennach.

The first shrinkage strategy relies on an L2 penalization of the AR(1)-X model (i.e., ridge

regression) and is denoted RAR(1)-X (for Ridge AR(1)-X). The second one relies on an in-

formative prior density in a Bayesian approach, denoted BAR(1)-X (for Bayesian AR(1)-X).

The degree of shrinkage, which is governed by the L2 penalty weight or by the prior variances,

is chosen by cross validation between the two extremes of no or dogmatic restrictions.

We perform empirical applications in two contexts where long memory is an established

feature. We focus on (i) the logarithm of a robust-to-jumps estimate of the daily integrated

variance (i.e., the MedRV of Andersen, Dobrev, and Schaumburg, 2012) computed from

5-minute returns for 250 US stocks over twelve years, and (ii), the logarithm of monthly

seasonally adjusted series of river streamflows at 97 locations in the Columbia river basin

over ninety years. We compare the forecasting properties of the AR(1)-X, estimated by the

shrinkage strategies we propose or by standard OLS, to three univariate models for short

and long range dependence: the AR(1) model, the ARFIMA model, and the HAR model

of Corsi (2009). Since we compare models based on different information sets, and as these

models are of reduced-form type and aimed at forecasting, it is reasonable to use measures

of forecast accuracy as criteria for comparisons. Hence, we compare the forecasts produced

by the different models using the mean square forecast error (MSFE) and mean absolute

forecast error (MAFE) loss functions, and we rely on the Model Confidence Set procedure

of Hansen, Lunde and Nason (2011) to discriminate between the models.

The rest of this paper is organized as follows. Section 2 provides a theoretical framework

under which a VAR(1) model can generate long memory in its components when the dimen-

sion of the system is large. The theory implies restrictions on the VAR parameters that can
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improve estimation and forecasting. Section ?? then explains the theory-induced constraints

we suggest when estimating the equations of the VAR(1) system. It shows how to introduce

them, either through an informative prior density for conducting Bayesian estimation, or by

ridge estimation. Section 4 contains the empirical results. Conclusions are offered in the

last section. Proofs, technical details and additional figures are collected in a supplementary

appendix (SA).

2 Long memory in a VAR(1) model

This section reviews the elements of the theoretical frameworks of Chevillon et al. (2018)

and Schennach (2018) that preside over our own modeling strategy. We provide a unifying

treatment and derive constraints that are germane to our estimation procedures.

Both CHL and Schennach prove that long-memory observed in a univariate time-series

can be the result of the marginalization of an infinitely large VAR(1) system that satisfies

some specific assumptions. For this reason, we let the observable vector yn,t of dimension n

satisfy, for t ≥ 1,

(In −AnL) (yn,t − µ) = εn,t, (1)

where εn,t is a short memory process with zero expectation and variance-covariance matrix

Σn.

In order to reduce expositional complexity and simplify their derivations, both CHL

and Schennach restrict themselves to matrices that belong to the Toeplitz family since these

require only O (n) parameters. While their high-level assumptions differ, all can be subsumed

in

An = Tn + ηnDn,

where ηn is a vanishing scalar sequence, and {Tn} and {Dn} denote generic sequences of
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Toeplitz matrices that are, respectively, symmetric and antisymmetric. Both assume that

{Dn} plays no role asymptotically, so large-system dynamics are governed by Tn, the entries

of which are labelled as

Tn =



t
(n)
0 t

(n)
1 · · · t

(n)
n−1

t
(n)
1

. . . . . .
...

...
. . . . . . t

(n)
1

t
(n)
(n−1) · · · t

(n)
1 t

(n)
0


. (2)

According to the exposition by Schennach, the process yn,t can be seen as generated by a

network that lies in a space of dimension one. She also considers higher dimensions (hence the

Toeplitz assumption to control complexity), but for the purpose of the analysis using financial

and hydrological data, we restrict ourselves to a one-dimensional linear network so each node

lies in Z. In the spirit of Diebold and Yılmaz (2009, 2014), who model connectedness within

a network using a VAR model, this amounts to a system that consists of an infinite but

countable number of variables indexed by j ∈ Z. We denote the limiting, infinite dimensional,

vectors by (yt, εt) = limn→∞ (yn,t, εn,t), and the ith elements of yt, εt by y
(i)
t , ε

(i)
t , for i ∈ Z or

N. We next describe the two models that have been shown to generate long memory within

an infinite dimensional VAR(1) model such as (1).

Chevillon et al. (2018) These authors make a set of parametric assumptions (their

Assumption T) where they specify a mapping such that entries of Tn only depend on a

scalar sequence δn ∈ (0, 1/2) satisfying n2 (δn − 1/2) = o (1) . Their Assumption T implies

in particular that, as n→∞, with (n− 1) /4 ∈ N,

t
(n)
0 → 1/2, (3a)

t
(n)
k = O

(
n−1
)

, for k 6= 0, (3b)∑n−1

k=0
t
(n)
k = 1. (3c)
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Under the additional assumption εn,t ∼ NID (0,Σn) , with Σn diagonal, they prove (in their

Theorem 1) that, as n → ∞, all components of yn,t tend to independent fractional white

noises with identical degrees of integration (all equal to 1/2):

yn,t ⇒ µ+ ∆−1/2εt,

where ∆ = 1− L and ⇒ denotes weak convergence of the associated probability measures.

Since the entries of An− 1
2
In tend to zero as n→∞, the cross-sectional dependence between

the elements of yn,t vanishes as n→∞. Yet, as in this setting
∑n−1

k=0 t
(n)
k = 1 remains nonzero,

the dependence across individual series is sufficient to generate long memory in each of the

components of the multivariate process.

Schennach (2018) She considers the limiting structure where T = limn→∞An = limn→∞ Tn,

i.e., the case of an infinite dimensional network. She assumes that εt constitutes a short

memory MA(∞) process. The entries (tk) of T are assumed to satisfy

t0 > 0, (4a)

card {k ∈ Z, tk > 0} <∞, (4b)∑∞

k=0
tk = 1. (4c)

She then proves (in her Theorem 4) that, for all i, j, there exists a cij > 0 such that, as

k →∞
∂y

(i)
t+k

∂ε
(j)
t

= cijk
−1/2 +O

(
k−3/2

)
,

i.e., the impulse response function of y
(i)
t+k to a shock ε

(j)
t is hyperbolic and its speed of decay

corresponds to that of a process that is integrated of order 1/2.
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Both Schennach (2018) and Chevillon et al. (2018) find long memory of fractional degree

one-half in infinite dimensional networks. They use different approaches and assumptions,

but rely on the Toeplitz nature of dependence across the infinite – yet countable – number of

variables in the system (or nodes in the network). Both of them consider so-called bistochastic

matrices whose rows and columns sum to unity. Schennach focuses on the interactions within

the limiting system while CHL consider the evolution in dynamics as the finite system grows

larger. Both find that long memory arises only in the infinitely dimensional environment.

Schennach’s assumptions on εt are less restrictive. She also does not specify the values

of the entries of A but assumes that only a finite number of tk coefficients are nonzero, so

that a rotation of A is banded (i.e., all subdiagonals are zero beyond a point). Hence, in the

system she considers (in is one dimensional version), each variable is only directly connected

to a finite number of variables. By contrast, Chevillon et al. (2018) rely on i.i.d. shocks and

make parametric assumptions on Tn. In their setting, variables are directly connected to all

other variables, but with a connection that becomes weaker as the dimension of the system

increases.

Schennach’s result is, then, that all response functions of all variables to all shocks ex-

hibit hyperbolic decay, whereas CHL’s applies only to the responses of variables to their

idiosyncratic shocks in the VAR system.

The similarities between equations (3a)-(3c) and (4a)-(4c) are clear. The main differences

relate to the Toeplitz nature of that they assume (4b in particular). In empirical work, the

Toeplitz assumption unreasonably requires a specific ordering of the variables so we cannot

retain it. This implies that we cannot either assume without extra knowledge that specific

variables are unconnected. Hence, denoting by
(
a
(n)
ij

)
the entries of An in equation (1), the

model can be said to be long memory prone, i.e., compatible with the theoretical results of
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CHL and Schennach, if there exist ε, ε′ > 0 and ‘small’ such that for all (i, j) ,

a
(n)
ii ∈ (ε, 1/2] , (5a)

n
∣∣∣a(n)ij

∣∣∣ < ε′, (5b)∑∞

k=0
a
(n)
ik =

∑∞

k=0
a
(n)
kj = 1. (5c)

The stylized “long memory prone” restrictions on the matrix An are that the diagonal

elements are close to 0.5, the other elements are close to 0, and the sum of the elements

of each row or column is equal to 1. Assumptions (5a)-(5c) participate to the empirical

methodology we explore in the next section.

3 Methodology for long memory prone estimation

We now turn to the question of estimating An so we generate forecasts of yn,t when the

latter may exhibit long range dependence. We present here a methodology to shrink the

estimates of An in a manner that is informed by the stylized assumptions (5a)-(5c) resulting

from CHL and Schennach. Indeed, it does not seem efficient when the system has a large

dimension to ignore these stylized assumptions altogether, and estimate the VAR by ordinary

least-squares (OLS).

An obvious approach to being informed by (5a)-(5c) consists in imposing them strictly

such as, e.g., via parametrizing explicitly the elements of An. For instance CHL use in their

Assumption T a mapping that defines all the elements of An through a single scalar δn. The

latter could be estimated by minimum distance or by maximum likelihood (ML). This is

certainly too restrictive as explained in the previous section, and we may want to retain a

certain degree of flexibility around these restrictions.

We therefore consider intermediate strategies. One of them is penalized regression (e.g.,
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ridge or LASSO), where the least squares criterion is augmented with restrictions whose

strength is modulated through penalty parameters. The resulting estimator is shrunk in the

direction of the restrictions. Since the theoretical restrictions we consider do not imply the

exclusion of specific variables, we prefer to treat all variables in the same way and therefore

use ridge estimation.

Bayesian estimation provides another intermediate method, whereby the restrictions are

embedded in a prior density, so they hold a priori on average (through the prior expectation

of the parameters), but with some degree of uncertainty (through prior positive variances

on the parameters or functions thereof). Depending on the degree of tightness of the prior,

the prior information pulls the data information more or less strongly in the direction of the

restrictions.

We first detail the model in next subsection, where we resort to an “equation by equation”

estimation of the VAR system. Our approaches to ridge regression and Bayesian estimation

are exposed in Subsections 3.2 and 3.3, respectively. We denote the resulting model estimated

by ridge or Bayesian methods by RAR(1)-X and BAR(1)-X. Many authors have contributed

to the Bayesian estimation of VAR models, using different types of prior information, see

Karlsson (2013) for a review. The types of restrictions considered in the literature, such as

the so-called “Minnesota prior” for unit roots (see Doan, Litterman, and Sims, 1984), or

the “long run” forecasting restrictions (Giannone, Lenza, and Primiceri, 2019) are relevant

to modeling and forecasting short-memory macroeconomic time series. Our contribution

differs in that we use a prior density that shrinks the parameters to values informed by long

memory prone restrictions.

3.1 Framework

We consider the estimation of a VAR(1) system, written at date t (dropping the subscript
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n on An and on the processes) as

yt = τ +Ayt−1 + εt, (6)

for the vector yt consisting of n variables. In this paper, we suggest to estimate parameters

τ and A “equation-by-equation”, instead of globally for the entire system. Assuming εt

is multivariate Gaussian with zero expectation and constant covariance matrix Σ, then

estimating each equation separately by OLS is equivalent to estimating the system jointly

by Maximum Likelihood (ML), even if Σ is not diagonal. For Bayesian estimation, equation-

by-equation estimation is not equivalent to the joint estimation of all equations, but the latter

approach is much more demanding in computing time for the dimensions we are interested

in (e.g., 250 in the first empirical application).

A typical equation of the VAR(1) system is an AR(1)-X regression equation that is

written at date t as

yt = γ0 + γ ′xt + εt, (7)

where yt denotes a variable of the system, γ0 is the intercept parameter, xt is the column

vector containing the first lag of the n variables of the system (including the first lag of yt),

γ = (γ1, γ2, . . . , γn)′ is the vector of n slope coefficients of xt, and εt is an error term assumed

to be Gaussian with zero expectation and constant variance σ2. By convention, for any

variable of the VAR, xt is ordered in such a way that its first element is the lagged dependent

variable (yt−1), and γ is ordered accordingly: its first element (γ1) is the autoregressive

coefficient of the dependent variable, and the remaining elements are the coefficients of the

other lagged variables. For example, if yt is the first element of yt, γ
′ is the first row of

matrix A, and γ0 is the first element of τ .

Over a sample of T observations, write the AR(1)-X equation in the standard regression
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notation

Y = Zβ + ε, (8)

where Y = (y1, y2, . . . , yT )′, ε = (ε1, . . . , εT )′ ∼ N(0, σ2IT ), Z is a T × k matrix, with

k = 1 + n and t-th row equal to (1, x′t), and β = (γ0, γ
′)′.

Estimation of β by OLS is likely to be imprecise when n is large compared to T , and this

will affect the quality of forecasts negatively. To align with the stylized assumptions derived

in equations (5a)-(5c), we recommend shrinking the elements of vector β = (γ0, γ
′)′ in (8)

to a target that satisfies:

C1: the autoregressive coefficient (γ1) is close to 0.5,

C2: the other elements of γ are close to 0,

C3: the sum of the elements of γ is equal to 1.

In what follows, we explain how suggest introducing these conditions by ridge and Bayesian

estimation.

3.2 Ridge estimation

To achieve C1 and C2, we define as the shrinkage target of β the vector

β0 = (0, d0, a0, . . . , a0)
′, (9)

where a0 = (1− d0)/(n− 1) is repeated n− 1 times. The scalar d0 ∈ (0, 1) is the target for

the autoregressive coefficient and it determines the target a0 of the other coefficients that

are shrunk to a value that is close to zero when n is large. We allow d > 1/2 despite our

assumption (5a) to avoid boundary effects. We use two penalty parameters to control the
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shrinkage strength: λ2d for the autoregressive parameter, and λ2a for the other coefficients.

The penalty function is defined as

λ2d(γ1 − d0)2 + λ2a

n∑
i=2

(γi − a0)2 = (β − β0)
′Λk(β − β0), where Λk = diag(0, λ2d, λ

2
a, . . . , λ

2
a).

(10)

In this way, the last n elements of β are shrunk to the corresponding elements of β0, but the

first element of β is not shrunk, the value (zero) of the first element of β0 being practically

irrelevant.

The choice of β0 implies that the sum of the last n coefficients is equal to 1 in the target,

but the penalty is distributed over the n coefficients. To better achieve C3, we add the

penalty term λ2s(ι
′β − 1)2, where λ2s is a penalty parameter and ι = (0, 1, 1, . . . , 1)′ is a

vector of k elements. More generally, by writing the penalty as λ2s(ι
′β− ι′β0)

2, we cover the

possibility that the target value be different from 1.

The extended ridge (ER) estimator is obtained by minimizing the objective function

(Y −Zβ)′(Y −Zβ) + (β − β0)
′Λk(β − β0) + λ2s(ι

′β − ι′β0)
2, (11)

and can be shown to be (see SA, Section A)

βER =
(
Z ′Z + Λk + λ2sιι

′)−1 (Z ′Y + Λkβ0 + λ2sιι
′β0). (12)

As usual, the ridge estimator simplifies to the OLS estimator if all the penalty parameters

are set to zero.

The values of d0, λ
2
d, λ

2
a, and λ2s can be chosen by cross validation on a training sample.

A grid of values is set a priori for each of them. For each point of the grid, the estimator

is computed using 80 percent of the training sample, forecasts are computed for the last 20

percent, and a forecast loss function is computed. The chosen triplet is the value minimizing
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the loss function over the grid. After this step, estimation is performed on a subsequent

sample, and forecasts are computed and evaluated over a post-estimation sample. Details

are provided in Section 4.

3.3 Bayesian estimation

Bayesian estimation is based on a prior density for β and σ2, and the likelihood function,

the latter resulting from the assumption of normality of the error terms. Since the theory

does not provide information on σ2, its prior “density” p(σ2) is chosen to be the usual

“non-informative” prior:

p(σ2) ∝ 1/σ2. (13)

The prior density of β is designed to include the theory restrictions C1-C3. We opt for

a Gaussian density for three reasons: (i) it is convenient for computing the posterior den-

sity (see Section B of SA); (ii) implementation of the restrictions is easily done using four

scalar parameters, as explained below; and (iii) the restrictions do not explicitely require an

asymmetric density. The prior density is proportional to

exp[−1

2
(β − β0)

′Q0(β − β0)] exp[−1

2
h0(β

′ι− β′0ι)2]. (14)

The vector β0 is defined as in (9) and depends on the scalar hyperparameter d0 (which is

shown below to be the prior mean of γ1). To explain the prior, let us first fix the scalar

hyperparameter h0 to zero, and discuss the first Gaussian kernel of (14), which corresponds

to restrictions C1 and C2. There, β0 is the prior expectation, and Q0 is the prior precision

matrix. We specify this matrix to be diagonal:

Q0 = diag(0, 1/s2d, 1/s
2
a, . . . , 1/s

2
a), (15)
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so that sd is the prior standard deviation of the autoregressive coefficient and sa is the prior

standard deviation of the other coefficients. The strength with which restrictions C1 and C2

are imposed depends on the values of sd and sa, respectively: values close to zero correspond

to a strong prior belief in favor of the restrictions. For the intercept term, the prior precision

is set to zero, so that data information dominates the prior information on this term.

Although the prior expectation β0 embeds restriction C3 that the sum of the last n

elements of β is equal to 1, the prior variance of this sum is equal to s2d + (n− 1)s2a. Hence,

to fix the latter variance to a small value, sa itself must be fixed to an even smaller value, thus

impacting how restriction C2 is introduced. The second Gaussian kernel of (14) is designed

to avoid the potential tradeoff between the two restrictions, by adding a prior parameter

that controls the strength imposed on the unit sum, independently of the strength imposed

on the individual coefficients. Notice that in the second exponential function of (14), we

have written β′0ι after the minus sign, instead of 1, to cover the case where one wants this

target to be different from 1, that is, the case where one defines β0 differently from (9).

If Q0 in the first kernel is a null matrix, the second kernel specifies that the prior mean of

the sum of the last n elements of β is equal to β′0ι (i.e., equal to 1 if β0 is given by (9)), and

that its prior precision is equal to h0. Hence a large value of h0 corresponds to a strongly

informative prior on the target value for the sum of the coefficients.

It is well-known that the product of two Gaussian kernels is a kernel of a Gaussian density.

Hence, (14) is the kernel of the Gaussian density (see Section A of SA)

β ∼ Nk(β0,V0), (16)

where

V0 = (Q0 + h0ιι
′)−1. (17)

Notice that the expectation of β is β0, the same as in the first kernel in (14). If h0 > 0,
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the prior covariance matrix is not diagonal: in fact, the covariances are negative, which

is what is needed to reduce the prior standard deviation of β′ι compared to its value

when the prior covariance matrix is diagonal. Taking for example values that relate to

our empirical exercises below, i.e., d0 = 0.5, sd = sa = 0.02, h0 = 5000, n = 250, then

β0 = (0, 0.5, 0.002008(249 times)), Q−10 = diag(100, 0.022(250 times)), the diagonal of V0

is (100, 0.019962(250 times)), the off-diagonal elements are equal to 0 in the first line (and

column), and the other covariances are equal to −1.59681/106 (the corresponding correla-

tion coefficient being equal to −0.004008). The prior standard deviation of β′ι is equal to

0.014128, i.e., a value much smaller than its value of 0.317 when h0 = 0 so the prior is

Nk(β0,Q
−1
0 ), where Q−10 is defined as diag(0, s2d, s

2
a, . . . , s

2
a).

To summarize, the prior density (16), when β0 is defined by (9) and Q0 by (15), is fully

determined by the four scalar hyperparameters d0, sd, sa, and h0, whatever the dimension n

of the VAR. These hyperparameters can be fixed to some values, as in the example above,

or they can be chosen for each equation of the VAR by a cross validation procedure similar

to the procedure defined in the last paragraph of the previous subsection.

The computation of the posterior mean of β for the prior (13)-(16) is performed by a

simple Gibbs sampling algorithm defined in SA (Section B). The prior is not conjugate since

V0 is not proportional to σ2. It becomes conjugate if (16) is replaced by

β|σ2 ∼ Nk(β0, σ
2V0). (18)

The posterior mean corresponding to this conjugate prior is

(Z ′Z +Q0 + h0ιι
′)
−1

(Z ′Y +Q0β0 + h0ιι
′β0) , (19)

where (17) has been used. If we set Q0 = Λk (by setting λ2d = 1/s2d and λ2a = 1/s2a) and

h0 = λ2s, this posterior mean is exactly the ER estimator (12). With the non-conjugate prior,
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one can only derive the conditional (to σ2) posterior mean of β, which can be expressed (see

SA, Section B) as

β∗(σ
2) =

(
Z ′Z

σ2
+Q0 + h0ιι

′
)−1(

Z ′Y

σ2
+Q0β0 + h0ιι

′β0

)
. (20)

This differs from (19) only by the presence of σ2. The Gibbs sampler defined in SA (Section

B) is a way to marginalize β∗(σ
2) with respect to σ2. The resulting unconditional posterior

mean of β then differs from the corresponding posterior mean/ER estimator when the prior

is conjugate.

3.4 Forecasting

After obtaining a point estimate of β for an equation of the VAR system, such as the

OLS estimator, the extended ridge estimator, or the posterior mean, a one-step ahead point

forecast of yt+1 is simply obtained using a point estimate of (7) and the regressor xt+1

observable at time t. This is equivalent to using the point estimates of all equations to form

the estimated τ and A of the VAR system (6), and then computing one-step ahead point

forecasts as ŷt+1 = τ̂ + Âyt.

To compute h-step ahead forecasts, with h > 1, we can use either iterated multistep

forecasting or direct multistep forecasting. An iterated h-step ahead forecast is based on the

estimated VAR and computed recursively as ŷt+h = τ̂ + Âŷt+h−1. This approach amounts

to compute Âh, i.e., to forecast all variables even if one is interested in only a subset of them

(even just a single one). Hence, the forecast of a variable of interest may be contaminated

by erroneous and imprecise forecasts of the other variables (see, e.g., Schorfheide, 2005, or

Chevillon and Hendry, 2005).

If the objective is to forecast a subset of the series, or if one wishes to avoid the drawback

inherent in the iterated multistep method highlighted above, the direct multistep forecasting
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method is preferable. The method consists in directly projecting yt on its lag yt−h, as in

yt = τh +Ahyt−h + ut. (21)

Ignoring that Ah = Ah, a typical equation of (21) can be cast in the form of (7) and (8),

adapting the definitions of Y , xt and Z, and ignoring the dependence in ut induced by

recursive substitution. For h > 1, we denote the equation corresponding to (8) by

Y(h) = Z(h)βh + u(h). (22)

Hence, the system (21) can be estimated equation by equation, by OLS, ridge and Bayesian

estimation, as is the case when h = 1. By proceeding in this spirit, no direct use is made in

estimation of the relation Ah = Ah, because this would imply that the regression coefficients

of the different equations of (21) are nonlinear functions of the same parameters (those of

A), so that equation by equation estimation would be pointless. In brief, the parameter βh

is not treated as a function of the underlying parameters of A.

Yet, for ridge and Bayesian estimations, we allow the target towards which βh is shrunk

to be function of h, and we denote it by βh,0. The target βh,0 relates to the first row of

Ah
0 , as in the case for h = 1, where β0 is directly the first row of A0 = d0In + a0 (Jn − In),

with Jn being a matrix of ones, and a0 = (1 − d0)/(n − 1). In practice, we choose the last

n elements of βh,0 to be close to the first row of Ah
0 when n is large relative to h: this is

achieved by setting (see SA, Section C)

βh,0 =

(
0, dh0 ,

1− dh0
n− 1

, . . . ,
1− dh0
n− 1

)′
. (23)

The extended ridge estimator for the corresponding βh is defined as in (12), replacing β0

with βh,0, the penalty parameters and the value of d0 being chosen by cross validation for
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each horizon h. For Bayesian estimation, we use the same type of prior as when h = 1 (i.e.,

(13) and (16)), also replacing β0 with βh,0. Forecasts for specific elements of yt can readily

be formed by estimating only specific rows of (21), so that forecasts are obtained from the

corresponding individual equations, as in the case h = 1.

4 Empirical illustrations

In this section, we provide two applications to data where long memory has been documented

in the literature and for which multiple series supposedly belonging to the same system are

available. In both applications, and for a large number of variables, we compare out-of-

sample forecasts obtained from the AR(1)-X equation (7) estimated using OLS, ridge, and

Bayesian estimation, as defined in Section ??. We also include in the comparison forecasts

obtained using three benchmark models, which are purely univariate time series models in

the sense that they specify yt as a function of the past of yt only. The six models we consider

and their estimation method are listed below:

1. AR(1): yt = γ0 + γ1yt−1 + εt, estimated by OLS.

2. ARFIMA(1,d,0): (1− L)d(yt − γ0 − γ1yt−1) = εt, estimated by Gaussian ML.

3. HAR (Corsi, 2009): yt = γ0 + γ1yt−1 + γ2
1
5

∑5
i=1 yt−i + γ3

1
21

∑21
i=1 yt−i + εt, estimated

by OLS.

4. AR(1)-X: yt = γ0 + γ1yt−1 +
∑n

i=2 γixi,t−1 + εt, estimated by OLS. This is the model

defined in (7).

5. RAR(1)-X: this model is identical to the AR(1)-X. The estimator is the extended ridge

estimator defined by (12), see Section 3.2. Recall that in this case we shrink γ1 towards

d0 with penalty parameter λ2d, γi toward (1 − d0)/ (n− 1) (∀i > 1) with penalty λ2a,
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and
∑n

i=1 γi towards 1 with a penalty of λ2S. The penalty parameters (i.e., λ2d, λ
2
a and

λ2S) and d0 are chosen by cross validation as explained at the end of Section 3.2; details

are provided in SA, Section D.

6. BAR(1)-X: this specification is also identical to the AR(1)-X but it is estimated by

the Bayesian method presented in Section 3.3. The prior for the variance of εt is non-

informative, see (13), and the prior for the regression coefficients β = (γ0, γ1, γ2, . . . , γn)′

is the Gaussian density defined by (16) together with (9), (17) and (15). More specifi-

cally, the prior on γ0 is quasi-noninformative (with a mean of 0 and a variance of 100),

the prior mean of γ1 is set equal to d0, and the prior mean of γi, for all i > 1, is set to

(1− d0)/(n− 1). The prior precision of γ1 is 1/s2d +h0, the prior precision of γi (i > 1)

is 1/s2a + h0. The co-precisions (the off-diagonal elements of the inverse of V0) are all

set to h0. The larger h0, the smaller the prior variance for the difference between the

sum of the last n elements of β and the corresponding sum in the prior mean (equal to

1 for (9)). The prior parameters d0, sd, sa and h0 are chosen by cross validation (see

SA, Section D for details).

For higher forecast horizons, h > 1, we use iterated multistep forecasts (i.e., recursive

substitution) for AR(1), ARFIMA and HAR, and direct multistep forecasts for AR(1)-X,

RAR(1)-X and BAR(1)-X. As discussed in Subsection 3.4, this avoids contaminating fore-

casts across variables when additional (non autoregressive) regressors are present.

The out-of-sample forecasts (at differing horizons) are compared to the observed values

using both the mean absolute forecast error (MAFE) and the mean squared forecast error

(MSFE) loss functions. These loss functions are defined for each model m as

MAFE
(m)
h =

1

Th

Th∑
t=1

|ŷ(m)
t,h − yt|, MSFE

(m)
h =

1

Th

Th∑
t=1

(ŷ
(m)
t,h − yt)

2. (24)
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where h is the forecast horizon, Th is the number of forecasts at horizon h, and ŷ
(m)
t,h is the

forecast of yt at horizon h by model m. The comparison tool is the model confidence set

(MCS) procedure of Hansen, Lunde, and Nason (2011), see SA, Section D for details about

the implementation.

In the first application, yt is the logarithm of a measure of daily volatility for a set of 250

U.S. company stocks. In the second application, it is the logarithm of the monthly seasonally

adjusted river streamflows at 97 locations in the Columbia river basin.

4.1 Daily realized volatilities of U.S. stocks

The initial dataset (purchased from tickdatamarket) consists of transaction prices at the 1-

second sampling frequency for 1,412 stocks from the NYSE, AMEX and NASDAQ markets,

for the period ranging from January 1st, 1991 to October, 14, 2019 covering 7,510 trading

days. We ordered the stocks by decreasing average daily transaction volume, and kept the

250 largest capitalization stocks for the period from 2005-01-03 to 2017-07-24 (3,276 trading

days). These start and end dates were chosen to maximize the number of available series

out of the larger dataset of 7,510 trading days.

We aggregated the data at the 5-minute frequency and computed the MedRV estimator

of Andersen, Dobrev, and Schaumburg (2012), a non-parametric robust to jumps estimator

of the integrated variance. If rt,i is the ith 5-minute return of a given stock on a day t

containing M = 78 (since trading is from 9:30 to 16) such returns, log(MedRVt) (denoted

by yt hereafter) is computed as the logarithm of

MedRVt =
π

6− 4
√

3 + π

M

M − 2

M∑
i=3

med(|rt,i|, |rt,i−1|, |rt,i−2|)2,

where med (·) denotes the median. Notice that VAR models for the logarithm of realized

variances have been used for instance by Anderson and Vahid (2007).
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The six competing models are estimated on rolling windows of T = 1, 000 observations.

They are estimated first on the sample spanning the period from 2005-01-03 to 2008-10-31,

and h-step ahead forecasts of yt are computed for ten horizons (h = 1, 2, . . . , 10) leading to

a total number of 2, 277 minus h forecasts. The parameters estimated on each window are

kept constant to produce 25 consecutive forecasts and then re-estimated on the next window

of T observations obtained by a translation of one period. To speed up the estimation, the

four tuning parameters of the RAR(1)-X and BAR(1)-X models are only estimated once by

cross validation on the first window of T observations and then kept constant (see Section

D of the SA). Rolling forward is continued until the last possible window of the full sample.

The models are estimated for each of the 250 available series.

The presence of long memory in the volatility of the log-returns of financial assets is a

well recognized stylized fact (see Baillie, Bollerslev and Mikkelsen, 1996, Breidt, Crato and

de Lima, 1998, Comte and Renault, 1998, among others). For the sake of illustration, the

average value (over the 250 series) of the estimated d parameters of the ARFIMA(1, d, 0)

obtained on the full sample is about 0.48 (with a standard deviation of 0.02).

To make sure that the empirical results are not specific to the chosen forecasting period,

we compare the forecasting performance of the competing models on rolling windows. More

specifically, the left panels of Figure 1 show, for three forecast horizons (h = 1, 5 and 5), the

averages (over the 250 stocks) of the MAFE loss functions for a sequence of rolling samples

of 250 forecasts. The right panels of the same figure shows the corresponding time evolution

of the frequencies at which each model belongs to the MCS at the confidence level of 75%

(denoted MCS75). A frequency of 50 (percent) for model m at date t means that the model

m is in the MCS75 for fifty percent of the 250 series, the MCS75 in question being obtained

using the loss function computed from the 250 forecasts ending at date t. Notice that to

reduce the computing time, the MCS procedure is not applied to every consecutive window

of 250 forecasts, but to every 25-th window, so that each line is drawn by joining 82 values.
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Figure 1: Left panels: Average (over the 250 series) MAFE loss computed on rolling windows
of 250 observations. Right panels: Frequencies (over the 250 series), at each date, at which
each model belongs to the MCS (at the 75% confidence level) for the MAFE loss function.
The top block is for the forecast horizon h = 1, the middel one for h = 5, and the bottom
one for h = 10.
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The corresponding figure based on the MSFE loss function is reported in the SA (Section

E) and shows very similar results as Figure 1.

Table 1: Average frequencies (over the 250 series and the 82 rolling windows), at which each
model belongs to the MCS (at the 75% confidence level) for each forecast horizon h

h AR(1) ARFIMA(1,d,0) HAR AR(1)-X RAR(1)-X BAR(1)-X
MSFE

1 4.034 53.878 51.405 7.059 57.722 67.029
2 5.210 45.454 46.298 5.141 69.327 59.532
3 6.600 47.966 47.010 5.795 71.727 58.868
4 7.488 50.493 46.883 7.156 70.512 60.083
5 8.576 53.307 48.195 7.551 68.073 63.780
6 8.576 53.307 48.195 7.551 68.073 63.780
7 9.527 51.185 48.727 7.298 70.195 59.000
8 9.688 51.766 49.054 8.000 70.278 59.473
9 10.112 50.668 47.527 8.102 69.078 61.566
10 10.927 49.190 46.098 8.820 68.922 59.971

MAFE
1 4.171 56.015 53.868 6.956 60.644 68.278
2 4.917 46.254 47.693 5.337 70.951 60.063
3 6.215 48.795 47.888 6.146 72.522 60.283
4 7.029 52.020 48.444 7.478 71.507 61.644
5 7.902 54.790 49.912 7.546 69.112 65.029
6 7.902 54.790 49.912 7.546 69.112 65.029
7 8.785 52.400 50.400 7.785 71.663 60.863
8 9.117 53.088 51.610 8.239 71.649 61.722
9 9.561 51.444 49.785 8.054 69.951 62.702
10 10.268 50.444 48.161 8.927 69.649 60.751

To complement the figures, Table 1 reports the average values (over the 82 windows) of

the frequencies at which each model belongs to the MCS75, for all horizons h = 1, ..., 10.

The following comments can be made, and they apply equally to both loss functions:

• AR(1) and AR(1)-X are strongly outperformed by the other models over the forecast

period. Their average losses are larger (often strongly) than those of the other models.

The frequencies of inclusion of these models in the MCS75 are very often smaller than
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10 percent, and almost never above 20. This is confirmed in Table 1, where these

two models are by far the least present on average in MCS75, whatever the forecast

horizon.

• ARFIMA and HAR perform comparably, especially considering their average losses.

Their frequencies of inclusion in the MCS75 are also similar, but sometimes more

different than the corresponding losses. Overall, these frequencies fluctuate between

25 and 50 percent until mid-2012, and then between 50 and 70 percent. Table 1 shows

that on average these two models belong to the MCS75 in about 50% of the cases,

whatever the forecast horizon.

• RAR(1)-X and BAR(1)-X perform comparably and better than ARFIMA and HAR,

with smaller losses and higher frequencies. The latter are most of the time between 65

and 75%, though for horizons 5 and 10, the RAR frequencies are higher (by 10 to 20

points) than the BAR frequencies in 2012 and 2013, and again from March 2016. Table

1 indicates that for h = 1, BAR(1)-X is on average the most frequently in the MCS75

but for h > 1, RAR(1)-X is even better than BAR(1)-X, with an average frequency in

the MCS75 around 70%, i.e., 20 points higher than ARFIMA and HAR.

In brief, the use of the theoretical constraints in the AR(1)-X model through the proposed

Bayesian and ridge estimation methods strongly improves the model forecasting performance

with respect to OLS. The bad performance of the latter is due to a lack of precision because

251 coefficients are estimated using 1,000 observations, whereas the shrinkage methods im-

pose a relevant theoretical structure on the estimated coefficients. The performance of the

shrinkage methods is also most of the time significantly superior to that of the ARFIMA

and HAR models; this difference can be attributed to the use of a larger, but relevant,

information set.
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4.2 Monthly river streamflows in the Columbia river basin

Natural streamflows play a significant role in shaping biological communities and they reg-

ulate ecological processes in local ecosystems. In most industrialized economies streamflows

are modified as a result of human activity (agricultural, industrial, . . .), and regulated as

such. Forecasting future flows is essential for planning dam discharges and adaptation.

In the hydrology community, many studies have been carried out to the test the long

memory of streamflows, following the seminal paper of Hurst (1951) on dimensioning dams

for the Nile river, and which pioneered the literature on long memory. For instance, Monta-

nari, Rosso and Taqqu (1997) applied ARFIMA modelling to the monthly and daily inflows

of Lake Maggiore, Italy. Depending on the modelling strategy, their confidence interval for

the degree of long memory varies with a [.35, 45] range. This is a feature that has often been

documented in the hydrology and streamflow forecasting literatures. Ooms and Franses

(2001) documented that monthly river flow data displays long memory, in addition to pro-

nounced seasonality, based on simple time series plots and periodic sample autocorrelations.

Wang et al. (2002) investigated the long memory property of two daily streamflows of the

Yellow River in China and found that both daily streamflow processes exhibit strong long

memory. It must be noted that long memory is not found in all hydrological datasets, de-

pending on the data considered, the frequency and length of observation (see, for instance,

Rao and Bhattacharya, 1999, and Montanari et al., 2000), but as mentioned in the doctoral

thesis of Wen Wang (2006) at the Technological University of Delft, ARFIMA models re-

mained at the time the main contenders for forecasting streamflows (though some neural

network based techniques may help capturing some nonlinearities). Over the last 15 years,

the literature has explored machine learning techniques (artificial neural networks, support

vector machines, . . .) for forecasting hydrological series and have found mixed evidence de-

pending on the situations. To assess these results Papacharalampous et al. (2019) perform

an extensive comparison of 20 prototypical multistep forecasting models (11 ‘stochastic’, i.e.,
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extensions of ARMA models, and 9 ‘machine learning’ models) over hundreds of simulated

and empirical datasets and using 18 accuracy metrics. Their findings are that (i) most em-

pirical series exhibit a degree of long memory between 0 and 0.45, with a median close to

0.2 (see their Figure 1), (ii) the most accurate ‘stochastic’ and machine learning techniques

perform similarly, and (iii) ARFIMA models belong to the class of most accurate ‘stochastic’

techniques (see their Figure 18).

To illustrate our modelling approach, we assess its forecasting accuracy using the Mod-

ified Streamflow dataset of the Columbia river basin provided by the Bonneville Power

Administration (BPA), the United States Army Corps of Engineers and the U.S. Bureau

of Reclamations. In their 2020 Level Modified Streamflow report, (Dakhlalla, et al., 2020,

Section 1, page 1) explain that “Since irrigation practices have changed since the historical

streamflows were observed, the historical streamflows have been adjusted to account for cur-

rent levels of irrigation depletions.” Hence “Modified streamflows are historical streamflows

that would have been observed if current irrigation depletions (as of year 2018) existed in

the past and if the effects of river regulation were removed.” These modified flows allow for

intertemporal comparisons of the natural inflows since they are adjusted to a common level

of irrigation development and evaporation in upstream reservoirs and lakes, and they reflect

no regulation by dams. They are recorded and computed at 97 locations in the Columbia

river basin over 90 years (October 1928-December 2018, i.e., 1, 083 monthly observations).

We model and forecast the logarithm of the monthly series and we adjust them for seasonal

variations using X12arima in Oxmetrics version 8.10.

To confirm the presence of long memory in the data, we estimated on the 97 series and on

the full sample an ARFIMA(0, d, 0) and an ARFIMA(1, d, 0) model by Gaussian ML. The

average d̂ is equal to 0.45 with a standard deviation of 0.06 for the former and 0.21 with a

standard deviation of 0.19 for the latter.

We report the results of a forecasting comparison of the six models listed at the beginning
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Figure 2: Left panels: Average (over the 97 series) MAFE loss computed on rolling windows
of 50 observations. Right panels: Frequencies (over the 97 series), at each date, at which
each model belongs to the MCS (at the 75% confidence level) for the MAFE loss function.
The top block is for the forecast horizon h = 1, the bottom one for h = 5.
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of this section. The estimation and forecasting are organized as described in the previous

subsection, with rolling windows of 400 observations for estimation but because both the

number of series and the number of observations are smaller than in the previous application,

all models are re-estimated each time a new observation becomes available. The first window

corresponds to the period October 1928-January 1962. We obtain a total of 683 minus h

forecasts for the 97 series, where h = 1, 2, . . . , 6.

Figure 2 reports the forecasting results in the same way as Figure 1, but for horizons 1

and 5; the corresponding figure for MSFE loss (see SA, Section E). The MCS procedure is

applied every 5-th window of 50 forecasts leading to a total of 125 tests. Table 2 reports the

average frequencies for the six horizons.

Table 2: Average frequencies (over the 97 series and the 125 rolling windows), at which each
model belongs to the MCS (at 75% confidence level)

h AR(1) ARFIMA(1,d,0) HAR AR(1)-X RAR(1)-X BAR(1)-X
MSFE

1 68.650 73.650 76.394 48.316 81.427 93.855
2 69.105 72.214 76.597 42.025 80.778 94.163
3 71.150 72.579 75.793 50.678 78.854 91.720
4 71.743 71.434 74.000 46.570 83.497 88.790
5 77.604 74.324 74.495 40.101 83.497 83.099
6 76.207 70.801 71.507 35.823 83.237 82.279

MAFE
1 64.495 70.680 73.963 46.400 77.616 92.627
2 67.810 70.771 75.340 39.167 78.969 93.278
3 70.548 71.984 75.588 50.111 77.155 90.977
4 72.841 72.478 75.076 46.639 82.219 88.998
5 79.068 76.759 76.577 40.462 84.198 83.571
6 78.078 72.652 73.229 36.412 84.091 82.804

Theses results lead to the following comments:

• The AR(1)-X model (estimated by OLS) has the worst forecasting performance, what-

ever the forecasting horizon. Nevertheless, it is included in the MCS75 for 35 to 50%
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(depending on h) of the series on average, but through time, these frequencies fluctuate

considerably, as can be seen on Figure 2.

• AR(1), ARFIMA, HAR have lower average losses and higher frequencies of inclusion

in the MCS75 than AR(1)-X. The average frequencies of these models (see in Table 2)

vary between 65 and 75% (depending on h).

• RAR(1)-X and BAR(1)-X are performing better than the other models, with average

frequencies between 77 and 94%. BAR(1)-X belongs to the MCS75 in more than 90%

of the cases for h = 1, 2 and 3, which is about 10 to 15 points higher than RAR(1)-X.

For h = 4, the difference is about 5 points in favor of BAR, and for h = 5 and 6, the

two models perform similarly.

• AR(1)-X and BAR(1)-X have inclusion frequencies that are more stable through time

than the other models.

4.3 Impact of the cross-sectional dimension

In both applications, we used above the maximum possible number of “X” variables in

the AR(1)-X equation, which is the number of available series (n) minus one. We now

consider using a smaller number of additional series. We focus on the forecast results of

the best forecasting model for each application: RAR(1)-X for the first application, and

BAR(1)-X for the second. In each case, we perform estimations and forecasts for all series

(250 and 97, respectively), with a number of non-autoregressive regressors set to n − 1 =

9, 49, 99, 149, 199, 249 in the first application (249 corresponds to the results reported in

Subsection 4.1, and n − 1 = 16, 56, 96 in the second (with results for 96 as in Subsection

4.2). Figure 3, which reports the MAFE the loss functions for several values of n− 1, shows

clearly that increasing n reduces the values of loss functions (with some rare exceptions at
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Figure 3: Average MAFE loss (for horizon 1) computed on rolling windows for an increasing
number of X variables. Left panel: RAR(1)-X model for realized volatilities; the line for
n− 1 = 249 is the same as in the top left graph of Figure 1. Right panel: BAR(1)-X model
for modified river streamflows; the line for n− 1 = 96 is the same as in the top left graph of
Figure 2.

some dates), and that the incremental decrease in loss becomes less important when n gets

closer to the largest possible value.

5 Conclusions

This paper considers a novel approach in empirical work for modeling variables exhibiting

long memory, using one lag of a large cross-section of related variables instead of using a

long history of its own lags. This approach is based on combining two theoretical contribu-

tions that show that long memory can be caused by dependences within a large system or

network. We provide two estimation methods that harness the informativeness of the theo-

retical models and use them to drive the estimation, either via an extended ridge regression

that shrinks the estimates toward a structure derived from the theory, or by using the latter

to design an informative prior in a Bayesian setup.

In applications to realized volatilities of stocks and river streamflows, we show that

the proposed modeling and estimation strategy improves upon standard univariate mod-
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els (ARFIMA and HAR models) in terms of predicting series characterized by the presence

of long memory. Such results suggest that it may be fruitful to model variables that ex-

hibit long range dependence by using one lag of a set of related variables, provided that the

cross-sectional dimension is large.

Extensions of the RAR(1)-X and BAR(1)-X models are possible. For example, it has

been shown i n the literature on realized volatility that taking into account the presence of

past jumps (Andersen, Bollerslev, and Diebold, 2007) or the level of uncertainty in the past

volatility (Bollerslev, Patton, and Quaedvlieg, 2016) improves the quality of the forecasts.
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Supplementary (online) Appendix

A: Proof of (12) and of (16)

Proof of (12): notice that (β′ι−β′0ι)2 = (β′ι−β′0ι)(β′ι−β′0ι)′ = β′ιι′β−2β′ιι′β0+β′0ιι
′β0.

By developing the quadratic forms, the ER objective function (11) is equal to β′Z ′Zβ −
2β′Z ′Y +β′Λkβ−2β′Λkβ0 +λ2sβ

′ιι′β−2λ2sβ
′ιι′β0 +Y ′Y +λβ′0Λkβ0 +λ2sβ

′
0ιι
′β0. Solving

the first-order condition yields the solution (12).

Proof of (16): to show that that the kernel (14) corresponds to (16), we can write that (14)

is equal to

exp{−1

2
[(β − β0)

′Q0(β − β0) + h0(β
′ι− β′0ι)(β′ι− β′0ι)′]} = K0 exp[−1

2
f(β)],

where K0 does not depend on β and

f(β) = β′(Q0 + h0ιι
′)β − 2β′(Q0β0 + h0ιβ

′
0ι) = (β − β̄0)

′V0
−1(β − β̄0) + C0,

where V0
−1 = Q0 + h0ιι

′, β̄0 = V0(Q0β0 + h0ιβ
′
0ι), and C0 = β̄′0V

−1
0 β̄0 does not depend

on β. Hence, the prior density depends on β only through exp[−1
2
(β − β̄0)

′V0
−1(β − β̄0)],

which is the kernel of the Gaussian density Nk(β̄0,V0). To show that this Gaussian density

is the same as (16), we show that β̄0 = β0:

β̄0 = (Q0 + h0ιι
′−1(Q0β0 + h0ιβ

′
0ι) = (Q−10 −

h0Q
−1
0 ιι

′Q−10

1 + h0ι′Q
−1
0 ι

)(Q0β0 + h0ιβ
′
0ι)

= β0 + h0Q
−1
0 ιβ

′
0ι−

1

1 + h0ι′Q
−1
0 ι

(h0Q
−1
0 ι ι

′Q−10 Q0β0︸ ︷︷ ︸
=β′

0ι

+h0Q
−1
0 ιι

′Q−10 h0ιβ
′
0ι)

= β0 + h0Q
−1
0 ιβ

′
0ι
(

1− 1

1 + h0ι′Q
−1
0 ι
− h0ι

′Q−10 ι

1 + h0ι′Q
−1
0 ι

)
= β0.

In the first line, the explicit form of the inverse of Q0 + h0ιι
′ is obtained by applying the

Sherman-Morrison formula.

B: Bayesian estimation of the AR-X(1) model

The results exposed in this appendix are included for ease of reference. They are well known,

see e.g., Bauwens, Lubrano, and Richard (1999) for details.

For the regression Equation (8), with the assumption of normality of the error term, the
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prior (13) and (16), the posterior density of β and σ2 is proportional to

(σ2)−(T+2)/2 exp{− ŝ

2σ2
} exp{−1

2
(β− β̂)′

Z ′Z

σ2
(β− β̂)} exp{−1

2
(β−β0)

′V −10 (β−β0)}, (25)

where β̂ is the OLS estimator (Z ′Z)−1Z ′Y , and ŝ is the sum of squared OLS residuals.

Because the prior density is not conjugate, the posterior marginal density of β is not

available analytically. However, the posterior density of (β, σ2) can be simulated by applying

a Gibbs sampler iterating between β and σ2. Indeed, the posterior density of β conditional

on σ2 is Gaussian:

β|σ2,Y ,Z ∼ Nk(β∗,V∗), (26)

where

V∗ =

(
Z ′Z

σ2
+ V −10

)−1
, (27)

β∗ = V∗

(
Z ′Y

σ2
+ V −10 β0

)
:= β∗(σ

2). (28)

and the complementary conditional density of σ2 is inverted-gamma:

σ2|β ∼ IG(T, (Y −Zβ)′(Y −Zβ)). (29)

The Gibbs sampling algorithm to generate S draws (β(s), (σ2)(s)), for s = 1, 2, . . . , S,

from the posterior of the parameters (after S0 warming-up draws) is organized as follows:

1. Choose an initial value (σ2)(0) (e.g. ŝ/(T − k − 2)).

2. Set s = 1.

3. Draw successively β(s) from the Normal density (26) where β∗ and Q∗ are computed

with σ2 = (σ2)(s−1), and (σ2)(s) from IG(T,Y −Zβ(s))′(Y −Zβ(s)).

4. Set s = s+ 1 and go to step 3 unless s > S0 + S.

5. Discard the first S0 values of β(s) and (σ2)(s).

The posterior expectation of β is approximated by the mean of the S draws β(s), or by

the mean of the S conditional expectations β∗[(σ
2)(s)].
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C: Explanation of (23)

Using a0 = (1−d0)/(n−1),A0 = d0In+a0 (Jn − In) = nd0−1
n−1 In+ 1−d0

n−1 Jn. Using Jhn = nh−1Jn
for h ≥ 1 and denoting In as J0

n,

Ah
0 =

h∑
j=0

h!

j! (h− j)!

[(
nd0 − 1

n− 1

)h−j (
1− d0
n− 1

)j]
J jn

=

(
d0 +

d0 − 1

n− 1

)h
In +

1

n

[
1−

(
d0 +

d0 − 1

n− 1

)h]
Jn

and hence Ah
0 =

(
dh0 + o (n−1)

)
In +

(
1−dh0
n

+ o (n−1)
)
Jn, for n >> h, so that the firs row is

then close to
(
dh0 ,

1−dh0
n
, ...,

1−dh0
n

)′
. The target βh,0 in (23) is obtained by putting 0 as first

element and dividing the last n− 1 elements by n− 1 (instead of n) to ensure that the sum

of the target is exactly equal to 1.

Note that this is restricted to large n relative to h, as Ah = 1+o(1)
n
Jn when h >> n.

D: Technical details

Model confidence set

The procedure of Hansen et al. (2011) is applied using the MAFE and MSFE loss functions

defined in (24) to perform the hypothesis tests of equal predictive accuracy needed to obtain

each model confidence set. These tests are performed at the 25% significance level, so that

the resulting MCS is at the confidence level of 75%. The test statistic is the range statistic

that requires a bootstrap procedure.

For the application to daily realized volatilities, 10,000 bootstrap samples are used, with

a block length of 5 observations to account for potential serial correlation and conditional

heteroscedasticity in the losses. For the application to monthly river streamflows, the number

of bootstrap samples is 10,000 and the block length is 3.

Data source for the second application

The data for the modified river streamflows of the Columbia river basin are available at

“https://www.bpa.gov/p/Power-Products/Historical-Streamflow-Data/Pages/Historical-

Streamflow-Data.aspx”. The BPA report states that “at certain locations, modified flow

values can be negative during instances when the evaporation and/or irrigation adjustments

are larger than the calculated inflows or routed flows. In these cases, it is likely that current
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levels of irrigation require more water than was historically observed”. As we work with the

logarithm of modified flows, we disregarded the four locations with negative values.

Cross validation

Table 3 reports the grids of the cross validations performed to choose the values of the tuning

parameters that determine the shrinkage of the RAR(1)-X and BAR(1)-X models. The grids

are the same for both applications. The cross validations are performed only on the first

estimation window. It might be more at the advantage of both methods to renew the cross

validation for each new window of estimation, but this would increase the computation time

considerably.

Table 3: Grids for the cross validations

d0 0.2 to 0.55 by steps of 0.025
RAR(1)-X λ−1d 0.01 to 0.05 by steps of 0.01

λ−1a 0.01 to 0.05 by steps of 0.01
λ2S 0 to 5,000 by steps of 1,000
d0 0.2 to 0.55 by by steps of 0.05

BAR(1)-X sd 0.01 to 0.05 by steps of 0.01
sa 0.01 to 0.05 by steps of 0.01
h0 0 to 5,000 by steps of 1,000

For the sake of illustration, Figures 4 and 5 provide the histograms of the values obtained

by the cross validations, for RAR(1)-X and BAR(1)-X and h = 1. The ordinates show the

number of series, for example d0 is equal to 0.55 for a bit less than 150 series (out of 250) for

RAR and a bit more than 150 for BAR in the first application. In the second application,

the cross validation procedure chooses d0 = 0.55 for about half of the series, and the value

0.2 for about 25 percent in the case of RAR (40 in the case of BAR).

The parameters 1/λd of RAR and sd in BAR are selected at the lowest values of the

grid (0.01 or 0.02) for about two-thirds of the series in the first application. In the second

application, 1/λd is selected in equal proportions at the boundaries of the grid range (0.01

and 0.05), whereas sd is selected mainly at the end of the range.The parameters 1/λa of RAR

and sa in BAR are selected differently between RAR and BAR and between applications 1

and 2.

The additional shrinkage of the sum of the coefficients toward 1 by the parameter λ2S
(RAR) or the equivalent parameter h0 (BAR) is effective for abound 120 series (about 48

percent) in the first application, but for very few series in the second application. The

impact of the shrinkage on the sum is nevertheless important. In the first application, the
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Figure 4: Histogram of the four tuning parameters estimated by cross validation on the first
sample of 1,000 observations for the application to realized volatilities .
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Figure 5: Histograms of the four tuning parameters estimated by cross validation on the
first sample of 400 observations for the application to the modified river streamflows.

OLS estimated sum ranges from -0.06 to 1.50 (over the 150 series), the mean being 0.92 and

the standard deviation 0.23; RAR estimation results in the range (0.66, 1.44), with mean

0.97 and standard deviation 0.11; the BAR range is (0.65, 1.48) with the same mean and

standard deviation as RAR.

E: Figures using the MSFE loss function
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Figure 6: Application to realized volatilities. Left panels: Average (over the 250 series)
MSFE loss computed on rolling windows of 250 observations. Right panels: Frequencies
(over the 250 series), at each date, at which each model belongs to the MCS (at the 75%
confidence level) for the MAFE loss function. The top block is for the forecast horizon h = 1,
the middel one for h = 5, and the bottom one for h = 10.
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Figure 7: Application to modified river streamflows. Left panels: Average (over the 97 series)
MSFE loss computed on rolling windows of 50 observations. Right panels: Frequencies (over
the 97 series), at each date, at which each model belongs to the MCS (at the 75% confidence
level) for the MAFE loss function. The top block is for the forecast horizon h = 1, the
bottom one for h = 5.
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