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Abstract

We consider social learning in a changing world. With changing states, societies can be
responsive only if agents regularly act upon fresh information, which significantly limits the
value of observational learning. When the state is close to persistent, a consensus whereby most
agents choose the same action typically emerges. However, the consensus action is not perfectly
correlated with the state, because societies exhibit inertia following state changes. Phases of
inertia may be longer when signals are more precise, even if agents draw large samples of past
actions, as actions then become too correlated within samples, thereby reducing informativeness
and welfare.

1 Introduction

The literature on social learning has extensively studied the extent to which agents learn from

others’ actions. In particular, it has been quite successful at understanding the possible emergence

of informational cascades, and conditions under which the consensus that eventually forms over

time is correct (see Bikhchandani et al. (2021) for a recent survey). However, little attention has

been drawn to the possibility that the underlying state of nature might change over time.1 Still, in

several applications, e.g., technology adoption or investment decisions, the optimal course of action

is likely to change over time, raising the question of whether information is efficiently aggregated.

The possibility of state changes provides new insights both from applied and theoretical perspec-

tives. For instance, the dynamics of learning may shed light on how societies react to changes in the
∗HEC Paris.
†University of Toronto
‡HEC Paris.
1Notable exceptions are Moscarini, Ottaviani and Smith (1998); Acemoglu, Nedic and Ozdaglar (2008); Frongillo,

Schoenebeck and Tamuz (2011); Dasaratha, Golub and Hak (2023); Huang (2022). See below for a detailed account

on how our work relates to these papers.
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environment, and on how a dominant consensus may be replaced by a new one.2 From a theoretical

perspective, the possibility of state changes creates a tension between information aggregation and

responsiveness to change. Indeed, while efficient aggregation supposes that some agents safely rely

on their peers to act, it also requires that society reacts swiftly to a change in the environment,

ruling out informational cascades. The goal of this paper is to evaluate how this tension shapes

equilibrium welfare.

To address this question, we analyze steady-state equilibria in a model where (a) the state of

nature follows a Markov chain and (b) in each period, a continuum of short-lived agents draw a finite

sample of past actions and have access to a (possibly costly) informative signal. Though unnecessary

for our results, allowing for costly information makes social learning even more desirable. Indeed,

the potential welfare gains from learning from others result not only from better-informed decisions,

but also from savings on information costs.

Two forces drive equilibrium welfare. The first one is reminiscent of the Grossman-Stiglitz

paradox: while past actions must be informative at the steady state, they cannot be very informative,

for otherwise agents would have no incentive to acquire further information. In a steady state,

this logic imposes that some fresh information flows in every period, and thus puts a limit on

equilibrium welfare. When agents sample at least two actions, a second (countervailing) force

comes into play. In that case, some agents will sample conflicting evidence, and rely entirely on

their private information, while others will obtain unambiguous evidence allowing them to possibly

free-ride on the information acquired by the former. This creates a inter-temporal externality across

samples which may be expected to lead to higher welfare. This is exactly what happens in Banerjee

and Fudenberg (2004), who show in a fixed-state model that learning is eventually complete when

agents sample as few as two actions. In sharp contrast, our chief finding is that allowing for even

arbitrarily rare changes in the state typically results in incomplete learning.

We first analyze the case where agents sample at most two actions. In any equilibrium, all

agents must acquire (or make use of) information with positive probability, regardless of their

samples. Indeed, we establish that the dynamics of the population would otherwise eventually

bring all agents to play the same action regardless of the state. In a changing world, such an

irreversible consensus would be uninformative, and thus cannot be an equilibrium outcome. Thus,

learning is incomplete: agents can never entirely rely on their peers, even when the state is arbitrarily

persistent. Not only observing two actions does not ensure complete learning with changing states,
2Examples of a change in the dominant technology abound, ranging from the “war of the currents" in the late 19th

century, the “quartz crisis" in watchmaking in the 1970s to Facebook overtaking MySpace as the dominant social

network.

2



but actually does no better than observing only one, and typically worse.

For larger samples, we focus on the case where the state is highly persistent, and first show

that a consensus prevails. That is, in a steady-state equilibrium, most likely most agents play the

same action. However, this consensus must be fluctuating, and the population must oscillate over

time following state changes. The dynamics following a state change is characterized by two phases.

Agents first stick to the current consensus unless their sample conveys somewhat mixed evidence.

But such conflicting evidence is unlikely in a society where one action dominates, hence there may

be significant inertia in moving away from a consensus. Once the population displays some minimal

dissent, the fraction of agents acting against the old consensus quickly takes off, and the population

snowballs towards a new consensus. The efficiency of learning reflects how long it takes to move

away from an outdated consensus following state changes.

We next show that, provided that (binary) signals are sufficiently precise and information not too

costly, there exists an equilibrium in which welfare is the same as if agents sampled one action only

(or even none). When signals are precise, agents are more likely to play the right action, and both

the convergence towards a correct consensus and away from a wrong consensus are fast. However, it

turns out that the relative speed of convergence towards a correct consensus is higher. As for samples

of size two, agents observing even unanimous samples must then acquire information to make sure

that society remains responsive to change and does not get stuck in an irreversible consensus. A

complementary intuition is that, when signals are precise, the actions of agents acquiring information

are highly correlated (to the state, hence among themselves), and convergence towards a consensus

is quite fast. N: NOT SURE THIS IS WHAT YOU HAVE IN MIND.

The proof of this result involves a methodological innovation to get bounds on the beliefs for

non-unanimous sample compositions. The idea is that, when state changes are rare, equilibrium

beliefs can be approximated in terms of time-average values of the dynamical systems that describe

the evolution of the population’s behavior. Perhaps surprisingly, these belief estimates point to

the presence of belief reversal: seeing one dissenting action within an otherwise unanimous sample

should be taken as evidence that the minority action is the correct one.

We introduce the model in Section 2. Section 3 is devoted to small samples, and Section 4

provides results for larger samples in the persistent limit case.

Section 5 addresses robustness issues and extensions. Based on numerical evidence, we provide a

complete description of equilibrium behavior and welfare in the case of samples of size three. When

signals are weak, equilibrium welfare may be higher than in the no-sampling case, unlike for precise

signals. Yet, learning is always incomplete, in line with the main message of the paper.

In addition, while our incomplete learning results rest on the premise that signals are bounded
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and/or costly, we recover a positive social learning result (complete learning at the persistent limit)

if signals are both unbounded and free, irrespective of the sample size.

We discuss the relation to the literature in Section 6, and conclude in Section 7.

2 The model

2.1 States, actions and payoffs

We consider a social learning model in discrete time with an evolving, binary state of nature θ ∈
Θ := {0, 1}. In each period, a continuum of short-lived agents each choose an action from the action

set A := {0, 1}. Agents obtain a utility of one when their action matches the current state, and of

zero otherwise.

Successive states (θt) follow a symmetric Markov chain over Θ. The parameter λ := P(θt+1 ̸=
θ | θt = θ) captures the degree of persistency. States are i.i.d. if λ = 1

2 , and fully persistent if λ = 0.

We assume that λ ∈
(
0, 12
)
: the state is persistent, but not fully.

2.2 Timing, sampling and signals

At each date t, events unfold as follows. Each new-born agent (i) first observes a random sample of

n past actions, (ii) next decides whether or not to acquire additional information about the current

state θt at cost c ≥ 0, (iii) finally picks an action a ∈ A.

We assume that sampled actions are drawn from the pool of actions played in the previous period,

in proportion to their prevalence in the population (proportional sampling).That is, the sample

composition at date t, measured by the count of ones, follows a binomial distribution B(n, xt−1),

where xt−1 is the fraction of agents playing action 1 in period t−1. Samples are independent across

agents and private.

The additional information available to agents consists of a signal that is independent across

periods and agents, conditional on the sequence of states. We denote by q the posterior belief

assigned to θ = 1 given the signal, under a uniform prior, and refer to q as a private belief.

We denote by Hθ the right-continuous cdf of q in state θ. Signal distributions are assumed sym-

metric across states. That is, the distribution of the posterior probability assigned to θ conditional

on the state being θ, is the same for both states. This corresponds to H0(q)− = 1−H1(1− q) for

each q ∈ [0, 1].3 We rule out uninformative signals, and assume throughout that H1(q) < H0(q)

for some q ∈ (0, 1). Finally, we denote by q̄ the supremum of the support of the unconditional
3The asymmetric case is discussed in Section 5.5.
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distribution H := 1
2H0+

1
2H1. By symmetry, the infimum is 1− q̄. Following the usual terminology,

signals are unbounded if q̄ = 1, and bounded if q̄ < 1.

2.3 Equilibrium concept

We focus on equilibrium steady states in which all agents across and within periods use the same

decision rule σ.4 The equilibrium notion requires that σ is optimal given beliefs, and that beliefs

are derived from the invariant joint distribution of states and samples induced by σ. In addition, we

restrict attention to symmetric equilibria, i.e., we require that the equilibrium is unchanged when

relabelling actions and states so that the decisions given a sample n − k are the mirror images of

those made with sample k. A formal definition of equilibrium steady states is given in Section 4.1,

together with an existence result. At this stage, we simply denote by pk the (interim) probability

that the current state is θ = 1 conditional on seeing a sample composed of k ∈ {0, . . . , n} ones.

2.4 Information acquisition

Consider an agent who holds an interim belief p and contemplates acquiring information. If he does

not, he plays the action most likely to be optimal, and the expected probability of matching the

state is u(p) := max(p, 1− p). If he does, and receives a signal inducing a private belief q, the agent

chooses action 1 whenever state 1 is the most likely state, i.e., if pq ≥ (1− p)(1− q) ⇔ q ≥ 1− p,

with indifference if q = 1− p.

Accordingly, the probability of playing the correct action a = θ is given by

v(p) := p (1−H1(1− p)) + (1− p)H0(1− p). (1)

The function v is convex, increasing on [12 , 1] and symmetric: v(p) = v(1 − p) for all p. Of course,

v(p) ≥ u(p) for all p since more information cannot hurt.

The net value of acquiring information v(p)− u(p) is maximal when p = 1
2 . If c > v(12)− u(12),

agents never acquire information and samples are not informative. We rule out this uninteresting

case and assume throughout:

Assumption 1 v(12)− u(12) ≥ c.

These properties imply the existence of a unique p̂ ∈ [12 , 1] such that v(p) − c > u(p) iff p ∈
(1− p̂, p̂). As our analysis highlights, what ultimately matters is whether p̂ < 1 or not.

4This includes the decision whether to acquire information as a function of one’s sample, and which action to

choose.
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When signals are bounded (q < 1), one has v(p) = u(p) for p > q, hence p̂ < 1 irrespective of

whether c = 0 or c > 0. When signals are unbounded, v(p) > u(p) for all p ∈ (0, 1), hence p̂ = 1 if

c = 0 and p̂ < 1 if c > 0. In what follows, we maintain the assumption that p̂ < 1 (the richer case),

and defer the discussion of the easier case p̂ = 1 to Section 5.2.

Assumption 2 p̂ < 1.

Figures 1 and 2 illustrate two typical cases. In Figure 1, signals are unbounded and c > 0; in

Figure 2, signals are binary with precision 1
2 < π < 1 (bounded). In that case, private beliefs are

either 1− π or π, and v(p) = max(p, 1− p, π), implying p̂ = π − c.5

Figure 1: Signals with unbounded strength Figure 2: Binary signals with precision π

We conclude this section by noting that private signals are sometimes used in any equilibrium.

Lemma 1 In any equilibrium steady state, one has 1− p̂ ≤ pk ≤ p̂ for some k.

Proof. Assume instead that for some equilibrium and for each k, one has either pk < 1− p̂ or

pk > p̂. Signals are never used, hence samples are uninformative at the steady state and therefore,

pk =
1
2 for each k. A contradiction.

Lemma 1 then rules out steady-state cascades. Still, one may have pk /∈ [1 − p̂, p̂] for some

sample k. Upon observing such a sample, agents play their perceived best action without [acquiring

or using] further information.

3 Small samples

We discuss here small sample sizes (n ≤ 2). The case n = 0 where agents do not sample serves as a

no-social-learning benchmark. In that case, the belief of all agents at a steady state is given by the
5Note that p̂ < 1 even for c = 0, as discussed above.
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invariant distribution of (θt), which is uniform over Θ. Agents acquire information, and obtain an

expected payoff of v(12)− c.

3.1 Samples of size n = 1

We assume here that n = 1. Equilibrium symmetry implies that p1 = 1 − p0 and that all agents

acquire information with the same probability β. Lemma 1 implies that β > 0. We set λ∗ :=
c

2(p̂+c)−1 <
1
2 . Note that λ∗ = 0 when c = 0.

Proposition 1 If n = 1, there is a unique equilibrium steady state:

• If λ < λ∗, one has p1 = p̂ and β = λ
2p̂− 1

c(1− 2λ)
∈ (0, 1).

• If λ ≥ λ∗, one has p1 ∈ (1− p̂, p̂) and β = 1.

Proof. Consider an agent A in period t who samples the action at−1 of some player B. In the

steady state, both A and B hold either an interim belief p1 or p0 = 1 − p1, where p1 obeys the

following equation:

p1 = P(θt = 1 | at−1 = 1)

= (1− λ)P(θt−1 = 1 | at−1 = 1) + λP(θt−1 = 0 | at−1 = 1). (2)

Either, with probability β, B acquired information and then played the right action with prob-

ability v(p1)(= v(p0)), or did not, and matched the state with probability u(p1).

If 0 < β < 1, B’s indifference condition imposes p1 = p̂. One therefore derives P(θt−1 = 1 |
at−1 = 1) = βv(p̂) + (1 − β)u(p̂) = p̂ + βc, using the definition of p̂. Substituting into (2) yields

p̂ = λ+ (1− 2λ)(p̂+ βc), hence β = λ
2p̂− 1

c(1− 2λ)
. β < 1 then requires λ < λ∗.

If β = 1, one has P(θt−1 = 1 | at−1 = 1) = v(p1) and (2) now reads

p1 = (1− λ)v(p1) + λ(1− v(p1)). (3)

Since v′(p1) < 1 for p1 ≤ p̂ and since v(12) − c > 1
2 , (3) has a (unique) solution in [12 , p̂] if and

only if λ ≥ λ∗.

When the state changes frequently, past actions cannot possibly be very informative about the

current state, and information is acquired with probability 1. As the state gets more persistent,

past actions potentially become informative, and β decreases. In the persistent limit λ→ 0, agents

acquire information with vanishing probability, hence most likely replicate the action they sample.

Welfare increases from v(12)− c to p̂ as λ decreases from the i.i.d. case to the persistent limit. More

generally, welfare is given as follows.
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Corollary 1 The equilibrium payoff is v(p1) − c for λ ≥ λ∗, where p1 is the solution of (3), and

p1 = p̂ for λ < λ∗.

If signals are binary with precision π, the equilibrium payoff is π − c = p̂, for each λ > 0.

3.2 Samples of size n = 2

If n = 1, private signals are always interim valuable in equilibrium, which limits (and pins down) the

informativeness of past actions. The situation is quite different with larger samples. With n > 1,

the efficiency of social learning can be improved if agents with some sample k generate enough

information (in a given period) that (later) agents with a different sample k′ find it optimal to herd

– that is, if there exists (k, k′) such that 1 − p̂ < pk < p̂ < pk′ . Ultimately, equilibrium payoffs are

determined by the magnitude of such information externalities across samples.

We here assume n = 2. By symmetry, p1 = 1
2 : agents who sample conflicting actions are

confused and acquire information. In line with the previous remark, the key question is whether

p2 > p̂. Casual intuition suggests that this should be the case when the state is sufficiently persistent.

Remarkably, this intuition is incorrect.

Proposition 2 In any equilibrium, one has p2 ∈ [1− p̂, p̂].

Proposition 2 implies that agents are always willing to acquire information when c > 0. For

c = 0, it implies that it can never be strictly optimal to ignore one’s signal.

The logic works as follows. Assume that p2 > p̂, so that agents only acquire information when

sampling conflicting evidence. By acquiring information, these agents are instrumental in moving

towards a correct consensus, but also in moving away from this (outdated) consensus once the state

changes. However, this arrival of fresh information does not suffice to compensate for state changes:

the forces of imitation (herding) are so strong that sooner or later there will be too few agents

sampling mixed evidence, and the population will stop being responsive.

The complete proof of Proposition 2 is in the Appendix. We provide a sketch below.

Proof Sketch. We argue by contradiction and assume that p2 > p̂ at some equilibrium. Since

p1 = 1
2 , agents with a balanced sample acquire information, and choose action 1 if their private

belief exceeds 1
2 , which has probability ϕθ := 1−Hθ(

1
2) in state θ.

Denoting by xt−1 the fraction of agents playing action 1 in period t− 1, the probability that a

generic agent in period t plays action 1 is thus given by xt = gθt(xt−1), where

gθ(x) := x2 + 2x(1− x)ϕθ.

Since ϕ1 > 1
2 > ϕ0, one has g1(x) > x > g0(x) for each x ∈ (0, 1): the popularity xt of action 1

increases over time when θt = 1, and decreases otherwise, as shown in Figure 3.
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Figure 3: Population dynamics

For x close to 0, the ratio gθ(x)/x is approximately equal to 2ϕθ. Thus, as long as xt is close to

zero, lnxt increases by ln 2ϕ1 in every period where θt = 1, and decreases by ln 2ϕ0 when θt = 0.

Since 4ϕ0ϕ1 = 4ϕ1(1−ϕ1) < 1, one has ln 2ϕ1 < − ln 2ϕ0: step sizes are higher when lnxt decreases.

This means that (xt) converges faster towards a consensus on action 0 when θt = 0 than it moves

away from this consensus when θt = 1. Consequently, whenever (xt) approaches either 0 or 1,

there is a positive probability that the population will never bounce away from this consensus, even

following state changes.

Combined with the observation, obvious from Figure 3, that (xt) cannot stay bounded away

from 0 and 1 over time, this implies that the sequence (xt) converges to either 0 or 1, almost surely:

the population converges to a permanent consensus, although the state of nature keeps changing.

Thus, past actions are fully uninformative hence p2 = 1
2 . A contradiction.

Corollary 2 If signals are binary, the equilibrium payoff is p̂ for all n = 0, 1, 2, all λ > 0 and all

c ≥ 0. If Hθ has support [1− q̄, q̄], the equilibrium payoff is strictly lower for n = 2 than for n = 1

if λ ≤ λ∗.

Proof. Interim equilibrium beliefs are p1 = 1
2 and p2 = 1 − p0 ∈

[
1
2 , p̂
]
, hence the equilibrium

payoff is a convex combination of v(12)− c and of v(p2)− c, with a positive weight on the former.

If signals are binary with precision π, v(p) = π for all p ∈ [1− p̂, p̂], and the equilibrium payoff

is then π − c for every λ > 0 and c ≥ 0, like in the cases n = 0 and n = 1.

If Hθ has support [1− q̄, q̄], v is strictly convex on [1− p̂, p̂], and the equilibrium payoff is below
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p̂ = v(p̂)− c. From Corollary 1, welfare with n = 1 is p̂ as long as λ ≤ λ∗. If signals are binary,

social learning arises in equilibrium (some agents do herd), yet there is no welfare gain over the

benchmark case n = 0 where information is always acquired. With richer signals, the equilibrium

welfare is non-monotonic in the sample size, at least for small λ and n. This is all the more surprising

as this holds when the state is highly persistent, that is, when the logic of observational learning

acts most forcefully.

3.3 Comparison to fixed state models

We here compare these findings to the literature with a fixed state and known calendar time. The

relevant comparison is with Banerjee and Fudenberg (2004) (henceforth BF), who assume that

in each period, a continuum of short-lived agents each draws a random sample of past actions and

observe a signal for free.6 If n = 1, the analysis of BF implies the existence of a continuum of steady

states. In any such steady state, the fraction of agents who play the correct action is constant over

time, and equal to p1 ≥ p̂. In each period, all agents ignore their signals, and replicate the action

they sample.7 This multiplicity is ruled out with changing states, as it cannot be that agents

systematically ignore their signals.

If n = 2, our results sharply contrast with BF. For n ≥ 2, BF shows that, under minimal

assumptions on signals (that are satisfied in our setup), learning is eventually complete: actions

converge to the correct one. As soon as the state may change, our analysis instead shows that

equilibrium payoffs do not exceed p̂, even as λ→ 0. Accordingly, allowing for a changing state has a

strong negative impact. In addition, the comparison between samples of size 1 and 2 with bounded

signals suggests that, while observing more actions compensates for a limited signal quality when

the state is fixed, this may exacerbate the inefficiency in a changing world.

4 The general case: equilibrium analysis

The discussion on small samples illustrates a key complication. When only one action is sampled,

the interim belief at date t involves only the expected value of xt−1 in each state. That is, interim

beliefs reflect how often on average past agents play the right action. This allows for a closed form

analysis.
6Although BF considers free signals while we allow for costly signals, this distinction is irrelevant: on the one

hand, our results apply to free signals without loss; on the other hand, the results of BF still hold with costly signals

(we provide a proof in the supplementary material).
7Notice that since there is a continuum of agents, not all agents play the same action.
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As soon as two actions are sampled, the interim belief pk also involves the correlation of actions

within samples.8 Formally, the belief likelihood ratio is

P (θt−1 = 1 | k)
P (θt−1 = 0 | k)

=

∫ 1
0 x

k(1− x)n−kdµ1(x)∫ 1
0 x

k(1− x)n−kdµ0(x)
(4)

where µθ is the distribution of xt−1 in state θ, so that the formula for pk involves all l-th moments

of xt−1 for l ≤ n; in addition, the evolution of xlt over time involves even higher powers of xt, as can

be checked. Consequently, the equilibrium conditions involve the entire joint distribution of (θt, xt),

a complex object. 9

For this reason, we focus on the persistent limit λ → 0, which we view as the most relevant

case for a comparison with the usual fixed-state setup. Strategies and equilibrium steady states are

formally defined in Section 4.1. In Section 4.2, we provide an asymptotic consensus result. Section

4.3 discusses learning completeness, that is, the extent to which the prevailing consensus is correct.

4.1 Strategies and equilibrium

A strategy specifies whether or not to acquire information (if c > 0) and which action to choose.

These decisions depend on the composition of one’s sample, and (whenever relevant) on the signal.

A strategy is thus a pair σ = (β, α) of (measurable) maps, with β : {0, . . . , n} → [0, 1] and

α : {0, . . . , n}× [0, 1] → ∆({0, 1}), with the understanding that β(k) is the probability of acquiring

information upon observing a sample composed of k ones, and α(k, q) is the probability of playing

action 1 upon drawing sample k and observing a private belief q ∈ [0, 1].10 Not acquiring information

is informationally equivalent to drawing a signal q = 1
2 for sure: an agent with sample k who does

not acquire information thus plays 1 with probability α(k, 12).

Conditional on the state being θ, an agent sampling k thus plays action 1 with probability

ϕθ (k) := β(k)

∫ 1

0
α(k, q)dHθ(q) + (1− β(k))α(k,

1

2
). (5)

The sample composition at date t follows a Binomial distribution B(n, xt−1). It follows that the

fraction of agents choosing action 1 in period t is

xt = gθt (xt−1) :=

n∑
k=0

(
n

k

)
xkt−1(1− xt−1)

n−kϕθt(k) (6)

8Actions sampled in period t are independent conditional on xt−1, but correlated ex ante.
9Even in the much simpler case where states are i.i.d. and n = 1, extensive work has focused on the properties of

the steady-state distribution of x (Solomyak, 1995; Bhattacharya and Majumdar, 2007). This leaves little hope for a

tractable analysis in our case.
10We recall that q is the belief derived from the signal, computed with a uniform prior.
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For fixed σ, the pair (θt, xt) follows a Markov chain over Θ × [0, 1]. Over time, θt evolves

independently of xt, and xt = gθt(xt−1).

An equilibrium steady state is a pair (µ, σ) where µ ∈ ∆(Θ× [0, 1]) is an invariant measure for

(θt, xt), and σ is optimal given µ. The optimality condition on σ reads as C1 and C2 below:

C1 β(k) = 1 if pk ∈ (1− p̂, p̂) and β(k) = 0 if pk /∈ [1− p̂, p̂];11

C2 α(k, q) = 1 if q > 1− pk and α(k, q) = 0 if q < 1− pk.

We recall that the interim belief pk = P(θt = 1 | k) is the belief on the current state. It is related to

the belief on the previous state through the equality pk = (1−λ)P(θt−1 = 1 | k)+λP(θt−1 = 0 | k).
The belief P(θt−1 = 1 | k) is itself related to the steady-state distribution µ through (4).

The condition that µ is an invariant distribution for (θt, xt) reads

C3 µ(θ,X) = (1− λ)µ
(
θ, g−1

θ (X)
)
+ λµ

(
1− θ, g−1

θ (X)
)

for all measurable X ⊂ [0, 1].

Our focus is on symmetric equilibria: we require in addition that µ and σ treat the two states

and actions symmetrically. Formally:

C4 β(k) = β(n− k) and α(k, q) = 1− α(n− k, 1− q) for each k and q.

C5 µ is invariant under the transformation (θ, x) 7→ (1− θ, 1− x).

We denote by G(λ) the game with transition parameter λ.

Theorem 1 The game G(λ) has a symmetric equilibrium steady state.

The proof relies on a fixed-point argument (see the supplementary material).

4.2 Aggregate behavior: a consensus result

We first derive a general result on the aggregate behavior in the population, and prove that the

actions of agents become highly correlated as the state gets close to persistent.

Theorem 2 Let n ≥ 2 and let (µλ, σλ) be any equilibrium steady state of G(λ), for λ > 0. As

λ → 0, the marginal of µλ over x ∈ [0, 1] converges to the uniform distribution over the two-point

set {0, 1}.12

11If c = 0, condition C1 can be omitted. Indeed, if pk > p̂, it is optimal to play a = 1 for all q so that α(k, q) = 1.

For such k, ϕθ(k) = 1 irrespective of β(k). Similarly, when pk < 1− p̂, ϕθ(k) = 0 for any β(k).
12Limits are understood in the sense of weak convergence of probability measures over [0, 1].
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According to Theorem 2, most likely most agents play the same action in any given period. This

consensus result implies in turn that most likely most agents draw a unanimous sample k ∈ {0, n}
consisting only of zeroes or of ones.

Proof. Let λ and an equilibrium (µ, σ) of G(λ) be given, and denote by κ∗ the (steady-state)

average fraction of agents whose action matches the state. κ∗ is weakly higher than the equilibrium

payoff w∗ because information acquisition costs are not accounted for.

Consider a generic agent in period t, and assume that he observes his sample in some random

order a(1), . . . , a(n). One available strategy σ1 is to simply imitate a(1). The strategy σ1 would yield

a payoff of κ∗ if the state were fixed. Accounting for state transitions, and assuming a(1) = 1 for

concreteness, σ1 yields

w(σ1) := P(θt = 1 | a(1) = 1) = (1− λ)κ∗ + λ(1− κ∗) ≥ κ∗ − λ,

and thus, w(σ1) ≥ w∗−λ. Since no strategy improves upon w∗, this implies that the marginal gain

of observing a(2) is at most λ.13

In turn, this implies that a(1) and a(2) coincide with high probability when λ is small. Indeed,

consider the alternative strategy σ2 consisting in playing a(1) if the second action confirms the first

one (a(1) = a(2)) and acquiring information otherwise (a(1) ̸= a(2)). In the latter case, the agent’s

belief is 1/2, hence the agent’s payoff conditional on a(1) ̸= a(2) is v(1/2)− c. Therefore, the payoff

w(σ2) is a convex combination of v(1/2) − c and of P(θt = 1 | a(1) = a(2) = 1), where the weights

are the conditional probabilities of a(2) = 0 and of a(2) = 1 given a(1) = 1.

On the other hand, the martingale property of beliefs ensures that P(θt = 1 | a(1) = 1) (which

is also w(σ1)) is a convex combination of the beliefs 1/2 and of P(θt = 1 | a(1) = a(2) = 1), with the

same weights. Since v(1/2)− c > u(1/2) = 1/2, and since w(σ2) ≤ w∗ ≤ w(σ1) + λ, it follows that

the probability P(a(2) = 0 | a(1) = 1) that a(2) contradicts a(1) is at most of the order of λ.

To conclude, recall that a(1) and a(2) are independent draws from a Bernoulli distribution with

parameter x, where x is first drawn according to µ. Since a(1) and a(2) coincide with high probability,

it must be that x is quite close to 0 or to 1, with high µ-probability.

According to Theorem 2, the population is in consensus in a typical period, with xt being close

to either 0 or 1. At the same time, the consensus must evolve over time in response to changes in

the state.14 This implies that the population alternates between the two consensus, and that the

transition time is vanishingly short as λ→ 0 relative to how long a given consensus prevails.
13If c > 0, this also implies that the steady-state expected fraction of agents who acquire information is at most of

the order of λ.
14For otherwise, samples would not be informative, agents would always acquire information, and the population

would adjust to new situations.
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Let us briefly elaborate on the transition dynamics, assuming n = 2 and c > 0 for concreteness.

We denote by β > 0 the equilibrium probability of acquiring information when sampling k ∈ {0, 2}.
From Theorem 2, we know that β → 0 as λ→ 0 (see Footnote 13). For λ small, interim beliefs are

p2 = 1− p0 = p̂ and p1 = 1
2 . Since agents either acquire information or herd, it can be checked that

xt evolves according to xt = gθt(xt−1), with

gθ(x) = ḡθ(x) + β
(
ψθ(1− x)2 − ψ1−θx

2
)
, (7)

where ψθ := 1−Hθ(p̂)
15 and ḡθ(x) := x2 + 2ϕθx(1− x) is the function on Figure 3.

Fix ε > 0. Assume that the state switches to θt0 = 1 at a time where the population has settled

on a near-consensus xt0−1 ≃ 0. As long as xt < ε, Eq (7) implies that xt+1 ≃ 2ϕ1xt+βψ1 increases

at a speed that hinges on β. For β close to zero, many periods are required until xt > ε. Since g1 is

bounded away from the diagonal y = x on the interval [ε, 1− ε], it then takes only a finite number

of stages, which does not depend on λ, until xt > 1− ε.

The transition dynamics from one consensus to the other thus involves two different phases.

In a first phase (inertia), the old consensus persists despite the state change: most agents observe

a unanimous sample and most likely herd, which slows down society’s response. At some point,

though, there is enough heterogeneity in the population, and sufficiently many agents draw a more

balanced sample – enhancing information acquisition – and the society quickly switches to the new

consensus: there is a domino effect whereby the popularity of the new action snowballs.

Since, as λ→ 0, society is almost always in consensus, and information is acquired with vanishing

probability, equilibrium welfare is captured by the fraction of time spent in a wrong consensus; in

other words, it is measured by the duration of the phase of inertia.

4.3 Equilibrium welfare

We now focus on equilibrium welfare, and examine how our incomplete learning result extends to

larger samples. For simplicity, we assume here that signals are binary with precision π > 1
2 .

Theorem 3 If p̂ = π−c is high enough, and λ is small enough, there exists an equilibrium in which

pk ∈ [1− p̂, p̂] for all k : agents always acquire information.

Proof insights:. We focus on strategies that always acquire information with a non-unanimous

sample (β(k) = 1 for all k /∈ {0, n}) and denote β := β(0) = β(n) the probability of acquiring

information with a unanimous sample.16

15ψθ is the probability of choosing action 1 when acquiring information with an interim belief of 1− p̂, conditional

on the current state being θ.
16If c = 0, β is the probability of following one’s private signal.
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We assume that π is high enough so that n2π(1−π) < 1. As we show, this implies the existence

of β > 0 s.t. pn = 1 − p0 = p̂. We next show that, provided p̂ is high enough, all other interim

beliefs are contained in the interval [1− p̂, p̂], which completes the proof.

Using (5) and (6) for such strategies and binary signals, (xt) obeys xt = gθt(xt−1), with

gθ(x) = πθ + (1− β) {xn(1− πθ)− (1− x)nπθ} , where π1 = π = 1− π0.

If β = 0, the analysis of the case n = 2 (which holds verbatim) implies society is eventually trapped

in an irreversible consensus and pn = p0 = 1
2 . If β = λm for an arbitrary m, pn → 1 as λ → 0.

Indeed, whenever the state switches to θ = 1, (xt) jumps above g1(0) = βπ and then increases at a

rate of nπ > 1. It thus escapes some fixed neighborhood of 0 in ln 1
λ stages and next approaches 1 in

boundedly many stages unless the state switches back to θ = 0. For λ small, state changes occur on

average every 1
λ ≫ ln 1

λ stages; at the steady state, xt and θt are then close to perfectly correlated.

This contradicts β > 0. By a continuity argument, there is some βλ such that pn = 1− p0 = p̂.

Such a βλ is an equilibrium iff pk ∈ (1−p̂, p̂) for each k /∈ {0, n}. Our methodological contribution

lies in providing estimates of such pk as λ → 0. Bayes rule writes
pk
pn−k

=
Ik
In−k

, with Ik :=∫ 1

0
ψk (x) dF1(x), where ψk (x) = xk (1− x)n−k and Fθ is the invariant cdf of x conditional on θ.17

The argument relies on approximating Ik with λ
∑
t∈
ψk(g

(t)
1 (x)), where g(t)1 is the t-th iterate of g1

and (g
(t)
1 (x))t∈ is a doubly infinite orbit of g1. This sum is similar to the time-average of ψk during

a visit to state θ = 1, hence this approximation is reminiscent of the law of large numbers.

The proof uses the following observation on F1. As λ → 0, the probability of a state switch

in m periods is vanishingly small, hence the distribution F1 around x ∈ (0, 1) coincides with

the push-forward measure (given g1) of F1 around gm1 (x) for any fixed m. Specifically, we show

that limλ→0
1
λ (F1 (y)− F1 (x)) = limλ→0

1
λ

(
F1

(
g
(m)
1 (y)

)
− F1

(
g
(m)
1 (x)

))
and is non-zero, for any

x, y ∈ (0, 1). This yields Ik ≃ λ
∫ g1(z)
z

∑
t∈ ψk

(
g
(t)
1 (x)

)
dF1(x) for some z. In the limit λ→ 0, this

leads to
pk
pn−k

≤ sup
x∈(0,1)

∑
t∈ ψk(ḡ

(t)
1 (x))∑

t∈ ψn−k(ḡ
(t)
1 (x))

for each k /∈ {0, n}, (8)

where ḡ1(·) is the function g1(·) in the specific case where β = 0. It is straightforward to show

that the RHS in (8) is uniformly bounded, which guarantees that pk ∈ (1− p̂, p̂) for all k /∈ {0, n},
provided p̂ is high enough.

Since agents always acquire information with positive probability, equilibrium welfare equals

π − c = p̂, as when n = 0, 1, 2. Theorem 3 is reminiscent of the case n = 2 because information
17We recall that the cdf Fθ depends on the transition rate λ, and on the acquisition strategy βλ.
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is acquired following all sample realizations.The underlying reason is similar: if information was

not acquired at unanimous samples, society would converge towards a consensus faster than away,

making such consensus irreversible, hence uninformative. With n > 2, though, the chances of

observing a dissenting action in one’s sample are higher (all else equal), which lowers the relative

speed of moving towards the correct consensus. If π is large, this convergence remains excessively

fast, the intuition being that signals are then more correlated with the true state and among each

other.18 Actions are less diverse, accelerating convergence.

Interestingly, the upper and lower bounds on p2/p1 derived from (8) are quite close if n = 3,

allowing for precise estimates of beliefs.19 These equilibrium values of p1 and p2 are pictured on

the right panel of Figure 4, as a function of π. Possibly surprisingly, there is some belief non-

monotonicity, p1 > p2.

Some intuition can be found in the left and central panels of Figure 4, which assume π = 0.99

for concreteness. The left panel features the functions gθ that capture the limit dynamics of the

population in each state. Note that g′0 (0) is close to 0, hence the population converges quickly

towards a consensus on action 0 when θ = 0. The dynamics away from 0 is not nearly as fast when

θ = 1. As a result, conditional on x being relatively low, society is more likely to be transitioning

away from 0 than towards 0. Hence, the current state is more likely to be θ = 1.20 This is further

illustrated by the central panel, where we plot the logs of (simulated) steady-state, equilibrium

densities in the limit λ→ 0. We note that this belief reversal p1 − p2 increases with π, in line with

the intuition that convergence to the correct consensus gets relatively faster.

4.4 The planner’s problem

One key question is whether our incomplete learning result is an equilibrium feature or an inescapable

feature of the environment. It turns out that a social planner who could dictate any strategy would

attain a steady-state welfare of 1 in the persistent limit, so the learning failure is an equilibrium

phenomenon. Consider e.g. a (symmetric) strategy in which the probability of acquiring information

is of order λ for k = 0, is 1 for k = ⌊n2 ⌋ and increases linearly with k ∈ {0, . . . , n2 }. Such a strategy

ensures that the duration of the phase of inertia is of order ln 1/λ, and therefore negligible compared

to 1/λ. This ensures that the prevailing consensus is always correct in the limit λ→ 0. At the same
18This is why we require π to be large, unlike in Proposition 2. In addition, the assumption that c is low helps

guarantee that pk ∈ (1− p̂, p̂k) for k /∈ {0, n}. No such condition is required in Proposition 2 since p1 = 1
2
.

19For larger values of n, the spread between the two bounds increases.
20This intuition is incomplete. Indeed, for λ > 0, agents with a unanimous sample do acquire information with

positive probability, fostering the responsiveness of the population. It is not ex ante obvious that interim beliefs can

be estimated as if such agents were not acquiring information, as (8) suggests.
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Figure 4: Transition functions, densities, and beliefs for n = 3

time, the expected fraction of agents acquiring information vanishes as λ→ 0.21

5 Discussion

5.1 Further evidence for the case n = 3: the case of weak signals

The formal analysis of the case n = 3 is beyond the scope of the paper, and we limit us to numerical

evidence. When n = 3, strategies can be summarized by three variables: the probabilities β(0)

and β(1) of acquiring information with a unanimous sample and with a more balanced sample

respectively, and the action α(1, 12) played when information is not acquired at balanced samples.
22 For each type of strategy, the proof techniques of Theorem 3 can be adapted to get estimates of

the limit interim beliefs, which can then be used to test equilibrium conditions,23 as a function of

(π, p̂).

The results are summarized on Figure 5. For each strategy type, the left panel draws the region

of (π, p̂)-values that are consistent with equilibrium conditions. The absence of overlap between

these regions strongly suggests that equilibrium is unique. The equilibria identified in Theorem

3 correspond to the plain yellow area (β(0) > 0 and β(1) = 1) in the upper-right corner. The

lower-left corner shows that for weak signals, agents herd with a unanimous sample, and follow

the majority action whenever they choose not to acquire information (α(1, 12) = 0): there is no

belief reversal for such π. By contrast, we note the existence of a shaded green area in the lower

right corner (high π, high c), where agents herd with a unanimous sample, but adopt a contrarian
21See the working paper version (Lévy, Pęski and Vieille, 2022) for details.
22It is clear that one follows one’s signal upon acquiring information, and one follows the crowd when drawing a

unanimous sample and not acquiring information, since the consensus is positively correlated with the state.
23Details are in the supplementary material.

17



behavior when facing mixed evidence and not acquiring information (α(1, 12) = 1). This contrarian

behavior helps the population to adjust to changes when signals are strong.

The right panel of Figure 5 draws the equilibrium welfare as a function of π, for various values

of c. We observe, e.g. from the blue curve (c = 0), that the equilibrium welfare may exceed p̂ for

weak signals, but that learning is always incomplete, consistent with our main message. We also

note that for stronger signals, the equilibrium welfare is given by p̂, irrespective of c.

Figure 5: Equilibrium behavior (left) and welfare (right) for n = 3

Interestingly, we observe that welfare is both decreasing in π and independent of c as long as

(π, p̂) belongs to the plain green region. There, agents never acquire information at unanimous

samples, and always acquire otherwise. Therefore, equilibrium beliefs do not vary with c. Instead,

when π increases, information acquisition is unchanged, but the correlation of actions within samples

increases, lowering informativeness and then decreasing welfare. This suggests that more precise

signals always hurt as long as they do not encourage more information acquisition. This is an

instance of the principle of countervailing adjustment (Bikhchandani et al., 2021): a favorable shift

in information availability does not necessarily improve average decisions or welfare.24

5.2 The case p̂ = 1

We briefly review here the case p̂ = 1 where signals are free and unbounded. In such case, the

prevailing consensus is asymptotically correct in the limit λ → 0, as Proposition 3 shows. This
24Relatedly, Dasaratha, Golub and Hak (2023) underline the importance of having agents with sufficiently diverse

signal distributions for information aggregation. While diversity of signals comes from different ex ante signal distri-

butions in their case, in our case it arises when agents are more likely to have ex post different signal realizations,

that is, less precise signals.
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result is line with the fixed-state literature (see, e.g., Smith and Sørensen (2000); Banerjee and

Fudenberg (2004)), in contrast to the case p̂ < 1.

Proposition 3 Suppose p̂ = 1 and let n ≥ 1 be arbitrary. For λ > 0, let any equilibrium steady

state be given, with payoff w∗. Then limλ→0 w
∗ = 1.

Proof. As before, we list the actions sampled by a random agent in a random order a(1), . . . , a(n).

Let p(1) be the interim belief formed on the basis of a(1) only. One strategy consists of replicating

a(1), with a payoff of u(p(1)). Since a(1) matches yesterday’s state with probability w∗, this strategy

yields a payoff u(p(1)) = (1− λ)w∗ + λ(1− w∗) ≥ w∗ − λ. Another strategy consists in ignoring all

sampled actions except a(1) and using one’s (free) signal optimally. This strategy yields a payoff

v(p(1)), which is no larger than the equilibrium payoff w∗. Thus,

u(p(1)) ≤ v(p(1)) ≤ w∗ ≤ u(p(1)) + λ. (9)

Since p̂ = 1, v(p) > u(p) for all p ∈ (0, 1) and v(p) = u(p) = 1 for p ∈ {0, 1} . Together

with (9), and using the continuity of the functions u and v, this implies limλ→0 p
(1) ∈ {0, 1} and

limλ→0 w
∗ = 1.

5.3 Continuum of actions

While we have considered binary actions so far, we provide suggestive evidence that the discontinuity

in information aggregation at the limit λ→ 0 could arise as well with a richer (infinite) action set.

For concreteness, assume A = [0, 1] and a square loss utility function u(a, θ) = 1 − (a − θ)2.

Note that, if c = 0, one has p̂ = 1 even with bounded signals because actions are responsive to any

extra information; we thus assume c > 0 to stick to the case p̂ < 1.

In the fixed-state version where a continuum of new agents sample at least two actions from the

past, the distribution of actions converges over time to the correct action (see e.g. (Lee, 1993).)

For the evolving-state version, Proposition 4 below shows that the average dispersion of actions in

the population vanishes as λ → 0, thereby extending the consensus result of Theorem 2. In this

statement, a(1), . . . , a(n) are the actions sampled by a random agent, listed in a random order. The

proof is in Appendix C.

Proposition 4 Assume n ≥ 2. At any equilibrium steady state, one has

E
[
(a(k) − a(l))2

]
≤ γλ for any k, l,

where γ is independent of λ and of the equilibrium.
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A full-blown analysis of equilibrium behavior and welfare is highly challenging, and beyond the

scope of the paper anyway. Without aiming at generality, we discuss here the example of perfect

signals, which yields results consistent with our incomplete learning result. If the state is fixed,

all agents acquire information in the first period and convergence to the truth takes exactly one

period. When the state is evolving, the population in period t is described by the pair (θt, xt), where

xt ∈ ∆([0, 1]) is the distribution of actions in the population. Accordingly, an equilibrium steady

state is a distribution µ ∈ ∆(Θ×∆([0, 1])).

We describe an equilibrium where all agents in period t choose the same action at ∈ [0, 1]:

actions are perfectly correlated, and inferences are independent of the sample size n.

In period t+1, agents then hold the interim belief f(at) := (1−λ)at+λ(1−at). If f(at) /∈ [1−p̂, p̂],
all agents choose the action at+1 = f(at). If instead f(at) ∈ [1− p̂, p̂], all agents acquire information,

learn the state and choose at+1 = θt+1 ∈ {0, 1}. Either way, the consensus is preserved in period t+1.

In this equilibrium, agents acquire information periodically: when agents learn that the current state

is, say, θt = 1, their actions are at = 1, at+1 = f(1), etc., until they acquire information in period

t +Mλ, where Mλ :=

⌊
ln (2p̂− 1)

ln (1− 2λ)

⌋
. The marginal µ2 ∈ ∆(∆([0, 1])) over action distributions is

uniform over the degenerate distributions δfm(θ) (0 ≤ m < Mλ, θ ∈ Θ).

As λ→ 0, µ2 weakly converges to a distribution concentrated over degenerate distributions δa,

a ∈ [0, 1]: in the persistent limit, actions are always perfectly correlated within periods, and the

consensus action a has a density, which is given by
1

2a− 1

(
1[p̂,1](a)− 1[0,1−p̂](a)

)
:25 there is no

complete learning.

5.4 Endogenous information structures

We have assumed that agents have access to a fixed information source at a lumpy cost, but the

choice of this source could be endogenized. For instance, assume that agents, upon seeing their

samples, can choose any statistical experiment µ, at a cost C(µ).

Given interim beliefs p, an agent optimally obtains

v(p) = sup
µ

{pµ1(1) + (1− p)µ0(0)− C(µ)} ,

where µθ(a) is the probability of (optimally choosing) action a in state θ under the information

structure µ. As in the baseline model, there exists p̂ ∈ [12 , 1] such that v(p) − c > u(p) if and

only if p ∈ (1− p̂, p̂). The central question is whether p̂ < 1 The answer depends on the functional

C(·) one considers. In the supplementary material, we show that p̂ < 1 for the functional C(µ) =
25Up to a normalization constant. See the supplementary material.
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∑
a∈A,θ∈Θ

µθ(a) ln
µθ(a)

µ1−θ(a)
that is axiomatically derived by Pomatto, Strack and Tamuz (2023).

5.5 Asymmetric case

The symmetry assumption in the paper is quite convenient, but plays no specific role. Consider a

general setup where the invariant probability of state 1 is p∗ ∈ (0, 1),26 the utility is an arbitrary

function u : {0, 1}×Θ → [0, 1], and the (unconditional) distribution of private beliefs is an arbitrary

distribution H ∈ ∆([0, 1]) with expectation 1
2 .

There exist cutoffs 0 ≤ p∗0 ≤ p∗1 ≤ 1 such that v(p) > u(p) iff p∗0 < p < p∗1. The results of

the paper extend under the assumption that 0 < p∗0 < p∗ < p∗1 < 1. This is a joint assumption

on all primitives of the model. The assumption that p∗0, p∗1 ∈ (0, 1) states that signals are either

bounded or costly (counterpart of Assumption 2). The assumption that p∗0 < p∗ < p∗1 ensures that

any steady-state equilibrium entails some information acquisition (counterpart of Assumption 1).

The detailed statements are in the supplementary material.

5.6 Sampling from the further past

Our analysis seamlessly accommodates situations where actions are sampled from the more distant

past. Specifically, assume that in period t past actions are each sampled from a random, possibly

different, period t− τ , where the lag τ ≥ 1 follows a geometric distribution with parameter ρ < 1,

and that the vintages t− τ of the sampled actions are unobserved. For ρ = 1, actions are sampled

from the previous period, as above. In the limit ρ → 0, τ is uniformly distributed over the infinite

past. This extension bends itself to an alternative interpretation. Under this equivalent narrative,

a fraction ρ of the population is replaced in each period, agents are long-lived and act (only) when

arriving. In such a extended setup, all our results still hold as stated.27

6 Relation to the literature

Within the wide literature on observational learning, our paper more specifically connects to four

themes.28

26The probability that the state changes from θ = 0 to θ = 1 (resp., from 1 to 0) is λp∗ (resp., λ(1 − p∗)).

REMOVE?
27Note that one must then distinguish the prevalence of action 1 in the existing population at time t, from the

fraction of new agents choosing action 1. See the working paper version (Lévy, Pęski and Vieille, 2022) for details.
28For more complete surveys of the literature, see Smith and Sørensen (2011) and Bikhchandani et al. (2021).
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Random sampling. Banerjee and Fudenberg (2004) and Smith and Sørensen (2020) also assume

that agents draw a random (finite) sample from a continuum of past actions and identify conditions

under which learning is asymptotically complete when the state is fixed. As these papers note,

models with a continuum of agents inherently exhibit better aggregative properties than those with

a sequence of agents. Indeed, when agents observe a common set of predecessors in one-agent

models, they eventually end up in a cascade if signals are bounded. With a continuum of agents

instead, agents update beliefs considering all possible (mutually exclusive) histories, weighted by

their chances (Smith and Sørensen, 2020) and cannot get stuck in a cascade. As soon as agents

observe two or more actions, they will rely more on their private signals when their sample conveys

mixed evidence, which fosters learning. With a fixed state, this logic guarantees complete learning

even when signals are bounded and/or costly (Banerjee and Fudenberg, 2004), and our results thus

come in stark contrast.

Costly information acquisition. Our modeling of costly information acquisition relates our work

to Burguet and Vives (2000) and Ali (2018), who study within one-agent observational learning

models whether costly private signals preclude (or not) complete learning when the state is fixed.

Burguet and Vives (2000) endogenize the choice of precision, and argue that the completeness of

learning is linked to the acquisition of information at beliefs close to certainly, in line with Section

5.4. Likewise, agents in Ali (2018) can choose from a set of experiments, at an idiosyncratic cost.

When costs are bounded away from zero, it follows from their main result that learning is incomplete

if signals are bounded. Unlike these papers however, we assume a continuum of agents. In this more

favorable context, learning is complete when the state is fixed if n ≥ 2, even if signals are costly (see

our extension of Banerjee and Fudenberg (2004) to costly signals in the supplementary material), in

contrast to our main results. The example we analyze in Section 5.3 of a model with a continuum

of (responsive) actions, where learning is incomplete when the state is evolving, and complete if the

state is fixed, reinforces our message: costly signals do not preclude complete learning with a fixed

state, but concur to incomplete learning with changing states.

Stationary analyses of social learning. Dasaratha, Golub and Hak (2023) and Kabos and Meyer

(2021) also develop stationary analyses of social learning. Dasaratha, Golub and Hak consider a

Gaussian environment where agents in a network learn from their neighbors. They show that learn-

ing is improved when agents have heterogeneous neighbors who have access to signals of different

precision. While we rule out such heterogeneity, our analysis also highlights the adverse welfare im-

pact of an excessive correlation of actions between (symmetric) agents. Kabos and Meyer consider

a Markovian environment where past actions may be misrecorded, and investigate whether agents

put too much or too little weight on their private information, while we focus on providing bounds
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on equilibrium welfare.

Rate of learning and the Grossman-Stiglitz paradox. Our results echo the well-known Grossman-

Stiglitz paradox (Grossman and Stiglitz, 1980) according to which agents would ignore their individ-

ual signals if information was fully aggregated, precluding information aggregation in the first place.

In a fixed-state world when asymptotic learning is guaranteed, such a logic imposes that learning

be necessarily slow, as shown in Vives (1993). In a social learning context, Harel et al. (2021) also

establish slow social learning even if agents observe several actions, because the correlation in the

agents’ actions arising from social learning reduces the amount of information these actions reveal

about the state.29 While a high correlation reduces the speed of learning with a fixed state, it lowers

responsiveness in our changing state environment.

7 Conclusion

We consider a general model of social learning with binary actions and states in which states change

over time, information is possibly costly, and agents draw finite samples of past actions. We show

that, under a wide range of situations, the possibility that the state changes drastically limits the

extent of social learning at the steady state, in crisp contrast to what would happen in analogous

fixed-state environments. Beyond this insight, the methods we develop could pave the way to

address interesting questions on how a planner would optimally design the learning environment

(sampling procedures, feedback given to players,...) to foster the welfare gains from social learning

in such changing environments.
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A The case n = 2: Proposition 2

We argue by contradiction and assume that p2 > p̂ for some equilibrium steady state. Since agents

who observe a balanced sample k = 1 hold the belief p1 = 1
2 and acquire information, the fraction

of agents choosing action 1 in period t+ 1 reads

xt+1 = x2t + 2xt(1− xt)ϕθt+1 ,

where ϕθ = 1−Hθ(
1
2) is the probability of playing action 1 in state θ when holding an interim belief

1
2 . Note that ϕ1 = 1− ϕ0 >

1
2 .

Lemma 2 The sequence (xt) converges a.s., with limt→+∞ xt ∈ {0, 1}.

Proof. Choose ϕ̃θ > ϕθ such that ϕ̃0ϕ̃1 < 1
4 , and ε0 > 0 such that 2ϕθ + ε0 < 2ϕ̃θ for each θ.

Note that gθ(x) ≤ 2ϕ̃θx for x < ε0.

Let ε < ε0 be arbitrary. We define two increasing and interlacing sequences (τ inm )m and (τoutm )m

of possibly infinite stopping times. We first set

τout1 := inf{t ≥ 0 : xt < ε and θt = 0, or xt > 1− ε and θt = 1},

and τ in1 := inf{t ≥ τout1 : xt ∈ [ε, 1− ε]}, with inf ∅ = +∞.

These are the first exit and entry times in [ε, 1− ε].30 For m ≥ 1, we set

τoutm+1 := inf{t ≥ τ inm : xt < ε and θt = 0, or xt > 1− ε and θt = 1},

and τ inm+1 := inf{t ≥ τoutm+1 : xt ∈ [ε, 1− ε]}.
Below, we show that (xt) cannot remain indefinitely in the interval [ε, 1− ε]..

30Except for the extra condition on the exit state in the definition of τout1 , which is for convenience.

25



Claim 4 One has P(τoutm+1 < +∞ | τ inm < +∞) = 1 for each m.

Proof of the claim. For x ∈ [ε, 1− ε], one has

g1(x)− x = x− g0(x) = (2ϕ1 − 1)(x− x2) ≥ (2ϕ1 − 1) ε(1− ε) : (A.1)

the difference xt+1 − xt is bounded away from zero. With N := ⌈ 1

ε((1− ε)2ϕ1 − 1)
⌉ and using

(A.1), it follows that xt ∈ [ε, 1 − ε] implies xt+N /∈ [ε, 1 − ε] as soon as θt+1 = · · · = θt+N , which

has probability (1− λ)N . This implies

P
(
τoutm+1 ≤ t+N | τ inm ≤ t < τoutm+1

)
≥ (1− λ)N ,

and therefore,

P
(
τoutm+1 ≥ t+ jN | τ inm ≤ t < τoutm+1

)
≤
(
1− (1− λ)N

)j
for each j. The result follows when j → +∞.

We show that the probability that xt ever re-enters the interval [ε, 1 − ε] after it exits from it,

is bounded away from 1. In the next statement, (Ht)t is the natural filtration of (θt, xt)t and Hτoutm

is the stopped filtration at time τoutm .

Claim 5 There exists a > 0 such that for each m, P
(
τ inm = +∞ | Hτoutm

)
≥ a, w.p. 1 on the event

τoutm < +∞.

Proof of the claim. Consider the event τoutm = t. We assume for concreteness that xt < ε

and θt = 0. By the Markov property, we may assume w.l.o.g. that t = 0 and m = 1.

We define an auxiliary sequence (Wt) of random variables by W0 = 0 and Wt+1 =Wt+ln 2ϕ̃θt+1

for t ≥ 1. Since xt+1 ≤ 2xtϕ̃θt+1 , one has Wt ≥ lnxt − lnx0 for each t. This implies that

τ in1 ≥ inf{t ≥ 1 : Wt ≥ 0}, and P(τ in1 < +∞) ≤ P
(
supt≥1Wt ≥ 0

)
. Introduce the successive

state changes ψ0 = 0 and ψm+1 := inf{t > ψm : θt ̸= θt−1}. Assuming θ0 = 0, θt = 1 whenever

ψ2m−1 ≤ t < ψ2m for some m, and θt = 0 otherwise.31

For i ∈ N, set Xi :=Wψ2i+2
−Wψ2i

. Observe that Wt −Wt−1 > 0 iff θt = 1, hence

sup
t
Wt ≥ 0 ⇔ sup

i
(X0 + · · ·+Xi) ≥ 0.

The r.v.’s (Xi) are i.i.d. with E[X1] =
1

λ

(
ln 2ϕ̃1 + ln 2ϕ̃0

)
< 0. The sequence (X0 + · · · +Xj)j is

therefore a simple random walk with negative drift, which implies

P

(
sup
j

(X1 + · · ·+Xj) ≥ 0

)
≤ 1− a for some a > 0.

31If θ0 = 1, odd and even phases should be switched.
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Claims 4 and 5 yield P
(
τoutm < +∞ and τ inm+1 = +∞ for some m

)
= 1. Hence there is a.s. finite

random time T0 such that either xt < ε for all t ≥ T0, or xt > 1− ε for all t ≥ T0.

Lemma 3 The only symmetric invariant measure for (θt, xt) is uniform over Θ× {0, 1}.

Proof. By Lemma 2, any invariant measure is concentrated on Θ × {0, 1}.32 Since the sets

{x = 0} and {x = 1} are absorbing for (θt, xt), one has for a ∈ {0, 1}

µ(0, a) = P ((θt+1, xt+1) = (0, a))

= (1− λ)P ((θt, xt) = (0, a)) + λP ((θt, xt) = (1, a))

= (1− λ)µ(0, a) + λµ(1, a).

Hence µ(0, a) = µ(1, a): µ is a product distribution. Since µ is symmetric, it is uniform.

The result follows. By Lemma 3, p2 = 1
2 – a contradiction.

B No Social Learning: Theorem 3

B.1 Notation and Preliminaries

We let n ≥ 3, c ≥ 0 and π > 1
2 be given and assume throughout that n2π(1− π) < 1. We consider

strategies such that agents (i) acquire information w.p β when sampling k = 0 or k = n and w.p. 1

otherwise, (ii) follow their signal when they acquire information and (iii) follow the consensus action

when they don’t. Given β, the population state evolves according to xt+1 = gβθt+1
(xt), where

gβθ (x) = πθ + (1− β) {xn (1− πθ)− (1− x)nπθ} (with π1 = π = 1− π0).

We note that gβθ is an increasing bijection from [0, 1] to [πθβ, πθ + (1− β)(1− πθ)], and that there

is a unique x̄βθ such that gβθ (x̄
β
θ ) = x̄βθ . In addition, gβ1 is concave on [0, 1], (gβ1 )

′ is convex on [0, 1]

and gβ1 (x)− x is decreasing on [12 , 1].

We denote by hβθ : [gθ(x̄
β
0 ), gθ(x̄

β
1 )] → [x̄β0 , x̄

β
1 ] the inverse of gβθ on [gθ(x̄

β
0 ), gθ(x̄

β
1 )]. We will view

hβθ as a function defined on [x̄β0 , x̄
β
1 ] by setting

hβ0 (x) = x̄β1 for x > gβ0 (x̄
β
1 ) and hβ1 (x) = x̄β0 for x < gβ1 (x̄

β
0 ).

Given λ, any invariant measure µλ,β for the strategy β is concentrated on Θ× (x̄β0 , x̄
β
1 ). We denote

by F λ,βθ (x) := 2µλ,β({θ} × [0, x]) the cdf of the population state given θ.
32Indeed, by the invariance property, µ(Θ × [ε, 1 − ε]) = P (xt ∈ [ε, 1− ε]) for each t. By Lemma 2, the RHS

converges to zero as t→ +∞ for each ε > 0.
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To avoid clumsy notation, we henceforth omit the superscripts β and λ and simply write

x̄θ, µ, Fθ, gθ and hθ. Similarly, all interim beliefs pk will depend on β and λ, although the notation

does not show. The m-th iterate of gθ is denoted gmθ .

Given a (symmetric) invariant measure µ for β, time invariance that for x ∈ [x̄0, x̄1],

Fθ(x) = (1− λ)Fθ(hθ(x)) + λF1−θ(h1−θ(x)) for each θ ∈ Θ. (C.1)

Lemma 4 For each x ∈ [x̄0, x̄1] and θ ∈ Θ, one has

|Fθ(x)− Fθ(hθ(x))| ≤ λ and |Fθ(x)− Fθ(gθ(x))| ≤ λ

Proof. The first claim is a rewriting of (C.1). The second follows from the first when applied

to gθ(x).

Lemma 5 Let ε > 0 be given. There exists k such that for each β small enough, the following

holds. For each x ≥ ε, y ∈ [x, g1(x)], λ > 0 and m ∈ N, one has∣∣∣∣ 1λ (F1 (g
m
1 (y))− F1 (g

m
1 (x)))− 1

λ
(F1 (y)− F1 (x))

∣∣∣∣ ≤ mkλ.

In addition, for each x, y ∈ (0, 1), one has

lim
λ→0

(F1(y)− F1(x)) = 0.

Proof. Let ε > 0, and assume that nπβ ≤ 1
2ε. There exists k s.t. gk0 (g1(x)) ≤ x, hence

h0(g1(x)) ≤ hk+1
0 (x), for each x ≥ ε. By Lemma 4,

F0 (h0 (y)) ≤ F0(h0 (g1 (x)) ≤ F0

(
hk+1
0 (x)

)
≤ F0(h0(x)) + kλ

hence

F0 (h0 (y))− F0(h0(x)) ≤ kλ. (C.2)

Applying (C.1) repeatedly, we obtain:

F1 (g
m
1 (y))− F1 (g

m
1 (x))

= (1− λ)
(
F1

(
gm−1
1 (y)

)
− F1

(
gm−1
1 (x)

))
+ λ (F0 (h0 (g

m
1 (y)))− F0 (h0 (g

m
1 (x))))

= (1− λ)m (F1 (y)− F1 (x)) + λ
m∑
i=1

(1− λ)l
(
F0

(
h0
(
gi1 (y)

))
− F0

(
h0
(
gi1 (x)

)))
≤F1 (y)− F1 (x) +mkλ2,

where the last inequality follows from (C.2), since gi1 (y) ∈ [gi1 (x) , g1
(
gi1 (x)

)
] for each i.

Under the same conditions on β, for given x and y there exists m such that y ≤ gm1 (x). Using

Lemma 4, one has F1(x) ≤ F1(y) ≤ F1(x) + kλ for each λ > 0.
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B.2 The choice of β

Given λ small, we prove here the existence of a strategy βλ, such that agents with a unanimous

sample are indifferent whether to acquire information.33

Proposition 5 For any m > 0 and λ small enough, there exists βλ ≤ λm, and an invariant measure

for βλ, such that pn = 1− p0 = p̂.

The result follows from Lemmas 6, 7 and 9, and from the fact that the set of symmetric invariant

measures is convex-valued and upper hemi-continuous as a function of β ∈ [0, 1].

Lemma 6 Let β = 0. Then pn = p0 =
1
2 , for each λ.

Proof. Since n2π(1−π) < 1, the proof in Appendix A. In particular, the statements of Lemmas 2

and 3 and Claims 4 and 5 from the Appendix remain true verbatim. The only (symmetric) invariant

measure is the uniform distribution over Θ× {0, 1}.

Lemma 7 Let m > 0 be given. For λ > 0, set β = λm. Then limλ→0 pn = 1.

Proof. Observe that g1(x̄0) ≥ βπ = λmπ. On the other hand, since g′1(0) = (1 − β)nπ > 1,

there exists ε > 0 and a1 > 1 such that g1(x) ≥ a1x for every x ∈ [x̄0, ε] and λ small enough. Hence

there exists M34 such that gi1(x̄0) > ε for each i ≥M ln 1
λ . Using Lemma 4, it follows that

F1 (ε) ≤ F1 (x̄0) +

⌊M ln 1
λ⌋∑

i=0

F1

(
gi+1
1 (x̄0)

)
− F1

(
gi1 (x̄0)

)
≤Mλ ln

1

λ

hence limλ F1(ε) = 0. Using Lemma 5, this implies limλ F1(x) = 0 for each x < 1 and by symmetry,

limλ F0(x) = 1 for each x > 0. The result follows.

B.3 Estimates on F

From now on, we set β = βλ. We here derive further estimates on the invariant measure.

Lemma 8 For each x ∈ (0, 1), one has

lim
λ→0

1

λ
(F1 (g1(x))− F1 (x)) = 2p̂− 1.

33The existence result requires no assumption on p̂, beyond p̂ ∈ ( 1
2
, 1), but the value of βλ of course depends on p̂.

34independent of λ
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Proof. Let ε > 0 be given. By Lemma 4, one has

lim
λ

(∫
(1− x)ndFθ(x)− Fθ(ε)

)
= 0.

Since
∫
(1− x)ndF1(x)∫
(1− x)ndF0(x)

=
p0

1− p0
=

1− p̂

p̂
, this implies that Fθ(ε) is bounded away from zero as

λ→ 0, with lim F1(ε)
F0(ε)

= 1−p̂
p̂ .

On the other hand, symmetry and Lemma 4 imply that limλ F1(ε) = 1 − limλ F0(ε)). Thus,

limλ F1(ε) = limλ F1(x) = 1 − p̂ for each x ∈ (0, 1), and limλ F0(ε) = limλ F0(x) = p̂ for each

x ∈ (0, 1). It follows that

lim
λ→0

1

λ
(F1 (g1(x))− F1 (x)) = lim

λ
(F0(h0(x))− F1(h1(x)) = 2p̂− 1.

Lemma 9 For each ε > 0 and θ, one has lim sup
λ→0

(
λε+ λ2

)−1
∫ ε

0
xdFθ(x) <∞.

Proof. Fix ε > 0, and assume for concreteness θ = 0. The other case follows a similar logic.

Note first that
∫ ε

0
xdF0(x) ≤ βλλ

−1 +

∫ ε

βλλ−1

xdF0(x). Since βλ ≤ λ3, the first integral is at most

λ2 for λ small.

On the other hand, note that g0(x) ≤ x̄0 +
(
max[x̄0,x] g

′
0

)
(x− x̄0) for each x ∈ [x̄0, x̄1].35 Since

g′(0) = (1 − βλ)n(1 − π) < 1, and provided ε is small enough, there exists a0 < 136 such that

g0(x) < a0x for each x ∈ [x̄0, ε] and λ small. Using Lemma 4, one therefore has∫ ε

βλλ−1

xdF0(x) ≤
∑

m:gm0 (ε)>βλλ−1

gm0 (ε)
[
F0 (g

m
0 (ε))− F0

(
gm+1
0 (ε)

)]
≤ λ

∑
m:gm0 (ε)>βλλ−1

gm0 (ε) ≤ λ
∑
m

am0 ε ≤
1

1− a0
λε.

B.4 Estimates on interim beliefs

Proposition 6 below is the central step in the proof.

For k ∈ {1, . . . , n − 1}, we set ψk(x) = xk(1 − x)n−k, and denote by ḡθ the function gβθ in the

limit case β = 0. Proposition 6 relates likelihood ratios to the average value of ψk and ψn−k along

doubly infinite orbits of ḡ1.
35In the case θ = 1, there is k such that gk1 (x) ≥ ε for each x ≥ βλ−1.
36Independent of λ.
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Proposition 6 For each k ∈ {1, . . . , n− 1}, one has

lim sup
λ→0

pk
pn−k

≤ sup
x∈(0,1)

∑
i∈ ψk

(
ḡi1 (x)

)∑
i∈ ψn−k

(
ḡi1 (x)

) . (C.3)

We emphasize that in this statement, the interim belief pk depends on the transition rate λ and

the information acquisition strategy βλ.

Exchanging pk and pn−k yields the inequality lim inf
λ→0

pk
pn−k

≥ inf
x∈(0,1)

∑
i∈ ψk

(
ḡi1 (x)

)∑
i∈ ψn−k

(
ḡi1 (x)

) .
Proof. Let ε > 0 and k ∈ {1, . . . , n − 1} be given. Given λ, we choose m (independent of λ)

such that gm+1
1 (ε) > 1− ε and set ε′ = 1− gm+1

1 (ε)≤ ε. Note that

pk
pn−k

=

∫ 1
0 ψk (x) dF1(x)∫ 1

0 ψn−k (x) dF1(x)
. (C.4)

We write the latter numerator as

Nk :=

∫ ε

0
ψk (x) dF1 (x) +

∫ 1−ε′

ε
ψk (x) dF1 (x) +

∫ 1

1−ε′
ψk (x) dF1 (x) .

Because of Lemma 9 and since
∫ 1
1−ε′ ψk (x) dF1 (x) =

∫ ε′
0 ψn−k (x) dF0 (x) by symmetry, there exists

C0 < +∞ such that for every λ small, one has

Nk = cλ,ελε+

m∑
i=0

∫ gi+1
1 (ε)

gi1(ε)
ψk (x) dF1 (x) , (C.5)

for some cλ,ε ∈ [−C0, C0].

Let i0 = max
{
i : gi (ε) ≤ 1

2

}
and z = gi0 (ε).37 For each i, the change-of-variable formula for

Stieltjes integrals yields∫ gi+1
1 (ε)

gi1(ε)
ψk (x) dF1 (x) =

∫ g1(z)

z
ψk

(
gi−i01 (x)

)
dF1

(
gi−i01 (x)

)
.

Lemma 5 and the continuous differentiability of ψk and of gi−i01 imply the existence of C1 <∞
such that ∫ g1(z)

z
ψk

(
gi−i01 (x)

)
dF1

(
gi−i01 (x)

)
=

∫ g1(z)

z
ψk

(
gi−i01 (x)

)
dF1 (x) + dλ,εmkλ

2

for some dλ,ε ∈ [−C1, C1]. Plugging into (C.5), we get

1

λ
Nk = cλ,εε+ dλ,εmkλ+

m−i0∑
i=−i0

1

λ

∫ g1(z)

z
ψk
(
gi1(x)

)
dF1 (x) . (C.6)

37Note that for λ small, i0 does not depend on λ.
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For fixed ε, we deduce from (C.6) and its counterpart for Nn−k that

pk
pn−k

=
cλ,εε+ dλ,εmkλ+ 1

λ

∫ g1(z)
z

[∑m−i0
i=−i0 ψk

(
gi1 (z)

)]
dF1 (x)

c′λ,εε+ d′λ,εmkλ+ 1
λ

∫ g1(z)
z

[∑m−i0
i=−i0 ψn−k

(
gi1 (z)

)]
dF1 (x)

(C.7)

for suitable constants c′λ,ε and d′λ,ε.

We note that Lemma 8 implies that for a ∈ {k, n− k}, the expression

1

λ

∫ g1(z)

z
ψa (x) dF1 (x) ≥

(
min

x∈[ε,g1(1−ε)]
ψa(x)

)
× min
z∈[ε,g1(ε)]

1

λ
(F1 (g1 (z))− F1 (x))

is bounded away from zero as λ→ 0.

It thus follows from (C.7) that

pk
pn−k

≤

∫ g1(z)
z

[∑m−i0
i=−i0 ψk

(
gi1 (z)

)]
dF1 (x)∫ g1(z)

z

[∑m−i0
i=−i0 ψn−k

(
gi1 (z)

)]
dF1 (x)

+ C (ε+mkλ) (C.8)

for some constant C. We now note that∫ g1(z)
z

∑m−i0
i=−i0 ψk(g

i
1(x))dF1(x)∫ g1(z)

z

∑m−i0
i=−i0 ψn−k(g

i
1(x))dF1(x)

≤ sup
x∈[z,g1(z)]

∑m−i0
i=−i0 ψk

(
gi1 (x)

)∑m−i0
i=−i0 ψn−k

(
gi1 (x)

) . (C.9)

For fixed ε (and hence fixed m and i0), the right-hand side of (C.9) converges to

sup
x∈[z,ḡ1(z)]

∑m−i0
i=−i0 ψk

(
ḡi1 (x)

)∑m−i0
i=−i0 ψn−k

(
ḡi1 (x)

) ≤ sup
x

∑
i∈ ψk

(
ḡi1 (x)

)∑
i∈ ψn−k

(
ḡi1 (x)

) ,
as λ→ 0. Taking first the limit λ→ 0, then ε→ 0 in (C.8) yields the result.

B.5 Conclusion

We have shown that given p̂, there is λ0 such that for λ < λ0, there is a strategy βλ for which

pn = 1−p0 = p̂. To complete the proof, we need to show that provided p̂ is high enough, all interim

beliefs pk (k = 1, . . . , n−1) are s.t. pk ≤ p̂ for λ small. This follows from Proposition 6 and Lemma

10 below.

Lemma 10 One has sup
x

∑
i∈
ψk(ḡ

i
1(x)) < +∞ and inf

x

∑
i∈
ψk(ḡ

i
1(x)) > 0.

Proof. For the lower bound, note that inf
x

∑
i∈
ψk(ḡ

i
1(x)) ≥ min

x∈[ 12 ,ḡ1(
1
2)]
ψk (x) > 0.

For the upper bound, let ε > 0 be such that a1 := min[0,ε] ḡ
′
1(x) > 1 and a0 := max[0,ε] ḡ

′
0(x) < 1,

and let m be s.t. ḡm1 (ε) ≥ 1− ε.
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Then, for each x ∈ (0, 1), one has∑
i∈
ψk
(
ḡi1 (x)

)
≤

∑
i:ḡi1(x)≤ε

ψk
(
ḡi1 (x)

)
+

∑
i:ḡi1(x)∈(ε,1−ε)

ψk
(
ḡi1 (x)

)
+

∑
i:ḡi1(x)≥1−ε

ψk
(
ḡi1 (x)

)
≤

∑
i:ḡi1(x)≤ε

ḡi1 (x) +m+
∑

i:ḡi1(x)≥1−ε

(
1− ḡi1 (x)

)
≤ a1
a1 − 1

ε+ k +
1

1− a0
(1− ε) = C <∞.

C Continuum of actions: Proposition 4

Denote by pa(1) and pa(1)a(2) the interim beliefs after sampling one or two actions. The action a(1)

coincides with the posterior belief of the sampled agent, hence E[u(a(1))] is an upper bound on the

welfare and E[u(pa(1)a(2))] ≤ E[u(a(1))]. On the other hand, taking transitions into account, one has

pa(1) = (1− λ)a(1) + λ(1− a(1)), (C.10)

and therefore, E[u(pa(1)a(2))] ≤ E[u(pa(1))] + λ.

Since u is quadratic, u(p) = u(q) + (p− q)u′(q) + (p− q)2 for each p and q, so that

E[u(pa(1)a(2))]−E[u(pa(1))] = E [(pa(1)a(2) − pa(1)) (2pa(1) − 1)] +E
[
(pa(1)a(2) − pa(1))

2
]
.

By iterated conditional expectations, the first expectation on the RHS is zero, so that E
[
(pa(1)a(2) − pa(1))

2
]
≤

λ and similarly, E
[
(pa(1)a(2) − pa(2))

2
]
≤ λ. Using the inequality (x − y)2 ≤ 2(x2 + y2), we get

E
[
(pa(1) − pa(2))

2
]
≤ 2λ. The result follows, using (C.10).
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