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Abstract

We use a decision-theoretic framework to study the problem of forecasting discrete outcomes

when the forecaster is unable to discriminate among a set of plausible forecast distributions

because of partial identification or concerns about model misspecification or structural breaks.

We derive “robust” forecasts which minimize maximum risk or regret over the set of forecast

distributions. We show that for a large class of models including semiparametric panel data

models for dynamic discrete choice, the robust forecasts depend in a natural way on a small

number of convex optimization problems which can be simplified using duality methods. Finally,

we derive “efficient robust” forecasts to deal with the problem of first having to estimate the set

of forecast distributions and develop a suitable asymptotic efficiency theory. Forecasts obtained

by replacing nuisance parameters that characterize the set of forecast distributions with efficient

first-stage estimators can be strictly dominated by our efficient robust forecasts.
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1 Introduction

In this paper, we study the problem of forecasting discrete outcomes when the researcher is unable

to discriminate among a set of plausible forecast distributions. There are several reasons why

the forecaster might face uncertainty about the forecast distribution. A leading case is partial

identification, in which the data up to the forecast origin only set-identify a subset of parameters

of the forecasting model. Uncertainty about the forecast distribution can also arise when the

forecaster expands the set of models to accommodate concerns about model misspecification or

structural breaks between the in-sample and forecast period.

Suppose that a subset of parameters of a forecasting model are only set-identified. Should the

lack of point identification be a concern for the forecaster? At first glance the answer appears to be

“no”: if the parameters in the identified set generate different forecasts and some of these forecasts

are less accurate than others, then we should be able to discriminate among the parameters based

on the observed data. To the extent that we are unable to do so, the parameterizations should be

observationally equivalent and therefore generate the same forecasts. This intuition is confirmed

in the context of vector autoregressions (VARs): while the structural form of the VAR may only

be set-identified, forecasts only utilize the reduced form of the VAR which is directly identifiable.

This intuition is also confirmed in the context of dynamic linear factor models. The parameters are

only identified up to a particular normalization of the latent factors, but each normalization leads

to identical forecasts. However, the intuition is wrong in many other important settings.

Our paper makes several contributions. First, we show that the VAR intuition does not apply

when forecasting using dynamic discrete choice models for panel data. As is well known (Honoré

and Tamer, 2006; Chamberlain, 2010; Chernozhukov, Fernández-Val, Hahn, and Newey, 2013), the

homogeneous parameters and the correlated random effects distribution are set-identified when no

parametric assumptions are made about the random effects distribution. We demonstrate that in

the panel dynamic discrete choice setting different parameters in the identified set lead to different

forecasts, some more accurate than others. Unlike a VAR, the panel dynamic discrete choice model

has a non-Markovian structure due to the sequential learning about heterogeneous coefficients.

As a consequence, parameterizations that are indistinguishable based on a panel of length T may

become distinguishable in a panel of length T + 1.

Second, we construct forecasts that are “robust” to uncertainty about the parameterization θ

of the forecasting model among a set of parameterizations Θ0 that are observationally equivalent at

the forecast origin T . We refer to this as uncertainty about the forecast distribution for short. Our

robust forecasts minimize either maximum risk or maximum regret (i.e. risk relative to the infeasible

Bayes decision under the true forecast distribution) over the set of forecast distributions. We show

that for binary (or classification) loss, quadratic loss, and logarithmic loss, the optimal binary
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forecast under either robustness criterion depends on two extremum problems which characterize

the smallest and largest conditional probabilities for the outcomes being forecast over the set of

forecasting distributions. Similarly, robust forecasts in the multinomial case depend in a natural

way on a small number of extremum problems. Further, we show that these extremum problems

can be simplified by duality arguments for a broad class of models.

Our robust forecasts are not only applicable in settings in which parameters are set-identified,

but also in environments in which the forecaster is concerned about model misspecification or there

is a structural break at the forecast origin. The common feature is that the forecasts depend on an

unknown parameter θ which takes values in a set Θ0. Under misspecification or structural breaks,

the set Θ0 indexes an enlarged class of models representing plausible deviations from a benchmark

model.

Third, we derive “efficient robust” forecasts to deal with the problem of first estimating the set

Θ0 prior to making the forecast. To do so, we express Θ0 as a (set-valued) function of an identifiable

reduced-form parameter P . In order to develop an optimality theory, we evaluate forecasts by their

integrated maximum risk or regret, averaging over both P and the data. Under this criterion, the

optimal forecast is what we call the Bayesian robust forecast. It is obtained by minimizing the

posterior maximum risk or regret which conditions on the data and averages out P based on its

posterior distribution.

Fourth, we develop an asymptotic efficiency theory for forecasting discrete outcomes under

uncertainty about the parameterization of the forecast distribution when Θ0 is estimated. We

show that in binary and multinomial discrete forecasting problems, forecasts that are asymptotically

equivalent to the Bayesian robust forecasts minimize asymptotic integrated maximum risk or regret.

We refer to such forecasts as asymptotically efficient-robust. We demonstrate that forecasts obtained

by replacing P with an efficient first-stage estimator can be strictly dominated by the Bayesian

robust forecast. This suboptimality of plug-in forecasts arises in settings in which key statistics

that determine the robust forecast are only directionally, but not fully, differentiable with respect

to the identifiable reduced-form parameters. Bagged predictors (see Breiman (1996)) that replace

posterior averaging with averaging across the bootstrap distribution of an efficient estimator of P ,

on the other hand, tend to be asymptotically efficient-robust.

Our paper is related to several literatures. For forecasting short time-series using panel data

see, e.g., Baltagi (2008), Gu and Koenker (2017), Liu (2019), and Liu, Moon, and Schorfheide

(2018, 2020). Applications of partial identification in nonlinear panel data analysis include Honoré

and Tamer (2006) and Chernozhukov et al. (2013). Much of our paper is devoted to forecasting

binary outcomes which has been previously considered by, for instance, Elliott and Lieli (2013),

Lahiri and Yang (2013), and Elliott and Timmermann (2016).
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There is an extensive literature on statistical decision theory following Wald (1950). Closely

related to our approach are Γ-minimax (or Γ-minimax regret) decisions in robust Bayes analysis

(Robbins, 1951; Berger, 1985). In economics, this approach is also related to the multiple priors

framework of Gilboa and Schmeidler (1989) and the robustness literature following Hansen and

Sargent (2001). For econometric applications, Chamberlain (2000, 2001) derives minimax decision

rules under point identification. Kitagawa (2012), Giacomini and Kitagawa (2018), and Giacomini,

Kitagawa, and Uhlig (2019) study robust Bayesian analysis under set identification.

Hirano and Wright (2017) study the problem of forecasting continuous outcomes under un-

certainty about predictor variables in a weak predictor local asymptotic setting. Despite several

differences between their work and ours,1 they also find that bagging can reduce asymptotic risk.

Discrete forecasting has a similar structure to statistical treatment assignment and our efficiency

results are related to efficiency results in that literature, most notably Hirano and Porter (2009).

In their setting, a welfare contrast is a smooth function of a point-identified, regularly estimable

parameter. Their efficient rules are based on plugging-in an efficient estimator of the parameter.

In our setting, uncertainty about the forecast distribution can introduce a type of non-smoothness

to the robust forecasting problem. In consequence, our efficient robust forecasts differ from plug-in

rules.

The remainder of this paper is organized as follows. Section 2 describes the setup, our ob-

jectives, and introduces motivating examples. Sections 3 and 4 derive our robust and efficient

robust forecasts for binary and multinomial forecasting settings, respectively. Section 3 also con-

tains an application to panel models for dynamic binary choice. Section 5 presents the main results

on asymptotic efficiency. Appendix A discusses computation for a broad class of models includ-

ing semiparametric panel data models. Appendix B contains additional results on robust binary

forecasts and all proofs are relegated to Appendix C.

2 Setup, Motivating Examples, and Objectives

2.1 Setup

The econometrician wishes to forecast a random variable Y taking values in a finite set Y. The

econometrician assumes Y is distributed according to an (unknown) distribution in a family of

forecast distributions
{
Pθ(Y = y) : θ ∈ Θ0

}
, where θ ∈ Θ denotes a vector of parameters and

Θ0 ⊆ Θ indexes the set of forecast distributions over which the forecaster seeks robustness. The

1For instance, uncertainty about the parameterization of the forecasting model is resolved asymptotically in their
framework whereas it persists in our setting.
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forecast distributions Pθ(Y = y) may be conditioned on covariates observed by the econometrician

when making the forecast, but we suppress this dependence in what follows to simplify notation.

As we discussed in the Introduction, there are several reasons why the forecaster might be

uncertain about the forecast distribution. A leading case is partial identification, in which Θ0

represents the identified set of parameters that are observationally equivalent up to the forecast

origin. Uncertainty about the forecast distribution can also arise under concerns about model

misspecification or structural breaks. In these settings, Θ0 indexes an enlarged class of models

representing plausible deviations from a benchmark model.

2.2 Motivating Examples

To fix ideas and illustrate the broad applicability of our results, we now present a number of ex-

amples of where this forecasting problem arises. The first four examples use a panel data model

for dynamic discrete choice to show how our approach accommodates concerns about model mis-

specification and structural breaks in a unified manner, though these are relevant concerns for any

forecasting model. The last two examples involve counterfactuals and treatment assignments.

Example 1: Semiparametric random effects model for dynamic binary choice. Let

Yit+1 = I[λi + βYit ≥ Uit+1], P(Uit+1 ≤ u|Y t
i = yt, λi = λ) = Φt+1(u), (1)

where I[y ≥ a] = 1 if y ≥ a and 0 otherwise, Y t
i = (Yi1, ..., Yit)

′, and yt ∈ {0, 1}t. The econometrician

observes Y T
i = (Yi1, ..., YiT )′ for i = 1, . . . , n where T is fixed. To avoid the initial conditions

problem, the econometrician treats Yi0 as unobserved and specifies a joint distribution Πλ,y over

Yi0 and λi. As is well known, β is not point-identified when T is small and no parametric restrictions

are placed on Πλ,y (see, e.g., Cox (1958), Chamberlain (1985), and Magnac (2000)). Moreover, Πλ,y

and the Φt are not nonparametrically point-identified for any T .

The econometrician wishes to forecast individual-level outcomes YiT+1 conditional upon an

individual’s history Y T
i = yT ∈ {0, 1}T . Suppose that the econometrician assumes each of the Φt

takes a parametric form Φ, such as logistic or standard normal. The identified set Θ0 then consists

of all (Πλ,y, β) for which the model-implied probabilities of observing sequences Y T
i = yT ∈ {0, 1}T

are equal to the probabilities observed in the data up to date T :

Θ0 =
{
θ = (β,Πλ,y) ∈ Θ : p(yT |β,Πλ,y) = p(yT ) ∀ yT ∈ {0, 1}T

}
, (2)

where p(yT |β,Πλ,y) denotes the model-implied probabilities and p(yT ) denotes the true (population)

probabilities of observing Y T
i = yT . In the above notation, Y = YiT+1 and the forecast probability
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Pθ denotes the conditional probability over YiT+1 given Y T
i = yT :

Pθ(Y = 1) := Pθ(YiT+1 = 1|Y T
i = yT ) =

∫
Φ(βyiT + λ)p(yT |y0, λ;β)dΠλ,y(λ, y0)∫

p(yT |y0, λ;β)dΠλ,y(λ, y0)
. � (3)

Example 2: Misspecification. Consider the setup described in Example 1, but suppose that the

econometrician adopted a parametric correlated random effect model, Πλ,y = Π(λ, y0; ξ) for ξ ∈ Ξ,

a set of auxiliary parameters. The econometrician is worried that this parametric random effects

specification is misspecified, and so allows for the possibility that Πλ,y ∈ N(ξ), a neighborhood of

Π(λ, y; ξ). Suppose the econometrician again sets Φt = Φ for all t. The set Θ0 is

Θ0 = {θ = (β, ξ,Πλ,y) ∈ Θ : p(yT |β,Πλ,y) = p(yT ) ∀ yT ∈ {0, 1}T and Πλ,y ∈ N(ξ)} .

This setup was considered by Bonhomme and Weidner (2019) under local misspecification, where

N(ξ) are Kullback–Leibler neighborhoods N(ξ) =
{

Π : K(Π ‖Π( · ; ξ)) ≤ δ
}

for each ξ ∈ Ξ with

δ ↓ 0 as n→∞, so that worst-case misspecification bias and sampling uncertainty are of the same

order asymptotically.2 We instead treat δ > 0 as fixed, allowing global misspecification. �

Example 3: Structural breaks. Three types of breaks can, in principle, occur at the forecast

origin T in Example 1: a break in the distribution of the Uit, a break in the individual effects λi,

and a break in β. Suppose the econometrician again takes Φt = Φ for dates t = 1, . . . , T , but

allows for the possibility that ΦT+1 6= Φ. For instance, the econometrician might want to allow

for ΦT+1 ∈ N , a neighborhood of Φ. Even if β and Πλ,y were known at date T , there would still

be a set of forecast distributions for YiT+1 corresponding to different ΦT+1 ∈ N . Using the above

notation, we can redefine Θ0 as

Θ0 =
{
θ = (β,Πλ,y,ΦT+1) ∈ Θ : p(yT |β,Πλ,y) = p(yT ) ∀ yT ∈ {0, 1}T and ΦT+1 ∈ N

}
,

and replace Φ in the definition of Pθ(Y = 1) in (3) with ΦT+1. Breaks in λi can be viewed as a

location shift of the distribution Φt and are subsumed under breaks in the distribution of Uit for

suitable choice of N . Breaks in β can be handled by defining

Θ0 =
{
θ = (β, βT+1,Πλ,y) ∈ Θ : p(yT |β,Πλ,y) = p(yT ) ∀ yT ∈ {0, 1}T and |β − βT+1| ≤ δ

}
,

and by replacing Φ(βyiT + λ) in (3) with Φ(βT+1yiT + λ). �

2Note that the emphasis of Bonhomme and Weidner (2019) is on estimating posterior average effects whereas we
focus on forecasting discrete (e.g. individual-level) outcomes.
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Example 4: Semiparametric random effects model for dynamic multinomial choice.

Let

Yit+1 = arg max
m

(
Umit+1 + εmit+1

)
, U0

it+1 = 0 , Umit+1 = umt+1(Xit, Y
t
i ;φ, λi, Yi0) , m = 1, . . . ,M ,

where εit = (ε0
it, . . . , ε

M
it )′ is a vector of utility shocks with εit|Xit, λi ∼ Φt for each t, Φt is a

potentially time-varying distribution, φ is a vector of homogeneous parameters, λi is a vector

of heterogeneous parameters, and Xit is a vector of exogenous regressors. The econometrician

observes Y T
i = (Yi1, . . . , YiT )′ and XT

i = (Xi1, . . . , XiT )′ for i = 1, . . . , n where T is fixed and

n → ∞. To avoid the initial conditions problem, the econometrician specifies a joint distribution

Πλ,y for (λi, Yi0). As with Example 1, identification of model parameters with fixed T and n→∞
is delicate, especially when parametric assumptions about the Φt and/or Πλ,y are relaxed; see

Honoré and Kyriazidou (2000), Chernozhukov et al. (2013), Khan, Ouyang, and Tamer (2019),

and references therein. Identified sets and forecast probabilities for individual-level outcomes are

constructed in a similar manner to Example 1. �

Example 5: Counterfactuals in structural models. Counterfactuals in structural models

are also subsumed in our framework when the outcome of interest is discrete, as is often the case

for static or dynamic models of discrete choice or discrete games (e.g. firm entry/exit). In the above

notation, θ are the structural parameters estimated under one policy regime, the econometrician

wishes to predict a variable Y , and the model implies that Y is distributed according to Pθ under

the intervention. Partial identification can arise on two fronts. First, the model may itself be

specified flexibly, leading to a non-singleton identified set Θ0 of structural parameters. Second, the

potential for multiple equilibria and lack of knowledge about an equilibrium selection mechanism

under the intervention may lead to a nontrivial set of forecast distributions. This can be subsumed

by treating the selection mechanism itself as part of θ, with Θ0 indexing distributions in a manner

that is robust to the type of selection mechanism (see, e.g., Jia (2008), Ciliberto and Tamer (2009),

and Grieco (2014)). �

Example 6: Treatment assignment. The problem of making discrete forecasts has a very

similar structure to a treatment assignment problem, e.g., determining whether an individual should

be vaccinated. Suppose the econometrician has access to a sample of observational data of size n

and observes for an individual i the triplet Xi =
(
Di,W0i(1−Di),W1iDi

)
, where Di is a treatment

indicator, and W0 and W1 are the potential outcomes (“welfare”) of the untreated and the treated

individuals. As the sample size tends to infinity, the econometrician is able to estimate the reduced

form expectations P =
(
E[D],E[W0(1−D)],E[W1D]

)
.
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Let Pθ denote the joint distribution of (D,W0,W1). To keep the example simple, we assume that

the potential outcomes are binary and take values {a0, a1} and {b0, b1}. Thus, the distribution Fθ

is discrete with support on {0, 1}×{a0, a1}×{b0, b1}. The support points of the potential outcome

distribution can be easily point-identified based on two untreated (and two treated) individuals

with different outcomes. Thus, we exclude the support points from the definition of θ and P .

Using the notation that θijk = P
(
D = i,W0 = aj ,W1 = bk

)
, the identified set Θ0(P ) is defined by

the following set of linear restrictions:

0 ≤ θijk ≤ 1,
∑
i=0,1

∑
j=0,1

∑
k=0,1

θijk = 1, E[D] =
∑
j=0,1

∑
k=0,1

θ1jk,

E[W0(1−D)] =
∑
k=0,1

a0θ00k + a1θ01k, E[W1D] =
∑
j=0,1

b0θ1j0 + b1θ1j1,

where θ stacks the θijk probabilities.

Define the indicator variable Y = I[W1 ≥ W0] which measures whether the treatment effect is

(weakly) positive or not. From a policy maker’s perspective the treatment effect for an individual

not included in the initial trial is uncertain and the treatment decision d ∈ {0, 1} can be viewed as

a forecast of Y ∈ {0, 1} with the understanding that the individual should be treated if the point

forecast of Y is one and not treated otherwise.

Dehejia (2005) analyzed this problem in a decision-theoretic framework under point identifi-

cation with binary treatments. However, the example highlights the well-known result that the

distribution of welfare rankings can be partially identified (see, e.g., Manski (1996, 2000) and Heck-

man, Smith, and Clements (1997)). Manski (2000, 2002, 2004, 2007) used a decision-theoretic

framework to analyze optimal treatment in a planning problem under partial identification and

advocated minimax and minimax regret approaches.3 �

2.3 Objectives

We derive two types of forecasts that deal with uncertainty about the forecast distribution. The

first are robust forecasts which seek to robustify the forecast with respect to Y being distributed

according to any distribution in the class {Pθ : θ ∈ Θ0}. We use minimax and minimax regret

criteria as our notion of robustness. The second are efficient robust forecasts which deal with the

additional problem of having to first estimate Θ0 from data. The exposition in the remainder of this

section and in Section 3 focuses on binary outcomes. We will consider extensions to multinomial

outcomes in Section 4.

3Manski focuses on population welfare objective whereas here we focus on individual-level outcomes. See also
Manski and Tetenov (2007), Hirano and Porter (2009), Tetenov (2012), and Kitagawa and Tetenov (2018) amongst
others, for the analysis of treatment rules under social welfare objectives.
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Known Θ0. Given a decision space D ⊆ [0, 1], a loss function ` : {0, 1}×D → R+ and θ ∈ Θ0, the

risk of d ∈ D under the forecast distribution Pθ is

Eθ[`(Y, d)] = `(0, d)Pθ(Y = 0) + `(1, d)Pθ(Y = 1) .

The expectation Eθ and forecast probabilities Pθ may condition on covariates observed by the

econometrician when making the forecast; we have suppressed this dependence to simplify notation.

The θ-optimal forecast, denoted d∗θ, minimizes risk under Pθ:

Eθ[`(Y, d∗θ)] = inf
d∈D

Eθ[`(Y, d)] .

A minimax forecast solves

inf
d∈D

sup
θ∈Θ0

Eθ[`(Y, d)] . (4)

The regret of a forecast is its risk in excess of the risk of the θ-optimal forecast. A minimax regret

forecast solves

inf
d∈D

sup
θ∈Θ0

(
Eθ[`(Y, d)]− Eθ[`(Y, d∗θ)]

)
. (5)

Robust forecasts are derived under these criteria in Sections 3.2 and 4.2 for binary and multinomial

outcomes, respectively.

Estimated Θ0. In many scenarios the researcher might not know Θ0 and will therefore need to

first estimate the set (or features of Θ0 germane to the forecasting problem) from a sample of data

of size n.4 Our efficient robust forecasts deal with the additional uncertainty that arises from not

knowing Θ0. Here “efficient robust” forecasts are those for which the maximum risk or regret is as

close as possible to the maximum risk or regret of an oracle forecast with known Θ0 (see Section 5).

This efficiency notion recognizes that uncertainty about the true identity of the forecast distribution

among the class {Pθ : θ ∈ Θ0} is the dominant consideration asymptotically, but that estimation

error may nevertheless have a material impact on the forecast in any finite sample.

To make the analysis of efficient robust forecasts tractable but reasonably general, we assume

that the model for the data, say Xn, and outcome Y is indexed by θ and a k-dimensional vector of

reduced-form parameters P ∈ P ⊆ Rk. The parameters θ and P are linked by a known mapping

P 7→ Θ0(P ). For partially identified forecasting models, Θ0(P ) denotes the identified set if P was

the true reduced form parameter value. We assume that Xn and Y are related to θ and P in the

4The known-Θ0 case can be viewed as the limit as n→∞.
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following manner:

Pθ(Y = y|Xn, P ) = Pθ(Y = y) , (6)

Xn|θ, P ∼ Fn,P . (7)

Condition (6) implies that Y does not depend on the data Xn or P beyond dependence through θ.

Condition (7) says that the distribution of the data is fully summarized by P , which is standard

for estimation and inference under partial identification; see, e.g., Moon and Schorfheide (2012).

Examples 1-6 can be shown to fit this framework. Here we just discuss Example 1 for brevity.

Example 1 (continued). In this example, the econometrician observes data Xn = (Y T
i )ni=1.

The data are used to estimate the vector P = (p(yT ))yT∈{0,1}T , which collects the probabilities of

observing sequences yT ∈ {0, 1}T . The mapping Θ0(P ) from P to θ = (β,Πλ,y) is defined in (2).

Given a history yT , the distribution of Y ≡ YiT+1 is fully summarized by θ; see (3). Moreover, the

distribution of the data is itself multinomial over the different realizations of yT with probabilities

P . Thus Fn,P is the product of n multinomial distributions with probabilities P . In this model

y0 and λ are unit specific and the forecasts are constructed based on the posterior distribution of

(y0, λ) conditional on θ = (β,Πλ,y), see (3). �

3 Binary Forecasts

In this section we consider the binary forecasting problem. First, in Section 3.1 we review several

common binary loss functions and their corresponding θ-optimal forecasts. In Section 3.2 we derive

forecasts that are robust to uncertainty about the forecast distribution and in Section 3.3 we

construct efficient robust forecasts for the case of an estimated Θ0. The forecasts are summarized

in Table 1 below. Section 3.4 presents an application to semiparametric panel data models for

dynamic binary choice.

3.1 θ-Optimal Forecasts

We consider three loss functions to evaluate forecast accuracy: binary (or classification) loss,

quadratic loss, and log predictive probability score.

Binary (or Classification) Loss. The binary loss function for D = {0, 1} is

`b
(
y, d
)

= a10I[y = 1, d = 0] + a01I[y = 0, d = 1] , (8)
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where a10, a01 ≥ 0. A special case with a10 = a01 is classification loss `b(y, d) = I[y 6= d].5 The

θ-optimal forecast is

d∗b,θ = I
[
Pθ(Y = 1) ≥ a01

a01+a10

]
(9)

and its risk is

a10Pθ(Y = 1) ∧ a01Pθ(Y = 0) , (10)

where a ∧ b = min{a, b}. The θ-optimal forecast is not unique when Pθ(Y = 1) = a01
a01+a10

. In this

case, however, all θ-optimal forecasts differ only in their handling of ties and have the same risk.

Quadratic Loss. The quadratic loss for d ∈ D = [0, 1] is

`q
(
y, d
)

=
(
y − d

)2
. (11)

With D = [0, 1] the θ-optimal forecast is the mean of Y under the forecast distribution:

d∗q,θ = Eθ[Y ] = Pθ(Y = 1) . (12)

Log Loss. Here the loss function for D = [0, 1] is

`p
(
y, d
)

= −I[y = 1] log d− I[y = 0] log(1− d) . (13)

The θ-optimal forecast is also the mean:

d∗p,θ = Pθ(Y = 1) . (14)

Although the θ-optimal forecasts under quadratic loss and log loss are the same, their risks are

different: the risk under quadratic loss is the variance of the forecast distribution, whereas the risk

under log loss is the entropy of the forecast distribution.

3.2 Robust Forecasts

We now relax the assumption that the forecast distribution Pθ is known and derive forecasts that

are robust with respect to Pθ being any member of the set of forecast distributions {Pθ : θ ∈ Θ0}.
Note, however, that in this section we treat Θ0 as known.

5When a10 = a01, it is without loss of generality to normalize their common value to 1.
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The minimax and minimax regret forecasts will depend on the lower and upper values of the

forecast probabilities as θ varies over Θ0:

pL := inf
θ∈Θ0

Pθ(Y = 1) , and (15)

pU := sup
θ∈Θ0

Pθ(Y = 1) . (16)

Although our characterizations are general, the challenge in implementing robust forecasts is to

solve these extremum problems which will typically require exploiting some additional structure.

Appendix A shows how duality methods may be used to simplify computation in a broad class of

models that includes, but is not limited to, semiparametric dynamic binary choice models.

3.2.1 Minimax Forecasts

Binary (or Classification) Loss. We first derive the forecast that solves (4) for the binary loss

function `b from (8) and decision space D = {0, 1}. The maximum risk of d ∈ {0, 1} is

sup
θ∈Θ0

Eθ[`b(Y, d)] =

[
a01 − a01pL if d = 1 ,

a10 pU if d = 0 .
(17)

The minimax forecast for binary (or classification) loss is therefore

db,mm = I [a01 ≤ a01pL + a10pU ] (18)

and the minimax risk is

R∗b,mm = (a01 − a01pL) ∧ (a10pU ) .

The minimax binary forecast is not unique when a01 = a01pL + a10pU . In this case, each minimax

forecast differs only in its handling of ties and has the same maximum risk.

Quadratic Loss. We now derive the forecast that solves (4) for the quadratic loss function `q

from (11) and decision space D = [0, 1]. The maximum risk of d ∈ [0, 1] is

sup
θ∈Θ0

Eθ[`q(Y, d)] =


pU (1− 2d) + d2 if d < 1

2 ,

pL(1− 2d) + d2 if d > 1
2 ,

1
4 if d = 1

2 .

(19)
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The minimax forecast is therefore

dq,mm =


pU if pU ≤ 1

2 ,

pL if pL ≥ 1
2 ,

1
2 otherwise ,

(20)

and the minimax risk is

R∗q,mm =


pU (1− pU ) if pU ≤ 1

2 ,

pL(1− pL) if pL ≥ 1
2 ,

1
4 otherwise .

Log Loss. The minimax forecast dq,mm is also minimax for the log loss function `p from (13) and

decision space D = [0, 1]; see Appendix B.

3.2.2 Minimax Regret Forecasts

Binary (or Classification) Loss. We first derive the forecast that solves (5) for the binary loss

function from (8) and decision space D = {0, 1}. In view of (10), the inner maximization problem

in (5) becomes

sup
θ∈Θ0

(
Eθ[`b(Y, d)]− a10Pθ(Y = 1) ∧ a01Pθ(Y = 0)

)
=

[
(a01 − (a01 + a10) pL)+ if d = 1,

((a01 + a10) pU − a01)+ if d = 0,
(21)

where a+ = max{a, 0}. Therefore, the minimax regret forecast is

db,mmr = I
[(

a01
a01+a10

− pL
)

+
≤
(
pU − a01

a01+a10

)
+

]
(22)

and its maximum regret is

R∗b,mmr = (a01 − (a01 + a10)pL)+ ∧ ((a01 + a10)pU − a01)+ .

The minimax and minimax regret binary forecasts for classification loss (i.e., a01 = a10) are the

same; see Appendix B. As with other forecasts for D = {0, 1}, the minimax regret forecast is not

necessarily unique. Non-uniqueness arises whenever ( a01
a01+a10

− pL)+ = (pU − a01
a01+a10

)+. If so, each

minimax regret forecast has the same maximum regret and differs only in its handling of ties.
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Quadratic Loss. We now derive the forecast that solves (5) for the quadratic loss function `q

from (11) and decision space D = [0, 1]. By convexity, the maximum regret of d ∈ [0, 1] is

sup
θ∈Θ0

Eθ[`q(Y, d)] =

[
(pU − d)2 if d ≤ pL+pU

2 ,

(pL − d)2 if d ≥ pL+pU
2 .

(23)

The minimax regret forecast for quadratic loss is therefore the midpoint of the extreme forecast

probabilities:

dq,mmr =
pL + pU

2

and the minimax regret is

R∗q,mmr =

(
pU − pL

2

)2

.

Log Loss. Finally, we derive the forecast that solves (5) for the log loss function from (13) and

decision space D = [0, 1]. The minimax forecast is the θ-optimal forecast if pL = pU . Suppose

pL < pU . The regret of any d ∈ [0, 1] is the Kullback–Leibler (KL) divergence

Pθ(Y = 1) log

(
Pθ(Y = 1)

d

)
+ Pθ(Y = 0) log

(
Pθ(Y = 0)

1− d

)
.

By convexity, the maximum regret must be obtained at either pL or pU :

sup
θ∈Θ0

(
Eθ[`p(Y, d)]− Eθ[`p(Y, d∗p,θ)]

)
= max

p∈{pL,pU}

(
p log

(p
d

)
+ (1− p) log

(
1− p
1− d

))
. (24)

When p = pL, term in parentheses is increasing for d ≥ pL and when p = pU the term in parentheses

is decreasing for d ≤ pL. The maximum regret is therefore minimized by choosing d to equate the

two values. The minimax regret forecast under the log-scoring rule dp,mmr uniquely solves

log

(
dp,mmr

1− dp,mmr

)
=
h(pU )− h(pL)

pU − pL
, (25)

where h(p) = −p log p − (1 − p) log(1 − p) is the entropy of a Bernoulli distribution with success

probability p. The minimax regret forecast is therefore the value p that minimizes the maximum

KL divergence between the Bernoulli distribution and the forecast distribution Pθ over θ ∈ Θ0.

3.3 Efficient Robust Forecasts

We now dispense with the assumption that Θ0 is known. We consider the setting described at

the end of Section 2 in which the econometrician wishes to forecast Y having observed data Xn.

In order to develop an optimality theory, we evaluate forecasts by their integrated maximum risk,
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defined as

Bnmm(dn;π) =

∫ ∫
sup

θ∈Θ0(P )
Eθ[`(Y, d(Xn))] dΠn(P |Xn) dFn(Xn) . (26)

We will use a similar definition of integrated maximum regret, denoted by Bmmr(dn;π). Here, π is

a prior distribution for P with support P, Πn(P |Xn) is the posterior distribution of P after having

observed the data Xn, and Fn(Xn) is the marginal distribution of the data Xn. As in Section 3.2,

conditional on P ∈ P, we consider the maximum risk or regret over Θ0(P ). This is the maximum

risk faced by the forecaster if P were the true reduced-form parameter. We then average across

the joint distribution of (P,Xn) to obtain the integrated maximum risk. The factorization of the

joint distribution in the conditional distribution Πn(P |Xn) and the marginal distribution Fn(Xn)

highlights the well-known result that the integrated (maximum) risk is minimized by choosing

the forecast that minimizes the posterior (maximum) risk for each realization Xn. We denote the

optimal forecasts under the risk and regret objectives by db,mm and db,mmr, respectively. We refer to

them as Bayesian robust forecasts and derive explicit formulas in the remainder of this subsection.

Remark 3.1. While it may seem asymmetric to use an integrated (or Bayes) criterion to deal

with P but minimax risk or regret to deal with θ conditional on P , there are two reasons for

doing so. The first is from a robust Bayes perspective on the forecasting problem under partial

identification. If the true value P0 is identified and consistently estimable, then the posterior for P

will not depend on π asymptotically. In contrast, the data do not update prior beliefs about θ over

the identified set Θ0. Therefore, the posterior for θ in a Bayesian implementation will depend on

the prior asymptotically (see, e.g., Moon and Schorfheide (2012)). Our use of minimax criteria to

deal with partial identification of θ can be motivated from robustness considerations with respect to

the prior on θ (Kitagawa, 2012; Giacomini and Kitagawa, 2018). The second is practical: average

criteria lead to tractable, easily implementable forecasts. �

3.3.1 Minimax Forecasts

We now make dependence of pL and pU on the reduced-form parameter explicit by writing

pL(P ) := inf
θ∈Θ0(P )

Pθ(Y = 1) , pU (P ) := sup
θ∈Θ0(P )

Pθ(Y = 1) .

Binary (or Classification) Loss. In view of (27), the posterior average maximum risk of choos-

ing d ∈ {0, 1} is

∫
sup

θ∈Θ0(P )
Eθ[`b(Y, d)] dΠn(P |Xn) =

[
a01(1−

∫
pL(P ) dΠn(P |Xn)) if d = 1 ,

a10

∫
pU (P ) dΠn(P |Xn) if d = 0 .

(27)
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The Bayesian robust forecast is therefore

db,mm(Xn) = I
[
a01 ≤

∫
(a01pL(P ) + a10pU (P )) dΠn(P |Xn)

]
. (28)

Quadratic Loss. In view of (19), the posterior average maximum risk of choosing d ∈ [0, 1] is

∫
sup

θ∈Θ0(P )
Eθ[`q(Y, d)] dΠn(P |Xn) =


(
∫
pU (P ) dΠn(P |Xn))(1− 2d) + d2 if d < 1

2 ,

(
∫
pL(P ) dΠn(P |Xn))(1− 2d) + d2 if d > 1

2 ,
1
4 if d = 1

2 .

The Bayesian robust forecast is therefore

dq,mm(Xn) =


∫
pU (P ) dΠn(P |Xn) if

∫
pU (P ) dΠn(P |Xn) ≤ 1

2 ,∫
pL(P ) dΠn(P |Xn) if

∫
pL(P ) dΠn(P |Xn) ≥ 1

2 ,
1
2 otherwise

(29)

Log Loss. The forecast dq,mm(Xn) is also the Bayesian robust forecast for the log loss function

`p from (13) and decision space D = [0, 1]; see Appendix B.

3.3.2 Minimax Regret Forecasts

Binary Loss. In view of (21), the posterior average maximum regret for d ∈ {0, 1} is∫
sup

θ∈Θ0(P )

(
Eθ[`b(Y, d)]− a10Pθ(Y = 1) ∧ a01Pθ(Y = 0)

)
dΠn(P |Xn)

=

[ (
a01 − (a01 + a10)(

∫
pL(P ) dΠn(P |Xn))

)
+

if d = 1,(
(a01 + a10) (

∫
pU (P ) dΠn(P |Xn))− a01

)
+

if d = 0.

The Bayesian robust forecast is therefore

db,mmr(Xn) = I
[∫ (

a01
a01+a10

− pL(P )
)

+
dΠn(P |Xn) ≤

∫ (
pU (P )− a01

a01+a10

)
+

dΠn(P |Xn)

]
. (30)

Quadratic Loss. In view of (23), the posterior average maximum risk of choosing d ∈ [0, 1] is∫
(pU (P )− d)2I

[
d <

pL(P ) + pU (P )

2

]
+ (pL(P )− d)2I

[
d ≥ pL(P ) + pU (P )

2

]
dΠn(P |Xn) .

The Bayesian robust forecast dq,mmr(Xn) is the minimizing value for d ∈ [0, 1], which can be

computed numerically (e.g. by replacing the integral with the average across a large number of

draws from the posterior then minimizing with respect to d).
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Log Loss. In view of (24), the posterior average maximum risk of choosing d ∈ [0, 1] is∫
max

p∈{pL(P ),pU (P )}

(
p log

(p
d

)
+ (1− p) log

(
1− p
1− d

))
dΠn(P |Xn)

The Bayesian robust forecast dp,mmr(Xn) is the minimizing value for d ∈ [0, 1], which again can be

computed numerically.

3.3.3 Summary

Table 1 summarizes the θ-optimal, the robust, and the Bayesian robust decisions under binary,

quadratic, and log loss functions.

3.4 Numerical Illustration

We close this section with a numerical illustration to show how uncertainty about the true θ ∈ Θ0

can induce substantial variation in the implied forecast distribution in nonlinear models. We use a

panel probit design from Honoré and Tamer (2006). The model is as in Example 1 with Φt taken

to be the standard normal cdf for all t. The distribution Πλ,y is unspecified, but λ is assumed to be

supported on the discrete evenly-spaced grid {−3,−2.8, . . . , 2.8, 3}. Under the true data-generating

process, λ and Yi0 are independent with Yi0 taking the value 0 or 1 with probability 1
2 and the

probability mass for λ is assigned by interpolating a N(0, 1) distribution on the support points.6

In this example, we wish to forecast YiT+1 having observed Y T
i . In our earlier notation, the

outcome of interest Y represents YiT+1 and the forecast probability Pθ(Y = 1) denotes the prob-

ability under θ that YiT+1 = 1 given Y T
i ; see display (3). The identified set Θ0 consists of all

(β,Πλ,y) that can match the model-implied probabilities of observing sequences Y T
i = yT with the

true probabilities for all yT ∈ {0, 1}T ; see display (2).

We may compute the set of forecast probabilities {Pθ(Y = 1) : θ ∈ Θ0} by adapting linear

programming methods from Honoré and Tamer (2006) as follows. Denote the support of Πλ,y

by (λ1, y01), . . . , (λL, y0L). As the support of Πλ,y is discrete, we identify Πλ,y with a L-vector

π ∈ ∆L−1 :=
{
x ∈ RL+ :

∑L
l=1 xl = 1

}
and write the restrictions defining Θ0 in display (2) as

G(β)π = r. The matrix G(β) is a 2T × L matrix whose lth column Gl(β) is the 2T -vector of

model-implied probabilities of observing different realizations of Y T
i conditional on λi = λl and

Yi0 = y0l:

Gl(β) =
(
p(yT |y0l, λl;β)

)
yT∈{0,1}T

,

6See p.619 in Honoré and Tamer (2006) for details.
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θ-optimal:
d∗θ := argmind∈D Eθ[`(Y, d)]

Binary `b d∗b,θ = I[(a01 + a10)Pθ(Y = 1) ≥ a01]

Quadratic `q d∗q,θ = Pθ(Y = 1)

Log `p d∗p,θ = d∗q,θ
Robust (minimax):

dmm := argmind∈D
(
supθ∈Θ0

Eθ[`(Y, d)]
)

Binary `b db,mm = I [a01pL + a10pU ≥ a01]

Quadratic `q dq,mm =

 pU if pU ≤ 1
2 ,

pL if pL ≥ 1
2 ,

1
2 otherwise ,

Log `p dp,mm = dq,mm
Robust (minimax regret):

dmmr := argmind∈D
(
supθ∈Θ0

Eθ[`(Y, d)]− Eθ[`(Y, d∗θ)]
)

Binary `b db,mmr = I[( a01
a01+a10

− pL)+ ≤ (pU − a01
a01+a10

)+]

Quadratic `q dq,mmr = 1
2(pL + pU )

Log `p dq,mmr = see equation (25)

Bayesian robust (minimax):
dmm(Xn) := argmind∈D

∫
supθ∈Θ0(P ) Eθ[`(Y, d)] dΠn

Binary `b db,mm(Xn) = I[a01 ≤
∫

(a01pL(P ) + a10pU (P )) dΠn]

Quadratic `q dq,mm(Xn) =


∫
pU (P ) dΠn if

∫
pU (P ) dΠn ≤ 1

2 ,∫
pL(P ) dΠn if

∫
pL(P ) dΠn ≥ 1

2 ,
1
2 otherwise

Log `p dp,mm(Xn) = dq,mm(Xn)

Bayesian robust (minimax regret)
dmmr(Xn) := argmind∈D

∫
(supθ∈Θ0(P ) Eθ[`(Y, d)]− Eθ[`(Y, d∗θ)]) dΠn

Binary `b db,mmr(Xn) = I[
∫

( a01
a01+a10

− pL(P ))+dΠn ≤
∫

(pU (P )− a01
a01+a10

)+dΠn]

Quadratic `q dq,mmr(Xn) = arg mind∈[0,1]

∫
(pU (P )− d)2I[d < pL(P )+pU (P )

2 ] dΠn

+
∫

(pL(P )− d)2I[d ≥ pL(P )+pU (P )
2 ] dΠn

Log `p dp,mmr(Xn) = arg mind∈[0,1]

∫
maxp∈{pL(P ),pU (P )}(p log(pd) + (1− p) log(1−p

1−d)) dΠn

Table 1: Summary of binary forecasts for binary loss `b from (8), quadratic loss `q
from (11), and log loss `p from (13). To simplify notation, Πn denotes Πn(P |Xn).

where

p(yT |y0, λ;β) =
T∏
t=1

Φ(βyt−1 + λ)yt(1− Φ(βyt−1 + λ))1−yt , (31)

and r =
(
p(yT )

)
yT∈{0,1}T is the 2T -vector that collects the true probabilities of each realization of

the sequences Y T
i . The forecast probability Pθ(YiT+1 = 1|Y T

i = yT ) from display (3) may also be
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written as b(β)′π where b(β) is an L-vector whose lth entry is

bl(β) =
Φ(βyT + λl)p(y

T |y0l, λl;β)

p(yT )
,

where yT denotes the element of yT corresponding to date T . Note that we can place p(yT ) in the

denominator because
∫
p(yT |y0, λ;β)dΠλ,y(λ, y0) = p(yT ) for any θ ∈ Θ0.

The problem of computing pU can be written as

pU = sup
β

(
sup

π∈∆L−1

b(β)′π s.t. G(β)π = r

)
,

with the understanding that the value of the inner maximization over π is −∞ if there does not exist

a π for which G(β)π = r. For such values of β there does not exist a Πλ,y such that the model can

explain the observed probabilities up to date T . As shown in Appendix A, the inner optimization

over Πλ,y can be rewritten as a linear program, leading to the equivalent representation

pU = sup
β

(
inf

v∈RK+1
[01×K , 1] v s.t. A(β)v ≤ −b(β)

)
, (32)

where K = 2T and A(β) = [G(β)′ − (1L×1 ⊗ r′) , −1L×1] with ⊗ denoting the Kronecker product.

The lower value is computed similarly; see Appendix A.

Suppose T = 2 and the true β0 = 0.2. The identified set for β is approximately [−2.4403, 1.2428];

these are all values of β for which there is a Πλ,y such that the model can explain the observed

probabilities up to date T = 2. The limits of the identified set for β are denoted as grey dashed

vertical lines in Figure 1. For each value of β in this set, we compute the smallest and largest

values of the forecast probability Pθ(Y = 1) subject to the constraint that (β,Πλ,y) ∈ Θ0. The

linear programming problem to compute the upper probability conditional on β is characterized in

parentheses on the right-hand side of (32). The range of forecast probabilities as a function of β

is shown as the shaded regions in Figure 1 for different values of YiT . Maximizing and minimizing

with respect to β yields the values pL and pU ; these are marked as black dotted horizontal lines

in Figure 1. Although each (β,Πλ,y) ∈ Θ0 induces identical distributions over Y T
i , they induce

different distributions over YiT+1 and therefore different θ-optimal forecasts. As a consequence,

some parameterizations that are indistinguishable based on T observations become distinguishable

based on T + 1 observations and the identified set shrinks over time. This feature is due to the

sequential learning about heterogeneous parameters that generates a non-Markovian structure of

the model.

In this numerical example, we consider robust forecasts which take Θ0 as known. This is the

asymptotic problem faced by the forecaster in a large-n, fixed-T setting. Suppose we condition on
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(a) YiT = 0 (b) YiT = 1

Figure 1: Panel probit example with T = 2 and β0 = 0.2. Shaded regions denote the sets
{Pθ(Y = 1) : (β,Πλ,y) ∈ Θ0} as a function of β. Black dotted lines denote pL and pU .

Y T
i with YiT = 0.7 The set of forecast probabilities {Pθ(Y = 1) : θ ∈ Θ0} is wide, spanning from

pL = 0.2997 to pU = 0.6803 (see the left panel of Figure 1). In particular, there are θ ∈ Θ0 for

which Pθ(Y = 1) < 1
2 so the θ-optimal decision would be d∗b,θ = 0 for these θ. However, there are

other θ ∈ Θ0 for which Pθ(Y = 1) > 1
2 and therefore the corresponding θ-optimal decision would be

d∗b,θ = 1 for these θ. Our robust forecasts are useful here as the forecaster has no way to discriminate

among θ ∈ Θ0 based on date-T information. As pL + pU < 1, the minimax and minimax regret

forecast for symmetric binary loss is therefore db,mm = db,mmr = 0. Similarly, when YiT = 1 the

set of forecast probabilities {Pθ(Y = 1) : θ ∈ Θ0} is again quite wide, spanning pL = 0.3775 to

pU = 0.7320 (see the right panel of Figure 1). Here pL + pU > 1 so db,mm = db,mmr = 1.

4 Multinomial Forecasts

We now extend the preceding analysis to multinomial forecasts. We first describe θ-optimal forecasts

with known θ (Subsection 4.1), then describe forecasts that are robust with respect to the set of

forecasting models {Pθ : θ ∈ Θ0} with Θ0 known (Subsection 4.2), before concluding with efficient

robust forecasts that deal with both model and sampling uncertainty (Subsection 4.3). The forecasts

are summarized in Table 2 at the end of this section.

4.1 θ-optimal Forecasts

Throughout this section we focus on classification loss for the decision space D = {0, 1, . . . ,M}:

`c(y, d) = I[y 6= d] . (33)

7In this design, the conditional distribution of YiT+1 given Y Ti depends only on YiT .
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This loss function generalizes binary loss in the symmetric case (i.e., a01 = a10) to multinomial

forecasts.8 The θ-optimal forecast in this environment under Pθ is the most likely outcome:

d∗c,θ ∈ arg max
m

Pθ(Y = m) . (34)

In the above display we write “∈” to allow for the possibility of ties. When the arg max is non-

singleton, any element of the set of minimizers is a θ-optimal point forecast. Any θ-optimal forecast

has risk

1−max
m

Pθ(Y = m) .

4.2 Robust Forecasts

We now derive the minimax and minimax regret forecasts that solve the decision problems (4) and

(5) for the classification loss function `c from (33) and decision space D = {0, 1, . . . ,M}.

4.2.1 Minimax Forecasts

In the multivariate case, the analogues of pL and pU are the M + 1 quantities

p
m

= inf
θ∈Θ0

Pθ(Y = m) , m ∈ {0, 1, . . . ,M} . (35)

Computation of p
m

using duality methods is discussed in Appendix A. The maximum risk from

choosing d ∈ D is

sup
θ∈Θ0

Eθ[`c(Y, d)] = 1− p
d
. (36)

The minimax forecast for classification loss is therefore

dc,mm ∈ arg max
m

p
m

(37)

and the minimax risk is

R∗c,mm = 1−max
m

p
m
. (38)

As before, the minimax-optimal forecast is not necessarily unique. Non-uniqueness arises when the

set of maximizers of m 7→ p
m

is not a singleton. If so, each minimax-optimal forecast differs only

in its handling of ties and has the same maximum risk.

8It is straightforward to modify what follows to penalize some types misclassifications more heavily than others,
as we did in the binary case. We adopt the equal-weighted specification (33) for notational convenience.
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4.2.2 Minimax Regret Forecasts

For minimax regret forecasts, define

∆pm := sup
θ∈Θ0

(
max
m′

Pθ(Y = m′)− Pθ(Y = m)

)
. (39)

Suppose the forecaster chooses d. The difference maxm′ Pθ(Y = m′)−Pθ(Y = d) is the regret from

this choice under the forecast distribution Pθ. Having chosen d, the quantity ∆pd is therefore the

forecaster’s maximum regret over all θ ∈ Θ0. The minimax regret forecast is therefore

dc,mmr ∈ arg min
m

∆pm .

and the minimax regret is

R∗c,mmr = min
m

∆pm .

Unlike the binary case, equivalence of minimax and minimax regret forecasts for classification loss

no longer holds when M ≥ 2; see Appendix B. Computation of ∆pm is discussed in Appendix A.

4.3 Efficient Robust Forecasts

In this section we now drop the assumption that Θ0 is known and consider also the need to estimate

features of Θ0 that are relevant for the forecasting problem from data. We consider the same setup

and notation as developed for the binary case in Section 3.3.

4.3.1 Minimax Forecasts

Here we make dependence on the reduced-form parameter explicit by defining

p
m

(P ) := inf
θ∈Θ0(P )

Pθ(Y = m) .

In view of (36), the posterior average maximum risk of choosing d ∈ D is∫
sup

θ∈Θ0(P )
Eθ[`c(Y, d)] dΠn(P |Xn) = 1−

∫
p
d
(P ) dΠn(P |Xn)

The Bayesian robust forecast is therefore

dc,mm(Xn) ∈ arg max
m

(∫
p
m

(P ) dΠn(P |Xn)

)
. (40)
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θ-optimal d∗c,θ ∈ arg maxm Pθ(Y = m)

Robust (minimax) dc,mm ∈ arg minm ∆pm
Robust (minimax regret) dc,mmr ∈ arg minm ∆pm
Bayesian robust (minimax) dc,mm(Xn) ∈ arg maxm

( ∫
p
m

(P ) dΠn(P |Xn)
)

Bayesian robust (minimax regret) dc,mmr(Xn) ∈ arg minm
( ∫

∆pm(P ) dΠn(P |Xn)
)

Table 2: Summary of multinomial forecasts for classification loss `c from (33).

In case of ties, any (possibly randomized) tie-breaking rule is optimal. For instance, one could

simply choose the smallest value of m among the set of maximizers.

4.3.2 Minimax Regret Forecasts

For minimax regret forecasts, define

∆pm(P ) := sup
θ∈Θ0(P )

(max
m′

Pθ(Y = m′)− Pθ(Y = m)) .

The posterior average maximum regret of choosing d ∈ D is∫
∆pd(P ) dΠn(P |Xn) .

The Bayesian robust forecast is therefore

dc,mmr(Xn) ∈ arg min
m

(∫
∆pm(P ) dΠn(P |Xn)

)
. (41)

In case of ties, any (possibly randomized) tie-breaking rule is optimal. For instance, one could

simply choose the smallest value of m among the set of minimizers.

5 Asymptotic Efficiency for the Robust Forecasting Problem

In this section we focus on forecasts that are asymptotically efficient-robust. We continue to

evaluate the forecasts by their integrated maximum risk (or regret), but only require this criterion

to be minimized in the limit as the sample size n tends to infinity. This enlarges the class of efficient

forecasts to those that are asymptotically equivalent to the Bayesian robust forecast.

Some interesting findings emerge. First, “plug-in” rules, in which an efficient estimator P̂ is

plugged into the rules derived in Sections 3.2 and 4.2, are not asymptotically efficient-robust if

the key quantities which determine the robust forecast (i.e., pL(P ) and pU (P ) in the binary case)
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are only directionally differentiable functions of P . This stands in contrast with other asymptotic

efficiency results for related problems that depend smoothly on first-stage estimators, including

point estimation under partial identification (Song, 2014) and efficient statistical treatment rules

under point identification (Hirano and Porter, 2009), for which plug-in rules are efficient. Second,

forecasts that are constructed via bagging tend to be asymptotically efficient-robust. To construct

such forecasts, the posterior distribution for P is replaced by the bootstrap distribution of an

efficient estimator of P . The forecast is then chosen to minimize the maximum risk or regret over

Θ0(P ) averaged across the bootstrap distribution. As discussed in Remark 5.6 below, it can be

shown that the bagged forecasts are asymptotically equivalent to the Bayesian robust forecasts even

under directional differentiability.

5.1 Limit Experiment

Our approach follows Hirano and Porter (2009) and uses Le Cam’s limits of experiments framework.

As is standard for treatments of asymptotic efficiency (see, e.g., van der Vaart (2000)), we work

with a local reparameterization in which the reduced form parameter is Pn,h = P0 + n−1/2h for P0

fixed and h ranging over Rk. Let
Pn,h
 and

Pn,h→ denote convergence in distribution and in probability

under the sequence of measures {Fn,Pn,h}n≥1. The model for Xn is locally asymptotically normal at

P0 if for each h0 ∈ Rk, the likelihood ratio processes indexed by any finite subset H ⊂ Rk converge

weakly to the likelihood ratio in a shifted normal model:(
dFn,Pn,h
dFn,Pn,h0

)
h∈H

Pn,h0 

(
exp

(
(h− h0)′Z − 1

2
(h− h0)′I0(h− h0)

))
h∈H

(42)

with Z ∼ N(h0, I
−1
0 ) and I0 nonsingular. Let Eh and Ph denote expectation and probability with

respect to Z ∼ N(h, I−1
0 ).

Assumption 5.1.

1. P is an open subset of Rk with P0 ∈ P;

2. The model for Xn is locally asymptotically normal at each P0 ∈ P.

In the dynamic binary choice example, Assumption 5.1.1. implies we observe all possible realizations

of histories Y T
i ∈ {0, 1}T up to time T with positive probability.

To describe the limit experiment, consider the collection D of sequences of forecasts {dn}n≥1

that converge in distribution under {Fn,Pn,h}n≥1:

D =

{
{dn}n≥1 : dn(Xn)

Pn,h
 QP0,h for all h ∈ Rk and P0 ∈ P

}
, (43)
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where QP0,h denotes a probability measure on D equipped with its Borel σ-algebra. Assumption

5.1 permits application of an asymptotic representation theorem of van der Vaart (1991). For

any {dn}n≥1 ∈ D there exists a function d∞P0
(Z,U) with d∞P0

(Z,U) ∼ QP0,h where Z ∼ N(h, I−1
0 )

and U ∼ Uniform[0, 1] independently of Z is a randomization term. As n → ∞, the average

excess maximum risk and regret of any sequence of forecasts {dn}n≥1 ∈ D converges to a limiting

counterpart for its representation d∞P0
(Z,U) in the limit experiment.

5.2 Asymptotic Efficiency

The robust forecasts derived in Sections 3.2 and 4.2 are oracle forecasts in the sense that they were

obtained under the assumption of knowledge of the true set Θ0. To distinguish the oracle forecasts

from the data-dependent forecasts dmm(Xn) and dmmr(Xn), in what follows we use the notation

domm(P ) and dommr(P ) to denote the oracle forecasts when P is the true reduced-form parameter.

To facilitate the asymptotic calculations, we evaluate forecasts by their excess maximum risk or

regret relative to the oracle. The excess maximum risk of dn(Xn) is

∆Rmm(dn;P,Xn) = sup
θ∈Θ0(P )

Eθ[`(Y, dn(Xn))]− sup
θ∈Θ0(P )

Eθ[`(Y, domm(P ))] .

Integration over (P,Xn) leads to the integrated excess maximum risk

∆Bnmm(dn;π) =

∫ ∫ √
n∆Rmm(dn;P,Xn) dΠn(P |Xn) dFn(Xn).

We standardize by
√
n and recenter at the maximum risk of the oracle to ensure that ∆Bnmm(dn;π)

converges to a finite but potentially non-zero limit, though this does not change the ranking of

forecasts. Therefore, the Bayes robust forecast under minimax risk also minimizes ∆Bnmm(dn;π).

Excess maximum regret ∆Rmmr and integrated excess maximum regret ∆Bnmmr(dn;π) are defined

similarly, replacing risk in the above display with regret.

To derive the asymptotic counterparts, we begin by calculating a frequentist risk that averages

over the data Xn conditional on P and then integrates over P using the prior π. To express the

frequentist risk, let EPn,h denote the expectation with respect to Xn ∼ Fn,Pn,h . Using this notation

and conducting the change-of-variables from Pn,h to h, the frequentist excess maximum risk can be

expressed as

∆Bnmm(dn;P0, π) =

∫
EPn,h

[√
n∆Rmm (dn, Pn,h;Xn)

]
π (Pn,h) dh . (44)

Here we dropped the Jacobian term that arises from the change-of-variables because it simply scales

the average excess maximum risk by a power of n without changing the ranking of forecasts. We
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include P0 in the conditioning set to indicate that the calculations are done locally around P0.

The regret ∆Bnmmr(dn;P0, π) can be expressed in a similar manner. asymptotically efficient-robust

forecasts are those that minimize limn→∞∆Bnmm(dn;P0, π) and limn→∞∆Bnmmr(dn;P0, π). Under

conditions permitting the interchange of limits and integration, we obtain

lim
n→∞

∆Bnmm(dn;P0, π) = π(P0)

∫ (
lim
n→∞

EPn,h
[√
n∆Rmm (dn, Pn,h;Xn)

])
dh ,

and similarly for regret. The limit in parentheses will depend on the sequence of forecasts {dn}n≥1

through its representation in the limit experiment. Also note that the asymptotic ranking of

forecasts does not depend on π.

The following example illustrates the normalization of the excess maximum risk and the use of

the local reparameterization.

Example 7: Local parameters and frequentist excess maximum risk. Suppose that

P = (0, 1), pL(P ) = P , and

pU (P ) =

[
1
2 P < 1

2 ,

(2P − 1
2) ∧ 1 P ≥ 1

2 ,

For a binary loss function with a01 = a10 = 1, the robust forecast takes the form

domm(P ) = I[1 ≤ pL(P ) + pU (P )] = I[P ≥ 1
2 ]. (45)

If the true P is bounded away from 1
2 , then eventually we will learn whether it is less or greater

than 1
2 and make the optimal decision. The most challenging case is when P is very close to 1

2 .

Thus, we center the local reparameterization at P0 = 1
2 . Suppose that under Pn,h the frequentist

sampling distribution and the Bayesian posterior for P are

P̂ |Pn,h ∼ N(Pn,h, n
−1) , P |Xn ∼ N(P̂ , n−1) ,

respectively. The posterior is obtained under a uniform prior on P when n is large enough so

that the truncation effect of the prior at the boundary of (0, 1) is negligible. Under the local

reparameterization, the sampling distribution of ĥ =
√
n(P̂ −P0) and the posterior distribution for

h =
√
n(P − P0) are

ĥ|(P0, h0) ∼ N(h0, 1) , h|(Xn, P0) ∼ N(ĥ, 1) ,

respectively.
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In this example P̂ (equivalently ĥ) is a sufficient statistic. For any decision dn(ĥ), we obtain

sup
θ∈Θ0(Pn,h0 )

Eθ[`(Y, dn(ĥ))] =

[
1− pL(Pn,h0) if dn(ĥ) = 1 ,

pU (Pn,h0) if dn(ĥ) = 0 .

Here 1− pL(Pn,h0) = 1/2− n−1/2h0 is linear in h0 whereas

pU (Pn,h0) =

{
1
2 + 2n−1/2h0 if h0 ≥ 0
1
2 if h0 < 0 .

Using straightforward algebra it can be shown that

EPn,h0 [
√
n∆Rmm(dn(ĥ), Pn,h0 ; ĥ)] =

{
3h0Pn,h0

[
dn(ĥ) = 0

]
if h0 ≥ 0 ,

−h0Pn,h0
[
dn(ĥ) = 1

]
if h0 < 0 ,

(46)

where Pn,h0 denotes probabilities under Fn,Pn,h0 . It follows that for any sequence {dn} ∈ D,

lim
n→∞

EPn,h0 [
√
n∆Rmm(dn(ĥ), Pn,h0 ; ĥ)] =

{
3h0Ph0

[
d∞P0

(Z) = 0
]

if h0 ≥ 0 ,

−h0Ph0
[
d∞P0

(Z) = 1
]

if h0 < 0 ,

where Z ∼ N(h0, 1) under Ph0 .9 The formula shows that the
√
n standardization leads to a well-

defined non-trivial limit of the frequentist excess maximum risk. �

5.3 Binary forecasts

In this section we show that the efficient robust binary forecasts that were derived in Section 3.3 are

optimal. For brevity, we focus on discrete forecasts with D = {0, 1} under binary or classification

loss. This class of forecasts is also relevant for its connections with statistical treatment rules.

Say f : P → Rd is directionally differentiable at P0 if the limit

lim
t↓0

f(P0 + th)− f(P0)

t
=: ḟP0 [h]

exists for every h ∈ Rk, in which case ḟP0 [·] is its directional derivative. Note that ḟP0 [·] will be

positively homogeneous of degree one but not necessarily linear. If ḟP0 [h] is linear in h we say that

f is fully differentiable at P0. We say that the posterior Πn is consistent if Πn(P ∈ N |Xn)
P0→ 1

for every neighborhood N containing P0 for each P0 ∈ P. Recall that Z ∼ N(h, I−1
0 ) in the limit

experiment. Let Ph denote probability statements with respect to Z. Moreover, let Z∗ ∼ N(0, I−1
0 )

independently of Z and E∗ denote expectation with respect to Z∗.

9Here it is without loss of generality to write d∞P0
as a function of Z only; see the discussion in Appendix C.2.
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Assumption 5.2.

1. (a) The functions pU and pL are everywhere continuous and everywhere directionally differ-

entiable;

(b) The function x 7→ Ph (E∗[ṗL,P0 [Z∗ + Z] + ṗU,P0 [Z∗ + Z]|Z] ≤ x) is continuous at x = 0

for each h ∈ Rk and P0 ∈ P with a01pL(P0) + a10pU (P0) = a01 and pU (P0) > a01
a01+a10

;

2. (a) The posterior for P is consistent;

(b) For any neighborhood N of P0 there is γ > 1
2 such that nγΠn(P 6∈ N |Xn)

P0→ 0;

3. (a) At any P0 ∈ P with a01pL(P0) + a10pU (P0) = a01, for any Borel set A,

lim
n→∞

Fn,Pn,h

(∫ √
n(f(P )− f(P0)) dΠn(P |Xn) ∈ A

)
= Ph

(
E∗[ḟP0 [Z∗ + Z]|Z] ∈ A

)
with f = (pL, pU );

(b) Similarly, for any Borel set A,

lim
n→∞

Fn,Pn,h

(∫ √
n(f(P )− f(P0))+ dΠn(P |Xn) ∈ A

)
= Ph

(
E∗[(ḟP0 [Z∗ + Z])+|Z] ∈ A

)
with f = (pL, pU ), where (·)+ is applied element-wise.

The directional differentiability of Assumption 5.2.1 was built into the functional form of pU (·) in

Example 7. Appendix A shows that in a broad class of problems the extreme probabilities pL(P )

and pU (P ) can be expressed as min-max or max-min problems, where the outer optimization is

over homogeneous parameters and the inner optimization is a linear or convex program. It follows

that pL(·) and pU (·) are typically only directionally, rather than fully, differentiable functions.10

Directional differentiability can also be a feature of models defined via moment inequalities (cf.

Example 5).

Assumption 5.2.2(a) holds under standard regularity conditions (see, e.g., Chapter 10.4 of

van der Vaart (2000)). For Assumption 5.2.2(b), note that Πn(P 6∈ N |Xn) typically converge to

zero exponentially. For instance, in a normal means model with X̄n ∼ N(Pn,h, (nI0)−1) and a flat

prior on P , we have Πn(P 6∈ N |Xn) = O(e−cn) for some c > 0.11 More generally, the classical

posterior consistency results of Schwartz (1965) establish exponential convergence rates.

Assumption 5.2.3 is simply assuming that a δ-method applies for the posterior distribution of

10See, e.g., Theorem 3.1 of Greenberg (1997) for directional differentiability of the value of linear programs, Chapter
4.3 of Bonnans and Shapiro (2000) for directional differentiability of the value of convex programs, and Milgrom and
Segal (2002) and Shapiro (2008) for directional differentiability of min-max problems.

11Note P |Xn ∼ N(X̄n, (nI0)−1) under a flat prior. Choose ε > 0 so that B2ε(P0) ⊂ N . Then P0(X̄n ∈ Bε(P0))→ 1

and whenever X̄n ∈ Bε(P0), we have Πn(P 6∈ N |Xn) ≤ Πn(|P − X̄n| > ε|Xn) = O(e−cn) for any c < ε2

2
λmin(I0).
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directionally differentiable functionals of P .12 For a heuristic justification for Assumption 5.2.3(a),

consider a normal means model with X̄n ∼ N(Pn,h, (nI0)−1). Under a flat prior for P , we have

P |Xn ∼ N(X̄n, (nI0)−1). For a directionally differentiable function f :

Fn,Pn,h

(∫ √
n(f(P )− f(P0)) dΠn(P |Xn) ∈ A

)
= Fn,Pn,h

(∫ √
n(f(P )− f(P0))

e−
1
2

(P−X̄n)′(nI0)(P−X̄n)√
|2π(nI0)−1|

dP ∈ A

)

≈ Fn,Pn,h

(∫
ḟP0 [
√
n(P − P0)]

e−
1
2

(P−X̄n)′(nI0)(P−X̄n)√
|2π(nI0)−1|

dP ∈ A

)

= Fn,Pn,h

(∫
ḟP0 [κ+

√
n(X̄n − P0)]

e−
1
2
κ′(I0)κ√

|2π(I0)−1|
dκ ∈ A

)
,

with the final line is by the change of variables κ =
√
n(P − X̄n). The last integral can be rewritten

E∗[ḟP0 [Z∗ + Z]|Z] where Z∗|Z ∼ N(0, I−1
0 ) with Z =

√
n(X̄n − P0) ∼ N(h, I−1

0 ) under Fn,Pn,h . A

similar argument provides a heuristic justification for Assumption 5.2.3(b). In the presentation of

the asymptotic efficiency results for the binary forecasts we rely on the following definition:

Definition 5.3. Given a sequence of forecasts {dn}n≥1 ∈ D, we say that dn is asymptotically

equivalent to db,mm if dn(Xn) and db,mm(Xn) have the same asymptotic distribution under the

sequence of measures {Fn,Pn,h}n≥1 for all P0 ∈ P and h ∈ Rk.

Let ∆Bnb,mm( · ;P0, π) and ∆Bnb,mmr( · ;P0, π) denote integrated excess maximum risk and regret

(see display (44)) for binary loss `b from (8). We require forecasts to satisfy an additional technical

condition, namely condition (A.10) in the Appendix, which permits the interchange of limits and

integration. This condition can be verified under more primitive conditions (see Remark C.6).

Let D denote the set of all sequences of {0, 1}-valued forecasts that converge in the sense of (43).

Theorem 5.4 states that forecasts that are asymptotically equivalent to the Bayes forecasts are

asymptotically optimal. A proof is provided in Appendix C.

Theorem 5.4. (i) Let Assumption 5.1 and parts (a) of Assumption 5.2 hold and let d̃n be asymp-

totically equivalent to db,mm and satisfy condition (A.10). Then: for all P0 ∈ P,

lim
n→∞

∆Bnb,mm(d̃n;P0, π) = inf
{dn}∈D

lim inf
n→∞

∆Bnb,mm(dn;P0, π) .

(ii) Let Assumptions 5.1 and 5.2 hold and let d̃n be asymptotically equivalent to db,mmr and satisfy

12See, e.g., Kitagawa, Montiel Olea, Payne, and Velez (2020) for a formal justification. This may require strength-
ening our definition of directional differentiability to Hadamard directional differentiability.
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condition (A.10). Then: for all P0 ∈ P,

lim
n→∞

∆Bnb,mmr(d̃n;P0, π) = inf
{dn}∈D

lim inf
n→∞

∆Bnb,mmr(dn;P0, π) .

Remark 5.5. The asymptotic efficiency extends to Bayes forecasts derived under priors that differ

from the “objective” prior that is used to compute the integrated risk but assign positive density

in the neighborhood of P0. In large samples, the posterior is dominated by the likelihood function

and the shape of the prior density does not affect the asymptotic form of the posterior distribution.

The optimality result also extends to forecasts derived under a misspecified likelihood function, as

long as this likelihood function leads to a large-sample posterior that reproduces the asymptotic

form of the posterior under the “true” likelihood function. �

Remark 5.6. Given the asymptotic equivalence of posterior distributions of parameters and the

bootstrap distributions of their efficient estimators,13 bagged estimators that replace posterior

averaging with averaging across the bootstrap distribution of an efficient estimator of P will yield

asymptotically efficient forecasts under suitable modification of the above regularity conditions. �

Remark 5.7. The optimal forecasting problem with D = {0, 1} has a similar form to the optimal

treatment problem studied by Hirano and Porter (2009) and our proofs follow similar arguments.

In their setting, the oracle treatment rule is of the form I[g(P0) ≥ 0] where g is (fully) differentiable.

Their asymptotically efficient rule replaces g(P0) by g(P̂ ) where P̂ is an efficient estimator of P0.

When pL and pU are directionally, rather than fully, differentiable, the optimal forecasts that we

derive are of a different form from plugging P̂ into the oracle rules. This difference arises because∫
ḟP0 [
√
n(P − P0)] dΠn(P |Xn) 6= ḟP0

[∫ √
n(P − P0) dΠn(P |Xn)

]
under directional differentiability. If pL and pU are fully differentiable then both sides of the above

display are equal and plugging in P̂ into the oracle rule is asymptotically efficient. �

As we formalize in Proposition 5.8 below, asymptotic equivalence to db,mm (respectively, db,mmr)

is a necessary condition for a forecast d̃n to be asymptotically efficient-robust under minimax risk

(respectively, regret) under a side condition ensuring that ties occur with probability zero.

In view of Definition 5.3, we say that asymptotic equivalence fails at P0 if there exists some h∗ ∈
Rk for which dn(Xn) and db,mm(Xn) have different asymptotic distributions under the sequence of

measures {Fn,Pn,h∗}n≥1 with Pn,h∗ = P0+n−1/2h∗. A proof for the following proposition is provided

in Appendix C.

13This equivalence carries over to directionally differentiable function (see, e.g., Kitagawa et al. (2020)).
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Proposition 5.8. (i) Let Assumption 5.1 and parts (a) of Assumption 5.2 hold, let db,mm satisfy

condition (A.10), and let {d̃n}n≥1 ∈ D be a sequence of forecasts for which d̃n and db,mm are not

asymptotically equivalent. Then for any P0 at which asymptotic equivalence of d̃n and db,mm fails:

lim inf
n→∞

∆Bnb,mm(d̃n;P0, π) > inf
{dn}∈D

lim inf
n→∞

∆Bnb,mm(dn;P0, π)

provided either (a) or (b) holds:

(a) a01pL(P0) + a10pU (P0) 6= a01,

(b) a01pL(P0) + a10pU (P0) = a01 and E∗
[
a01ṗL,P0 [Z∗ + Z] + a10ṗU,P0 [Z∗ + Z] |Z

]
6= 0 a.e.

(ii) Let Assumptions 5.1 and 5.2 hold, let db,mmr satisfy condition (A.10), and let {d̃n}n≥1 ∈ D be

a sequence of forecasts for which d̃n and db,mmr are not asymptotically equivalent. Then for any

P0 at which asymptotic equivalence of d̃n and db,mmr fails:

lim inf
n→∞

∆Bnb,mmr(d̃n;P0, π) > inf
{dn}∈D

lim inf
n→∞

∆Bnb,mmr(dn;P0, π)

provided either (a), (b), or (c) holds with a = a01
a01+a10

:

(a) pL(P0) + pU (P0) 6= 2a,

(b) pL(P0) + pU (P0) = 2a, pU (P0) > pL(P0), and E∗
[
ṗL,P0 [Z∗ + Z] + ṗU,P0 [Z∗ + Z] |Z

]
6= 0 a.e.,

(c) pL(P0) = pU (P0) = a and E∗
[
(ṗL,P0 [Z∗ + Z])− + (ṗU,P0 [Z∗ + Z])+ |Z

]
6= 0 a.e.

Example 7: (continued). The oracle forecast under the minimax risk criterion was given in

display (45). In order to compute the Bayesian robust forecast we need to evaluate∫
(pL(P ) + pU (P )) dΠn(P |Xn)

=
1√
2π

∫ 0

−∞

[
1/2 + n−1/2h+ 1/2

]
exp

{
−1

2
(h− ĥ)2

}
dh

+
1√
2π

∫ +∞

0

[
1/2 + n−1/2h+ 1/2 + 2n−1/2h

]
exp

{
−1

2
(h− ĥ)2

}
dh

= 1 + n−1/2

[
ĥ+ 2ΦN (ĥ)ĥ+ 2φN (ĥ)

]
,

where ĥ =
√
n(P̂ − P0) with P0 = 1

2 and ΦN and φN denote the standard normal cdf and pdf.

As P̂ is a sufficient statistic, the forecasts only depend on the data Xn though P̂ or, equivalently,

through ĥ. We may deduce that

db,mm(ĥ) = I

[
ĥ ≥ − 2φN (ĥ)

1 + 2ΦN (ĥ)

]
. (47)
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Figure 2: Frequentist excess maximum risk in the limit experiment of the efficient robust
forecast db,mm (solid line) and the forecast dplugmm based on plugging in an efficient estimator
of P (dot-dashed line) as a function of the location parameter h0 for the Example 7.

Note that the term on the right-hand side of the inequality in the indicator function is always

negative. The plug-in forecast is obtained by replacing the unknown P by P̂ , leading to dplugb,mm(P̂ ) =

I[pL(P̂ ) + pU (P̂ ) ≥ 1]. In the present example, the plug-in forecast can be expressed equivalently

in terms of ĥ:

dplugb,mm(ĥ) = I
[
ĥ ≥ 0

]
. (48)

The plug-in forecast is not asymptotically equivalent to the Bayesian robust forecast. In particular,

the Bayesian robust forecast predicts Y = 1 more aggressively than the plug-in forecast. It can be

verified by direct calculation in this example that this more aggressive forecast is asymptotically

efficient-robust. It also follows from Proposition 5.8 that the plug-in forecast is not asymptotically

efficient-robust. This is seen by noting that a01 = a10 = 1, pL(P0) + pU (P0) = 1, ṗL,P0 [h] = h,

ṗU,P0 [h] = 2(h)+, and so E∗
[
a01ṗL,P0 [Z∗+Z]+a10ṗU,P0 [Z∗+Z]

∣∣Z] reduces to Z+2E∗[(Z∗+Z)+ |Z]

which is nonzero almost everywhere.

To quantify the inefficiency of dplugb,mm(ĥ) relative to db,mm(ĥ), straightforward algebraic manip-

ulations using (46) allow us to derive formulas for the frequentist excess maximum risk of db,mm(ĥ)

and dplugb,mm(ĥ) as a function of h0. The results are plotted in Figure 2. The plug-in forecast is

inferior to the Bayesian robust forecast from an integrated risk perspective: the area under the

curve corresponding to db,mm is around 20% smaller than that under the curve corresponding to

the plug-in forecast. While db,mm was designed to be optimal from an integrated risk perspective,

it also dominates the plug-in forecast from a minimax perspective: the maximum excess maximum

risk of the plug-in forecast in the limit experiment is around 75% larger than that of db,mm.
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Figure 3: Frequentist excess maximum regret in the limit experiment of the efficient robust
forecast db,mmr (solid line), the forecast dplugmmr based on plugging an efficient estimator of
P (dot-dashed line), and the forecast db,mm (dashed line) as a function of the location
parameter h0 for the Example 7.

Similar calculations can be made under the regret criterion. The oracle forecast is of the form

dob,mmr(P ) = I[(1
2 − pL(P ))+ ≤ (pU (P )− 1

2)+]. Similar calculations as for the risk criterion can be

used to obtain a formula for the Bayesian robust forecast. In turns out that the plug-in forecast

remains unchanged. Frequentist excess maximum regrets as a function of h0 are plotted in Figure

3. Again, the plug-in forecast is not asymptotically efficient-robust and dominated by the Bayesian

efficient robust forecast once we average across h0. Its integrated excess maximum regret is around

8% smaller and maximum excess maximum regret is around 41% smaller. Also shown is the excess

maximum regret of a forecast which plugs the posterior means of pL(P ) and pU (P ) into the oracle:

d†(Xn) = I[(1
2−
∫
pL(P ) dΠn(P |Xn))+ ≤ (

∫
pU (P ) dΠn(P |Xn)− 1

2)+]. This forecast is equivalent to

the minimax forecast db,mm and is therefore optimal for minimizing integrated excess maximum risk

but not necessarily integrated excess maximum regret. Figure 3 shows that db,mmr also dominates

d† in terms of both its average (2.5% smaller) and maximum (21% smaller) excess maximum regret

in the limit experiment. �

Remark 5.9. Consider the numerical example from Section 3.4. The optimization problems pU (P )

and pL(P ) can be recast as the value of max-min and min-max problems in which the reduced-form

parameter P enters the objective function. As is well known (Milgrom and Segal, 2002; Shapiro,

2008), the value of max-min and min-max problems is typically only directionally, rather than fully,

differentiable. �
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5.4 Multinomial Forecasts

We now turn to extending the asymptotic efficiency result to multinomial forecasts that are asymp-

totically equivalent to the Bayesian robust forecast from Section 4.3. To do so, we first state some

additional regularity conditions.

Assumption 5.10.

1. (a) The functions p
0
, . . . , p

M
are everywhere continuous and everywhere directionally differ-

entiable;

(b) The functions ∆p0, . . . ,∆pM are everywhere continuous and everywhere directionally

differentiable;

2. The posterior for P is consistent;

3. (a) At any P0 ∈ P with p
m

(P0) = p
m′

(P0) for some m′ 6= m and p
m

(P0) ≥ p
k
(P0) for all

k ∈ {0, . . . ,M}, for any Borel set A we have

lim
n→∞

Fn,Pn,h

(∫ √
n(f(P )− f(P0)) dΠn(P |Xn) ∈ A

)
= Ph

(
E∗[ḟP0 [Z∗ + Z]|Z] ∈ A

)
with f = (p

0
, . . . , p

M
);

(b) At any P0 ∈ P with ∆pm(P0) = ∆pm′(P0) for some m′ 6= m and ∆pm(P0) ≤ ∆pk(P0)

for all k ∈ {0, . . . ,M}, for any Borel set A we have

lim
n→∞

Fn,Pn,h

(∫ √
n(f(P )− f(P0)) dΠn(P |Xn) ∈ A

)
= Ph

(
E∗[ḟP0 [Z∗ + Z]|Z] ∈ A

)
with f = (∆p0, . . . ,∆pM );

Assumption 5.10 is similar to Assumption 5.2. In particular, a heuristic justification for Assumption

5.10.3 follows similar reasoning to that presented earlier for Assumption 5.2.3.

We now present the asymptotic efficiency results for multinomial forecasts. Let ∆Bnc,mm( · ;P0, π)

and ∆Bnc,mmr( · ;P0, π) denote integrated excess maximum risk and regret (see display (44)) for clas-

sification loss `c from (33). Also let D denote the set of all sequences of {0, . . . ,M}-valued forecasts

that converge in the sense of (43).

Theorem 5.11. (i) Let Assumption 5.1 and Assumption 5.10.1(a), 5.10.2, and 5.10.3(a) hold and

let d̃n be asymptotically equivalent to dc,mm and satisfy condition (A.10). Then: for all P0 ∈ P,

lim
n→∞

∆Bnc,mm(d̃n;P0, π) = inf
{dn}∈D

lim inf
n→∞

∆Bnc,mm(dn;P0, π) .
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(ii) Let Assumption 5.1 and Assumption 5.10.1(b), 5.10.2, and 5.10.3(b) hold and let d̃n be asymp-

totically equivalent to dc,mmr and satisfy condition (A.10). Then: for all P0 ∈ P,

lim
n→∞

∆Bnc,mmr(d̃n;P0, π) = inf
{dn}∈D

lim inf
n→∞

∆Bnc,mmr(dn;P0, π) .

As with Remark 5.6, bagged forecasts in which the posterior distribution is replaced with the

bootstrap distribution of an efficient estimator of P can be shown to be asymptotically efficient-

robust under a suitable modification of the regularity conditions. As with Proposition 5.8, it is

possible to show that forecasts that are not asymptotically equivalent to the dc,mm and dc,mmr are

not asymptotically efficient-robust under side conditions ruling out ties.

6 Conclusion

In this paper we proposed use of robust forecasts that are obtained by solving a minimax risk

or minimax regret problem to deal with uncertainty about the forecast distribution. We also

derived asymptotically efficient-robust forecasts that deal with the estimation of the set of forecast

distributions. In addition to being useful for forecasting binary and multinomial outcomes, these

methods have wide applicability in environments in which a forecaster is concerned about structural

breaks, model misspecification, or a policy maker has to make treatment assignments.
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Online Appendix: Robust Forecasting

Timothy Christensen, Hyungsik Roger Moon, and Frank Schorfheide

A Computation

The challenge in implementing the minimax and minimax regret forecasts is to solve the extremum

problems pL and pU from (15) and (16) in the binary case, or p
m

and ∆pm from (35) and (39) in

the multinomial case.

We show how to compute these quantities in a class of models in which (i) vector of model

parameters θ may be partitioned as θ = (φ,Π), where φ is a low-dimensional parameter and Π is

a probability measure, and (ii) both the forecast probabilities and restrictions defining the set Θ0

are linear in Π. This nests semiparametric panel data models we study (Examples 1–4) and several

other models, such as game-theoretic models (Example 5). In the next subsection, we show how

linear programming techniques similar to Honoré and Tamer (2006) may be used when the support

of Π is discrete. Subsection A.2 studies the continuous case.

A.1 Computing Extreme Probabilities: the Discrete Case

A.1.1 Binary forecasts

We consider a class of problems where the forecast probabilities and restrictions that define the

set Θ0 are linear in Π, where Π has discrete support. We can identify Π with a vector π ∈ ∆L−1,

where L is the number of points of support of Π and ∆L−1 = {x ∈ RL+ :
∑L

i=1 xi = 1}. We further

assume that we can write the forecast probability as

b(φ)′π , (A.1)

where b(φ) is a L-vector that may depend on the homogeneous parameters, and the restrictions

defining Θ0 as

G(φ)π = r , (A.2)

where G(φ) is a K × L matrix and r ∈ RK .

Consider, for example, the semiparametric panel data model (Example 1). In that setting,

the low-dimensional parameter φ is β, the probability measure Π is the joint distribution Πλ,y of

(λi, Yi0), and the parameter space is Θ = {(β,Πλ,y)}. The identified set is the collection of all
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(β,Πλ,y) such that the model-implied probabilities of observing each realization of Y T
i is equal to

the population probability p(yT ); see display (2). The model-implied probabilities are given by

p(yT |β,Πλ,y) =

∫
p(yT |y0, λ;β) dΠλ,y(λ, y0) ,

with p(yT |y0, λ;β) from display (31). Because p(yT |β,Πλ,y) = p(yT ) for any θ ∈ Θ0, the forecast

probability given Y T
i = yT is

Pθ(YiT+1 = 1|Y T
i = yT ) =

∫
Φ(βyiT + λ)p(yT |y0, λ;β)dΠλ,y(λ, y0)

p(yT )
.

Returning to the general case with forecast probabilities as in (A.1) and restrictions defining

Θ0 as in (A.2), we can write pU as

pU = sup
φ

(
sup

π∈∆L−1

b(φ)′π s.t. G(φ)π = r

)
.

As we show in the following proposition, the inner optimization over π can be written as a linear

program, simplifying computation.

Proposition A.1. The program

pφ = sup
π∈∆L−1

b(φ)′π s.t. G(φ)π = r

has an equivalent dual formulation

p∗φ = inf
v∈RK+1

[01×K , 1] v s.t. A(φ)v ≤ −b(φ) ,

where A(φ) = [G(φ)′ − (1L×1 ⊗ r′) , −1L×1] with ⊗ denoting the Kronecker product.

In view of Proposition A.1, we may compute pU by solving

pU = sup
φ

(
inf

v∈RK+1
[01×K , 1] v s.t. A(φ)v ≤ −b(φ)

)
. (A.3)

If φ is not feasible, i.e., if there does not exist π ∈ ∆L−1 solving (A.2), then the inner linear program

returns no solution. In this case, we set the value of the inner minimization problem to −∞. The

smallest forecast probability pL is computed similarly:

pL = inf
φ

(
sup

v∈RK+1

[01×K , −1]′ v s.t. A(φ)v ≤ b(φ)

)
, (A.4)
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where we set the value of the inner linear program to +∞ if it has no solution.

A.1.2 Multinomial forecasts

In the multinomial case, we consider a setting in which Θ0 is defined as in display (A.2) for suitable

G(φ) and the forecast probabilities of each of the outcomes m = 0, 1, . . . ,M can be written as

bm(φ)′π

for each m.

For minimax forecasts, the lower probabilities p
m

from (35) are computed analogously to pL,

replacing b(φ) in (A.4) with bm(φ):

p
m

= inf
φ

(
sup

v∈RK+1

[01×K , −1]′ v s.t. A(φ)v ≤ bm(φ)

)
,

for m = 0, 1, . . . ,M , where we set the value of the inner linear program to +∞ if it has no solution.

For minimax regret forecasts, the terms ∆pm from (39) can be computed analogously to (A.3). To

do so, first note that for each m′ = 0, 1, . . . ,M we can compute

sup
θ∈Θ0

(
Pθ(Y = m′)− Pθ(Y = m)

)
by replacing the term b(φ) in (A.3) with bm′(φ)− bm(φ). The value ∆pm is then the maximum over

all such m′:

∆pm = max
m′

sup
φ

(
inf

v∈RK+1
[01×K , 1] v s.t. A(φ)v ≤ (bm(φ)− bm′(φ))

)
,

where we again set the value of the inner linear program to −∞ if it has no solution.

A.2 Computing Extreme Probabilities: the Continuous Case

A.2.1 Binary forecasts

We first consider a class of problems where the forecast probabilities and restrictions that define Θ0

are linear in Π, where Π is a probability measure on (X,X ) where X denotes the Borel σ-field on X.

We restrict Π to have density with respect to some σ-finite dominating measure ν (e.g. Lebesgue

measure) and identify each Π with its density π with respect to ν.14 We consider a setting where

14This nests the previous discrete case by taking X to be the set of L points of discrete support for Π and ν to be
counting measure.
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forecast probabilities can be written analogously to (A.1) as∫
b(x;φ)π(x) dν(x) ,

where b( · ;φ) : X → R is a bounded function for each φ. We first consider a class of problems in

which the set Θ0 is defined via a moment restriction similar to (A.2), namely∫
g(x;φ)π(x) dν(x) = r ,

where g( · ;φ) : X → RK is a vector of moment functions.

The semiparametric panel data model (Example 1) is of this form, where we now relax the

assumption of discrete support for (λ, y0) and allow the joint distribution Πλ,y to be an arbitrary

distribution on R × {0, 1}. The dominating measure ν is the product of Lebesgue measure on R
and counting measure on {0, 1}.

Let Πφ denote the set of all densities π with respect to ν, for which
∫
g(x;φ)π(x) dν(x) is finite

and
∫
π(x) dν(x) = 1. We then have

Θ0 =

{
(φ, π) : π ∈ Πφ ,

∫
g(x;φ)π(x) dν(x) = r

}
. (A.5)

In this setting, we can write pU as

pU = sup
φ

(
sup
π∈Πφ

∫
b(x;φ)π(x) dν(x) s.t.

∫
g(x;φ)π(x) dν(x) = r

)
.

The inner optimization over π has a dual program. Although this dual formulation does not simplify

computation a great deal, it can be approximated by a more tractable, finite-dimensional convex

program. In what follows, let ri(A) denote the relative interior of a set A. The following proposition

collects results from Csiszár and Matúš (2012) (for the dual formulation) and Christensen and

Connault (2019) (for the approximation by a finite-dimensional convex program).

Proposition A.2. If

r ∈ ri

({∫
g(x;φ)π(x) dν(x) : π ∈ Πφ

})
,

then the program

pφ = sup
π∈Πφ

∫
b(x;φ)π(x) dν(x) s.t.

∫
g(x;φ)π(x) dν(x) = r
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has an equivalent dual formulation

p∗φ = inf
µ:ν-ess supx(b(x;φ)+µ′(g(x;φ)−r))<+∞

(
ν-ess sup

x

(
b(x;φ) + µ′(g(x;φ)− r)

))
.

In addition, if Π∗ has a strictly positive density π ∈ Πφ and EΠ∗
[
ec‖g(X;φ)‖] is finite for each c ≥ 0,

then

p∗φ = lim
δ→∞

(
sup
η≥0,µ

−η logEΠ∗
[
e−η

−1(b(X;φ)+µ′(g(X;φ)−r))
]
− ηδ

)
,

where EΠ∗ [ · ] denotes expectation is taken under the distribution Π∗.

In view of Proposition A.2, we may compute pU using the approximation

pU ≈ sup
β

(
inf
η≥0,µ

η logEΠ∗
[
eη
−1(b(X;φ)+µ′(g(X;φ)−r))

])
+ ηδ ,

which is valid for large δ. The lower probability pL can be computed analogously:

pL ≈ inf
β

(
sup
η≥0,µ

−η logEΠ∗
[
e−η

−1(b(X;φ)+µ′(g(X;φ)−r))
])
− ηδ . (A.6)

Similar techniques may also be used when Θ0 arises out of robustness concerns; see Example 2.

To that end, we can consider a class of models where forecast probabilities and restrictions defining

Θ0 are linear in Π, but where we now restrict Π to the class

Πφ,δ = {Π : K(Π‖Πφ) ≤ δ} ,

where δ ≥ 0 and K(Π‖Πφ) is the Kullback–Leibler divergence between Π and a reference density

Πφ. In the context of Example 2, Πφ is a correlated random effects distribution indexed by auxiliary

parameters ξ, and φ = (β, ξ). The identified set is now

Θ0 =

{
(φ,Π) : Π ∈ Πφ,δ ,

∫
g(x;φ) dΠ(x) = r

}
. (A.7)

With this notion of the identified set, we may apply well known duality methods to compute the

extreme probabilities using the dual representations

pU = sup
φ

(
inf
η≥0,µ

η logEΠφ
[
eη
−1(b(X;φ)+µ′(g(X;φ)−r))

])
+ ηδ ,

pL = inf
φ

(
sup
η≥0,µ

−η logEΠφ
[
e−η

−1(b(X;φ)+µ′(g(X;φ)−r))
])
− ηδ , (A.8)
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which are valid whenever EΠφ
[
ec‖g(X;φ)‖] is finite for each c ≥ 0 and each φ, and

r ∈ ri

({∫
g(x;φ) dΠ(x) : Π ∈ Πφ,δ

})
;

see, e.g., Christensen and Connault (2019) for a formal statement. Similar dual representations

apply for neighborhoods constrained by other φ-divergences.

A.2.2 Multinomial forecasts

Multinomial forecasts can be implemented similarly using the reformulations described above. For

minimax forecasts, if the forecast probabilities are each of the form∫
bm(x, φ) dΠ(x)

for m = 0, 1, . . . ,M , then each p
m

can be computed as in (A.6) or (A.8), replacing b with bm. For

minimax regret forecasts, each ∆pm can be computed as

∆pm ≈ max
m′

sup
β

(
inf
η≥0,µ

η logEΠ∗
[
eη
−1(bm′ (X;φ)−bm(X;φ)+µ′(g(X;φ)−r))

])
+ ηδ ,

when Θ0 is of the form (A.5). A similar computation applies when Θ0 is of the form (A.7), replacing

Π∗ with Πφ.

B Further Results on Robust Binary Forecasts

B.1 Equivalence of Minimax forecasts under Quadratic and Logarithmic Loss

Here we show that the minimax forecast under quadratic loss is also minimax under logarithmic

loss. We first rule out a few pathological cases. Suppose the econometrician chooses d = 0. If

pU > 0 then the maximum risk is +∞, which is obtained by the maximizing agent choosing any

θ ∈ Θ0 with Pθ(Y = 1) > 0. Thus, it is only optimal to choose d = 0 when pU = 0, in which case

Pθ(Y = 1) = 0 for all θ ∈ Θ0. A parallel argument shows it is only optimal to choose d = 1 when

pL = 1. More generally, if pL = pU then it is optimal to choose d to be their common value. Now

suppose that pL < pU . Problem (4) becomes

inf
d∈D

sup
θ∈Θ0

Eθ[`p(Y, d)] = inf
d∈[0,1]

sup
p∈[pL,pU ]

−p log d− (1− p) log(1− d)

= sup
p∈[pL,pU ]

inf
d∈[0,1]

−p log d− (1− p) log(1− d) ,
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where the first equality is because for any d ∈ [0, 1], the maximum risk is obtained at either pL or

pU , and the second equality is by the minimax theorem. The inner minimum is achieved at d = p,

and the outer maximum is achieved by taking p ∈ [pL, pU ] to be as close to 1
2 as possible.

B.2 Equivalence of Robust Binary Forecasts under Classification Loss

We now show that the minimax and minimax regret forecasts are identical under classification

loss. First suppose pL >
1
2 . In this case, the θ-optimal decision is d∗b,θ = 1 for all θ ∈ Θ0 and so

db,mmr = db,mm = 1. Similarly, when pU < 1
2 the θ-optimal decision is d∗b,θ for all θ ∈ Θ0 and so

db,mmr = db,mm = 0. It remains to consider the case in which pL ≤ 1
2 and pU ≥ 1

2 both hold. It is

then straightforward to deduce that

db,mmr = I[1
2 − pL ≤ pU −

1
2 ] = I[1 ≤ pL + pU ] = db,mm .

B.3 Non-equivalence of Minimax and Minimax Regret Forecasts when M ≥ 2

Unlike the binary case (M = 1), minimax and minimax regret forecasts are no longer equal for

classification loss when M ≥ 2. To see this, consider an example with M = 3 in which Θ0 =

{θ1, θ2, θ3} with θ1 = (1
2 ,

1
2 , 0, 0)′, θ2 = (1

3 ,
1
3 , 0,

1
3)′, and θ3 = (1

5 ,
1
5 , 0,

4
5)′, where we identify each

parameter with its vector of forecast probabilities for the outcomes in the set D = {0, 1, 2, 3}. The

θ-optimal forecasts for classification loss are d∗c,θ1 ∈ {0, 1} (i.e., both d∗θ1,c = 0 and d∗c,θ1 = 1 are

θ-optimal forecasts under θ1), d∗c,θ2 ∈ {0, 1, 3}, and d∗c,θ3 = 3.

For the minimax decision, we have p
0

= 1
5 , p

1
= 1

5 , p
2

= 0, and p
3

= 0. Therefore, dc,mm ∈ {0, 1}
is the minimax decision for classification loss and the minimax risk is R∗c,mm = 4

5 .

For the minimax regret decision, note that the regret from choosing m = 0, 1, 2, 3 under θ1 is

(0, 0, 1
2 ,

1
2). Similarly, under θ2 and θ3 the regrets are (0, 0, 1

3 , 0) and (3
5 ,

3
5 ,

4
5 , 0). Therefore, ∆p0 = 3

5 ,

∆p1 = 3
5 , ∆p2 = 4

5 , and ∆p3 = 1
2 . The minimax regret forecast is dc,mmr = 3 and its maximum

regret is R∗c,mmr = 1
2 .

Similarly, with M = 2 and θ1 = (1
2 ,

1
2 , 0)′, θ2 = (1

3 ,
1
3 ,

1
3)′, and θ3 = (1

5 ,
1
5 ,

4
5)′, we have that the

minimax forecast is dc,mm ∈ {0, 1} whereas the minimax regret forecast is dc,mmr = 2.

C Proofs

C.1 Preliminaries

Our approach to establishing asymptotic efficiency follows Hirano and Porter (2009). First, we

characterize the asymptotic representation of the forecast in the limit experiment. Second, we
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show that these are optimal with respect to average excess maximum risk and regret in the limit

experiment. Finally, we invoke a version of their Lemma 1 which allows us to approximate average

excess maximum risk or regret with finite n by that in the limit experiment. The next two sub-

sections describe preliminary results for steps 1 and 2 of this approach for binary and multinomial

forecasts. The final subsection presents proofs of the main result.

To simplify notation, throughout the proofs we write Πn(P ) for the posterior Πn(P |Xn), dΠn

in place of dΠn(P |Xn). We adopt the convention that +∞× 0 = 0. We also require a limiting

counterpart to excess maximum risk and regret criteria. To this end, for any sequence {dn}n≥1 ∈ D,

P0 ∈ P, and perturbation direction h ∈ Rk, we define local asymptotic excess maximum risk as

Lmm({dn}n≥1;P0, h) = lim
n→∞

EPn,h
[√

n∆Rmm
(
dn, P0 + n−1/2h;Xn

)]
.

Local asymptotic excess maximum regret Lmmr({dn}n≥1;P0, h) is defined similarly, replacing ex-

cess maximum risk ∆Rmm in the above display with excess maximum regret ∆Rmmr. The local

asymptotic excess maximum risk and regret of {dn}n≥1 ∈ D will only depend on {dn}n≥1 through

its asymptotic representation d∞. Note the form of d∞ may depend on P0, but we suppress this

dependence to simplify notation. We can therefore write

Lmm({dn}n≥1;P0, h) = L∞mm(d∞;P0, h) ,

Lmmr({dn}n≥1;P0, h) = L∞mmr(d∞;P0, h)

for some functionals L∞mm and L∞mmr. We say that d∞∗ is optimal for average local asymptotic excess

maximum risk in the limit experiment if it is a flat prior Bayes rule:∫
L∞mm(d∞∗ ;P0, h) dh = inf

d∞

∫
L∞mm(d∞;P0, h) dh ,

where the infimum on the right-hand side is taken over all such (possibly randomized) D-valued

forecasts d∞(Z,U) in the limit experiment. Optimality for average local asymptotic excess maxi-

mum regret in the limit experiment is defined similarly. We sometimes simply say optimal in the

limit experiment when the notion of optimality (local asymptotic minimax risk or regret) is obvious

form the context.

C.2 Supplementary Lemmas: Binary Forecasts

For binary forecasts, both ∆Rmm(d, P ) and ∆Rmmr(d, P ) can be written as linear functions of d.

Therefore, local asymptotic excess maximum risk and regret depend on {dn}n≥1 ∈ D only through

limn→∞ EPn,h [dn(Xn)] which takes the form Eh[d∞(Z)] (van der Vaart, 2000, Theorem 15.1) where

Eh denotes expectation with respect to Z ∼ N(h, I−1
0 ). That is not to say that the asymptotically
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optimal forecast cannot be randomized. Rather, d∞(z) represents the average (with respect to the

randomization) probability that d∞(Z,U) = 1 when Z = z.

To simplify notation, let pU0 := pU (P0) and pL0 := pL(P0). There are three cases to consider

for the next lemma: Case 1, a01pL0 + a10pU0 > a01; Case 2, a01pL0 + a10pU0 < a01; and Case 3,

a01pL0 + a10pU0 = a01.

Lemma C.1. Let Assumptions 5.1 and parts (a) of Assumption 5.2 hold. Then:

(i) db,mm has the asymptotic representation

d∞b,mm(Z) =


1 in case 1,

0 in case 2,

I
[
E∗[ḟP0 [Z∗ + Z]|Z] ≥ 0

]
in case 3,

where f(P ) = a01pL(P ) + a10pU (P );

(ii) local asymptotic excess maximum risk of {dn}n≥1 ∈ D is

L∞mm(d∞;P0, h) =


+∞× (1− Eh[d∞(Z)]) in case 1,

+∞× Eh[d∞(Z)] in case 2,

(ḟP0 [h])+ − Eh[d∞(Z)](ḟP0 [h]) in case 3,

where limn→∞ EPn,h [dn(Xn)] = Eh[d∞(Z)];

(iii) d∞b,mm(Z) is optimal in the limit experiment.

Proof of Lemma C.1. Part (i): As db,mm(Xn) is discrete, establishing convergence in distribution

of db,mm(Xn) under {Fn,Pn,h}n≥1 is equivalent to characterizing limn→∞ Fn,Pn,h(db,mm(Xn) = 1).

For Case 1, by Assumption 5.2.1(a), for any ε > 0 there is a neighborhood N of P0 upon which

|a01pL(P ) + a10pU (P )− a01pL0 − a10pU0| < ε. By posterior consistency (Assumption 5.2.2(a)) and

the fact that 0 ≤ pU , pL ≤ 1, we have∣∣∣∣∫ (a01pL(P ) + a10pU (P )) dΠn − a01pL0 − a10pU0

∣∣∣∣ ≤ εΠn(P ∈ N) + 2(a01 + a10)Πn(P 6∈ N)
P0→ ε .

As ε was arbitrary,
∫

(a01pL(P ) + a10pU (P )) dΠn
P0→ a01pL0 + a10pU0. Therefore, db,mm(Xn)

P0→ 1.

As {Fn,P0}n≥1 and {Fn,Pn,h}n≥1 are contiguous by Le Cam’s first lemma and Assumption 5.1, it

follows that db,mm(Xn)
Pn,h→ 1 for any h ∈ Rk. Case 2 follows similarly. For Case 3, we may write

db,mm(Xn) = I
[∫

a01

√
n(pL(P )− pL0) + a10

√
n(pU (P )− pU0) dΠn ≥ 0

]
.
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By Assumption 5.2.3(a) with A = {(x, y) : a01x+ a10y ≥ 0}, we have

lim
n→∞

Fn,Pn,h(db,mm(Xn) = 1) = Ph (E∗[a01ṗL,P0 [Z∗ + Z] + a10ṗU,P0 [Z∗ + Z]|Z] ≥ 0) .

Part (ii): The excess maximum risk of d ∈ D is

∆Rmm(d, P ) = d(a01 − a01pL(P )− a10pU (P ))− (a01 − a01pL(P )− a10pU (P ))− ,

where a− = min{a, 0}. For Case 1, for all n large enough we have

EPn,h [
√
n∆Rmm(dn(Xn), Pn,h)] =

√
n× (a01pL(Pn,h) + a10pU (Pn,h)− a01)×

(
1− EPn,h [dn(Xn)]

)
,

where lim infn→∞(a01pL(Pn,h) + a10pU (Pn,h) − a01) > 0 and EPn,h [dn(Xn)] → Eh[d∞(Z)]. Case 2

follows by similar arguments. For Case 3, rearranging slightly we have

EPn,h [
√
n∆Rmm(dn(Xn), Pn,h)] =

√
n(a01pL(Pn,h) + a10pU (Pn,h)− a01pL0 − a10pU0)+

− EPn,h [dn(Xn)]×
√
n(a01pL(Pn,h) + a10pU (Pn,h)− a01pL0 − a10pU0) ,

where EPn,h [dn(Xn)]→ Eh[d∞(Z)] and

√
n(a01pL(Pn,h) + a10pU (Pn,h)− a01pL0 − a10pU0) → a01ṗL,P0 [h] + a10ṗU,P0 [h] ,
√
n(a01pL(Pn,h) + a10pU (Pn,h)− a01pL0 − a10pU0)+ → (a01ṗL,P0 [h] + a10ṗU,P0 [h])+

by Assumption 5.2.1(a).

Part (iii): From part (ii), we see that d∞(Z) = 1 (almost everywhere) is optimal in Case 1 and

d∞(Z) = 0 (almost everywhere) is optimal in Case 2. In Case 3, we have∫
(a01ṗL,P0 [h] + a10ṗU,P0 [h])+ − Eh[d∞(Z)]× (a01ṗL,P0 [h] + a10ṗU,P0 [h]) dh

∝
∫ ∫

((a01ṗL,P0 [h] + a01ṗU,P0 [h])+ − d∞(z)× (a01ṗL,P0 [h] + a10ṗU,P0 [h])) e−
1
2

(z−h)′I0(z−h) dz dh .

Swapping the order of integration and minimizing pointwise in z, we obtain

d∞(z) = I
[∫

(a10ṗL,P0 [h] + a01ṗU,P0 [h])e−
1
2

(z−h)′I0(z−h) dh ≥ 0

]
.

Equivalently, d∞(z) = I [E∗[a10ṗL,P0 [Z∗ + Z] + a01ṗU,P0 [Z∗ + Z]|Z = z] ≥ 0]. This is the same

asymptotic representation as was derived in Part (i).

Let a = a01
a01+a10

There are four cases to consider for the next lemma, namely: Case 1, pL0+pU0 >
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2a; Case 2, pL0 + pU0 < 2a; Case 3, pL0 + pU0 = 2a and pU0 > a; and Case 4, pL0 = pU0 = a.

Lemma C.2. Let Assumption 5.1 and 5.2 hold. Then:

(i) db,mmr has the asymptotic representation

d∞b,mmr(Z) =


1 in case 1,

0 in case 2,

I [E∗[ṗL,P0 [Z∗ + Z] + ṗU,P0 [Z∗ + Z]|Z] ≥ 0] in case 3,

I [E∗[(ṗL,P0 [Z∗ + Z])− + (ṗU,P0 [Z∗ + Z])+|Z] ≥ 0] in case 4;

(ii) local asymptotic excess maximum regret of {dn}n≥1 ∈ D is

L∞mmr(d∞;P0, h)

=


+∞× (1− Eh[d∞(Z)]) in case 1,

+∞× Eh[d∞(Z)] in case 2,

(a01 + a10) ((ṗL,P0
[h] + ṗU,P0

[h])+ − Eh[d∞(Z)](ṗL,P0
[h] + ṗU,P0

[h])) in case 3,

(a01 + a10) (((ṗL,P0
[h])− + (ṗU,P0

[h])+)+ − Eh[d∞(Z)]((ṗL,P0
[h])− + (ṗU,P0

[h])+)) in case 4,

where limn→∞ EPn,h [dn(Xn)] = Eh[d∞(Z)];

(iii) d∞b,mmr(Z) is optimal in the limit experiment.

Proof of Lemma C.2. Part (i): Cases 1 and 2 follow by similar arguments to the Proof of Lemma

C.1(i). For Case 3, let κ := pU0 − a = a− pL0 and note κ > 0. We have

Fn,Pn,h(db,mmr(Xn) = 1) = Fn,Pn,h
(∫

(a− pL(P ))+dΠn ≤
∫

(pU (P )− a)+dΠn

)
≥ Fn,Pn,h

(∫
(a− pL(P ))+dΠn ≤

∫
(pU (P )− a) dΠn

)
= Fn,Pn,h

(∫
(κ− (pL(P )− pL0))+dΠn ≤

∫
(pU (P )− pU0) dΠn + κ

)
.

As (x − y)+ − x = max(−y,−x) and hence (x − y)+ + y − x = max(0, y − x), we can rewrite the

preceding inequality as

Fn,Pn,h(db,mmr(Xn) = 1)

≥ Fn,Pn,h
(∫

((pL(P )− pL0)− κ)+dΠn ≤
∫

(pL(P ) + pU (P )− pL0 − pU0) dΠn

)
. (A.9)

By continuity of pL(P ) at P0 (by Assumption 5.2.1(a)) and posterior consistency, we can choose a

neighborhood Nκ of P0 upon which |pL(P ) − pL(P0)| < κ. By Assumption 5.2.2(b), there exists

γ > 1
2 such that nγΠn(P 6∈ Nκ)

P0→ 0. As 0 ≤ pL ≤ 1, we therefore have the bound

nγ
∫

((pL(P )− pL(P0))− κ)+dΠn ≤ 2nγΠn(P 6∈ Nκ)
P0→ 0 .
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By contiguity, convergence holds under Pn,h for all h ∈ Rk. We therefore have that

Fn,Pn,h

(∫
(
√
n(pL(P )− pL(P0))−

√
nκ)+dΠn ≤ nγ−

1
2

)
→ 1

for all h ∈ Rk. We may therefore rewrite (A.9) as

Fn,Pn,h(db,mmr(Xn) = 1) ≥ Fn,Pn,h
(
nγ−

1
2 ≤

∫
(pL(P ) + pU (P )− pL0 − pU0) dΠn

)
− o(1)

≥ Fn,Pn,h
(
ε ≤

∫
(pL(P ) + pU (P )− pL0 − pU0) dΠn

)
− o(1)

→ Ph (E∗[ṗL,P0 [Z∗ + Z] + ṗU,P0 [Z∗ + Z]|Z] ≥ ε)

for any ε > 0, where the final line is by Assumption 5.2.3(a) with A = {(x, y) : x+y ≥ ε}. Similarly,

Fn,Pn,h(db,mmr(Xn) = 1) ≤ Fn,Pn,h
(
−ε ≤

∫
(pL(P ) + pU (P )− pL0 − pU0) dΠn

)
+ o(1)

→ Ph (E∗[ṗL,P0 [Z∗ + Z] + ṗU,P0 [Z∗ + Z]|Z] ≥ −ε)

for every ε > 0. The desired convergence now follows by Assumption 5.2.1(b).

Finally, consider Case 4 (pU0 = pL0 = a). We may write

db,mmr(Xn) = I
[
0 ≤

∫
(pL(P )− pL0)− + (pU (P )− pU0)+dΠn

]
.

It follows by Assumption 5.2.3(b) taking A = {(x, y) : x+ y ≥ 0} that

lim
n→∞

Fn,Pn,h(db,mmr(Xn) = 1)→ Ph (E∗[(ṗL,P0 [Z∗ + Z])− + (ṗU,P0 [Z∗ + Z])+|Z] ≥ 0) .

Part (ii): First note that excess maximum regret of d ∈ D is

∆Rmmr(d, P ) = d(a01 − (a01 + a10)pL(P ))+ + (1− d)((a01 + a10)pU (P )− a01)+

− (a01 − (a01 + a10)pL(P ))+ ∧ ((a01 + a10)pU (P )− a01)+ .

For Case 1, note ((a01 +a10)pU (Pn,h)−a01)+ = (a01 +a10)pU (Pn,h)−a01 > 0 holds for n sufficiently

large because pU0 > a in this case. Moreover, in this case a01−(a01 +a10)pL0 < (a01 +a10)pU0−a01,

so the term
√
n((a01 +a10)pU (Pn,h)−a01)+ will dominate the term

√
n(a01− (a01 +a10)pL(Pn,h))+

asymptotically. It follows that for any {dn}n≥1 ∈ D,

lim
n→∞

EPn,h [
√
n∆Rmmr(dn(Xn), Pn,h)] = lim

n→∞

√
n× (pU (Pn,h)− a)×

(
1− EPn,h [dn(Xn)]

)
,

where pU (Pn,h)→ pU0 > a and EPn,h [dn(Xn)]→ Eh[d∞(Z)]. Case 2 follows similarly.



Online Appendix – This Version: December 10, 2020 A.13

For Case 3, first note that for n sufficiently large we have

(a01 − (a01 + a10)pL(Pn,h))+ = a01 − (a01 + a10)pL(Pn,h) ,

((a01 + a10)pU (Pn,h)− a01)+ = (a01 + a10)pU (Pn,h)− a01 .

Letting
√
n(a01 − (a01 + a10)pL0) =

√
n((a01 + a10)pU0 − a01) =

√
nκ where κ > 0 and taking n

sufficiently large, we therefore obtain

EPn,h [
√
n∆Rmmr(dn(Xn), Pn,h)]

=
√
n× EPn,h [dn(Xn)] (κ− (a01 + a10)(pL(Pn,h)− pL0))

+
√
n× (1− EPn,h [dn(Xn)]) (κ+ (a01 + a10)(pU (Pn,h)− pU0))

−
√
n× ((κ− (a01 + a10)(pL(Pn,h)− pL0)) ∧ (κ+ (a01 + a10)(pU (Pn,h)− pU0)))

= (a01 + a10)
(
EPn,h [dn(Xn)]×−

√
n(pL(Pn,h)− pL0) + (1− EPn,h [dn(Xn)])×

√
n(pU (Pn,h)− pU0)

−
((
−
√
n(pL(Pn,h)− pL0)

)
∧
(√
n(pU (Pn,h)− pU0)

)) )
,

which converges to

(a01 + a10)
(
− Eh[d∞(Z)]ṗL,P0 [h] + (1− Eh[d∞(Z)])ṗU,P0 [h]− ((−ṗL,P0 [h]) ∧ (ṗU,P0 [h]))

)
by Assumption 5.2.1(a). The stated form now follows because x− ((−y) ∧ x) = (x+ y)+.

Finally, for Case 4 a01 − (a01 + a10)pL0 = (a01 + a10)pU0 − a01 = 0. By similar logic to Case 3.,

EPn,h [
√
n∆Rmmr(dn(Xn), Pn,h)]

= (a01 + a10)×
√
n×

(
EPn,h [dn(Xn)] (−(pL(Pn,h)− pL0))+

+ (1− EPn,h [dn(Xn)]) (pU (Pn,h)− pU0)+ − (−(pL(Pn,h)− pL0))+ ∧ (pU (Pn,h)− pU0)+

)
,

which converges to

(a01 + a10)
(
Eh[d∞(Z)](−ṗL,P0 [h])+ + (1− Eh[d∞(Z)])(ṗU,P0 [h])+ − ((−ṗL,P0 [h])+ ∧ (ṗU,P0 [h])+)

)
again by Assumption 5.2.1(a). The result follows from a− (b ∧ a) = (a− b)+ and −(−a)+ = a−.

Part (iii): From part (ii), we see that d∞(Z) = 1 (almost everywhere) is optimal in Case 1 and

d∞(Z) = 0 (almost everywhere) is optimal in Case 2. In Case 3, by similar arguments to the proof

of Lemma C.2(iii) we see that average asymptotic excess maximum regret is minimized with

d∞P0
(z) = I

[∫
(ṗL,P0 [h] + ṗU,P0 [h])e−

1
2

(z−h)′I0(z−h) dh ≥ 0

]
,
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whereas a minimizing choice in Case 4 is

d∞P0
(z) = I

[∫
((ṗL,P0 [h])− + (ṗU,P0 [h])+)e−

1
2

(z−h)′I0(z−h) dh ≥ 0

]
.

C.3 Supplementary Lemmas: Multinomial Forecasts

For multinomial forecasts, the excess maximum risk ∆Rmm(d, P ) and regret ∆Rmmr(d, P ) are

linear in the indicator functions I[d = m] for m = 0, . . . ,M . Therefore, local asymptotic excess

maximum risk and regret depend on {dn}n≥1 ∈ D through limn→∞ EPn,h [I(dn(Xn) = m)] which can

be written Eh[d∞m (Z)] for each m (van der Vaart, 2000, Theorem 15.1). The term d∞m (z) represents

the average (with respect to randomization) probability that d∞(Z,U) = m when Z = z.

Deriving the asymptotic representation of dc,mm(Xn) requires a tie-breaking rule, so in the

derivation below we take the smallest element of the set of maximizers. To simplify notation, let

p
m0

:= p
m

(P0). It is without loss of generality to reorder the indices so that p
00
≥ p

10
≥ . . . ≥ p

M0
.

There are two cases, namely: Case 1, p
00
> p

10
; and Case 2, p

00
= p

10
= . . . = p

k0
for some

k ∈ {1, . . . ,M} with p
k0
> p

(k+1)0
if k < M .

Lemma C.3. Let Assumptions 5.1, 5.10.1(a), 5.10.2, and 5.10.3(a) hold. Then:

(i) dc,mm has the asymptotic representation

d∞c,mm,m(Z) =


1 if m = 0 and 0 if m ∈ {1, . . . ,M} in case 1,

I[(E∗[ṗ
m,P0

[Z∗ + Z]|Z] > max0≤m′≤m−1 E∗[ṗm′,P0
[Z∗ + Z]|Z]) and

(E∗[ṗ
m,P0

[Z∗ + Z]|Z] ≥ maxm+1≤m′≤k E∗[ṗm′,P0
[Z∗ + Z]|Z])]

if m ∈ {0, . . . , k} and 0 if m ∈ {k + 1, . . . ,M} in case 2,

where the maximum over an empty index is −∞;

(ii) local asymptotic excess maximum risk of {dn}n≥1 ∈ D is

L∞mm(d∞;P0, h) =


+∞× (1− Eh[d∞0 (Z)]) in case 1,∑k

m=0 Eh[d∞m (Z)](max0≤m′≤k ṗm′,P0
[h]− ṗ

m,P0
[h])

+∞× (1−
∑k

m=0 Eh[d∞m (Z)]) in case 2,

where limn→∞ EPn,h [I[dn(Xn) = m]] = Eh[d∞m (Z)];

(iii) (d∞c,mm,m(Z))Mm=0 is optimal in the limit experiment.

Proof of Lemma C.3. Part (i): Case 1 follows by similar arguments to the proof of Lemma C.1.

For Case 2, if k < M we can deduce by continuity of the p
m

and posterior consistency that
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Fn,Pn,h(dc,mm(Xn) > k) → 0 and Fn,Pn,h(min0≤m≤k
∫
p
m

(P ) dΠn > maxm>k
∫
p
m

(P ) dΠn) → 1.

Let min0≤m≤k
∫
p
m

(P ) dΠn > maxm>k
∫
p
m

(P ) dΠn. For m ∈ {0, 1 . . . , k}, under the above tie-

breaking rule we then have

I[dc,mm(Xn) = m] = I
[∫

p
m

(P ) dΠn > max
0≤m′≤m−1

∫
p
m′

(P ) dΠn

]
× I
[∫

p
m

(P ) dΠn ≥ max
m+1≤m′≤k

∫
p
m′

(P ) dΠn

]
.

As p
00

= p
10

= . . . = p
k0

, we may rewrite the previous expression as

I[dc,mm(Xn) = m] = I
[∫ √

n(p
m

(P )− p
m0

) dΠn > max
0≤m′≤m−1

∫ √
n(p

m′
(P )− p

m′0
) dΠn

]
× I
[∫ √

n(p
m

(P )− p
m0

) dΠn ≥ max
m+1≤m′≤k

∫ √
n(p

m′
(P )− p

m′0
) dΠn

]
.

Therefore by Assumptions 5.10.1(a) and 5.10.3(a) with A = {(x0, x1, . . . , xM ) : xm > xm′ if m′ ∈
{0, . . . ,m− 1} and xm ≥ xm′ if m′ ∈ {m+ 1, . . . , k}}, we have

lim
n→∞

Fn,Pn,h(dc,mm(Xn) = m) = Ph
((

E∗[ṗ
m

[Z∗ + Z]|Z] > max
0≤m′≤m−1

E∗[ṗ
m′

[Z∗ + Z]|Z]
)

and
(
E∗[ṗ

m
[Z∗ + Z]|Z] ≥ max

m+1≤m′≤k
E∗[ṗ

m′
[Z∗ + Z]|Z]

))
.

Part (ii): The excess maximum risk of d ∈ D is

∆Rmm(d, P ) =
M∑
m=0

I[d = m]

(
max

0≤m′≤M
p
m′

(P )− p
m

(P )

)
.

For Case 1, by continuity of p
m

(·) for all m (under Assumption 5.10.1(a)) we have p
m

(Pn,h)→ p
m0

for all m and max0≤m′≤M p
m′

(Pn,h)→ p
00

. Then for all n sufficiently large,

EPn,h [
√
n∆Rmm(dn(Xn), Pn,h)] =

√
n

M∑
m=1

EPn,h [I[dn(Xn) = m]]
(
p

0
(Pn,h)− p

m
(Pn,h)

)
,

where lim infn→∞(p
0
(Pn,h) − p

m
(Pn,h)) > 0 for m ≥ 1 and EPn,h [I[dn(Xn) = m]] → Eh[d∞m (Z)].

Now consider Case 2. Again by continuity, for n sufficiently large we have

EPn,h [
√
n∆Rmm(dn(Xn), Pn,h)] =

√
n

k∑
m=1

EPn,h [I[dn(Xn) = m]]

(
max

0≤m′≤k
p
m′

(Pn,h)− p
m

(Pn,h)

)

+
√
n

M∑
m=k+1

EPn,h [I[dn(Xn) = m]]

(
max

0≤m′≤k
p
m′

(Pn,h)− p
m

(Pn,h)

)
,
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where the second sum is zero if k = M . If k < M , by similar arguments to Case 1 we have

√
n

M∑
m=k+1

EPn,h [I[dn(Xn) = m]]

(
max

0≤m′≤k
p
m′

(Pn,h)− p
m

(Pn,h)

)
→ +∞×

M∑
m=k+1

Eh[d∞m (Z)] .

Moreover, for m ≤ k by Assumption 5.10.1(a) we have

√
n

(
max

0≤m′≤k
p
m′

(Pn,h)− p
m

(Pn,h)

)
=

(
max

0≤m′≤k
(
√
n(p

m′
(Pn,h)− p

m′0
))−
√
n(p

m
(Pn,h)− p

m0
)

)
→ max

0≤m′≤k
ṗ
m′,P0

[h]− ṗ
m,P0

[h] .

Part (iii): For Case 1, from part (ii), we see that d∞0 = 1 (almost everywhere) is optimal. For

Case 2, from part (ii), we see that d∞m = 0 (almost everywhere) is optimal for all m > k. For the

remaining values of m, we have

∫ k∑
m=0

Eh[d∞m (Z)]

(
max

0≤m′≤k
ṗ
m′,P0

[h]− ṗ
m,P0

[h]

)
dh

∝
∫ ∫

d∞m,P0
(z)

(
max

0≤m′≤k
ṗ
m′,P0

[h]− ṗ
m,P0

[h]

)
e−

1
2

(z−h)′I0(z−h) dz dh .

Changing the order of integration and minimizing pointwise in z, we see that if M(z) denotes the

set of maximizers of ∫
ṗ
m,P0

[h]e−
1
2

(z−h)′I0(z−h) dh ,

then setting d∞m (z) = 0 for m 6∈ M(z) and d∞m (z) ≥ 0 for m ∈ M(z) with
∑

m∈M(z) d
∞
m (z) = 1 is

optimal. The tie-breaking rule used in part (i) is a special case with d∞m (z) = 1 if m = minM(z).

Characterizing dc,mmr(Xn) again requires a tie-breaking rule. In the derivation below we take

the smallest element of the set of minimizers. To simplify notation, let τm(P ) = ∆pm(P ) and

τm0 = τm(P0) for m = 0, 1, . . . ,M . Without loss of generality, reorder the indices so that τ00 ≤
τ10 ≤ . . . ≤ τM0. There are two cases, namely: case 1, τ00 < τ10; and case 2, τ00 = τ10 = . . . = τk0

for some k ∈ {1, . . . ,M} with τk0 < τ(k+1)0 if k < M .

Lemma C.4. Let Assumptions 5.1, 5.10.1(b), 5.10.2, and 5.10.3(b) hold. Then:

(i) dc,mmr has the asymptotic representation

d∞c,mmr,m(Z) =


1 if m = 0 and 0 if m ∈ {1, . . . ,M} in case 1,

Ph((E∗[τ̇m[Z∗ + Z]|Z] < min0≤m′≤m−1 E∗[τ̇m′ [Z∗ + Z]|Z]) and

(E∗[τ̇m[Z∗ + Z]|Z] ≤ minm+1≤m′≤k E∗[τ̇m′ [Z∗ + Z]|Z]))

if m ∈ {0, . . . , k} and 0 if m ∈ {k + 1, . . . ,M} in case 2,
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where the minimum over an empty index is +∞;

(ii) local asymptotic excess maximum risk of {dn}n≥1 ∈ D is

L∞mmr(d∞;P0, h) =


+∞× (1− Eh[d∞0 (Z)]) in case 1,∑k

m=0 Eh[d∞m (Z)](τ̇m,P0 [h]−min0≤m′≤k τ̇m′,P0 [h])

+∞× (1−
∑k

m=0 Eh[d∞m (Z)]) in case 2,

where limn→∞ EPn,h [I(dn(Xn) = m)] = Eh[d∞m (Z)];

(iii) (d∞c,mmr,m(Z))Mm=0 is optimal in the limit experiment.

Proof of Lemma C.4. Follows by similar arguments to the proof of Lemma C.3.

C.4 Main results

Theorems 5.4 and 5.11 are proved using the following lemma, which is a very slight generalization

of Lemma 1 of Hirano and Porter (2009). We include a proof for completeness. It applies to both

minimax risk and regret criteria, so we drop the subscripts mm and mmr on L, ∆B, and R.

Lemma C.5. Let L({dn}n≥1;P0, h) = L∞(d∞;P0, h) hold for every P0 ∈ P, h ∈ Rk, and

{dn}n≥1 ∈ D, where d∞ denotes the asymptotic representation of {dn}n≥1 ∈ D, and let the prior Π

have a strictly positive, continuously differentiable density π on P. Then: (i) for any {dn}n≥1 ∈ D,

lim inf
n→∞

∆Bn(dn;P0, π) ≥ π(P0) inf
d∞

∫
L∞(d∞;P0, h) dh

(ii) If, in addition, {d∗n}n≥1 ∈ D and its asymptotic representation d∞∗ solves∫
L∞(d∞∗ ;P0, h) dh = inf

d∞

∫
L∞(d∞;P0, h) dh ,

and d∗n satisfies

lim sup
n→∞

∆Bn(d∗n;P0, π) ≤
∫

lim sup
n→∞

EPn,h
[√
n∆R (d∗n, Pn,h;Xn)

]
π (Pn,h) dh , (A.10)

then:

lim
n→∞

∆Bn(d∗n;P0, π) = π(P0) inf
d∞

∫
L∞(d∞;P0, h) dh ,

and hence

lim
n→∞

∆Bn(d∗n;P0, π) = inf
{dn}∈D

lim inf
n→∞

∆Bn(dn;P0, π) .

Remark C.6. By the reverse Fatou lemma, condition (A.10) holds if there exists a non-negative

function g(h) with EPn,h [
√
n∆R (d∗n, Pn,h;Xn)] π (Pn,h) ≤ g(h) for each n and

∫
g(h) dh <∞.
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Proof of Lemma C.5. Part (i): follows by Fatou’s lemma and definition of ∆Bn(dn;P0, π):

lim inf
n→∞

∆Bn(dn;P0, π) ≥
∫

lim inf
n→∞

EPn,h
[√

n∆R
(
dn, P0 + n−1/2h;Xn

)]
π
(
P0 + n−1/2h

)
dh

= π(P0)

∫
L∞(d∞;P0, h) dh ,

where d∞ denotes the asymptotic representation of {dn}n≥1 ∈ D.

Part (ii): By condition (A.10) and optimality of d∞∗ in the limit experiment, we have

lim sup
n→∞

∆Bn(d∗n;P0, π) ≤
∫

lim sup
n→∞

EPn,h
[√
n∆R (d∗n, Pn,h;Xn)

]
π (Pn,h) dh

= π(P0)

∫
L∞(d∞∗ ;P0, h) dh

= π(P0) inf
d∞

∫
L∞(d∞;P0, h) dh .

Combining with part (i) applied to {d∗n}n≥1, we obtain

lim
n→∞

∆Bn(d∗n;P0, π) = π(P0) inf
d∞

∫
L∞(d∞;P0, h) dh .

The final result is immediate from part (i).

Proof of Theorem 5.4. Part (i): First note that as d̃n is binary, establishing convergence in distribu-

tion under {Fn,Pn,h}n≥1 is equivalent to characterizing limn→∞ Fn,Pn,h(d̃n(Xn) = 1). Lemma C.1(i)

establishes that db,mm converges in distribution along every sequence {Fn,Pn,h}n≥1. Asymptotic

equivalence of d̃n and db,mm implies limn→∞ Fn,Pn,h(d̃n(Xn) = 1) = limn→∞ Fn,Pn,h(db,mm(Xn) = 1)

for all h ∈ Rk and all P0 ∈ P. Therefore, d̃n has the same asymptotic representation as db,mm from

Lemma C.1(i). As this asymptotic representation is optimal in the limit experiment (cf. Lemma

C.1(iii)) and dn satisfies condition (A.10) by assumption, the desired conclusion now follows by

Lemma C.5.

Part (ii): Follows similarly by Lemmas C.2 and C.5.

Proof of Proposition 5.8. Part (i): By Fatou’s lemma and definition of ∆Bnb,mm(dn;P0, π), we have

lim inf
n→∞

∆Bnb,mm(d̃n;P0, π) ≥
∫

lim inf
n→∞

EPn,h
[√

n∆Rmm
(
d̃n, P0 + n−1/2h;Xn

)]
π
(
P0 + n−1/2h

)
dh

= π(P0)

∫
L∞mm(d̃∞;P0, h) dh ,

where d̃∞ denotes the asymptotic representation of {d̃n}n≥1 ∈ D and π(P0) > 0. By the proof of
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Theorem 5.4 we also have

inf
{dn}∈D

lim inf
n→∞

∆Bnb,mm(dn;P0, π) = lim
n→∞

∆Bnb,mm(db,mm;P0, π) = π(P0)

∫
L∞mm(d∞b,mm;P0, h) dh .

Therefore, it suffices to show that∫
L∞mm(d̃∞;P0, h) dh >

∫
L∞mm(d∞b,mm;P0, h) dh . (A.11)

First, suppose that a01pL(P0) + a10pU (P0) 6= a01. This corresponds to Cases 1 and 2 of Lemma

C.1. As asymptotic equivalence fails, we have

lim
n→∞

Fn,Pn,h∗ (d̃n(Xn) = 1) 6= lim
n→∞

Fn,Pn,h∗ (db,mm(Xn) = 1)

for some P0 ∈ P and h∗ in Rk. We may restate the above display in terms of the asymptotic

representations:

Eh∗ [d̃∞(Z)] 6= Eh∗ [d∞b,mm(Z)] .

By Hölder’s inequality we may deduce that the functions h 7→ Eh[d̃∞(Z)] and h 7→ Eh[d∞b,mm(Z)]

are both continuous at h∗. Therefore, there exists a set H ⊂ Rk with positive Lebesgue measure

upon which Eh[d̃∞(Z)] 6= Eh[d∞b,mm(Z)] for all h ∈ H.

If P0 is as in Case 1 of Lemma C.1, then Eh[d̃∞(Z)] < 1 for all h ∈ H. This, in turn, implies

that L∞mm(d̃∞;P0, h) = +∞ for all h ∈ H. By contrast, L∞mm(d∞b,mm;P0, h) = 0 for all h ∈ Rk. The

proof when P0 satisfies the conditions of Case 2 of Lemma C.1 follows similarly.

Now suppose that a01pL(P0) + a10pU (P0) 6= a01, which corresponds to Case 3 of Lemma C.1.

Let f(P ) = a01pL(P ) + a10pU (P ). By Lemma C.1(ii), to prove inequality (A.11) it suffices to show∫ (
d̃∞(z)

∫
(ḟP0 [h])e−

1
2

(z−h)′I0(z−h) dh

)
dz <

∫ (
d∞b,mm(z)

∫
(ḟP0 [h])e−

1
2

(z−h)′I0(z−h) dh

)
dz .

The function d̃∞b,mm(z) = I
[∫

(ḟP0 [h])e−
1
2

(z−h)′I0(z−h) dh ≥ 0
]

maximizes

d(z)×
∫

(ḟP0 [h])e−
1
2

(z−h)′I0(z−h) dh

over all [0, 1]-valued functions of z, so the preceding inequality holds weakly. To establish a strict

inequality, note the functions d̃∞(z) and d∞b,mm(z) must disagree on a set of positive Lebesgue

measure, say Z. For each z ∈ Z we must have one of the following:

(i)
∫

(ḟP0 [h])e−
1
2

(z−h)′I0(z−h) dh > 0 and d∞(z) < 1;

(ii)
∫

(ḟP0 [h])e−
1
2

(z−h)′I0(z−h) dh < 0 and d∞(z) > 0;
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(iii)
∫

(ḟP0 [h])e−
1
2

(z−h)′I0(z−h) dh = 0.

However, the condition E∗[a01ṗL,P0 [Z∗ + Z] + a10ṗU,P0 [Z∗ + Z]|Z] 6= 0 a.e. implies that case (iii)

only holds on a set of zero Lebesgue measure. Therefore, for almost every z ∈ Z either case (i) or

(ii) must hold, which establishes the desired inequality.

Part (ii): This follows by Lemma C.2 using similar arguments to Part (i).

Proof of Theorem 5.11. The proof follows by similar arguments to Theorem 5.4, using Lemmas C.3

and C.5 for part (i) and Lemmas C.4 and C.5 for part (ii).

C.5 Results on Computation

Proof of Proposition A.1. Dropping dependence of the L-vector b and K × L matrix G on the

low-dimensional parameter φ, the primal problem is

sup
π∈RL

b′π subject to (G− r ⊗ 1′1×L)π = 0, 11×Lπ − 1 = 0, π ≥ 0 ,

where the final inequality holds element-wise. The Lagrangian is

sup
π∈RL

inf
µ∈RK ,ζ∈R,κ∈RL+

L(π, µ, ζ, κ).

Here µ, ζ, and κ are the Lagrange multipliers on the three constraints and

L(π, µ, ζ, κ) = b′π + µ′
(
G− r ⊗ 1′1×L

)
π + ζ (11×Lπ − 1) + κ′π

=
(
b+

(
G− r ⊗ 1′1×L

)′
µ+ ζ1′1×L + κ

)′
π − ζ .

By duality, we have

sup
π

inf
µ,ζ,κ

L(π, µ, ζ, κ) = inf
µ,ζ,κ

sup
π
L(π, µ, ζ, κ).

For fixed µ, ζ, and κ, consider the problem

sup
π
L(π, µ, ζ, κ) = sup

π

(
b+

(
G− r ⊗ 1′1×L

)′
µ+ ζ1′1×L + κ

)′
︸ ︷︷ ︸

=:b∗(µ,ζ,κ)′

π − ζ .

This value can be made +∞ by assigning arbitrarily large positive values to any element of π for

which b∗(µ, ζ, κ) has a positive entry, and an arbitrarily large negative value to any element of π

for which b∗(µ, ζ, κ) has a negative entry. The minimizing agent would therefore choose

κ∗ = κ∗(ζ, µ) = −
((
bl + (Gl − r)′µ+ ζ

)
∧ 0
)
l∈{1,...,L} ∈ RL+
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so that all entries of m∗(µ, ζ, κ∗) are non-negative:

m∗(µ, ζ, κ∗) =
((
bl + (Gl − r)′µ+ ζ

)
∨ 0
)
l∈{1,...,L} ,

and then choose

ζ∗ = ζ(µ) = − max
l∈{1,...,L}

(
bl + (Gl − r)′µ

)
so that every entry of b∗(µ, ζ∗, κ∗) is zero. Any ζ ≤ ζ∗ will suffice for this purpose, but values of

ζ strictly less than ζ∗ will result in a higher value of the minimizing agent’s objective. Combining

the intermediate results, we obtain

sup
π

inf
µ,ζ,κ

L(π, µ, ζ, κ) = inf
µ

(
max

l∈{1,...,L}
bl + µ′(Gl − r)

)
.

This min-max problem may be restated as a linear program by introducing an additional

variable t ∈ R for the minimizing agent:

inf
µ

(
max

l∈{1,...,L}
bl + µ′(Gl − r)

)
= inf

µ,t
t s.t. t ≥

(
bl + µ′(Gl − r)

)
, l = 1, . . . , L

= inf
µ,t

t s.t. t1L×1 ≥
(
b+ (G′ − (1L×1 ⊗ r′))µ

)
= inf

v
[01×K , 1] v s.t. Av ≤ −b ,

where v = [µ′, t]′ ∈ RK+1 and A = [G′ − (1L×1 ⊗ r′),−1L×1].

Proof of Proposition A.2. The dual representation follows from Csiszár and Matúš (2012). Large-δ

behavior is established in Christensen and Connault (2019).


	1 Introduction
	2 Setup, Motivating Examples, and Objectives
	2.1 Setup
	2.2 Motivating Examples
	2.3 Objectives

	3 Binary Forecasts
	3.1 -Optimal Forecasts
	3.2 Robust Forecasts
	3.3 Efficient Robust Forecasts
	3.4 Numerical Illustration

	4 Multinomial Forecasts
	4.1 -optimal Forecasts
	4.2 Robust Forecasts
	4.3 Efficient Robust Forecasts

	5 Asymptotic Efficiency for the Robust Forecasting Problem
	5.1 Limit Experiment
	5.2 Asymptotic Efficiency
	5.3 Binary forecasts
	5.4 Multinomial Forecasts

	6 Conclusion
	A Computation
	A.1 Computing Extreme Probabilities: the Discrete Case
	A.2 Computing Extreme Probabilities: the Continuous Case

	B Further Results on Robust Binary Forecasts
	B.1 Equivalence of Minimax forecasts under Quadratic and Logarithmic Loss
	B.2 Equivalence of Robust Binary Forecasts under Classification Loss
	B.3 Non-equivalence of Minimax and Minimax Regret Forecasts when M 2

	C Proofs
	C.1 Preliminaries
	C.2 Supplementary Lemmas: Binary Forecasts
	C.3 Supplementary Lemmas: Multinomial Forecasts
	C.4 Main results
	C.5 Results on Computation


