IUBMB Enzyme Nomenclature

EC 1.2.7.5

Accepted name: aldehyde ferredoxin oxidoreductase

Reaction: an aldehyde + H2O + 2 oxidized ferredoxin = a carboxylate + 2 H+ + 2 reduced ferredoxin

Other name(s): AOR

Systematic name: aldehyde:ferredoxin oxidoreductase

Comments: This is an oxygen-sensitive enzyme that contains tungsten-molybdopterin and iron-sulfur clusters. Catalyses the oxidation of aldehydes (including crotonaldehyde, acetaldehyde, formaldehyde and glyceraldehyde) to their corresponding acids. However, it does not oxidize glyceraldehyde 3-phosphate [see EC 1.2.7.6, glyceralde-3-phosphate dehydrogenase (ferredoxin)]. Can use ferredoxin or methyl viologen but not NAD(P)+ as electron acceptor.

Links to other databases: BRENDA, EXPASY, KEGG, Metacyc, PDB, CAS registry number: 138066-90-7

References:

1. Mukund, S. and Adams, M.W.W. The novel tungsten-iron-sulfur protein of the hyperthermophilic archaebacterium, Pyrococcus furiosus, is an aldehyde ferredoxin oxidoreductase - evidence for its participation in a unique glycolytic pathway. J. Biol. Chem. 266 (1991) 14208-14216. [PMID: 1907273]

2. Johnson, J.L., Rajagopalan, K.V., Mukund, S. and Adams, M.W.W. Identification of molybdopterin as the organic-component of the tungsten cofactor in four enzymes from hyperthermophilic archaea. J. Biol. Chem. 268 (1993) 4848-4852. [PMID: 8444863]

3. Chan, M.K., Mukund, S., Kletzin, A., Adams, M.W.W. and Rees, D.C. Structure of a hyperthermophilic tungstopterin enzyme, aldehyde ferredoxin oxidoreductase. Science 267 (1995) 1463-1469. [PMID: 7878465]

4. Roy, R., Menon, A.L. and Adams, M.W.W. Aldehyde oxidoreductases from Pyrococcus furiosus. Methods Enzymol. 331 (2001) 132-144. [PMID: 11265456]

[EC 1.2.7.5 created 2003]


Return to EC 1.2.7 home page
Return to EC 1.2 home page
Return to EC 1 home page
Return to Enzymes home page
Return to IUBMB Biochemical Nomenclature home page