Enzyme Nomenclature

EC 1.1.1 (continued)

with NAD+ or NADP+ as acceptor

Continued from:
EC 1.1.1.1 to EC 1.1.1.50
EC 1.1.1.51 to EC 1.1.1.100
EC 1.1.1.101 to EC 1.1.1.150
See separate file for EC 1.1.1.201 to EC 1.1.1.250
EC 1.1.1.251 to EC 1.1.1.300
EC 1.1.1.301 to EC 1.1.1.350
EC 1.1.1.351 to EC 1.1.1.438

Contents

EC 1.1.1.151 21-hydroxysteroid dehydrogenase (NADP+)
EC 1.1.1.152 3α-hydroxy-5β-androstane-17-one 3α-dehydrogenase
EC 1.1.1.153 sepiapterin reductase (L-erythro-7,8-dihydrobiopterin forming)
EC 1.1.1.154 ureidoglycolate dehydrogenase
EC 1.1.1.155 identical to EC 1.1.1.87
EC 1.1.1.156 glycerol 2-dehydrogenase (NADP+)
EC 1.1.1.157 3-hydroxybutyryl-CoA dehydrogenase
EC 1.1.1.158 now EC 1.3.1.98
EC 1.1.1.159 7α-hydroxysteroid dehydrogenase
EC 1.1.1.160 dihydrobunolol dehydrogenase
EC 1.1.1.161 now EC 1.14.13.15
EC 1.1.1.162 erythrulose reductase
EC 1.1.1.163 cyclopentanol dehydrogenase
EC 1.1.1.164 hexadecanol dehydrogenase
EC 1.1.1.165 2-alkyn-1-ol dehydrogenase
EC 1.1.1.166 hydroxycyclohexanecarboxylate dehydrogenase
EC 1.1.1.167 hydroxymalonate dehydrogenase
EC 1.1.1.168 2-dehydropantolactone reductase (Re-specific)
EC 1.1.1.169 2-dehydropantoate 2-reductase
EC 1.1.1.170 3β-hydroxy-4α-carboxy-sterol 3-dehydrogenase (decarboxylating)
EC 1.1.1.171 now EC 1.5.1.20
EC 1.1.1.172 2-oxoadipate reductase
EC 1.1.1.173 L-rhamnose 1-dehydrogenase
EC 1.1.1.174 cyclohexane-1,2-diol dehydrogenase
EC 1.1.1.175 D-xylose 1-dehydrogenase
EC 1.1.1.176 12α-hydroxysteroid dehydrogenase
EC 1.1.1.177 glycerol-3-phosphate 1-dehydrogenase (NADP+)
EC 1.1.1.178 3-hydroxy-2-methylbutyryl-CoA dehydrogenase
EC 1.1.1.179 D-xylose 1-dehydrogenase (NADP+, D-xylono-1,5-lactone-forming)
EC 1.1.1.180 deleted, included in EC 1.1.1.131
EC 1.1.1.181 cholest-5-ene-3β,7α-diol 3β-dehydrogenase
EC 1.1.1.182 deleted, included in EC 1.1.1.198, EC 1.1.1.227 and EC 1.1.1.228
EC 1.1.1.183 geraniol dehydrogenase
EC 1.1.1.184 carbonyl reductase (NADPH)
EC 1.1.1.185 L-glycol dehydrogenase
EC 1.1.1.186 dTDP-galactose 6-dehydrogenase
EC 1.1.1.187 GDP-4-dehydro-D-rhamnose reductase
EC 1.1.1.188 prostaglandin-F synthase
EC 1.1.1.189 prostaglandin-E2 9-reductase
EC 1.1.1.190 indole-3-acetaldehyde reductase (NADH)
EC 1.1.1.191 indole-3-acetaldehyde reductase (NADPH)
EC 1.1.1.192 long-chain-alcohol dehydrogenase
EC 1.1.1.193 5-amino-6-(5-phosphoribosylamino)uracil reductase
EC 1.1.1.194 coniferyl-alcohol dehydrogenase
EC 1.1.1.195 cinnamyl-alcohol dehydrogenase
EC 1.1.1.196 15-hydroxyprostaglandin-D dehydrogenase (NADP+)
EC 1.1.1.197 15-hydroxyprostaglandin dehydrogenase (NADP+)
EC 1.1.1.198 (+)-borneol dehydrogenase
EC 1.1.1.199 (S)-usnate reductase
EC 1.1.1.200 aldose-6-phosphate reductase (NADPH)

See the following files for:

EC 1.1.1.201 to EC 1.1.1.250
EC 1.1.1.251 to EC 1.1.1.300
EC 1.1.1.301 to EC 1.1.1.350
EC 1.1.1.351 to EC 1.1.1.438

Entries

When an enzyme can use either NAD+ or NADP+, the symbol NAD(P)+ is used.

EC 1.1.1.151

Accepted name: 21-hydroxysteroid dehydrogenase (NADP+)

Reaction: pregnan-21-ol + NADP+ = pregnan-21-al + NADPH + H+

Other name(s): 21-hydroxy steroid dehydrogenase; 21-hydroxy steroid (nicotinamide adenine dinucleotide phosphate) dehydrogenase; 21-hydroxy steroid dehydrogenase (nicotinamide adenine dinucleotide phosphate); NADP-21-hydroxysteroid dehydrogenase; 21-hydroxysteroid dehydrogenase (NADP)

Systematic name: 21-hydroxysteroid:NADP+ 21-oxidoreductase

Comments: Acts on a number of 21-hydroxycorticosteroids.

Links to other databases: BRENDA, EXPASY, KEGG, Metacyc, CAS registry number: 37250-76-3

References:

1. Monder, C. and White, A. The 21-hydroxysteroid dehydrogenases of liver. A nicotinamide adenine dinucleotide phosphate dehydrogenase and two nicotinamide adenine dinucleotide dehydrogenases. J. Biol. Chem. 240 (1965) 71-77.

[EC 1.1.1.151 created 1972]

EC 1.1.1.152

Accepted name: 3α-hydroxy-5β-androstane-17-one 3α-dehydrogenase

Reaction: 3α-hydroxy-5β-androstane-17-one + NAD+ = 5β-androstane-3,17-dione + NADH + H+

Other name(s): etiocholanolone 3α-dehydrogenase; etiocholanolone 3α-dehydrogenase; 3α-hydroxy-5β-steroid dehydrogenase

Systematic name: 3α-hydroxy-5β-steroid:NAD+ 3-oxidoreductase

Links to other databases: BRENDA, EXPASY, KEGG, Metacyc, CAS registry number: 37250-77-4

References:

1. Roe, C.R. and Kaplan, N.O. Purification and substrate specificities of bacterial hydroxysteroid dehydrogenases. Biochemistry 8 (1969) 5093-5103. [PMID: 5365796]

[EC 1.1.1.152 created 1972]

EC 1.1.1.153

Accepted name: sepiapterin reductase (L-erythro-7,8-dihydrobiopterin forming)

Reaction: (1) L-erythro-7,8-dihydrobiopterin + NADP+ = sepiapterin + NADPH + H+
(2) L-erythro-tetrahydrobiopterin + 2 NADP+ = 6-pyruvoyl-5,6,7,8-tetrahydropterin + 2 NADPH + 2 H+

For diagram of reaction click here

Glossary: sepiapterin = 2-amino-6-lactoyl-7,8-dihydropteridin-4(3H)-one
tetrahydrobiopterin = 5,6,7,8-tetrahydrobiopterin = 2-amino-6-(1,2-dihydroxypropyl)-5,6,7,8-tetrahydropteridin-4(3H)-one

Other name(s): SR

Systematic name: L-erythro-7,8-dihydrobiopterin:NADP+ oxidoreductase

Comments: This enzyme catalyses the final step in the de novo synthesis of tetrahydrobiopterin from GTP. The enzyme, which is found in higher animals and some fungi and bacteria, produces the erythro form of tetrahydrobiopterin. cf. EC 1.1.1.325, sepiapterin reductase (L-threo-7,8-dihydrobiopterin forming).

Links to other databases: BRENDA, EXPASY, GTD, KEGG, Metacyc, PDB, CAS registry number: 9059-48-7

References:

1. Katoh, S. Sepiapterin reductase from horse liver: purification and properties of the enzyme. Arch. Biochem. Biophys. 146 (1971) 202-214. [PMID: 4401291]

2. Matsubara, M., Katoh, S., Akino, M. and Kaufman, S. Sepiapterin reductase. Biochim. Biophys. Acta 122 (1966) 202-212. [PMID: 5969298]

3. Werner, E.R., Schmid, M., Werner-Felmayer, G., Mayer, B. and Wachter, H. Synthesis and characterization of 3H-labelled tetrahydrobiopterin. Biochem. J. 304 (1994) 189-193. [PMID: 7528005]

4. Kim, Y.A., Chung, H.J., Kim, Y.J., Choi, Y.K., Hwang, Y.K., Lee, S.W. and Park, Y.S. Characterization of recombinant Dictyostelium discoideum sepiapterin reductase expressed in E. coli. Mol. Cells 10 (2000) 405-410. [PMID: 10987137]

[EC 1.1.1.153 created 1972, modified 2012]

EC 1.1.1.154

Accepted name: ureidoglycolate dehydrogenase

Reaction: (S)-ureidoglycolate + NAD(P)+ = oxalureate + NAD(P)H + H+

For diagram click here.

Systematic name: (S)-ureidoglycolate:NAD(P)+ oxidoreductase

Links to other databases: BRENDA, EXPASY, KEGG, Metacyc, PDB, CAS registry number: 62213-62-1

References:

1. van der Drift, C., van Helvoort, P.E.M. and Vogels, G.D. S-Ureidoglycolate dehydrogenase: purification and properties. Arch. Biochem. Biophys. 145 (1971) 465-469. [PMID: 4399430]

[EC 1.1.1.154 created 1976]

[EC 1.1.1.155 Deleted entry: the enzyme is identical to EC 1.1.1.87, homoisocitrate dehydrogenase (EC 1.1.1.155 created 1976, deleted 2004)]

EC 1.1.1.156

Accepted name: glycerol 2-dehydrogenase (NADP+)

Reaction: glycerol + NADP+ = glycerone + NADPH + H+

Other name(s): dihydroxyacetone reductase; dihydroxyacetone (reduced nicotinamide adenine dinucleotide phosphate) reductase; dihydroxyacetone reductase (NADPH); DHA oxidoreductase; glycerol 2-dehydrogenase (NADP)

Systematic name: glycerol:NADP+ 2-oxidoreductase (glycerone-forming)

Links to other databases: BRENDA, EXPASY, KEGG, Metacyc, CAS registry number: 39342-20-6

References:

1. Ben-Amotz, A. and Avron, M. NADP specific dihydroxyacetone reductase from Dunaliella parva. FEBS Lett. 29 (1973) 153-155. [PMID: 4146296]

[EC 1.1.1.156 created 1976]

EC 1.1.1.157

Accepted name: 3-hydroxybutyryl-CoA dehydrogenase

Reaction: (S)-3-hydroxybutanoyl-CoA + NADP+ = 3-acetoacetyl-CoA + NADPH + H+

For diagram of reaction click here.

Other name(s): β-hydroxybutyryl coenzyme A dehydrogenase; L(+)-3-hydroxybutyryl-CoA dehydrogenase; BHBD; dehydrogenase, L-3-hydroxybutyryl coenzyme A (nicotinamide adenine dinucleotide phosphate); L-(+)-3-hydroxybutyryl-CoA dehydrogenase; β-hydroxybutyryl-CoA dehydrogenase

Systematic name: (S)-3-hydroxybutanoyl-CoA:NADP+ oxidoreductase

Links to other databases: BRENDA, EXPASY, KEGG, Metacyc, PDB, CAS registry number: 39319-78-3

References:

1. Madan, V.K., Hillmer, P. and Gottschalk, G. Purification and properties of NADP-dependent L(+)-3-hydroxybutyryl-CoA dehydrogenase from Clostridium kluyveri. Eur. J. Biochem. 32 (1973) 51-56. [PMID: 4405720]

[EC 1.1.1.157 created 1976]

[EC 1.1.1.158 Transferred entry: UDP-N-acetylmuramate dehydrogenase. Now EC 1.3.1.98, UDP-N-acetylmuramate dehydrogenase (EC 1.1.1.158 created 1976, modified 1983, modified 2002, deleted 2013)]

EC 1.1.1.159

Accepted name: 7α-hydroxysteroid dehydrogenase

Reaction: cholate + NAD+ = 3α,12α-dihydroxy-7-oxo-5β-cholanate + NADH + H+

Glossary: cholate = 3α,7α,12α-trihydroxy-5β-cholanate

Other name(s): 7α-hydroxy steroid dehydrogenase; 7α-HSDH

Systematic name: 7α-hydroxysteroid:NAD+ 7-oxidoreductase

Comments: Catalyses the oxidation of the 7α-hydroxyl group of bile acids and alcohols both in their free and conjugated forms. The Bacteroides fragilis and Clostridium enzymes can also utilize NADP+.

Links to other databases: BRENDA, EXPASY, KEGG, Metacyc, PDB, CAS registry number: 39361-64-3

References:

1. Haslewood, E.S. and Haslewood, G.A.D. The specificity of a 7α-hydroxy steroid dehydrogenase from Escherichia coli. Biochem. J. 157 (1976) 207-210. [PMID: 786279]

2. Macdonald, I.A. and Roach, P.D. Bile induction of 7α- and 7β-hydroxysteroid dehydrogenases in Clostridium absonum. Biochim. Biophys. Acta 665 (1981) 262-269. [PMID: 6945134]

3. Macdonald, I.A., Williams, C.N. and Mahony, D.E. 7α-Hydroxysteroid dehydrogenase from Escherichia coli B: preliminary studies. Biochim. Biophys. Acta 309 (1973) 243-253. [PMID: 4581498

4. Macdonald, I.A., Williams, C.N., Mahony, D.E. and Christie, W.M. NAD- and NADP-dependent 7α-hydroxysteroid dehydrogenases from Bacteroides fragilis. Biochim. Biophys. Acta 384 (1975) 12-24. [PMID: 236764]

[EC 1.1.1.159 created 1976, modified 1980]

EC 1.1.1.160

Accepted name: dihydrobunolol dehydrogenase

Reaction: (±)-5-[(tert-butylamino)-2'-hydroxypropoxy]-1,2,3,4-tetrahydro-1-naphthol + NADP+ = (±)-5-[(tert-butylamino)-2'-hydroxypropoxy]-3,4-dihydro-1(2H)-naphthalenone + NADPH + H+

Other name(s): bunolol reductase

Systematic name: (±)-5-[(tert-butylamino)-2'-hydroxypropoxy]-1,2,3,4-tetrahydro-1-naphthol:NADP+ oxidoreductase

Comments: Also acts, more slowly, with NAD+.

Links to other databases: BRENDA, EXPASY, KEGG, Metacyc, CAS registry number: 62213-61-0

References:

1. Leinweber, F.-J., Greenough, R.C., Schwender, C.F., Kaplan, H.R. and DiCarlo, F.J. Bunolol metabolism by cell-free preparations of human liver: biosynthesis of dihydrobunolol. Xenobiotica 2 (1972) 191-202. [PMID: 4560367]

[EC 1.1.1.160 created 1976]

[EC 1.1.1.161 Deleted entry: cholestanetetraol 26-dehydrogenase. The activity is part of EC 1.14.13.15, cholestanetriol 26-monooxygenase (EC 1.1.1.161 created 1976, deleted 2012)]

EC 1.1.1.162

Accepted name: erythrulose reductase

Reaction: D-threitol + NADP+ = D-erythrulose + NADPH + H+

Other name(s): D-erythrulose reductase; erythritol:NADP+ oxidoreductase

Systematic name: D-threitol:NADP+ oxidoreductase

Comments: NAD+ is also utilized, more slowly.

Links to other databases: BRENDA, EXPASY, KEGG, Metacyc, CAS registry number: 52064-49-0

References:

1. Uehara, K., Tanimoto, T. and Sato, H. Studies on D-tetrose metabolism. IV. Purification and some properties of D-erythrulose reductase from beef liver. J. Biochem. (Tokyo) 75 (1974) 333-345. [PMID: 4152124]

[EC 1.1.1.162 created 1976]

EC 1.1.1.163

Accepted name: cyclopentanol dehydrogenase

Reaction: cyclopentanol + NAD+ = cyclopentanone + NADH + H+

Other Name(s): cyclopentanol:NADP+ oxidoreductase (incorrect)

Systematic name: cyclopentanol:NAD+ oxidoreductase

Comments: 4-Methylcyclohexanol and cyclohexanol can also act as substrates.

Links to other databases: BRENDA, EXPASY, KEGG, Metacyc, CAS registry number: 37364-12-8

References:

1. Griffin, M. and Trudgill, P.W. The metabolism of cyclopentanol by Pseudomonas N.C.I.B. 9872. Biochem. J. 129 (1972) 595-603. [PMID: 4349113]

2. Iwaki, H., Hasegawa, Y., Wang, S., Kayser, M.M. and Lau, P.C. Cloning and characterization of a gene cluster involved in cyclopentanol metabolism in Comamonas sp. strain NCIMB 9872 and biotransformations effected by Escherichia coli-expressed cyclopentanone 1,2-monooxygenase. Appl. Environ. Microbiol. 68 (2002) 5671-5684; 69 (2003) 2414 (only). [PMID: 12406764]

[EC 1.1.1.163 created 1976]

EC 1.1.1.164

Accepted name: hexadecanol dehydrogenase

Reaction: hexadecanol + NAD+ = hexadecanal + NADH + H+

Systematic name: hexadecanol:NAD+ oxidoreductase

Comments: The liver enzyme acts on long-chain alcohols from C8 to C16. The Euglena enzyme also oxidizes the corresponding aldehydes to fatty acids.

Links to other databases: BRENDA, EXPASY, KEGG, Metacyc, CAS registry number: 62213-59-6

References:

1. Kolattukuday, P.E. Reduction of fatty acids to alcohols by cell-free preparations of Euglena gracilis. Biochemistry 9 (1970) 1095-1102. [PMID: 4313936]

2. Stoffel, W., Le Kim, D. and Heyn, G. Metabolism of sphingosine bases. XIV. Sphinganine (dihydrosphingosine), an effective donor of the alk-1-enyl chain of plasmalogens. Hoppe-Seyler's Z. Physiol. Chem. 351 (1970) 875-883. [PMID: 5432753]

[EC 1.1.1.164 created 1976]

EC 1.1.1.165

Accepted name: 2-alkyn-1-ol dehydrogenase

Reaction: 2-butyne-1,4-diol + NAD+ = 4-hydroxy-2-butynal + NADH + H+

Systematic name: 2-butyne-1,4-diol:NAD+ 1-oxidoreductase

Comments: Acts on a variety of 2-alkyn-1-ols, and also on 1,4-butanediol. NADP+ also acts as acceptor, but more slowly.

Links to other databases: BRENDA, EXPASY, KEGG, Metacyc, CAS registry number: 54576-94-2

References:

1. Miyoshi, T., Sato, H. and Harada, T. Purification and characterization of 2-alkyne-1-ol dehydrogenase induced by 2-butene-1,4-diol in Fusarium merismoides B11. Biochim. Biophys. Acta 358 (1974) 231-239.

[EC 1.1.1.165 created 1976]

EC 1.1.1.166

Accepted name: hydroxycyclohexanecarboxylate dehydrogenase

Reaction: (1S,3R,4S)-3,4-dihydroxycyclohexane-1-carboxylate + NAD+ = (1S,4S)-4-hydroxy-3-oxocyclohexane-1-carboxylate + NADH + H+

Other name(s): dihydroxycyclohexanecarboxylate dehydrogenase; (–)t-3,t-4-dihydroxycyclohexane-c-1-carboxylate-NAD oxidoreductase

Systematic name: (1S,3R,4S)-3,4-dihydroxycyclohexane-1-carboxylate:NAD+ 3-oxidoreductase

Comments: Acts on hydroxycyclohexanecarboxylates that have an equatorial carboxy group at C-1, an axial hydroxy group at C-3 and an equatorial hydroxy or carbonyl group at C-4, including (–)-quinate and (–)-shikimate.

Links to other databases: BRENDA, EXPASY, KEGG, Metacyc, CAS registry number: 55467-53-3

References:

1. Whiting, G.C. and Coggins, R.A. A new nicotinamide-adenine dinucleotide-dependent hydroaromatic dehydrogenase of Lactobacillus plantarum and its role in formation of (–)t-3,t-4-dihydroxycyclohexane-c-1-carboxylate. Biochem. J. 141 (1974) 35-42. [PMID: 4375976]

[EC 1.1.1.166 created 1976]

EC 1.1.1.167

Accepted name: hydroxymalonate dehydrogenase

Reaction: hydroxymalonate + NAD+ = oxomalonate + NADH + H+

Systematic name: hydroxymalonate:NAD+ oxidoreductase

Links to other databases: BRENDA, EXPASY, KEGG, Metacyc, CAS registry number: 58693-60-0

References:

1. Jukova, N.I., Klunova, S.M. and Philippovich, Y.B. In: Biochemistry of Insects, issue 17, V.I. Lenin State Pedagogical Institute, Moscow, 1971, p. 56.

[EC 1.1.1.167 created 1976]

EC 1.1.1.168

Accepted name: 2-dehydropantolactone reductase (Re-specific)

Reaction: (R)-pantolactone + NADP+ = 2-dehydropantolactone + NADPH + H+

Other name(s): 2-oxopantoyl lactone reductase; ketopantoyl lactone reductase; 2-ketopantoyl lactone reductase; 2-dehydropantoyl-lactone reductase (A-specific); (R)-pantolactone:NADP+ oxidoreductase (A-specific); 2-dehydropantolactone reductase (A-specific)

Systematic name: (R)-pantolactone:NADP+ oxidoreductase (Re-specific)

Comments: The yeast enzyme differs from that from Escherichia coli [EC 1.1.1.214 2-dehydropantolactone reductase (Si-specific)], which is specific for the Si-face of NADP+, and in receptor requirements from EC 1.1.99.26 3-hydroxycyclohexanone dehydrogenase.

Links to other databases: BRENDA, EXPASY, KEGG, Metacyc, PDB, CAS registry number: 37211-75-9

References:

1. King, H.L., Jr., Dyar, R.E. and Wilken, D.R. Ketopantoyl lactone and ketopantoic acid reductases. Characterization of the reactions and purification of two forms of ketopantoyl lactone reductase. J. Biol. Chem. 247 (1972) 4689-4695. [PMID: 4603075]

2. Wilken, D.R., King, H.L., Jr. and Dyar, R.E. Ketopantoic acid and ketopantoyl lactone reductases. Stereospecificity of transfer of hydrogen from reduced nicotinamide adenine dinucleotide phosphate. J. Biol. Chem. 250 (1975) 2311-2314. [PMID: 234966]

[EC 1.1.1.168 created 1976, modified 1986, modified 1999, modified 2013]

EC 1.1.1.169

Accepted name: 2-dehydropantoate 2-reductase

Reaction: (R)-pantoate + NADP+ = 2-dehydropantoate + NADPH + H+

For diagram of reaction click here.

Glossary:
pantoate = 2,4-dihydroxy-3,3-dimethylbutanoate

Other name(s): 2-oxopantoate reductase; 2-ketopantoate reductase; 2-ketopantoic acid reductase; ketopantoate reductase; ketopantoic acid reductase

Systematic name: (R)-pantoate:NADP+ 2-oxidoreductase

Links to other databases: BRENDA, EXPASY, KEGG, Metacyc, PDB, CAS registry number: 37211-74-8

References:

1. King, H.L., Jr. and Wilken, D.R. Ketopantoyl lactone and ketopantoic acid reductases. Characterization of the reactions and purification of two forms of ketopantoyl lactone reductase. J. Biol. Chem. 247 (1972) 4689-4695.

[EC 1.1.1.169 created 1976]

EC 1.1.1.170

Accepted name: 3β-hydroxysteroid-4α-carboxylate 3-dehydrogenase (decarboxylating)

Reaction: a 3β-hydroxysteroid-4α-carboxylate + NAD(P)+ = a 3-oxosteroid + CO2 + NAD(P)H

For diagram of reaction click here

Other name(s): 3β-hydroxy-4β-methylcholestenecarboxylate 3-dehydrogenase (decarboxylating); 3β-hydroxy-4β-methylcholestenoate dehydrogenase; sterol 4α-carboxylic decarboxylase; sterol-4α-carboxylate 3-dehydrogenase (decarboxylating) (ambiguous); ERG26 (gene name); NSDHL (gene name)

Systematic name: 3β-hydroxysteroid-4α-carboxylate:NAD(P)+ 3-oxidoreductase (decarboxylating)

Comments: The enzyme participates in the biosynthesis of several important sterols such as ergosterol and cholesterol. It is part of a three enzyme system that removes methyl groups from the C-4 position of steroid molecules. The first enzyme, EC 1.14.18.9, 4α-methylsterol monooxygenase, catalyses three successive oxidations of the methyl group, resulting in a carboxyl group; the second enzyme, EC 1.1.1.170, catalyses an oxidative decarboxylation that results in a reduction of the 3β-hydroxy group at the C-3 carbon to an oxo group; and the last enzyme, EC 1.1.1.270, 3β-hydroxysteroid 3-dehydrogenase, reduces the 3-oxo group back to a 3β-hydroxyl. If a second methyl group remains at the C-4 position, this enzyme also catalyses its epimerization from 4β to 4α orientation, so it could serve as a substrate for a second round of demethylation. cf. EC 1.1.1.418, plant 3β-hydroxysteroid-4α-carboxylate 3-dehydrogenase (decarboxylating).

Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 71822-23-6

References:

1. Sharpless, K.B., Snyder, T.E., Spencer, T.A., Maheshwari, K.K. and Nelson, J.A. Biological demethylation of 4,4-dimethyl sterols, Evidence for enzymic epimerization of the 4β-methyl group prior to its oxidative removal. J. Am. Chem. Soc. 91 (1969) 3394-3396. [PMID: 5791927]

2. Rahimtula, A.D. and Gaylor, J.L. Partial purification of a microsomal sterol 4α-carboxylic acid decarboxylase. J. Biol. Chem. 247 (1972) 9-15. [PMID: 4401584]

3. Brady, D.R., Crowder, R.D. and Hayes, W.J. Mixed function oxidases in sterol metabolism. Source of reducing equivalents. J. Biol. Chem. 255 (1980) 10624-10629. [PMID: 7430141]

4. Gachotte, D., Barbuch, R., Gaylor, J., Nickel, E. and Bard, M. Characterization of the Saccharomyces cerevisiae ERG26 gene encoding the C-3 sterol dehydrogenase (C-4 decarboxylase) involved in sterol biosynthesis. Proc. Natl. Acad. Sci. USA 95 (1998) 13794-13799. [PMID: 9811880]

5. Caldas, H. and Herman, G.E. NSDHL, an enzyme involved in cholesterol biosynthesis, traffics through the Golgi and accumulates on ER membranes and on the surface of lipid droplets. Hum. Mol. Genet. 12 (2003) 2981-2991. [PMID: 14506130]

[EC 1.1.1.170 created 1978, modified 2002, modified 2012, modified 2019]

[EC 1.1.1.171 Transferred entry: now EC 1.5.1.20 methylenetetrahydrofolate reductase (NADPH) (EC 1.1.1.171 created 1978, deleted 1984)]

EC 1.1.1.172

Accepted name: 2-oxoadipate reductase

Reaction: 2-hydroxyadipate + NAD+ = 2-oxoadipate + NADH + H+

Other name(s): 2-ketoadipate reductase; α-ketoadipate reductase; 2-ketoadipate reductase

Systematic name: 2-hydroxyadipate:NAD+ 2-oxidoreductase

Links to other databases: BRENDA, EXPASY, KEGG, Metacyc, CAS registry number: 61116-21-0

References:

1. Suda, T., Robinson, J.C. and Fjellstedt, T.A. Purification and properties of α-ketoadipate reductase, a newly discovered enzyme from human placenta. Arch. Biochem. Biophys. 176 (1976) 610-620. [PMID: 185965]

[EC 1.1.1.172 created 1978]

EC 1.1.1.173

Accepted name: L-rhamnose 1-dehydrogenase

Reaction: L-rhamnofuranose + NAD+ = L-rhamno-1,4-lactone + NADH + H+

For diagram of reaction click here.

Systematic name: L-rhamnofuranose:NAD+ 1-oxidoreductase

Links to other databases: BRENDA, EXPASY, KEGG, Metacyc, CAS registry number: 52227-67-5

References:

1. Rigo, L.U., Maréchal, L.R., Vieira, M.M. and Veiga, L.A. Oxidative pathway for L-rhamnose degradation in Pallularia pullulans. Can. J. Microbiol. 31 (1985) 817-822.

2. Rigo, L.U., Nakano, M., Veiga, L.A. and Feingold, D.S. L-Rhamnose dehydrogenase of Pullularia pullulans. Biochim. Biophys. Acta 445 (1976) 286-293. [PMID: 8142]

[EC 1.1.1.173 created 1978]

EC 1.1.1.174

Accepted name: cyclohexane-1,2-diol dehydrogenase

Reaction: trans-cyclohexane-1,2-diol + NAD+ = 2-hydroxycyclohexan-1-one + NADH + H+

Systematic name: trans-cyclohexane-1,2-diol:NAD+ 1-oxidoreductase

Comments: Also oxidizes, more slowly, the cis isomer and 2-hydroxycyclohexanone.

Links to other databases: BRENDA, EXPASY, KEGG, Metacyc, CAS registry number: 62628-27-7

References:

1. Davey, J.F. and Trudgill, P.W. The metabolism of trans-cyclohexan-1,2-diol by an Acinetobacter species. Eur. J. Biochem. 74 (1977) 115-127. [PMID: 856571]

[EC 1.1.1.174 created 1978]

EC 1.1.1.175

Accepted name: D-xylose 1-dehydrogenase

Reaction: D-xylose + NAD+ = D-xylonolactone + NADH + H+

Other name(s): NAD-D-xylose dehydrogenase; D-xylose dehydrogenase; (NAD)-linked D-xylose dehydrogenase

Systematic name: D-xylose:NAD+ 1-oxidoreductase

Links to other databases: BRENDA, EXPASY, KEGG, Metacyc, CAS registry number: 62931-20-8

References:

1. Yamanaka, K., Gino, M. and Kaneda, R. A specific NAD-D-xylose dehydrogenase from Arthrobacter sp. Agric. Biol. Chem. 41 (1977) 1493-1499.

[EC 1.1.1.175 created 1978]

EC 1.1.1.176

Accepted name: 12α-hydroxysteroid dehydrogenase

Reaction: cholate + NADP+ = 3α,7α-dihydroxy-12-oxo-5β-cholanate + NADPH + H+

Glossary: cholate = 3α,7α,12α-trihydroxy-5β-cholanate

Other name(s): 12α-hydroxy steroid dehydrogenase; 12α-hydroxy steroid dehydrogenase; NAD-dependent 12α-hydroxysteroid dehydrogenase; NADP-12α-hydroxysteroid dehydrogenase

Systematic name: 12α-hydroxysteroid:NADP+ 12-oxidoreductase

Comments: Catalyses the oxidation of the 12α-hydroxy group of bile acids, both in their free and conjugated form. Also acts on bile alcohols.

Links to other databases: BRENDA, EXPASY, KEGG, Metacyc, CAS registry number: 61642-40-8

References:

1. Macdonald, I.A., Mahony, D.E., Jellett, J.F. and Meier, C.E. NAD-dependent 3α- and 12α-hydroxysteroid dehydrogenase activities from Eubacterium lentum ATCC no. 25559. Biochim. Biophys. Acta 489 (1977) 466-476. [PMID: 201289]

2. Mahony, D.E., Meier, C.E., Macdonald, I.A. and Holdeman, L.V. Bile salt degradation by nonfermentative clostridia. Appl. Environ. Microbiol. 34 (1977) 419-423. [PMID: 921266]

[EC 1.1.1.176 created 1978]

EC 1.1.1.177

Accepted name: glycerol-3-phosphate 1-dehydrogenase (NADP+)

Reaction: sn-glycerol 3-phosphate + NADP+ = D-glyceraldehyde 3-phosphate + NADPH + H+

Other name(s): glycerol phosphate (nicotinamide adenine dinucleotide phosphate) dehydrogenase; L-glycerol 3-phosphate:NADP oxidoreductase; glycerin-3-phosphate dehydrogenase; NADPH-dependent glycerin-3-phosphate dehydrogenase; glycerol-3-phosphate 1-dehydrogenase (NADP); NADP-specific glycerol 3-phosphate 1-dehydrogenase

Systematic name: sn-glycerol-3-phosphate:NADP+ 1-oxidoreductase

Links to other databases: BRENDA, EXPASY, KEGG, Metacyc, CAS registry number: 37213-46-0

References:

1. Glushankov, P.E., Epifanova, V.E. and Kolotilova, A.I. Pentose phosphate pathway of carbohydrate metabolism and NADP-dependent glycerol 3-phosphate dehydrogenase activity in some white rat tissues. [in Russian] Biokhimiya 41 (1976) 1788-1790.

2. Wood, T. Catalysis of pentose phosphate pathway reactions by cytoplasmic fractions from muscle, uterus and liver of the rat, and the presence of a reduced nicotinamide-adenine dinucleotide phosphate-triose phosphate oxidoreductase in rat muscle. Biochem. J. 138 (1974) 71-76. [PMID: 4152128]

[EC 1.1.1.177 created 1980, modified 1980]

EC 1.1.1.178

Accepted name: 3-hydroxy-2-methylbutyryl-CoA dehydrogenase

Reaction: (2S,3S)-3-hydroxy-2-methylbutanoyl-CoA + NAD+ = 2-methylacetoacetyl-CoA + NADH + H+

Other name(s): 2-methyl-3-hydroxybutyryl coenzyme A dehydrogenase; 2-methyl-3-hydroxybutyryl coenzyme A dehydrogenase; 2-methyl-3-hydroxy-butyryl CoA dehydrogenase

Systematic name: (2S,3S)-3-hydroxy-2-methylbutanoyl-CoA:NAD+ oxidoreductase

Comments: Also acts, more slowly, on (2S,3S)-2-hydroxy-3-methylpentanoyl-CoA.

Links to other databases: BRENDA, EXPASY, KEGG, Metacyc, PDB, CAS registry number: 52227-66-4

References:

1. Conrad, R.S., Massey, L.K. and Sokatch, J.R. D- and L-isoleucine metabolism and regulation of their pathways in Pseudomonas putida. J. Bacteriol. 118 (1974) 103-111. [PMID: 4150713]

[EC 1.1.1.178 created 1981]

EC 1.1.1.179

Accepted name: D-xylose 1-dehydrogenase (NADP+, D-xylono-1,5-lactone-forming)

Reaction: D-xylose + NADP+ = D-xylono-1,5-lactone + NADPH + H+

Other name(s): D-xylose (nicotinamide adenine dinucleotide phosphate) dehydrogenase (ambiguous); D-xylose-NADP dehydrogenase (ambiguous); D-xylose:NADP+ oxidoreductase (ambiguous); D-xylose 1-dehydrogenase (NADP) (ambiguous)

Systematic name: D-xylose:NADP+ 1-oxidoreductase (D-xylono-1,5-lactone-forming)

Comments: The enzyme, characterized from pig arterial vessels and eye lens, also acts, more slowly, on L-arabinose and D-ribose. cf. EC 1.1.1.424, D-xylose 1-dehydrogenase (NADP+, D-xylono-1,4-lactone-forming).

Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 83534-37-6

References:

1. Wissler, J.H. D-Xylose:NADP oxidoreductase of arterial vessels and eye lens: a new enzyme and a final link in ATP-independent cycling of reducing eqivalents in aldose-polyol-ketose interconversion. Hoppe-Seyler's Z. Physiol. Chem. 358 (1977) 1300-1301.

2. Wissler, J.H. Direct spectrophotometric and specific quantitative determination of free and bound D-xylose by analytical application of a new enzyme, D-xylose:NADP-oxidoreductase. Fresenius' Z. Anal. Chem. 290 (1978) 179-180.

[EC 1.1.1.179 created 1982, modified 2020]

[EC 1.1.1.180 Deleted entry: mannonate dehydrogenase (NAD(P)+). Now included with EC 1.1.1.131 mannuronate reductase] (EC 1.1.1.180 created 1983, deleted 1984)

EC 1.1.1.181

Accepted name: cholest-5-ene-3β,7α-diol 3β-dehydrogenase

Reaction: cholest-5-ene-3β,7α-diol + NAD+ = 7α-hydroxycholest-4-en-3-one + NADH + H+

For diagram click here.

Other name(s): 3β-hydroxy-δ5-C27-steroid oxidoreductase (ambiguous)

Systematic name: Cholest-5-ene-3β,7α-diol:NAD+ 3-oxidoreductase

Comments: Highly specific for 3β-hydroxy-C27-steroids with δ5-double bond.

Links to other databases: BRENDA, EXPASY, KEGG, Metacyc, CAS registry number: 56626-16-5

References:

1. Wikvall, K. Purification and properties of a 3β-hydroxy-δ5-C27-steroid oxidoreductase from rabbit liver microsomes. J. Biol. Chem. 256 (1981) 3376-3380. [PMID: 6937465]

2. Schwarz, M., Wright, A.C., Davis, D.L., Nazer, H., Bjorkhem, I. and Russell, D.W. The bile acid synthetic gene 3β-hydroxy-Δ5-C27-steroid oxidoreductase is mutated in progressive intrahepatic cholestasis. J. Clin. Invest. 106 (2000) 1175-1184. [PMID: 11067870]

[EC 1.1.1.181 created 1983]

[EC 1.1.1.182 Deleted entry: fenchol dehydrogenase. Now included with EC 1.1.1.198 (+)-borneol dehydrogenase, EC 1.1.1.227 (–)-borneol dehydrogenase and EC 1.1.1.228 (+)-sabinol dehydrogenase (EC 1.1.1.182 created 1983, deleted 1990)]

EC 1.1.1.183

Accepted name: geraniol dehydrogenase

Reaction: geraniol + NADP+ = geranial + NADPH + H+

For diagram of reaction click here.

Systematic name: geraniol:NADP+ oxidoreductase

Comments: Also acts, more slowly, on nerol, farnesol and citronellol.

Links to other databases: BRENDA, EAWAG-BBD, EXPASY, KEGG, Metacyc, CAS registry number: 56802-96-1

References:

1. Potty, V.H. and Bruemmer, J.H. Oxidation of geraniol by an enzyme system from orange. Phytochemistry 9 (1970) 1001-1007.

[EC 1.1.1.183 created 1983]

EC 1.1.1.184

Accepted name: carbonyl reductase (NADPH)

Reaction: R-CHOH-R' + NADP+ = R-CO-R' + NADPH + H+

Other name(s): aldehyde reductase 1; prostaglandin 9-ketoreductase; xenobiotic ketone reductase; NADPH2-dependent carbonyl reductase; ALR3; carbonyl reductase; nonspecific NADPH-dependent carbonyl reductase; carbonyl reductase (NADPH2)

Systematic name: secondary-alcohol:NADP+ oxidoreductase

Comments: Acts on a wide range of carbonyl compounds, including quinones, aromatic aldehydes, ketoaldehydes, daunorubicin and prostaglandins E and F, reducing them to the corresponding alcohol. Si-specific with respect to NADPH [cf. EC 1.1.1.2 alcohol dehydrogenase (NADP+)].

Links to other databases: BRENDA, EXPASY, KEGG, Metacyc, PDB, CAS registry number: 89700-36-7

References:

1. Ahmed, N.K., Felsted, R.L. and Bachur, N.R. Heterogeneity of anthracycline antibiotic carbonyl reductases in mammalian livers. Biochem. Pharmacol. 27 (1978) 2713-2719. [PMID: 31888]

2. Lin, Y.M. and Jarabak, J. Isolation of two proteins with 9-ketoprostaglandin reductase and NADP-linked 15-hydroxyprostaglandin dehydrogenase activities and studies on their inhibition. Biochem. Biophys. Res. Commun. 81 (1978) 1227-1234. [PMID: 666816]

3. Wermuth, B. Purification and properties of an NADPH-dependent carbonyl reductase from human brain. Relationship to prostaglandin 9-ketoreductase and xenobiotic ketone reductase. J. Biol. Chem. 256 (1981) 1206-1213. [PMID: 7005231]

[EC 1.1.1.184 created 1983]

EC 1.1.1.185

Accepted name: L-glycol dehydrogenase

Reaction: an L-glycol + NAD(P)+ = a 2-hydroxycarbonyl compound + NAD(P)H + H+

Other name(s): glycol (nicotinamide adenine dinucleotide (phosphate)) dehydrogenase; L-(+)-glycol:NAD(P) oxidoreductase; L-glycol:NAD(P) dehydrogenase

Systematic name: L-glycol:NAD(P)+ oxidoreductase

Comments: The 2-hydroxycarbonyl compound formed can be further oxidized to a vicinal dicarbonyl compound. In the reverse direction, vicinal diketones, glyceraldehyde, glyoxal, methylglyoxal, 2-oxo-hydroxyketones and 2-ketoacid esters can be reduced.

Links to other databases: BRENDA, EXPASY, KEGG, Metacyc, CAS registry number: 77967-75-0

References:

1. Bernardo, A., Burgos, J. and Martin, R. Purification and some properties of L-glycol dehydrogenase from hen's muscle. Biochim. Biophys. Acta 659 (1981) 189-198. [PMID: 7018582]

[EC 1.1.1.185 created 1984]

EC 1.1.1.186

Accepted name: dTDP-galactose 6-dehydrogenase

Reaction: dTDP-D-galactose + 2 NADP+ + H2O = dTDP-D-galacturonate + 2 NADPH + 2 H+

Other name(s): thymidine-diphosphate-galactose dehydrogenase

Systematic name: dTDP-D-galactose:NADP+ 6-oxidoreductase

Links to other databases: BRENDA, EXPASY, KEGG, Metacyc, CAS registry number:

References:

1. Katan, R. and Avigad, G. NADP dependent oxidation of TDP-glucose by an enzyme system from sugar beets. Biochem. Biophys. Res. Commun. 24 (1966) 18-24. [PMID: 4381717]

[EC 1.1.1.186 created 1984, modified 2002]

EC 1.1.1.187

Accepted name: GDP-4-dehydro-D-rhamnose reductase

Reaction: (1) GDP-α-D-rhamnose + NAD(P)+ = GDP-4-dehydro-α-D-rhamnose + NAD(P)H + H+
(2) GDP-6-deoxy-α-D-talose + NAD(P)+ = GDP-4-dehydro-α-D-rhamnose + NAD(P)H + H+

For diagram click here.

Glossary: GDP-α-D-rhamnose = GDP-6-deoxy-α-D-mannose
GDP-4-dehydro-α-D-rhamnose = GDP-4-dehydro-6-deoxy-α-D-mannose
GDP-6-deoxy-α-D-talose = GDP-α-D-pneumose

Other name(s): GDP-4-keto-6-deoxy-D-mannose reductase; GDP-4-keto-D-rhamnose reductase; guanosine diphosphate-4-keto-D-rhamnose reductase; GDP-6-deoxy-D-mannose:NAD(P)+ 4-oxidoreductase; GDP-6-deoxy-α-D-mannose:NAD(P)+ 4-oxidoreductase

Systematic name: GDP-4-dehydro-α-D-rhamnose:NAD(P)+ 4-oxidoreductase

Comments: The enzyme, which operates in the opposite direction to that shown, forms a mixture of GDP-α-D-rhamnose and its C-4 epimer, GDP-6-deoxy-α-D-talose. cf. EC 1.1.1.281, GDP-4-dehydro-6-deoxy-D-mannose reductase and EC 1.1.1.135, GDP-6-deoxy-D-talose 4-dehydrogenase.

Links to other databases: BRENDA, EXPASY, KEGG, Metacyc, CAS registry number: 9075-56-3

References:

1. Barber, G.A. The synthesis of guanosine 5'-diphosphate D-rhamnose by enzymes of a higher plant. Biochim. Biophys. Acta 165 (1968) 68-75. [PMID: 4386238]

2. Winkler, N.W. and Markovitz, A. Guanosine diphosphate-4-keto-D-rhamnose reductase. A non-stereoselective enzyme. J. Biol. Chem. 246 (1971) 5868-5876. [PMID: 4398966]

[EC 1.1.1.187 created 1984]

EC 1.1.1.188

Accepted name: prostaglandin-F synthase

Reaction: (5Z,13E)-(15S)-9α,11α,15-trihydroxyprosta-5,13-dienoate + NADP+ = (5Z,13E)-(15S)-9α,15-dihydroxy-11-oxoprosta-5,13-dienoate + NADPH + H+

Other name(s): prostaglandin-D2 11-reductase; reductase, 15-hydroxy-11-oxoprostaglandin; PGD2 11-ketoreductase; PGF synthetase; prostaglandin 11-ketoreductase; prostaglandin D2-ketoreductase; prostaglandin F synthase; prostaglandin F synthetase; synthetase, prostaglandin F; prostaglandin-D2 11-reductase; PGF synthetase; NADPH-dependent prostaglandin D2 11-keto reductase; prostaglandin 11-keto reductase

Systematic name: (5Z,13E)-(15S)-9α,11α,15-trihydroxyprosta-5,13-dienoate:NADP+ 11-oxidoreductase

Comments: Reduces prostaglandin D2 and prostaglandin H2 to prostaglandin F2; prostaglandin D2 is not an intermediate in the reduction of prostaglandin H2. Also catalyses the reduction of a number of carbonyl compounds, such as 9,10-phenanthroquinone and 4-nitroacetophenone.

Links to other databases: BRENDA, EXPASY, KEGG, Metacyc, PDB, CAS registry number: 55976-95-9

References:

1. Reingold, D.F., Kawasaki, A. and Needleman, P. A novel prostaglandin 11-keto reductase found in rabbit liver. Biochim. Biophys. Acta 659 (1981) 179-188. [PMID: 7248318]

2. Watanabe, K., Shimizu, T. and Hayaishi, O. Enzymatic conversion of prostaglandin-D2 to prostaglandin-F in the rat lung. Biochem. Int. 2 (1981) 603-610.

3. Watanabe, K., Yoshida, R., Shimizu, T. and Hayaishi, O. Enzymatic formation of prostaglandin F from prostaglandin H2 and D2. Purification and properties of prostaglandin F synthetase from bovine lung. J. Biol. Chem. 260 (1985) 7035-7041. [PMID: 3858278]

4. Wong, P.Y.-K. Purification and partial characterization of prostaglandin D2 11-keto reductase in rabbit liver. Biochim. Biophys. Acta 659 (1981) 169-178. [PMID: 7248317]

5. Wong, P.Y.-K. Purification of PGD2 11-ketoreductase from rabbit liver. Methods Enzymol. 86 (1982) 117-125. [PMID: 7132748]

[EC 1.1.1.188 created 1984, modified 1989, modified 1990]

EC 1.1.1.189

Accepted name: prostaglandin-E2 9-reductase

Reaction: (5Z,13E)-(15S)-9α,11α,15-trihydroxyprosta-5,13-dienoate + NADP+ = (5Z,13E)-(15S)-11α,15-dihydroxy-9-oxoprosta-5,13-dienoate + NADPH + H+

Other name(s): PGE2-9-OR; reductase, 15-hydroxy-9-oxoprostaglandin; 9-keto-prostaglandin E2 reductase; 9-ketoprostaglandin reductase; PGE-9-ketoreductase; PGE2 9-oxoreductase; PGE2-9-ketoreductase; prostaglandin 9-ketoreductase; prostaglandin E 9-ketoreductase; prostaglandin E2-9-oxoreductase

Systematic name: (5Z,13E)-(15S)-9α,11α,15-trihydroxyprosta-5,13-dienoate:NADP+ 9-oxidoreductase

Comments: Reduces prostaglandin E2 to prostaglandin F2α. A number of other 9-oxo- and 15-oxo-prostaglandin derivatives can also be reduced to the corresponding hydroxy compounds. May be identical with EC 1.1.1.197 15-hydroxyprostaglandin dehydrogenase (NADP+).

Links to other databases: BRENDA, EXPASY, KEGG, Metacyc, PDB, CAS registry number: 42613-35-4

References:

1. Lee, S.-C. and Levine, L. Purification and regulatory properties of chicken heart prostaglandin E 9-ketoreductase. J. Biol. Chem. 250 (1975) 4549-4555. [PMID: 166995]

2. Schlegel, W., Krüger, S. and Korte, K. Purification of prostaglandin E2 9-oxoreductase from human decidua vera. FEBS Lett. 171 (1984) 141-144. [PMID: 6586494]

3. Tai, H.-H. and Yuan, B. Purification and assay of 9-hydroxyprostaglandin dehydrogenase from rat kidney. Methods Enzymol. 86 (1982) 113-117. [PMID: 7132747]

4. Watkins, J.D. and Jarabak, J. The effect of NaCl intake on 9-ketoprostaglandin reductase activity in the rabbit kidney. Prostaglandins 30 (1985) 335-349. [PMID: 3901124]

[EC 1.1.1.189 created 1984, modified 1989]

EC 1.1.1.190

Accepted name: indole-3-acetaldehyde reductase (NADH)

Reaction: (indol-3-yl)ethanol + NAD+ = (indol-3-yl)acetaldehyde + NADH + H+

Other name(s): indoleacetaldehyde reductase; indole-3-acetaldehyde reductase (NADH2); indole-3-ethanol:NAD+ oxidoreductase

Systematic name: (indol-3-yl)ethanol:NAD+ oxidoreductase

Links to other databases: BRENDA, EXPASY, KEGG, Metacyc, CAS registry number: 58875-06-2

References:

1. Brown, H.M. and Purves, W.K. Isolation and characterization of indole-3-acetaldehyde reductases from Cucumis sativus. J. Biol. Chem. 251 (1976) 907-913. [PMID: 2607]

[EC 1.1.1.190 created 1984]

EC 1.1.1.191

Accepted name: indole-3-acetaldehyde reductase (NADPH)

Reaction: (indol-3-yl)ethanol + NADP+ = (indol-3-yl)acetaldehyde + NADPH + H+

Other name(s): indoleacetaldehyde (reduced nicotinamide adenine dinucleotide phosphate) reductase; indole-3-acetaldehyde reductase (NADPH2); indole-3-ethanol:NADP+ oxidoreductase

Systematic name: (indol-3-yl)ethanol:NADP+ oxidoreductase

Links to other databases: BRENDA, EXPASY, KEGG, Metacyc, CAS registry number: 58875-05-1

References:

1. Brown, H.M. and Purves, W.K. Isolation and characterization of indole-3-acetaldehyde reductases from Cucumis sativus. J. Biol. Chem. 251 (1976) 907-913. [PMID: 2607]

[EC 1.1.1.191 created 1984]

EC 1.1.1.192

Accepted name: long-chain-alcohol dehydrogenase

Reaction: a long-chain alcohol + 2 NAD+ + H2O = a long-chain carboxylate + 2 NADH + 2 H+

Other name(s): long-chain alcohol dehydrogenase; fatty alcohol oxidoreductase

Systematic name: long-chain-alcohol:NAD+ oxidoreductase

Comments: Hexadecanol is a good substrate.

Links to other databases: BRENDA, EXPASY, KEGG, Metacyc, CAS registry number: 76774-36-2

References:

1. Lee, T.-C. Characterization of fatty alcohol:NAD+ oxidoreductase from rat liver. J. Biol. Chem. 254 (1979) 2892-2896. [PMID: 34610]

[EC 1.1.1.192 created 1984]

EC 1.1.1.193

Accepted name: 5-amino-6-(5-phosphoribosylamino)uracil reductase

Reaction: 5-amino-6-(5-phospho-D-ribitylamino)uracil + NADP+ = 5-amino-6-(5-phospho-D-ribosylamino)uracil + NADPH + H+

Other name(s): aminodioxyphosphoribosylaminopyrimidine reductase

Systematic name: 5-amino-6-(5-phospho-D-ribitylamino)uracil:NADP+ 1'-oxidoreductase

Links to other databases: BRENDA, EXPASY, KEGG, Metacyc, PDB, CAS registry number: 69020-28-6

References:

1. Burrows, R.B. and Brown, G.M. Presence of Escherichia coli of a deaminase and a reductase involved in biosynthesis of riboflavin. J. Bacteriol. 136 (1978) 657-667. [PMID: 30756]

[EC 1.1.1.193 created 1984, modified 2011]

EC 1.1.1.194

Accepted name: coniferyl-alcohol dehydrogenase

Reaction: coniferyl alcohol + NADP+ = coniferyl aldehyde + NADPH + H+

Other name(s): CAD

Systematic name: coniferyl-alcohol:NADP+ oxidoreductase

Comments: Specific for coniferyl alcohol; does not act on cinnamyl alcohol, 4-coumaryl alcohol or sinapyl alcohol.

Links to other databases: BRENDA, EXPASY, GTD, KEGG, Metacyc, PDB, CAS registry number: 37250-27-4

References:

1. Mansell, R.L., Babbel, G.R. and Zenk, M.H. Multiple forms and specificity of coniferyl alcohol dehydrogenase from cambial regions of higher plants. Phytochemistry 15 (1976) 1849-1853.

2. Wyrambik, D. and Grisebach, H. Purification and properties of isoenzymes of cinnamyl-alcohol dehydrogenase from soybean-cell-suspension cultures. Eur. J. Biochem. 59 (1975) 9-15. [PMID: 1250]

[EC 1.1.1.194 created 1984]

EC 1.1.1.195

Accepted name: cinnamyl-alcohol dehydrogenase

Reaction: cinnamyl alcohol + NADP+ = cinnamaldehyde + NADPH + H+

Other name(s): cinnamyl alcohol dehydrogenase; CAD

Systematic name: cinnamyl-alcohol:NADP+ oxidoreductase

Comments: Acts on coniferyl alcohol, sinapyl alcohol, 4-coumaryl alcohol and cinnamyl alcohol (cf. EC 1.1.1.194 coniferyl-alcohol dehydrogenase).

Links to other databases: BRENDA, EXPASY, KEGG, Metacyc, PDB, CAS registry number: 55467-36-2

References:

1. Sarni, F., Grand, C. and Baudet, A.M. Purification and properties of cinnamoyl-CoA reductase and cinnamyl alcohol dehydrogenase from poplar stems (Populus X euramericana). Eur. J. Biochem. 139 (1984) 259-265. [PMID: 6365550]

2. Wyrambik, D. and Grisebach, H. Purification and properties of isoenzymes of cinnamyl-alcohol dehydrogenase from soybean-cell-suspension cultures. Eur. J. Biochem. 59 (1975) 9-15. [PMID: 1250]

3. Wyrambik, D. and Grisebach, H. Enzymic synthesis of lignin precursors. Further studies on cinnamyl-alcohol dehydrogenase from soybean-cell-suspension cultures. Eur. J. Biochem. 97 (1979) 503-509. [PMID: 572771]

[EC 1.1.1.195 created 1984]

EC 1.1.1.196

Accepted name: 15-hydroxyprostaglandin-D dehydrogenase (NADP+)

Reaction: (5Z,13E)-(15S)-9α,15-dihydroxy-11-oxoprosta-5,13-dienoate + NADP+ = (5Z,13E)-9α-hydroxy-11,15-dioxoprosta-5,13-dienoate + NADPH + H+

Other name(s): prostaglandin-D 15-dehydrogenase (NADP); dehydrogenase, prostaglandin D2; NADP-PGD2 dehydrogenase; dehydrogenase, 15-hydroxyprostaglandin (nicotinamide adenine dinucleotide phosphate); 15-hydroxy PGD2 dehydrogenase; 15-hydroxyprostaglandin dehydrogenase (NADP); NADP-dependent 15-hydroxyprostaglandin dehydrogenase; prostaglandin D2 dehydrogenase; NADP-linked 15-hydroxyprostaglandin dehydrogenase; NADP-specific 15-hydroxyprostaglandin dehydrogenase; NADP-linked prostaglandin D2 dehydrogenase; 15-hydroxyprostaglandin-D dehydrogenase (NADP)

Systematic name: (5Z,13E)-(15S)-9α,15-dihydroxy-11-oxoprosta-5,13-dienoate:NADP+ 15-oxidoreductase

Comments: Specific for prostaglandins D [cf. EC 1.1.1.141 15-hydroxyprostaglandin dehydrogenase (NAD+) and EC 1.1.1.197 15-hydroxyprostaglandin dehydrogenase (NADP+)].

Links to other databases: BRENDA, EXPASY, KEGG, Metacyc, PDB, CAS registry number: 84399-95-1

References:

1. Watanabe, K., Shimizu, T., Iguchi, S., Wakatsuka, H., Hayashi, M. and Hayaishi, O. An NADP-linked prostaglandin D dehydrogenase in swine brain. J. Biol. Chem. 255 (1980) 1779-1882. [PMID: 7354056]

[EC 1.1.1.196 created 1984, modified 1990]

EC 1.1.1.197

Accepted name: 15-hydroxyprostaglandin dehydrogenase (NADP+)

Reaction: (13E)-(15S)-11α,15-dihydroxy-9-oxoprost-13-enoate + NADP+ = (13E)-11α-hydroxy-9,15-dioxoprost-13-enoate + NADPH + H+

Other name(s): NADP-dependent 15-hydroxyprostaglandin dehydrogenase; NADP-linked 15-hydroxyprostaglandin dehydrogenase; NADP-specific 15-hydroxyprostaglandin dehydrogenase; type II 15-hydroxyprostaglandin dehydrogenase; 15-hydroxyprostaglandin dehydrogenase (NADP)

Systematic name: (13E)-(15S)-11α,15-dihydroxy-9-oxoprost-13-enoate:NADP+ 15-oxidoreductase

Comments: Acts on prostaglandins E2, F2α and B1, but not on prostaglandin D2 [cf. EC 1.1.1.141 15-hydroxyprostaglandin dehydrogenase (NAD+) and EC 1.1.1.196 15-hydroxyprostaglandin-D dehydrogenase (NADP+)]. May be identical with EC 1.1.1.189 prostaglandin-E2 9-reductase.

Links to other databases: BRENDA, EXPASY, KEGG, Metacyc, PDB, CAS registry number: 54989-39-8

References:

1. Lee, S.-C. and Levine, L. Prostaglandin metabolism. II. Identification of two 15-hydroxyprostaglandin dehydrogenase types. J. Biol. Chem. 250 (1975) 548-552. [PMID: 234431]

2. Lee, S.-C., Pong, S.-S., Katzen, D., Wu, K.-Y. and Levine, L. Distribution of prostaglandin E 9-ketoreductase and types I and II 15-hydroxyprostaglandin dehydrogenase in swine kidney medulla and cortex. Biochemistry 14 (1975) 142-145. [PMID: 803247]

[EC 1.1.1.197 created 1984]

EC 1.1.1.198

Accepted name: (+)-borneol dehydrogenase

Reaction: (+)-borneol + NAD+ = (+)-camphor + NADH + H+

For diagram of reaction click here.

Other name(s): bicyclic monoterpenol dehydrogenase

Systematic name: (+)-borneol:NAD+ oxidoreductase

Comments: NADP+ can also act, but more slowly.

Links to other databases: BRENDA, EXPASY, KEGG, Metacyc, PDB, CAS registry number: 111940-47-7

References:

1. Croteau, R., Hooper, C.L. and Felton, M. Biosynthesis of monoterpenes. Partial purification and characterization of a bicyclic monoterpenol dehydrogenase from sage (Salvia officinalis). Arch. Biochem. Biophys. 188 (1978) 182-193. [PMID: 677891]

2. Dehal, S.S. and Croteau, R. Metabolism of monoterpenes: specificity of the dehydrogenases responsible for the biosynthesis of camphor, 3-thujone, and 3-isothujone. Arch. Biochem. Biophys. 258 (1987) 287-291. [PMID: 3310901]

[EC 1.1.1.198 created 1984, modified 1990 (EC 1.1.1.182 created 1983, part incorporated 1990)]

EC 1.1.1.199

Accepted name: (S)-usnate reductase

Reaction: (6R)-2-acetyl-6-(3-acetyl-2,4,6-trihydroxy-5-methylphenyl)-3-hydroxy-6- methyl-2,4-cyclohexadien-1-one + NAD+ = (S)-usnic acid + NADH + H+

For diagram click here.

Other name(s): L-usnic acid dehydrogenase

Systematic name: reduced-(S)-usnate:NAD+ oxidoreductase (ether-bond-forming)

Links to other databases: BRENDA, EXPASY, KEGG, Metacyc, CAS registry number: 77237-99-1

References:

1. Estevéz, M.P., Legaz, E., Olmeda, L., Pérez, F.J. and Vincente, C. Purification and properties of a new enzyme from Evernia prunastri, which reduces L-usnic acid. Z. Naturforsch. C: Biosci. 36 (1981) 35-39.

[EC 1.1.1.199 created 1984]

EC 1.1.1.200

Accepted name: aldose-6-phosphate reductase (NADPH)

Reaction: D-sorbitol 6-phosphate + NADP+ = D-glucose 6-phosphate + NADPH + H+

Other name(s): aldose 6-phosphate reductase; NADP-dependent aldose 6-phosphate reductase; A6PR; aldose-6-P reductase; aldose-6-phosphate reductase; alditol 6-phosphate:NADP 1-oxidoreductase; aldose-6-phosphate reductase (NADPH2)

Systematic name: D-aldose-6-phosphate:NADP+ 1-oxidoreductase

Comments: In the reverse reaction, acts also on D-galactose 6-phosphate and, more slowly, on D-mannose 6-phosphate and 2-deoxy-D-glucose 6-phosphate.

Links to other databases: BRENDA, EXPASY, KEGG, Metacyc, PDB, CAS registry number: 76901-04-7

References:

1. Negm, F.B. and Loescher, W.H. Characterization and partial-purification of aldose-6-phosphate reductase (alditol-6-phosphate-NADP 1-oxidoreductase) from apple leaves. Plant Physiol. 67 (1981) 139-142.

[EC 1.1.1.200 created 1984]


Continued with EC 1.1.1.201 to EC 1.1.1.250
Return to EC 1 home page
Return to Enzymes home page
Return to IUBMB Biochemical Nomenclature home page