School of Mathematical Sciences

Dr Matthias Taeufer


Postdoctoral Research Assistant

Room Number: Mathematical Sciences Building, Room: MB-202


Matthias Taeufer studied Mathematics in Munich, Chemnitz and Dortmund and joined QMUL in 2018 after obtaining his PhD from TU Dortmund in the same year. He works with Professor Sodin on the ERC grant 639305 "SPECTRUM".

His research interests include mathematical and statistical physics, spectral theory, Analysis of PDEs and control theory.



  • Taeufer M (2018). Quantitative Unique Continuation and Applications journal.
  • Borisov DI, Täufer M, Veseli¿ I (2018). Spectral localization for quantum Hamiltonians with weak random delta interaction Comptes Rendus Mathematique.
  • Täufer M, Tautenhahn M (2018). Wegner Estimate and Disorder Dependence for Alloy-Type Hamiltonians with Bounded Magnetic Potential Annales Henri Poincaré.
  • Naki¿ I, Täufer M, Tautenhahn M et al. (2018). Scale-free unique continuation principle for spectral projectors, eigenvalue-lifting and Wegner estimates for random Schrödinger operators Analysis & PDE.
  • Täufer M, Tautenhahn M (2017). Scale-free and quantitative unique continuation for infinite dimensional spectral subspaces of Schrödinger operators Communications on Pure & Applied Analysis.
  • Peyerimhoff N, Täufer M, Veseli¿ I (2017). Unique continuation principles and their absence for Schrödinger eigenfunctions on combinatorial and quantum graphs and in continuum space Nanosystems: Physics, Chemistry, Mathematics.
  • Taeufer M, Tautenhahn M, Veseli¿ I (2016). Harmonic Analysis and Random Schrödinger Operators journal.
  • Täufer M, Veseli¿ I (2016). Wegner estimate for Landau-breather Hamiltonians Journal of Mathematical Physics.
  • Täufer M, Veseli¿ I (2015). Conditional Wegner Estimate for the Standard Random Breather Potential Journal of Statistical Physics.
  • Naki¿ I, Täufer M, Tautenhahn M et al. (2015). Scale-free uncertainty principles and Wegner estimates for random breather potentials Comptes Rendus Mathematique.