Dr Nina OtterLecturer in Mathematical Data ScienceEmail: n.otter@qmul.ac.ukRoom Number: Mathematical Sciences Building, Room: MB-316Website: https://www.ninaotter.comTeachingResearchPublicationsTeaching Semester B 2023: MTH767P Neural Networks and Deep Learning Semester A 2022: MTH765P Storing, Manipulating and Visualising Data Semester B 2022: MTH767P Neural Networks and Deep Learning Semester A 2021: MTH793P Advanced Machine Learning ResearchResearch Interests:In my research I am interested in using methods from algebra, geometry and topology to study data. I am currently particularly interested in advancing our understanding of weather regimes using methods from topology, as well as developing algebraic and topological methods to model higher-order relationships in social systems.Examples of research funding: Royal Society Research Grant (£16,959.60) 02.2022 - 02.2023 PublicationsMy research is interdisciplinary, and the order of authors in different publications follows conventions dictated by different disciplines. Weather regimes A topological perspective on weather regimes, K. Strommen, M. Chantry, J. Dorrington, NO, Climate Dynamics, 2022 https://doi.org/10.1007/s00382-022-06395-x Persistent homology On the effectiveness of persistent homology, R. Turkeš, G. Montúfar, NO, 2022, preprint Amplitudes on abelian categories, B. Giunti, J. Nolan, NO, L. Waas, 2021, preprint Stratifying multiparameter persistent homology, H. Harrington, NO, H. Schenck, U. Tillmann), SIAM Journal on Applied Algebraic Geometry, 3(3):439-471 (2019) A roadmap for the computation of persistent homology, NO, M. Porter, U. Tillmann, P. Grindrod, H. Harrington, EPJ Data Science, 2017, 6:17 (2017) Magnitude Alpha magnitude, M. O’Malley, S. Kalisnik, NO, 2022, preprint Magnitude meets persistence. Homology theories for filtered simplicial sets, NO, Homology, Homotopy and Applications, 24(2), 2022, pp.401-423 Social networks A unififed framework for equivalences in social networks, NO, M. A. Porter, 2020, preprint Geometric deep learning Weisfeiler and Lehman Go Cellular: CW Networks, C. Bodnar, F. Frasca, NO, Y. G. Wang, P. Liò, G. Montúfar, M. Bronstein, Advances in Neural Information Processing Systems (NeurIPS 2021), 34:2625–2640, 2021 Weisfeiler and Lehman Go Topological: Message Passing Simplicial Networks, C. Bodnar, F. Frasca, Y. G. Wang, G. Montufar, NO, P. Lio, M. Bronstein, Proceedings of the 38th International Conference on Machine Learning (ICML 2021) PMLR 139:1026–1037, 2021 Can neural networks learn persistent homology features?, G. Montufar, Y. G. Wang, NO, Topological Data Analysis and Beyond Workshop, at the 34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada Phylogenetics Operads and phylogenetic trees, J. Baez, NO, Theory and Applications of Categories, 33(40):1397-1453 (2017). O'Malley M, Kalisnik S, Otter N (2023). Alpha magnitude Journal of Pure and Applied Algebra nameOfConference. 10.1016/j.jpaa.2023.107396 qmroHref Otter N (2022). Magnitude meets persistence. Homology theories for filtered simplicial sets Homology, Homotopy and Applications nameOfConference. 10.4310/HHA.2022.v24.n2.a12 https://qmro.qmul.ac.uk/xmlui/handle/123456789/79678 Otter N, Strommen K, Chantry M et al. (2022). A topological perspective on weather regimes Climate Dynamics nameOfConference. 10.1007/s00382-022-06395-x https://qmro.qmul.ac.uk/xmlui/handle/123456789/79680 Harrington HA, Otter N, Schenck H et al. (2019). Stratifying Multiparameter Persistent Homology SIAM Journal on Applied Algebra and Geometry nameOfConference. 10.1137/18m1224350 qmroHref Otter N, Porter MA, Tillmann U et al. (2017). A roadmap for the computation of persistent homology. EPJ Data Sci nameOfConference. 10.1140/epjds/s13688-017-0109-5 qmroHref