Coefficientwise total positivity (via continued fractions) for some Hankel matrices of combinatorial polynomials

Alan Sokal New York University / University College London

Queen Mary Combinatorics Study Group 13 March 2015

Key references:

- 1. Flajolet, Combinatorial aspects of continued fractions, Discrete Math. **32**, 125–161 (1980).
- 2. Viennot, Une théorie combinatoire des polynômes orthogonaux généraux (UQAM, 1983).

Positive semidefiniteness vs. total positivity

Compare the following two properties for matrices $A \in \mathbb{R}^{m \times n}$:

- A is called *positive semidefinite* if it is square (m = n), symmetric, and all its *principal* minors are nonnegative (i.e. det $A_{II} \ge 0$ for all $I \subseteq [n]$).
- A is called *totally positive* if all its minors are nonnegative (i.e. det $A_{IJ} \ge 0$ for all $I \subseteq [m]$ and $J \subseteq [n]$).

From the point of view of general linear algebra:

- Positive semidefiniteness is *natural*: it is equivalent to the positive semidefiniteness of a quadratic form on a vector space, and hence is basis-independent.
- Total positivity is *unnatural*: it is grossly basis-dependent.

This talk is about the "unnatural" property of total positivity.

Positive semidefiniteness vs. total positivity

Compare the following two properties for matrices $A \in \mathbb{R}^{m \times n}$:

- A is called *positive semidefinite* if it is square (m = n), symmetric, and all its *principal* minors are nonnegative (i.e. det $A_{II} \ge 0$ for all $I \subseteq [n]$).
- A is called *totally positive* if all its minors are nonnegative (i.e. det $A_{IJ} \ge 0$ for all $I \subseteq [m]$ and $J \subseteq [n]$).

From the point of view of general linear algebra:

- Positive semidefiniteness is *natural*: it is equivalent to the positive semidefiniteness of a quadratic form on a vector space, and hence is basis-independent.
- Total positivity is *unnatural*: it is grossly basis-dependent.

This talk is about the "unnatural" property of total positivity.

What total positivity is *really* about:

Functions $F: S \times T \to R$ where

- S and T are totally ordered sets, and
- R is a partially ordered commutative ring (traditionally $R = \mathbb{R}$, but we will generalize this)

Some references on total positivity

The classics:

- 1. Gantmakher and Krein, Sur les matrices complètement non négatives et oscillatoires, Compositio Math. **4**, 445–476 (1937).
- Gantmakher and Krein, Oscillation Matrices and Kernels and Small Vibrations of Mechanical Systems (2nd Russian edition, 1950; English translation by AMS, 2002).
- 3. Karlin, Total Positivity (Stanford UP, 1968).
- Ando, Totally positive matrices, Lin. Alg. Appl. 90, 165–219 (1987).

Two recent books:

- 1. Pinkus, Totally Positive Matrices (Cambridge UP, 2010).
- 2. Fallat and Johnson, *Totally Nonnegative Matrices* (Princeton UP, 2011).

Applications to combinatorics:

- 1. Brenti, Unimodal, log-concave and Pólya frequency sequences in combinatorics, Memoirs AMS **81**, no. 413 (1989).
- 2. Brenti, The applications of total positivity to combinatorics, and conversely. In: *Total Positivity and its Applications* (1996).
- 3. Skandera, Introductory notes on total positivity (2003).

Log-concavity and log-convexity in combinatorics

A sequence $(a_i)_{i \in I}$ of nonnegative real numbers (indexed by an interval $I \subset \mathbb{Z}$) is called

- log-concave if $a_{n-1}a_{n+1} \leq a_n^2$ for all n
- log-convex if $a_{n-1}a_{n+1} \ge a_n^2$ for all n

Many important combinatorial sequences are log-concave (cf. Stanley 1989 review article) or log-convex.

For a triangular array $T_{n,k}$ $(0 \le k \le n)$, typically:

- "Horizontal sequences" (n fixed, k varying) are log-concave.
- "Vertical" sequence of row sums is log-convex.

Examples: Binomial coefficients, Stirling numbers of both kinds, Eulerian numbers, ...

Proofs can be combinatorial or analytic.

Strengthenings of log-concavity and log-convexity: Toeplitz- and Hankel-total positivity

To each two-sided-infinite sequence $\boldsymbol{a} = (a_k)_{k \in \mathbb{Z}}$ we associate the *Toeplitz matrix*

$$T_{\infty}(\boldsymbol{a}) = (a_{j-i})_{i,j\geq 0} = \begin{pmatrix} a_0 & a_1 & a_2 & \cdots \\ a_{-1} & a_0 & a_1 & \cdots \\ a_{-2} & a_{-1} & a_0 & \cdots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix}$$

If \boldsymbol{a} is one-sided infinite (a_0, a_1, \ldots) or finite (a_0, a_1, \ldots, a_n) , set all "missing" entries to zero.

- We say that the sequence \boldsymbol{a} is *Toeplitz-totally positive* if the Toeplitz matrix $T_{\infty}(\boldsymbol{a})$ is totally positive. [Also called "Pólya frequency sequence".]
- This implies that the sequence is *log-concave*, but is much stronger.

To each one-sided-infinite sequence $\boldsymbol{a} = (a_k)_{k\geq 0}$ we associate the Hankel matrix

$$H_{\infty}(\boldsymbol{a}) = (a_{i+j})_{i,j\geq 0} = \begin{pmatrix} a_0 & a_1 & a_2 & \cdots \\ a_1 & a_2 & a_3 & \cdots \\ a_2 & a_3 & a_4 & \cdots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix}$$

- We say that the sequence \boldsymbol{a} is *Hankel-totally positive* if the Hankel matrix $H_{\infty}(\boldsymbol{a})$ is totally positive.
- This implies that the sequence is *log-convex*, but is much stronger.

Characterization of Toeplitz-total positivity

Aissen–Schoenberg–Whitney–Edrei theorem (1952–53):

- 1. Finite sequence (a_0, a_1, \dots, a_n) is Toeplitz-TP iff the polynomial $P(z) = \sum_{k=0}^{n} a_k z^k$ has all its zeros in $(-\infty, 0]$.
- 2. One-sided infinite sequence (a_0, a_1, \ldots) is Toeplitz-TP iff

$$\sum_{k=0}^{\infty} a_k z^k = C e^{\gamma z} \frac{\prod_{i=1}^{\infty} (1+\alpha_i z)}{\prod_{i=1}^{\infty} (1-\beta_i z)}$$

in some neighborhood of z = 0, with $C, \gamma, \alpha_i, \beta_i \geq 0$ and $\sum_i \alpha_i, \sum_i \beta_i < \infty$.

3. Similar but more complicated representation for two-sided-infinite sequences.

Proofs of #2 and #3 rely on Nevanlinna theory of meromorphic functions.

Open problem: Find a more elementary proof.

See Brenti for many combinatorial applications of Toeplitz-total positivity.

Characterization of Hankel-total positivity

For a sequence $\boldsymbol{a} = (a_k)_{k \ge 0}$, define also the *m*-shifted Hankel matrix

$$H_{\infty}^{(m)}(\boldsymbol{a}) = (a_{i+j+m})_{i,j\geq 0} = \begin{pmatrix} a_m & a_{m+1} & a_{m+2} & \cdots \\ a_{m+1} & a_{m+2} & a_{m+3} & \cdots \\ a_{m+2} & a_{m+3} & a_{m+4} & \cdots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{pmatrix}$$

Recall that the sequence \boldsymbol{a} is *Hankel-totally positive* in case the Hankel matrix $H_{\infty}^{(0)}(\boldsymbol{a})$ is totally positive.

Fundamental result (Stieltjes 1894, Gantmakher–Krein 1937, ...):

For a sequence $\boldsymbol{a} = (a_k)_{k=0}^{\infty}$ of real numbers, the following are equivalent:

- (a) $H_{\infty}^{(0)}(\boldsymbol{a})$ is totally positive.
- (b) Both $H_{\infty}^{(0)}(\boldsymbol{a})$ and $H_{\infty}^{(1)}(\boldsymbol{a})$ are positive-semidefinite.
- (c) There exists a positive measure μ on $[0, \infty)$ such that $a_k = \int x^k d\mu(x)$ for all $k \ge 0$. [That is, $(a_k)_{k\ge 0}$ is a Stieltjes moment sequence.]
- (d) There exist numbers $\alpha_0, \alpha_1, \ldots \ge 0$ such that

$$\sum_{k=0}^{\infty} a_k t^k = \frac{\alpha_0}{1 - \frac{\alpha_1 t}{1 - \frac{\alpha_2 t}{1 - \dots}}}$$

in the sense of formal power series.

[Steltjes-type continued fraction with nonnegative coefficients]

From numbers to polynomials

[or, From counting to counting-with-weights]

Some simple examples:

1. Counting subsets of [n]: $a_n = 2^n$

Counting subsets of [n] by cardinality: $P_n(x) = \sum_{k=0}^n {n \choose k} x^k$

- 2. Counting partitions of [n]: $a_n = B_n$ (Bell number) Counting partitions of [n] by number of blocks: $P_n(x) = \sum_{k=0}^n {n \\ k} x^k$ (Bell polynomial)
- 3. Counting non-crossing partitions of [n]: $a_n = C_n$ (Catalan number) Counting non-crossing partitions of [n] by number of blocks: $P_n(x) = \sum_{k=0}^n N(n,k) x^k$ (Narayana polynomial)
- 4. Counting permutations of $[n]: a_n = n!$

Counting permutations of [n] by number of cycles:

$$P_n(x) = \sum_{k=0}^n \begin{bmatrix} n\\ k \end{bmatrix} x^k$$

Counting permutations of [n] by number of descents:

$$P_n(x) = \sum_{k=0}^n \langle {n \atop k} \rangle x^k$$
 (Eulerian polynomial)

An industry in combinatorics: q-Narayana polynomials, p, q-Bell polynomials, . . .

Sequences and matrices of polynomials

- Consider sequences and matrices whose entries are *polynomials* with real coefficients in one or more indeterminates **x**.
- $P \succeq 0$ means that P has nonnegative coefficients. ("coefficientwise partial order on the ring $\mathbb{R}[\mathbf{x}]$ ")
- More generally, consider sequences and matrices with entries in a *partially ordered commutative ring* R.

We say that a sequence $(a_i)_{i \in I}$ of nonnegative elements of R is

- log-concave if $a_{n-1}a_{n+1} a_n^2 \le 0$ for all n
- strongly log-concave if $a_{k-1}a_{l+1} a_ka_l \leq 0$ for all $k \leq l$
- log-convex if $a_{n-1}a_{n+1} a_n^2 \ge 0$ for all n
- strongly log-convex if $a_{k-1}a_{l+1} a_ka_l \ge 0$ for all $k \le l$

For sequences of *real* numbers,

- Strongly log-concave \iff log-concave with no internal zeros.
- Strongly log-convex \iff log-convex.

But on $\mathbb{R}[x]$ this is not so:

Example: The sequence (a_0, a_1, a_2, a_3) with

$$a_0 = a_3 = 2 + x + 3x^2$$

 $a_1 = a_2 = 1 + 2x + 2x^2$

is log-convex but not strongly log-convex.

We say that a matrix with entries in R is *totally positive* if every minor is nonnegative (in R).

Toeplitz (resp. Hankel) total positivity implies the *strong* log-concavity (resp. *strong* log-convexity).

Coefficientwise Hankel-total positivity for sequences of polynomials

Many interesting sequences of polynomials $(P_n(x))_{n\geq 0}$ have been proven in recent years to be coefficientwise (strongly) log-convex:

- Binomials $\sum_{k=0}^{n} {n \choose k} x^k = (1+x)^n$ [trivial]
- Bell polynomials $B_n(x) = \sum_{k=0}^n {n \atop k} x^k$ (Liu–Wang 2007, Chen–Wang–Yang 2011)
- Narayana polynomials $N_n(x) = \sum_{k=0}^n N(n,k) x^k$ (Chen–Wang–Yang 2010)
- Narayana polynomials of type B: $W_n(x) = \sum_{k=0}^n {\binom{n}{k}^2 x^k}$ (Chen–Tang–Wang–Yang 2010)
- Eulerian polynomials $A_n(x) = \sum_{k=0}^n \langle {n \atop k} \rangle x^k$ (Liu–Wang 2007, Zhu 2013)

Might these sequences actually be coefficientwise Hankel-totally positive?

- In many cases I can prove that the answer is **yes**, by using the Flajolet–Viennot method of *continued fractions*.
- In several other cases I have strong **empirical evidence** that the answer is **yes**, but no proof.
- The continued-fraction approach gives a *sufficient but not necessary* condition for coefficientwise Hankel-total positivity.

The combinatorics of continued fractions (Flajolet 1980)

Let $\boldsymbol{a} = (a_n)_{n \ge 0}$ be a sequence of elements in a commutative ring R. We associate to \boldsymbol{a} the formal power series

$$f(t) = \sum_{n=0}^{\infty} a_n t^n \in R[[t]]$$

We now consider two types of continued fractions:

• Continued fractions of Stieltjes type (S-type):

$$f(t) = \frac{1}{1 - \frac{\alpha_1 t}{1 - \frac{\alpha_2 t}{1 - \frac{\alpha_3 t}{1 - \frac{\alpha_3 t}{1 - \dots}}}},$$

which we denote by $S(t; \boldsymbol{\alpha})$ where $\boldsymbol{\alpha} = (\alpha_n)_{n \geq 1}$.

• Continued fractions of Jacobi type (J-type):

$$f(t) = \frac{1}{1 - \gamma_0 t - \frac{\beta_1 t^2}{1 - \gamma_1 t - \frac{\beta_2 t^2}{1 - \gamma_2 t - \frac{\beta_3 t^2}{1 - \gamma_3 t - \dots}}},$$

which we denote by $J(t; \boldsymbol{\beta}, \boldsymbol{\gamma})$ where $\boldsymbol{\beta} = (\beta_n)_{n \ge 1}$ and $\boldsymbol{\gamma} = (\gamma_n)_{n \ge 0}$.

The combinatorics of continued fractions (continued)

Theorem (Flajolet 1980): As an identity in $\mathbb{Z}[\boldsymbol{\alpha}][[t]]$, we have

$$\frac{1}{1 - \frac{\alpha_1 t}{1 - \frac{\alpha_2 t}{1 - \cdots}}} = \sum_{n=0}^{\infty} S_n(\alpha_1, \dots, \alpha_n) t^n$$

where $S_n(\alpha_1, \ldots, \alpha_n)$ is the generating polynomial for Dyck paths of length 2n in which each fall starting at height i gets weight α_i .

 $S_n(\boldsymbol{\alpha})$ is called the *Stieltjes-Rogers polynomial* of order n.

Theorem (Flajolet 1980): As an identity in $\mathbb{Z}[\boldsymbol{\beta}, \boldsymbol{\gamma}][[t]]$, we have

$$\frac{1}{1 - \gamma_0 t - \frac{\beta_1 t^2}{1 - \gamma_1 t - \frac{\beta_2 t^2}{1 - \gamma_2 t - \cdots}}} = \sum_{n=0}^{\infty} J_n(\boldsymbol{\beta}, \boldsymbol{\gamma}) t^n$$

where $J_n(\boldsymbol{\beta}, \boldsymbol{\gamma})$ is the generating polynomial for Motzkin paths of length n in which each level step at height i gets weight γ_i and each fall starting at height i gets weight β_i .

 $J_n(\boldsymbol{\beta}, \boldsymbol{\gamma})$ is called the *Jacobi-Rogers polynomial* of order *n*.

Hankel matrix of Stieltjes–Rogers polynomials

Now form the infinite Hankel matrix corresponding to the sequence $\mathbf{S} = (S_n(\boldsymbol{\alpha}))_{n \geq 0}$ of Stieltjes–Rogers polynomials:

$$H_{\infty}(\boldsymbol{S}) = \left(S_{i+j}(\boldsymbol{\alpha})\right)_{i,j\geq 0}$$

And consider any minor of $H_{\infty}(\mathbf{S})$:

$$\Delta_{IJ}(\boldsymbol{S}) = \det H_{IJ}(\boldsymbol{S})$$

where $I = \{i_1, i_2, \dots, i_k\}$ with $0 \le i_1 < i_2 < \dots < i_k$ and $J = \{j_1, j_2, \dots, j_k\}$ with $0 \le j_1 < j_2 < \dots < j_k$

Theorem (Viennot 1983): The minor $\Delta_{IJ}(\mathbf{S})$ is the generating polynomial for families of *disjoint* Dyck paths P_1, \ldots, P_k where path P_r starts at $(-2i_r, 0)$ and ends at $(2j_r, 0)$, in which each fall starting at height i gets weight α_i .

The proof uses the Karlin–McGregor–Lindström–Gessel–Viennot lemma on families of nonintersecting paths.

Corollary: The sequence $\mathbf{S} = (S_n(\boldsymbol{\alpha}))_{n \geq 0}$ is a Hankel-totally positive sequence in the polynomial ring $\mathbb{Z}[\boldsymbol{\alpha}]$ equipped with the coefficientwise partial order.

Now specialize $\boldsymbol{\alpha}$ to nonnegative elements in any partially ordered commutative ring:

Corollary: Let $\boldsymbol{\alpha} = (\alpha_n)_{n \geq 1}$ be a sequence of nonnegative elements in a partially ordered commutative ring R. Then $(S_n(\boldsymbol{\alpha}))_{n \geq 0}$ is a Hankel-totally positive sequence in R. Hankel matrix of Stieltjes–Rogers polynomials (continued)

Can also get explicit formulae for the Hankel determinants $\Delta_n^{(m)}(\mathbf{S}) = \det H_n^{(m)}(\mathbf{S})$ for small m:

Theorem:

$$\Delta_n^{(0)}(\mathbf{S}) = (\alpha_1 \alpha_2)^{n-1} (\alpha_3 \alpha_4)^{n-2} \cdots (\alpha_{2n-3} \alpha_{2n-2})$$
$$\Delta_n^{(1)}(\mathbf{S}) = \alpha_1^n (\alpha_2 \alpha_3)^{n-1} (\alpha_4 \alpha_5)^{n-2} \cdots (\alpha_{2n-2} \alpha_{2n-1})$$

These formulae are classical in the theory of continued fractions, but Viennot 1983 gives a beautiful combinatorial interpretation.

See also Ishikawa–Tagawa–Zeng 2009 for extensions to m = 2, 3.

Hankel matrix of Jacobi–Rogers polynomials

What about J-type continued fractions?

As before, we form the Hankel matrix

$$H_{\infty}(\boldsymbol{J}) = \left(J_{i+j}(\boldsymbol{\beta}, \boldsymbol{\gamma})\right)_{i,j \geq 0}$$

But the story is more complicated than for S-type fractions, because:

- The matrix $H_{\infty}(\boldsymbol{J})$ is *not* totally positive in $\mathbb{Z}[\boldsymbol{\beta}, \boldsymbol{\gamma}]$.
- It is not even totally positive in \mathbb{R} for all $\beta, \gamma \geq 0$.
- Rather, the total positivity of $H_{\infty}(\mathbf{J})$ holds only when $\boldsymbol{\beta}$ and $\boldsymbol{\gamma}$ satisfy suitable *inequalities*.

Form the infinite tridiagonal matrix

$$M_{\infty}(\boldsymbol{\beta}, \boldsymbol{\gamma}) = \begin{pmatrix} \gamma_{0} & 1 & 0 & 0 & \cdots \\ \beta_{1} & \gamma_{1} & 1 & 0 & \cdots \\ 0 & \beta_{2} & \gamma_{2} & 1 & \cdots \\ 0 & 0 & \beta_{3} & \gamma_{3} & \cdots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{pmatrix}$$

Theorem: If $M_{\infty}(\boldsymbol{\beta}, \boldsymbol{\gamma})$ is totally positive, then so is $H_{\infty}(\boldsymbol{J})$.

So we will need to test the tridiagonal matrix for total positivity.

Luckily, there is a simple criterion:

A tridiagonal matrix is totally positive if and only if all its *off-diagonal elements* and all its *contiguous principal minors* are nonnegative.

This is classical for real-valued matrices; but the proof extends easily to matrices with values in a partially ordered commutative ring. Finding Hankel-totally positive sequences of polynomials

A general strategy:

1. Start from a sequence $(c_n)_{n\geq 0}$ of positive real numbers that is a Stieltjes moment sequence, i.e. is Hankel-totally positive.

[This property is easy to test empirically: just expand the generating series $\sum_{n=0}^{\infty} c_n t^n$ as an S-type continued fraction and test whether all coefficients α_i are ≥ 0 .]

2. Refine this sequence somehow to a row-finite array $(c_{n,k})_{0 \le k \le k_{\max}(n)}$ satisfying $\sum_{k=0}^{k_{\max}(n)} c_{n,k} = c_n$;

then define the polynomials $P_n(x) = \sum_{k=0}^{k_{\max}(n)} c_{n,k} x^k$.

- 3. By construction, the sequence $(P_n(1))_{n\geq 0}$ is Hankel-totally positive; and if we are lucky, we will find that two successively stronger properties of Hankel-total positivity also hold:
 - (a) For each real number $x \ge 0$, the sequence $(P_n(x))_{n\ge 0}$ of real numbers is Hankel-totally positive (i.e. is a Stieltjes moment sequence).
 - (b) The sequence $(P_n(x))_{n\geq 0}$ of polynomials is coefficientwise Hankel-totally positive.
- Usually $(c_n)_{n\geq 0}$ will usually be a sequence of *positive integers* having some combinatorial interpretation, i.e. as the cardinality of some "naturally occurring" set S_n .
- Then the $c_{n,k}$ will arise from the partition of \mathcal{S}_n into disjoint subsets $\mathcal{S}_{n,k}$ according to some "natural" statistic $\kappa \colon \mathcal{S}_n \to \mathbb{N}$.

							Continued freetier		
	<i>n</i>						Continued fraction		
	0	1	2	3	4	5	6	α_{2k-1}	α_{2k}
Catalan numbers C_n	1	1	2	5	14	42	132	1	1
Central binomials $\binom{2n}{n}$	1	2	6	20	70	252	924	$\alpha_1 = 2,$	1
								all others 1	
Bell numbers B_n	1	1	2	5	15	52	203	1	k
Irreducible Bell numbers IB_{n+1}	1	1	2	6	22	92	426	k	1
Factorials $n!$	1	1	2	6	24	120	720	k	k
Ordered Bell numbers OB_n	1	1	3	13	75	541	4683	k	2k
Odd semifactorials $(2n-1)!!$	1	1	3	15	105	945	10395	2k - 1	2k
Even semifactorials $(2n)!!$	1	2	8	48	384	3840	46080	2k	2k
Genocchi medians H_{2n+1}	1	1	2	8	56	608	9440	k^2	k^2
Genocchi numbers G_{2n+2}	1	1	3	17	155	2073	38227	k^2	k(k+1)
Secant numbers E_{2n}	1	1	5	61	1385	50521	2702765	$(2k-1)^2$	$(2k)^{2}$
Tangent numbers E_{2n+1}	1	2	16	272	7936	353792	22368256	(2k-1)(2k)	(2k)(2k+1)

Some examples of combinatorial Stieltjes moment sequences

So our polynomial examples will divide naturally into "families": the Catalan family, the Bell family, the factorial family, etc.

Can also pursue this strategy in reverse:

- Find the S-type continued fraction for the generating series $\sum_{n=1}^{\infty} c_n t^n$.
- Generalize it by inserting one or more indeterminates **x**.
- Try to compute the corresponding polynomials $P_n(\mathbf{x})$ and/or find a combinatorial interpretation for them.

Caveat:

- There also exist important combinatorial Stieltjes moment sequences that do *not* seem to have nice continued fractions.
- Some of them have polynomial refinements that are **empirically** Hankel-totally positive; but new methods will be needed to prove it!

Example 1: Narayana polynomials

- Narayana numbers $N(n,k) = \frac{1}{n} \binom{n}{k} \binom{n}{k-1}$ for $n \ge k \ge 1$ with convention $N(0,k) = \delta_{k0}$
- They refine Catalan numbers: $\sum_{k=0}^{n} N(n,k) = C_n$
- They count numerous objects of combinatorial interest:
 - Dyck paths of length 2n with k peaks
 - Non-crossing partitions of [n] with k blocks
 - Non-nesting partitions of [n] with k blocks
- Define Narayana polynomials $N_n(x) = \sum_{k=0}^n N(n,k) x^k$
- Define ordinary generating function $\mathcal{N}(t,x) = \sum_{n=0}^{\infty} t^n N_n(x)$
- Elementary "renewal" argument on Dyck paths implies

$$\mathcal{N} = \frac{1}{1 - tx - t(\mathcal{N} - 1)}$$

which can be rewritten as

$$\mathcal{N} = \frac{1}{1 - \frac{xt}{1 - t\mathcal{N}}}$$

• Leads immediately to S-type continued fraction

$$\sum_{n=0}^{\infty} t^n N_n(x) = \frac{1}{1 - \frac{xt}{1 - \frac{t}{1 - \frac{xt}{1 - \frac$$

with coefficients $\alpha_{2k-1} = x$, $\alpha_{2k} = 1$.

Narayana polynomials (continued)

Conclusions:

- 1. The sequence $\mathbf{N} = (N_n(x))_{n\geq 0}$ of Narayana polynomials is coefficientwise Hankel-totally positive. The minor $\Delta_{IJ}(\mathbf{N})$ counts families of disjoint Dyck paths as specified by Viennot 1983, with weights $\alpha_{2k-1} = x$, $\alpha_{2k} = 1$.
- 2. The first Hankel determinants $\Delta_n^{(m)}(\mathbf{N})$ are

$$\Delta_n^{(0)}(\mathbf{N}) = x^{n(n-1)/2}$$

 $\Delta_n^{(1)}(\mathbf{N}) = x^{n(n+1)/2}$

Remarks:

- 1. The strong log-convexity was known previously (Chen–Wang– Yang 2010), but with a much more difficult proof.
- 2. The formula for $\Delta_n^{(0)}(\mathbf{N})$ was also known (Sivasubramanian 2010), by an explicit bijective argument.

Example 2: Bell polynomials

- Stirling number ${n \atop k} = \#$ of partitions of [n] with k blocks
- Convention ${0 \\ k} = \delta_{k0}$
- They refine Bell numbers: $\sum_{k=0}^{n} {n \\ k} = B_n$
- Define Bell polynomials $B_n(x) = \sum_{k=0}^n {n \\ k} x^k$
- Define ordinary generating function $\mathcal{B}(t,x) = \sum_{n=0}^{\infty} t^n B_n(x)$
- Flajolet (1980) expressed $\mathcal{B}(t, x)$ as a J-type continued fraction
- Can be transformed to an S-type continued fraction

$$\sum_{n=0}^{\infty} t^n B_n(x) = \frac{1}{1 - \frac{xt}{1 - \frac{1t}{1 - \frac{xt}{1 - \frac{2t}{1 - \cdots}}}}}$$

with coefficients $\alpha_{2k-1} = x$, $\alpha_{2k} = k$.

Bell polynomials (continued)

Conclusions:

- 1. The sequence $\boldsymbol{B} = (B_n(x))_{n\geq 0}$ of Bell polynomials is coefficientwise Hankel-totally positive. The minor $\Delta_{IJ}(\boldsymbol{B})$ counts families of disjoint Dyck paths as specified by Viennot 1983, with weights $\alpha_{2k-1} = x$, $\alpha_{2k} = k$.
- 2. The first Hankel determinants $\Delta_n^{(m)}(\boldsymbol{B})$ are

$$\Delta_n^{(0)}(\boldsymbol{B}) = x^{n(n-1)/2} \prod_{i=1}^{n-1} i!$$
$$\Delta_n^{(1)}(\boldsymbol{B}) = x^{n(n+1)/2} \prod_{i=1}^{n-1} i!$$

Remarks:

- 1. The strong log-convexity was known previously (Chen–Wang– Yang 2011).
- 2. The formula for $\Delta_n^{(0)}(\boldsymbol{B})$ has also been known for a long time (Radoux 1979, Ehrenborg 2000).
- 3. For each real number $x \ge 0$, the sequence $(B_n(x))_{n=0}^{\infty}$ is the moment sequence for the Poisson distribution of expected value x:

$$B_n(x) = \sum_{k=0}^{\infty} k^n \left(e^{-x} \frac{x^k}{k!} \right)$$

Hence $(B_n(x))_{n=0}^{\infty}$ is a Hankel-totally positive sequence of real numbers. But the weights $e^{-x}x^k/k!$ here are not nonnegative elements of $\mathbb{R}[x]$ or $\mathbb{R}[[x]]$, so this approach cannot be used to prove the *coefficientwise* total positivity.

Example 3: Interpolating between Narayana and Bell

- Let $\pi = \{B_1, B_2, \dots, B_k\}$ be a partition of [n]
- Associate to π a graph \mathcal{G}_{π} with vertex set [n] such that i, j are joined by an edge iff they are *consecutive* elements within the same block
- Always write an edge e of \mathcal{G}_{π} as a pair (i, j) with i < j
- We say that edges $e_1 = (i_1, j_1)$ and $e_2 = (i_2, j_2)$ of \mathcal{G}_{π} form

– a crossing if
$$i_1 < i_2 < j_1 < j_2$$

- a nesting if $i_1 < i_2 < j_2 < j_1$
- We define cr(π) [resp. ne(π)] to be number of crossings (resp. nestings) in π
- Write $|\pi| = k$ for the number of blocks in π
- Now define the three-variable polynomial

$$B_n(x, p, q) = \sum_{\pi \in \Pi_n} x^{|\pi|} p^{\operatorname{cr}(\pi)} q^{\operatorname{ne}(\pi)}$$

with the convention $B_0(x, p, q) = 1$

- $B_n(x,0,1) = B_n(x,1,0) = N_n(x)$ and $B_n(x,1,1) = B_n(x)$, so this polynomial generalizes the Narayana and Bell polynomials.
- Kasraoui and Zeng (2006) have constructed an involution on Π_n that preserves the number of blocks (as well as some other properties) and exchanges the numbers of crossings and nestings; thus $B_n(x, p, q) = B_n(x, q, p)$.

• Define ordinary generating function $\mathcal{B}(t, x, p, q) = \sum_{n=0}^{\infty} t^n B_n(x, p, q)$

Interpolating between Narayana and Bell (continued)

- Kasraoui and Zeng (2006) have expressed $\mathcal{B}(t, x, p, q)$ as a J-type continued fraction
- Can be transformed to an S-type continued fraction

$$\sum_{n=0}^{\infty} t^n B_n(x, p, q) = \frac{1}{1 - \frac{xt}{1 - \frac{[1]_{p,q}t}{1 - \frac{xt}{1 - \frac{xt}{$$

with coefficients
$$\alpha_{2k-1} = x$$
, $\alpha_{2k} = [k]_{p,q}$, where
 $[k]_{p,q} = \frac{p^k - q^k}{p - q}$

Conclusions:

- 1. The sequence $\boldsymbol{B} = (B_n(x, p, q))_{n \ge 0}$ of three-variable polynomials is coefficientwise Hankel-totally positive. The minor $\Delta_{IJ}(\boldsymbol{B})$ counts families of disjoint Dyck paths as specified by Viennot 1983, with weights $\alpha_{2k-1} = x$, $\alpha_{2k} = [k]_{p,q}$.
- 2. The first Hankel determinants $\Delta_n^{(m)}(\boldsymbol{B})$ are

$$\Delta_n^{(0)}(\boldsymbol{B}) = x^{n(n-1)/2} \prod_{i=1}^{n-1} [i]_{p,q}!$$

$$\Delta_n^{(1)}(\boldsymbol{B}) = x^{n(n+1)/2} \prod_{i=1}^{n-1} [i]_{p,q}!$$

where

$$[n]_{p,q}! = \prod_{j=1}^{n} [j]_{p,q} \tag{0.1}$$

Example 4: Eulerian polynomials

- Eulerian number ${\binom{n}{k}} = \#$ of permutations of [n] with k descents
- Convention $\begin{pmatrix} 0\\k \end{pmatrix} = \delta_{k0}$

• They obviously refine factorials: $\sum_{k=0}^{n} \langle {n \atop k} \rangle = n!$

• Define Eulerian polynomials $A_n(x) = \sum_{k=0}^n \langle {n \atop k} \rangle x^k$

- Define ordinary generating function $\mathcal{A}(t,x) = \sum_{n=0}^{\infty} t^n A_n(x)$
- Flajolet (1980) expressed $\mathcal{A}(t, x)$ as a J-type continued fraction
- Can be transformed to an S-type continued fraction

$$\sum_{n=0}^{\infty} t^n A_n(x) = \frac{1}{1 - \frac{t}{1 - \frac{xt}{1 - \frac{2t}{1 - \frac{2xt}{1 - \frac{2xt}{1 - \cdots}}}}}}$$

with coefficients $\alpha_{2k-1} = k$, $\alpha_{2k} = kx$.

Eulerian polynomials (continued)

Conclusions:

- 1. The sequence $\mathbf{A} = (A_n(x))_{n\geq 0}$ of Eulerian polynomials is coefficientwise Hankel-totally positive. The minor $\Delta_{IJ}(\mathbf{A})$ counts families of disjoint Dyck paths as specified by Viennot 1983, with weights $\alpha_{2k-1} = k$, $\alpha_{2k} = kx$.
- 2. The first Hankel determinants $\Delta_n^{(m)}(\mathbf{A})$ are

$$\Delta_n^{(0)}(\boldsymbol{B}) = x^{n(n-1)/2} \prod_{i=1}^{n-1} i!^2$$
$$\Delta_n^{(1)}(\boldsymbol{B}) = x^{n(n+1)/2} \prod_{i=1}^{n-1} i!^2$$

Remarks:

- 1. The (strong) log-convexity was known previously (Liu–Wang 2007, Zhu 2013).
- 2. The formula for $\Delta_n^{(0)}(\mathbf{A})$ was also known (Sivasubramanian 2010), by an explicit bijective argument.
- 3. Shin and Zeng (2012) have a p, q-generalization of this S-type continued fraction \implies their polynomials $A_n(x, p, q)$ form a coefficientwise (in x, p, q) Hankel-totally positive sequence.

Example 5: Narayana polynomials of type B

The polynomials

$$W_n(x) = \sum_{k=0}^n \binom{n}{k}^2 x^k$$

arise as

- Coordinator polynomial of the classical root lattice A_n
- Rank generating function of the lattice of noncrossing partitions of type B on [n]

I follow Chen–Tang–Wang–Yang 2010 in calling them the Narayana polynomials of type B.

• There is no S-type continued fraction *in the ring of polynomials*: we have

 $\alpha_1, \alpha_2, \ldots = 1+x, \frac{2x}{1+x}, \frac{1+x^2}{1+x}, \frac{x+x^2}{1+x^2}, \frac{1+x^3}{1+x^2}, \frac{x+x^3}{1+x^3}, \frac{1+x^4}{1+x^3}, \ldots$

- However, there is a nice *J*-type continued fraction: $\gamma_n = 1 + x$, $\beta_1 = 2x$, $\beta_n = x$ for $n \ge 2$.
- The corresponding tridiagonal matrix is totally positive.
- Conclusion: The sequence $(W_n(x))_{n\geq 0}$ is coefficientwise Hankeltotally positive.

Eğecioğlu–Redmond–Ryavec polynomials

- A *noncrossing graph* is a graph whose vertices are points on a circle and whose edges are non-crossing line segments.
- Noy (1998) showed that the number of noncrossing trees on n+2 vertices in which a specified vertex (say, vertex 1) has degree k + 1 is

$$T(n,k) = \frac{k+1}{n+1} \binom{3n-k+1}{n-k} = \frac{2k+2}{3n-k+2} \binom{3n-k+2}{n-k}$$

• Eğecioğlu, Redmond and Ryavec (2001) introduced the polynomials

$$\mathsf{ERR}_n(x) \;=\; \sum_{k=0}^n T(n,k) \, x^k$$

• They showed that, surprisingly, the Hankel determinant $\Delta_n^{(0)}(\boldsymbol{ERR})$ is independent of x:

$$\Delta_n^{(0)}(ERR) = \prod_{i=1}^n \frac{\binom{6i-2}{2i}}{2\binom{4i-1}{2i}}$$

This is the number of $(2n+1) \times (2n+1)$ alternating sign matrices that are invariant under vertical reflection.

• There is no S-type continued fraction *in the ring of polynomials*: we have

$$\alpha_1, \alpha_2, \ldots = 2 + x, \frac{3}{2 + x}, \frac{11 + 10x}{6 + 3x}, \frac{52 + 26x}{33 + 30x}, \ldots$$

- However, there is a J-type continued fraction where $\gamma_0 = 2 + x$ and all the other coefficients are known numbers.
- The corresponding tridiagonal matrix is totally positive.
- Conclusion: The sequence $(\mathsf{ERR}_n(x))_{n\geq 0}$ is coefficientwise Hankeltotally positive.

Some cases I am *unable* (as yet) to prove ...

Finally, there are some cases where I find **empirically** that a sequence $(P_n(x))_{n\geq 0}$ is coefficientwise Hankel-totally positive, but I am unable to prove it because there is neither an S-type nor a J-type continued fraction in the ring of polynomials:

- Domb polynomials
- Apéry polynomials
- Boros–Moll polynomials
- Inversion enumerators for trees
- Reduced binomial discriminant polynomials

÷

Generating polynomials of connected graphs

- Let c_{n,m} = # of connected simple graphs on vertex set [n] having m edges
- Define the generating polynomial of connected graphs

$$C_n(v) = \sum_{m=n-1}^{\binom{n}{2}} c_{n,m} v^m$$

= $n^{n-2} v^{n-1} + \dots + v^{\binom{n}{2}}$

- No useful explicit formula for the polynomials $C_n(v)$ or their coefficients is known.
- But they have the well-known exponential generating function

$$\sum_{n=1}^{\infty} \frac{x^n}{n!} C_n(v) = \log \sum_{n=0}^{\infty} \frac{x^n}{n!} (1+v)^{n(n-1)/2}$$

• Make change of variables y = 1+v and define $\overline{C}_n(y) = C_n(y-1)$:

$$\sum_{n=1}^{\infty} \frac{x^n}{n!} \overline{C}_n(y) = \log \sum_{n=0}^{\infty} \frac{x^n}{n!} y^{n(n-1)/2}$$

- These formulae can be considered either as identities for formal power series or as analytic statements valid when $|1 + v| \le 1$ (resp. $|y| \le 1$).
- In particular we have

$$C_n(-1) = \overline{C}_n(0) = (-1)^{n-1}(n-1)!$$

• Of course we also have

$$C_n(0) = \overline{C}_n(1) = 0 \quad \text{for } n \ge 2$$

since $C_n(v)$ [resp. $\overline{C}_n(y)$] has an (n-1)-fold zero at v = 0 [resp. y = 1].

Inversion enumerator for trees

- Let T be a tree with vertex set [n], rooted at the vertex 1.
- An *inversion* of T is an ordered pair (j, k) of vertices such that j > k > 1 and the path from 1 to k passes through j.
- Let $i_{n,\ell}$ denote the number of trees on [n] having ℓ inversions.
- Define the *inversion enumerator for trees*

$$I_n(y) = \sum_{\ell=0}^{\binom{n-1}{2}} i_{n,\ell} y^{\ell}$$

= $(n-1)! + \ldots + y^{\binom{n-1}{2}}$

• The polynomial $I_n(y)$ turns out to be related to $C_n(v)$ by the beautiful formula

$$C_n(v) = v^{n-1} I_n(1+v)$$

or equivalently

$$\overline{C}_n(y) = (y-1)^{n-1} I_n(y)$$

- This shows in particular that $I_n(0) = (n-1)!$ and $I_n(1) = n^{n-2}$.
- It is useful to define the normalized polynomials

$$I_n^{\star}(y) = \frac{I_n(y)}{(n-1)!}$$

which have nonnegative rational coefficients and constant term 1.

Inversion enumerator for trees (continued)

Fact 1. $I_n(y)$ has strictly positive coefficients.

• Nonnegativity is obvious; strict positivity takes a bit of work.

Fact 2. $I_n(y)$ has log-concave coefficients.

- Special case of a deep result of Huh, arXiv:1201.2915, on the log-concavity of the *h*-vector of the independent-set complex for matroids representable over a field of characteristic 0: apply it to $M^*(K_n)$.
- **Open problem:** Find an elementary direct proof.

Now form the sequence $I = (I_{n+1}(y))_{n \ge 0}$.

Conjecture 1. The sequence I is coefficientwise Hankel-totally positive.

- I have checked this through the 10×10 Hankel matrix.
- Even the log-convexity $I_{n-1}I_{n+1} \succeq I_n^2$ seems to be an open problem!

Conjecture 2. The 2 × 2 minors $I_{m-1}I_{n+1} - I_mI_n$ $(1 \le m \le n)$ have coefficients that are log-concave.

- I have checked this through n = 165.
- It is false for minors of size 3×3 and higher.

Inversion enumerator for trees (continued)

Now look at the normalized polynomials $I^{\star} = (I_{n+1}^{\star}(y))_{n \geq 0}$.

Conjecture 3. The sequence I^* is coefficientwise Hankel-totally positive.

- I have checked this through the 10×10 Hankel matrix.
- The analogous result for *fixed real* $y \in [0, 1]$ can be *proven* by using a result of Laguerre on the real-rootedness of the "deformed exponential function"

$$F(x,y) = \sum_{n=0}^{\infty} \frac{x^n}{n!} y^{n(n-1)/2}$$

This is what led me to conjecture the *coefficientwise* Hankeltotal positivity.

• At fixed real y, the result for I^* implies the one for I, by virtue of a general fact about Hadamard products. But this argument does not work in $\mathbb{R}[y]$!

Conjecture 4. All the Hankel minors of I^* have coefficients that are log-concave.

- I have checked this through the 10×10 Hankel matrix.
- For the 2×2 minors, I have checked it for $1 \le m \le n \le 165$.

Binomial discriminant polynomials

• Define
$$F_n(x,y) = \sum_{k=0}^n \binom{n}{k} x^k y^{k(k-1)/2}$$

- Can be considered as a "y-deformation" of the binomial $(1+x)^n$. It is also the Jensen polynomial of the deformed exponential function.
- Now define the *binomial discriminant polynomial*

$$\overline{D}_n(y) = \operatorname{disc}_x F_n(x, y)$$

- $\overline{D}_n(y)$ is a polynomial with integer coefficients
- It has degree $n(n-1)^2/2$ and has first and last terms

$$\overline{D}_n(y) = b_n^2 y^{n(n-1)(n-2)/3} + \dots + (-1)^{n(n-1)/2} n^n y^{n(n-1)^2/2}$$

where

$$b_n = \prod_{k=1}^{n-1} \binom{n}{k} = \prod_{k=1}^n k^{2k-1-n} = \frac{\prod_{k=1}^n k^k}{\prod_{k=1}^n k!}$$

(does this sequence have any standard name?)

• The first few $\overline{D}_n(y)$ are:

Reduced binomial discriminant polynomials

- $\overline{D}_n(y)$ has a factor $y^{n(n-1)(n-2)/3}$ and also a factor $(1-y)^{n(n-1)/2}$ [coming from the fact that the *n* roots of $F_n(x, y)$ all coalesce as $y \to 1$].
- So define the *reduced binomial discriminant polynomial*

$$J_n(y) = rac{\overline{D}_n(y)}{y^{n(n-1)(n-2)/3} (1-y)^{n(n-1)/2}}$$

- $J_n(y)$ is a polynomial with integer coefficients
- It has degree $\binom{n}{3}$ and has first and last terms

$$J_n(y) = b_n^2 + \ldots + n^n y^{\binom{n}{3}}$$

- $J_n(1) = \prod_{k=1}^n k^k$ (hyperfactorials)
- The first few $J_n(y)$ are:

$$J_0(y) = 1$$

$$J_1(y) = 1$$

$$J_2(y) = 4$$

$$J_3(y) = 81 + 27y$$

$$J_4(y) = 9216 + 11264y + 5376y^2 + 1536y^3 + 256y^4$$

:

Conjecture 1. The coefficients of $J_n(y)$ are nonnegative (in fact, strictly positive).

Conjecture 2. The coefficients of $J_n(y)$ are log-concave (in fact, strictly log-concave).

- I have checked these conjectures for $n \leq 44$.
- What are the coefficients of $J_n(y)$ counting?

Reduced binomial discriminant polynomials (continued)

Now form the sequence $\boldsymbol{J} = (J_n(y))_{n \ge 0}$.

Conjecture 3. The sequence J is coefficientwise Hankel-totally positive.

- In fact, all the Hankel minors of **J** seem to have coefficients that are *strictly positive*.
- I have checked this through the 9×9 Hankel matrix.

Conjecture 4. All the Hankel minors of J have coefficients that are log-concave (in fact, strictly log-concave).

- I have checked this through the 9×9 Hankel matrix.
- For the 2×2 minors, I have checked it for $1 \le m \le 42$.

Now look at the normalized polynomials $J^* = (J_n^*(y))_{n \ge 0}$.

Conjecture 5. The sequence J^* is coefficientwise strongly logconvex: that is, all the 2 × 2 minors $J_{m-1}^*J_{n+1}^* - J_m^*J_n^*$ have nonnegative coefficients.

- I have checked this for $1 \le m \le 42$.
- The 3×3 and higher minors do *not* have nonnegative coefficients.

Conjecture 6. All the 2×2 minors $J_{m-1}^{\star}J_{n+1}^{\star}-J_m^{\star}J_n^{\star}$ have coefficients that are log-concave (in fact, strictly log-concave except when m=n=1).

• I have checked this for $1 \le m \le n \le 42$.

(Tentative) Conclusion

- Many interesting sequences $(P_n(\mathbf{x}))_{n\geq 0}$ of combinatorial polynomials are (or appear to be) coefficientwise Hankel-totally positive.
- In some cases this can be proven by the Flajolet–Viennot method of continued fractions.
 - Flajolet and Viennot emphasized J-type continued fractions because they are more general.
 - But S-type continued fractions, when they exist, often have simpler coefficients; and they are the most direct tool for proving Hankel-total positivity.

- Roughly speaking:

J-type c.f. \iff general orthogonal polynomials \iff Hamburger moment problem

S-type c.f. \iff orthogonal polynomials on $[0,\infty) \iff$ Stieltjes moment problem \iff Hankel-total positivity

- But sometimes J-type continued fractions exist when S-type don't, and they can be used to prove coefficientwise Hankeltotal positivity.
- For the other cases, **new methods of proof will be needed.**
- Deepest cases seem to be $I_n(y)$ and $J_n(y)$:
 - For $I_n(y)$, even the log-convexity $I_{n-1}I_{n+1} \succeq I_n^2$ is an open problem. (Bijective proof??)
 - For $J_n(y)$, even the nonnegativity $J_n \succeq 0$ is an open problem! We really need to know what $J_n(y)$ is counting!

Dedicated to the memory of Philippe Flajolet