

Programme Specification (PG)

Awarding body / institution:	Queen Mary University of London			
Teaching institution:	Queen Mary University of London			
Name of final award and programme title:	MSc Physics (EuroMasters)			
Name of interim award(s):	PGCert/PGDip/MSc Physics			
Duration of study / period of registration:	Two years FT			
Queen Mary programme code(s):	PMMF-QMPHYS1			
QAA Benchmark Group:				
FHEQ Level of Award:	Level 7			
Programme accredited by:				
Date Programme Specification approved:				
Responsible School / Institute:	School of Physical and Chemical Sciences			
Schools / Institutes which will also be involved	ved in teaching part of the programme:			
Collaborative institution(s) / organisation(s) involved in delivering the programme:				
Kings College London, Royal Holloway and University College London				

Programme outline

This programme benefits from teaching across the universities of the South East Physics Network (SEPnet), with a strong emphasis on research-based learning. Delivered accross two academic years with an extended project in the second year, this programme provides excellent training in higher level academic research.

You will deepen your understanding of a chosen branch of contemporary physics or astrophysics, chosing a speciality from a wide variety of themes at the forefront of both fundamental and applied physics research. The programme consists of taught modules and an in-depth research project, leaving you well prepared for further doctoral-level study and research. There are two pathways in the programme: Physics and Astrophysics.

Aims of the programme

- 1. To provide an understanding of a chosen branch of contemporary physics, covering advanced concepts and techniques, leaving students well prepared for further doctoral level study and research.
- 2. To provide a solid foundation for a successful career as a highly-qualified physicist.
- 3. To provide opportunities for students to develop skills transferable to a wide range of other careers.

- 4. To enable students to further develop skills in problem solving and critical and quantitative analysis in physics beyond those acquired in undergraduate study.
- 5. To provide active participation in contemporary physics research through completion of an extended project under the guidance of a supervisor at the forefront of research in the relative subject area.
- 6. To help students develop the sense of independence and experience of a scientific researcher.
- 7. To enable students to develop research skills by working within a dynamic internationally known experimental, observational or theoretical research group.
- 8. To provide students with a friendly and supportive environment in which to enrich their learning experience through interaction with active research staff and other students.
- 9. To enable students to prepare and present research-level seminars on advanced physics topics.
- 10. To provide opportunities to carry out research leading to work of a publishable standard.

What will you be expected to achieve?

	•			
Students successfully c	completing the program	me will achieve the outco	omes listed below.	

Academic Content:				
A1	Know the findamental laws and physical principles, along with their applicaions in specific areas of physics			
A2	Manage their own research, making use of journal articles and other primary sources			
А3	Communicate complex scietific ideas, concisely, accurately and informatively			
A4	Use mathematical analysis to model physical beaaviour and iterpret the mathematical descriptions of physical phenomena.			

Disciplinary Skills - able to:				
В1	To solve advanced problems in physics using appropriate mathematical tools (to order of magnitude or more precisely as appropriate)			
В2	To plan and execute an investigation and to critically analyse the results, drawing valid conclusions.			
В3	To prepare a detailed technical report on their project and compare their results with published data ,expected outcomes or theoretical predictions.			
В4	To identify relevant physical principles and translate problems into mathematical statements.			

Attr	ibutes:
C1	Acquire and apply knowledge in a rigorous way

C2	Explain and argue clearly and concisely
С3	Connect ideas and information within their field of study
04	Critically evaluate the reliability of different sources of information
C5	Acquire substantial bodies of new knowledge

How will you learn?

The majority of taught modules consist of three hour hours of teaching per week, either as three hours of lectures or two hours of lectures plus a one hour tutorial. Some modules incorporate substantial computer laboratory sessions.

The project is undertaken within Condensed Matter Physics, Particle Physics, Theoretical Physics or Astrophysics and uses computational, theoretical or laboratory methods as appropriate and may well involve additional, technical training. In all cases the project involves weekly one to one meetings with the supervisor.

How will you be assessed?

The majority of taught modules are assessed by a final examination (typically 90% of the final mark) and by coursework (typically 10% of the final mark), although individual module mark schemes may vary from this. The compulsory MSc Physics Euromasters project is assessed by the final written report (80% of the final mark) and a student presentation and oral examination (20% of the final mark).

How is the programme structured?

Please specify the structure of the programme diets for all variants of the programme (e.g. full-time, part-time - if applicable). The description should be sufficiently detailed to fully define the structure of the diet.

NOTE: Students choosing to leave the programme after Year One, may be awarded the PGDip Physics (EuroMasters).

Year one:

Eight taught modules to the total of 120 credits, taken from any of the 15 credit modules below:

SPA7033P Practical Machine Learning

SPA7034P Astrophysical Computing

SPA7008P Electronic Structure Methods

SPA7018P Relativistic Waves & Quantum Fields

SPA7001P Advanced Quantum Field Theory

SPA7024P Functional Methods in Quantum Field Theory

SPA7031P Differential Geometry in Theoretical Physics

SPA7029P Collider Physics

SPA7023P Stellar Structure and Evolution

SPA7019P Relativity and Gravitation

SPA7036P Radiative Transfer and Astrochemistry (New 2022/23)

SPA7022P Solar System

SPA7010P The Galaxy

SPA7004P Astrophysical Plasmas

SPA7009P Extrasolar Planets & Astrophysical Discs

SPA7028P Advanced Cosmology

SPA7031P Supersymmetric Methods in Theoretical Physics

SPA7032P Introduction to Strings and Branes

INK7022P Mathematical Methods for Theoretical Physics

INR7007P Statistical Mechanics

INU7001P Advanced Ouantum Theory

INK7091P Photonics and Metamaterials

INU7022P Quantum Computation and Communication

INU7017P Particle Physics

INR7003P Particle Accelerator Physics

INK7066P Modelling Quantum Many-Body Systems

INU7016P Order and Excitations in Condensed Matter

INK7037P Theoretical Treatments of Nano-systems

INR7012P Physics at the Nanoscale

INR7008P Superfluids, Condensates and Superconductors

INK7067P Advanced Condensed Matter

INK7032P Standard Model Physics and Beyond

INR7014P Statisical Data Analysis

INU7045P Planetary Atmospheres

INU7008P Solar Physics

INU7026P Space Plasma and Magnetospheric Physics

INK7068P Cellular Biophysics

INK7069P Dark Matter and Dark Energy

INU7103P High Energy Astrophysics

Plus any new level 7 modules belonging to SPA and the intercollegiate programme.

Students can pick up to two Level 6 modules from the following:

SPA6308P Spacetime and Gravity

SPA6413P Quantum Mechanics B

Year two:

A total of 120 credits, consisting of:

SPA7026P Physics (Euromasters) Project

Academic Year of Study

Module Title	Module Code	Credits	Level	Module Selection Status	Academic Year of Study	Semester

What are the entry requirements?

Entry to the Programme requires a minimum of an upper second honours degree at Bachelors level in physics, or its equivalent. Direct entry to the second year of the programme requires students to have achieved the equivalent of a postgraduate diploma in physics at a SEPnet partner

How will the quality of the programme be managed and enhanced? How do we listen to and act on your feedback?

The Staff-Student Liaison Committee provides a formal means of communication and discussion between Schools and its students. The committee consists of student representatives from each year in the school/institute together with appropriate representation from staff within the school/institute. It is designed to respond to the needs of students, as well as act as a forum for discussing programme and module developments. Staff-Student Liaison Committees meet regularly throughout the year. Each school operates a Learning and Teaching Committee, or equivalent, which advises the School/Institute Director of Taught Programmes on all matters relating to the delivery of taught programmes at school level including monitoring the application of relevant QM policies and reviewing all proposals for module and programme approval and amendment before submission to Taught Programmes Board. Student views are incorporated in this Committee's work in a number of ways, such as through student membership, or consideration of student surveys.

All schools operate an Annual Programme Review of their taught undergraduate and postgraduate provision. The process is normally organised at a School-level basis with the Head of School, or equivalent, responsible for the completion of the school's Annual Programme Reviews. Schools/institutes are required to produce a separate Annual Programme Review for undergraduate programmes and for postgraduate taught programmes using the relevant Undergraduate or Postgraduate Annual Programme Review pro-forma. Students' views are considered in this process through analysis of the NSS and module evaluations.

What academic support is available?

The students will be allocated an academic advisor as well as a project supervisor. Weekly project supervision meetings are expected. Additionally the School has a dedicated Student Support Officer who is available to discuss any student related problem. The School runs an open door policy which encourages the students to come and talk to their advisor, other academics or the dedicated Student Support Officer.

Programme-specific rules and facts

MSc Physics and MSc Physics (Euromasters) students must pass six out of eight taught modules and two failures can be condoned down to 40%, as long as the average achieved across all modules is 50% or greater.

How inclusive is the programme for all students, including those with disabilities?

Queen Mary has a central Disability and Dyslexia Service (DDS) that offers support for all students with disabilities, specific learning difficulties and mental health issues. The DDS supports all Queen Mary students: full-time, part-time, undergraduate, postgraduate, UK and international at all campuses and all sites.

Students can access advice, guidance and support in the following areas:

- Finding out if you have a specific learning difficulty like dyslexia
- Applying for funding through the Disabled Students' Allowance (DSA)
- Arranging DSA assessments of need
- Special arrangements in examinations
- Accessing loaned equipment (e.g. digital recorders)
- Specialist one-to-one "study skills" tuition
- Ensuring access to course materials in alternative formats (e.g. Braille)
- Providing educational support workers (e.g. note-takers, readers, library assistants)

Programme Title: MSc Physics (EuroMasters)				
• Mentoring support for students with mental health issues and condi	tions on the autistic spectrum.			
Links with employers, placement opportunities and	d transferable skills			
The School has a dedicated SEPnet Employer Engagement Officer wh work placement opportunities.	o provides links between students and industry, arranging			
Programme Specification Approval				
Person completing Programme Specification:	Leonie Dos Santos			
Person responsible for management of programme:	Dr Rodolfo Russo			
Date Programme Specification produced / amended by School / Institute Learning and Teaching Committee:	16 Jun 2022			
Date Programme Specification approved by Taught Programmes Board:				