

# **Programme Specification**

| Awarding Body/Institution Queen Mary University of London                              |                                 |  |  |  |
|----------------------------------------------------------------------------------------|---------------------------------|--|--|--|
| Teaching Institution                                                                   | Queen Mary University of London |  |  |  |
| Name of Final Award and Programme Title MSc Physics (Euromasters)                      |                                 |  |  |  |
| Name of Interim Award(s)                                                               | MSc Physics                     |  |  |  |
| Duration of Study / Period of Registration                                             | Two years FT                    |  |  |  |
| QM Programme Code / UCAS Code(s)                                                       | PMMF-QMPHYS1                    |  |  |  |
| QAA Benchmark Group                                                                    |                                 |  |  |  |
| FHEQ Level of Award                                                                    | Level 7                         |  |  |  |
| Programme Accredited by                                                                | IoP                             |  |  |  |
| Date Programme Specification Approved                                                  |                                 |  |  |  |
| Responsible School / Institute                                                         | School of Physics and Astronomy |  |  |  |
| Schools which will also be involved in teaching part of the programme                  |                                 |  |  |  |
|                                                                                        |                                 |  |  |  |
| Institution(s) other than Queen Mary that will provide some teaching for the programme |                                 |  |  |  |
| Kings College London, Royal Holloway and University College London                     |                                 |  |  |  |

## **Programme Outline**

This programme benefits from teaching across the universities of the South East Physics Network (SEPnet), with a strong emphasis on research-based learning. Delivered accross two academic years with an extended project in the second year, this programme provides excellent training in higher level academic research.

You will deepen your understanding of a chosen branch of contemporary physics or astrophysics, chosing a speciality from a wide variety of themes at the forefront of both fundamental and applied physics research. The programme consists of taught modules and an in-depth research project, leaving you well prepared for further doctoral-level study and research. There are two pathways in the programme: Physics and Astrophysics.

# Aims of the Programme

- 1. To provide an understanding of a chosen branch of contemporary physics, covering advanced concepts and techniques, leaving students well prepared for further doctoral level study and research.
- 2. To provide a solid foundation for a successful career as a highly-qualified physicist.
- 3. To provide opportunities for students to develop skills transferable to a wide range of other careers.



- 4. To enable students to further develop skills in problem solving and critical and quantitative analysis in physics beyond those acquired in undergraduate study.
- 5. To provide active participation in contemporary physics research through completion of an extended project under the guidance of a supervisor at the forefront of research in the relative subject area.
- 6. To help students develop the sense of independence and experience of a scientific researcher.
- 7. To enable students to develop research skills by working within a dynamic internationally known experimental, observational or theoretical research group.
- 8. To provide students with a friendly and supportive environment in which to enrich their learning experience through interaction with active research staff and other students.
- 9. To enable students to prepare and present research-level seminars on advanced physics topics.
- 10. To provide opportunities to carry out research leading to work of a publishable standard.

### What Will You Be Expected to Achieve?

Students successfully completing the programme will:

| Academic Content: |                                                                                                                         |  |  |  |  |
|-------------------|-------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| A1                | Know the findamental laws and physical principles, along with their applicaions in specific areas of physics            |  |  |  |  |
| A2                | Manage their own research, making use of journal articles and other primary sources                                     |  |  |  |  |
| А3                | Communicate complex scietific ideas, concisely, accurately and informatively                                            |  |  |  |  |
| A4                | Use mathematical analysis to model physical beaaviour and iterpret the mathematical descriptions of physical phenomena. |  |  |  |  |

| Disc | iplinary Skills - able to:                                                                                                                           |
|------|------------------------------------------------------------------------------------------------------------------------------------------------------|
| B1   | To solve advanced problems in physics using appropriate mathematical tools (to order of magnitude or more precisely as appropriate)                  |
| В2   | To plan and execute an investigation and to critically analyse the results, drawing valid conclusions.                                               |
| В3   | To prepare a detailed technical report on their project and compare their results with published data ,expected outcomes or theoretical predictions. |
| В4   | To identify relevant physical principles and translate problems into mathematical statements.                                                        |

| Attributes: |                                                           |  |  |  |
|-------------|-----------------------------------------------------------|--|--|--|
| C1          | Acquire and apply knowledge in a rigorous way             |  |  |  |
| C2          | Explain and argue clearly and concisely                   |  |  |  |
| С3          | Connect ideas and information within their field of study |  |  |  |



| C4              | Critically evaluate the reliability of different sources of information                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|-----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| C5              | Acquire substantial bodies of new knowledge                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| QMI             | JL Model Learning Outcomes - Level 4:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| D1              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| D2              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| D3              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| ures p<br>proje | ity of taught modules consist of three hour hours of teaching per week, either as three hours of lectures or two hours lus a one hour tutorial. Some modules incorporate substantial computer laboratory sessions.  It is undertaken within Condensed Matter Physics, Particle Physics, Theoretical Physics or Astrophysics and uses ional, theoretical or laboratory methods as appropriate and may well involve additional, technical training. In all case it involves weekly one to one meetings with the supervisor. |
|                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                 | ill You Be Assessed?  ity of taught modules are assessed by a final examination (typically 90% of the final mark) and by coursework (typica                                                                                                                                                                                                                                                                                                                                                                               |

## **How is the Programme Structured?**

Please specify the full time and part time programme diets (if appropriate).

NOTE: Students choosing to leave the programme after Year One, may be awarded the PGDip Physics (EuroMasters).

Year one:

Eight taught modules to the total of 120 credits, taken from any of the 15 credit modules below:

INK7022P Mathematical Methods for Theoretical Physics

INK7020P Lie Groups and Lie Algebras

INR7007P Statistical Mechanics



SPA7013P Phase Transitions

INU7001P Advanced Quantum Theory

IN7067P Advanced Topics in Statistical Mechanics

SPA7018P Relativistic Waves & Quantum Fields

SPA7001P Advanced Quantum Field Theory

SPA7024P Functional Methods in Quantum Field Theory

SPA7027P Differential Geometry in Theoretical Physics

INU7071P Galaxy Dynamics, Formation and Evolution

INU7056P Advanced Physical Cosmology

INU7003P Atom and Photon Physics

**INK7048P Advanced Photonics** 

INU7022P Ouantum Computation and Communication

**INR7015P Quantum Electronics of Nanostructures** 

INU7014P Molecular Physics

INU7017P Particle Physics

INR7003P Particle Accelerator Physics

INK7066P Modelling Quantum Many-Body Systems

INU7016P Order and Excitations in Condensed Matter

INK7037P Theoretical Treatments of Nano-systems

INR7012P Physics at the Nanoscale

SPA7008P Electronic Structure Methods

INR7008P Superfluids, Condensates and Superconductors

INK7067P Advanced Condensed Matter

INK7032P Standard Model Physics and Beyond

INR7002P Nuclear Magnetic Resonance

INR7014P Statistical Data Analysis

INK7034P String Theory and Branes

**INK7054P Supersymmetry** 

SPA7023P Stellar Structure and Evolution

SPA7005P Cosmology

SPA7019P Relativity and Gravitation

SPA7006P Electromagnetic Radiation in Astrophysics

INU7045P Planetary Atmospheres

INU7008P Solar Physics

SPA7022P Solar System

SPA7010P The Galaxy

SPA7004P Astrophysical Plasmas

INU7026P Space Plasma and Magnetospheric Physics

SPA7009P Extrasolar Planets & Astrophysical Discs

INK7051P Environmental Remote Sensing

INU7013P Molecular Biophysics

INK7068P Cellular Biophysics

INK7001P Theory of Complex Networks

INK7002P Equilibrium Analysis of Complex Systems

INK7004P Dynamical Analysis of Complex Systems

**INK7005P Mathematical Biology** 

INK7003P Elements of Statistical Learning

SPA7028P Advanced Cosmology

SPA7029P Collider Physics

SPA7031P Supersymmetric Methods in Theoretical Physics

INK7069P Dark Matter and Dark Energy

INR7018P Computer Simulation in Condensed Matter

SPA7032P Introduction to Strings and Branes (N.B. from September 2018)

Plus any new level 7 modules belonging to SPA and the intercollegiate programme.

Year two:

A total of 120 credits, consisting of:



| SPA7026P Physics (Euromasters) Project |
|----------------------------------------|

## **QMUL Model**

Programme Title: MSc Physics (Euromasters)

Students are required to undertake the equivalent of one module (15 credits in 2017/18) per year of study which has been identified as meeting the requirements of the QMUL Model. Each of these modules has been designed to combine the best of QMUL's academic excellence with your ability to identify and develop your skills, networks and experience. This will help to ensure you become a graduate who can undertake further study or secure graduate employment in areas that interest you, and will support your ability to position yourself to find the right job or opportunity for you. The relevant module for your first year of study in 2017/18 is indicated below.

Where more than one module is specified, this is because pertinent elements from these modules have been identified as being appropriate to the QMUL Model and when studied together, deliver the equivalent content of one 15-credit QMUL Model module.

The QMUL Model modules for future years and associated Learning Outcomes will be identified as your studies continue.

Should Professional, Statutory and Regulatory Body requirements apply to your programme of study, these will be taken into account in the specification of QMUL Model requirements.

#### Academic Year of Study

| Module Title | Module<br>Code | Credits | Level | Module<br>Selection<br>Status | Academic<br>Year of<br>Study | Semester | QMUL<br>Model |
|--------------|----------------|---------|-------|-------------------------------|------------------------------|----------|---------------|
|              |                |         |       |                               |                              |          |               |
|              |                |         |       |                               |                              |          |               |
|              |                |         |       |                               |                              |          |               |
|              |                |         |       |                               |                              |          |               |

#### What Are the Entry Requirements?

Entry to the Programme requires a minimum of an upper second honours degree at Bachelors level in physics, or its equivalent. Direct entry to the second year of the programme requires students to have achieved the equivalent of a postgraduate diploma in physics at a SEPnet partner



#### How Do We Listen and Act on Your Feedback?

The Staff-Student Liaison Committee provides a formal means of communication and discussion between Schools and its students. The committee consists of student representatives from each year in the school/institute together with appropriate representation from staff within the school/institute. It is designed to respond to the needs of students, as well as act as a forum for discussing programme and module developments. Staff-Student Liaison Committees meet regularly throughout the year. Each school operates a Learning and Teaching Committee, or equivalent, which advises the School/Institute Director of Taught Programmes on all matters relating to the delivery of taught programmes at school level including monitoring the application of relevant QM policies and reviewing all proposals for module and programme approval and amendment before submission to Taught Programmes Board. Student views are incorporated in this Committee's work in a number of ways, such as through student membership, or consideration of student surveys.

All schools operate an Annual Programme Review of their taught undergraduate and postgraduate provision. The process is normally organised at a School-level basis with the Head of School, or equivalent, responsible for the completion of the school's Annual Programme Reviews. Schools/institutes are required to produce a separate Annual Programme Review for undergraduate programmes and for postgraduate taught programmes using the relevant Undergraduate or Postgraduate Annual Programme Review pro-forma. Students' views are considered in this process through analysis of the NSS and module evaluations.

#### **Academic Support**

The students will be allocated an academic advisor as well as a project supervisor. Weekly project supervision meetings are expected.

#### **Programme-specific Rules and Facts**

(Proposed regulatory change) Feb 2018:

Where a student misses the progression hurdle by 30 or fewer credits due to approved extenuating circumstances or because late summer resits were not offered, the SEB may apply its discretion and, if it deems it appropriate, permit the student to progress.

10/7/18:

MSc Physics and MSc Physics (Euromasters) students must pass six out of eight taught modules and two failures can be condoned down to 0%, as long as the average achieved across all modules is 50% or greater.

#### **Specific Support for Disabled Students**

Queen Mary has a central Disability and Dyslexia Service (DDS) that offers support for all students with disabilities, specific learning difficulties and mental health issues. The DDS supports all Queen Mary students: full-time, part-time, undergraduate, postgraduate, UK and international at all campuses and all sites.

Students can access advice, guidance and support in the following areas:

- Finding out if you have a specific learning difficulty like dyslexia
- Applying for funding through the Disabled Students' Allowance (DSA)
- Arranging DSA assessments of need
- Special arrangements in examinations
- Accessing loaned equipment (e.g. digital recorders)
- Specialist one-to-one "study skills" tuition
- Ensuring access to course materials in alternative formats (e.g. Braille)
- Providing educational support workers (e.g. note-takers, readers, library assistants)



| Programme Title: | MSc Physics (Euromasters) |
|------------------|---------------------------|
|------------------|---------------------------|

**Taught Programmes Board** 

• Mentoring support for students with mental health issues and conditions on the autistic spectrum.

# Links With Employers, Placement Opportunities and Transferable Skills

| The School has a dedicated SEPnet Employer Engagement Office work placement opportunities. | er who provides links between students and industry, arranging |  |  |  |  |
|--------------------------------------------------------------------------------------------|----------------------------------------------------------------|--|--|--|--|
|                                                                                            |                                                                |  |  |  |  |
| Programme Specification Approval                                                           |                                                                |  |  |  |  |
| Person completing Programme Specification                                                  | Dr Rodolfo Russo                                               |  |  |  |  |
| Person responsible for management of programme                                             | Dr Rodolfo Russo                                               |  |  |  |  |
| Date Programme Specification produced/amended by School Learning and Teaching Committee    | 4 Jul 2018                                                     |  |  |  |  |
| Date Programme Specification approved by                                                   |                                                                |  |  |  |  |

