Chapter 11 Multi-level and Panel Data Models 

11.1 Introduction: Nested Data Structures

Multilevel models seek to represent data sets with an intrinsically hierarchical or clustered nature (e.g. pupils within schools, patients within hospitals, repeated observations on an individual’s health status). Crossed data structures (e.g. patients classified both by their home area and by their general practitioner) raise similar modelling issues. In multilevel analysis, covariates may be defined at any level and the interest focuses on adjusting the impact of such covariates for the simultaneous operation of contextual and individual variability in the outcome (Wong & Mason, 1985; Liska, 1990). This is likely to involve random effect models defined over the clusters and possibly correlation between different types of cluster effect. For repeated observations (panel data) temporally dependent error structures are also relevant, but now typically defined over subjects as well as times.

A wide range of literature on clustered data analysis includes many fully and empirical Bayes applications, for example in health services research (Christiansen & Morris, 1996, Daniels & Gatsonis, 1999), econometrics (Hsiao et al, 1999), and political science (Calvo & Micozzi, 2005; Beck et al, 1998). Bayesian methods have advantages over classical and empirical Bayes approximations (e.g. penalized quasi-likelihood, iterative generalised least squares) for discrete outcomes when the number of observations within clusters is small (Heo and Leon, 2005a, 2005b; Carlin et al, 2001), when the number of level 2 units is small (Browne and Draper, 2000), and for modelling error distributions and cluster effects nonparametrically (Kleinman & Ibrahim, 1998). They also incorporate all sources of uncertainty in estimating random effects; by neglecting such uncertainty techniques such as iterative generalised least squares underestimate the variance of random effects (Browne and Draper, 2000).

Whether nested or crossed, the group variables define a contextual setting that mediates the effect of individual characteristics on the outcome. Contextual effects may have a substantive role of their own and are not necessarily just an aggregated form of the individual effects, that is they are not just ‘compositional’ (McNab et al, 2004). League table comparisons of educational and health indicators illustrate contextual as well as individual level effects (Goldstein & Spiegelhalter, 1996). For example, health outcomes at individual patient level are affected by that patient’s characteristics or ‘casemix’ (age, severity of illness, etc), but also vary by physician, and the quality of care provided by the hospital. Comparisons of performance between hospitals or physicians that do not allow for patient casemix suffer from an “ecological fallacy”. However, comparisons of patients which do not allow for their contextual setting suffer from an “atomistic fallacy” (Schwartz, 1994; Diez-Roux, 1998). 

The simplest situation is for univariate outcome at a single time point (cross-section) with a two level nested structure: individual subjects at the lower level (patients, pupils, employees) classified by a grouping variable or cluster at the higher level (hospitals, schools, firms, etc). A nested representation for such data is yij for cluster j=1,..J and by individuals within clusters i=1,..nj. Equivalently the data may be in stacked form, consisting a) of observations Yi with {Y1=y11, Y2=y21, …, YN=yJnJ} for N=eq \O((,j,J)nj cases and b) of a subject level grouping index Gi, i=1,..N, taking on values between 1 and J. The level 2 clusters may be nested within a further categorisation, for example classes j within schools k (Raudenbush & Bryk, 2002). Here the nested notation is yijk, i=1,..njk,j=1,..Jk,k=1,..K. Again the data may be represented as a single string with indexing on two group variables, G1i with Jk levels, and G2i with K levels. A single string structuring (stacked form) makes clear that crossed structures as well as nested structures can be modelled in broadly parallel ways.

While in cross-sectional hierarchical data sets observations on individuals are clustered within organisational or other groupings, in longitudinal or panel data settings the observations are nested as repeated measures on the same subject. The measurement repetitions constitute the lowest level in this situation. So in a two level model there are t=1,..Ti repeated observations yit at level 1 on individuals i=1,..,n at level 2. The effect of a regressor xti may vary over individuals, times or even over both, the first two giving rise to xti((+bi) and xti((+bt) respectively, while variation over time and subjects might be achieved (see Hsiao and Pesaran, 2006) by a model such as Xti((+bi1+bt2). In all these options the b effects are either random with mean zero, or fixed effects with a corner constraint. A three level panel model is defined for when repeated data yijt are for individuals nested in clusters j=1,..,J (e.g. exam scores on pupils i at time points t by school j). Thum (2003) considers repetitions through time of scores over educational tests k as well as over pupils i and teachers j with clusters and random effects defined by (i,j) pairs.

Predictors in three level panel data may be either at subject or cluster level and either time varying or constant. This introduces a range of random effects modelling options. Similar choices occur for multinomial responses (see section 11.2) or multivariate responses. So model choice becomes increasingly complex when combined with modelling features such as regression variable selection (on fixed effects regressors) which themselves may be at more than one level. For three level panel data (times within subjects within clusters) one may introduce cluster-specific, subject-specific, or time-specific intercepts, and cluster or time variability in the impact of individual level covariates. Intercept variation might be over two levels combined (e.g. cluster and time specific), since observational variation over the remaining level helps to identify the relevant parameters. Suppose the observations were disease counts yijt by time t, small area i, and region j, with expected counts Eijt, with predictors being a constant small area deprivation measure wij, and an updated (time varying) small area unemployment rate xijt. Then with yijt~Poi(Eijt(ijt), one possible model for the means might specify cluster-time random impacts of small area deprivation and unemployment, but area and time specific intercepts also:

                      log((ijt) = u1j + u2t + btjxijt + ctjwij
Possible additional random intercept effects are by region-time u3jt, area-region u4ij, or even at observation level, u5ijt. 

Various types of model assessment have been suggested in Bayesian multilevel and panel data analysis. The deviance information criterion is advantageous in a situation with possibly multiple sets of random effects (e.g. McNab et al, 2004; Thum, 2003), while Gelman and Pardoe (2006) suggest a form of R2 calculated for each random effect, and formal marginal likelihood estimates are discussed by Chib et al (1998). A different approach is based on selection of individual parameters, and predictor selection may be combined with selection of individual terms in the random effects covariance matrix (Cai and Dunson, 2006). Posterior predictive approaches are mentioned by Stangl (1995), in a context (hierarchical models for multi-centre clinical trials) where predictions for new centres are important. Carlin et al (2001) consider posterior predictive checks against observed sequences of binary behaviours, while predictive cross validation against future periods is one potential model assessment and choice method in panel applications. 

11.2 Multi-level Structures

11.2.1 The Multi-level Normal Linear Model

With two or more level observations on a metric response variable, the observations are likely only to be independent conditional on random effects modelling of clustering effects. For example, in the two level normal linear mixed model (Laird and Ware, 1982), with subjects i=1,…nj nested in clusters j=1,..J, a standard formulation is for the normal linear mixed model

                yij= Xij(+Zijbj + (ij                                          (11.1)

with (ij ~ N(0,(2), Xij and Zij of dimension p and q respectively, with Xij including an intercept and the vector bj denoting level 2 (i.e. cluster specific) random effects. The conjugate model assumes multivariate normal cluster effects 

                (bj1,…bjq) ~ N([m1,…mq],(b), 

and measurement errors assumed independent given the cluster model. If Zij1=1 then the mean for bj=bj1 is  assumed to be m1=0. 

With a conjugate structure the posterior density of β and the variance-covariance structure of the bj can be obtained analytically (Frees, 2004, p 148). If MCMC techniques are used with flat priors on non-zero elements of (m1,…mq), then the full conditionals p((|y,bj,(b,(2), p((eq \O(-1,b)|y,(,bj,(2), p(bj|y,(,(b,(2) and p(1/(2|y,(,bj,(b) are all closed form (normal, Wishart, normal and gamma respectively) (Lange et al, 1992).

When there is complete overlap in the X and Z predictors (p=q and Xijk=Zijk, k=1,..p), then one possible parameterisation is 

           yij= ((1+bj1)+((2+bj2)xij2 + …+((p+bjp)xijp +(ij
           bj ~ Np([0,0,…0],(b). 

Assume 1/(2 ~ Ga(0.5(,0.5(s2), (eq \O(-1,b) ~ Wish((b,Sb), and a flat prior on (. Also set  eq \o(V,^)=(2[eq \O((,i,nj)

eq \O((,j,J)Xeq \O((,ij)Xij]-1,eq \o(V,^)j=(2[eq \O((,i,nj)Xeq \O((,ij)Xij +(eq \O(-1,b)]-1, uij=yij-Xij((+bj), eij=yij-Xijbj and vij= yij-Xij(. Then the full conditionals (e.g. Browne and Draper, 2000) are

              ((|y,bj,(b,(2) ~ Np([ eq \o(V,^)/(2 ]eq \O((,i,nj)

eq \O((,j,J)Xeq \O((,ij)eij,  eq \o(V,^)),

              (bj|y, (,(b,(2) ~ Np([ eq \o(V,^)/(2 ]eq \O((,i,nj)

eq \O((,j,J)Xeq \O((,ij)vij, eq \o(V,^)j),

              ((eq \O(-1,b)|y,(,bj,(2) ~ Wish(J+(b, eq \O((,j,J)beq \O((,j)bj+Sb)

               (1/(2|y,(,bj, (b) ~ Ga(0.5N+0.5(, 0.5[eq \O((,i,nj)

eq \O((,j,J)u eq \O(2,ij)+(s2).

Often diffuse priors are used on the variances/covariances at different levels. However, the issues mentioned in Chapter 5 with regard to identifying variance components at different levels pertain also to multi-level models, and may indicate use of non-conjugate or informative priors. For example, one may specify a joint prior on (2 and (b via a uniform shrinkage prior (Natarajan & Kass, 2000), use a half-t family as a prior for standard deviations (Gelman, 2005), or use priors to influence whether (2 is large or small (Gelfand et al, 2001). 

Explicit use of level 2 predictors (wj1,..,wjr) (with wj1=1), to model random variation in intercepts and slopes (jg=(g+bjg leads to multivariate regression models at level 2. For  example, again assuming Xij=Zij 

                      yij = bj1+bj2xij2 + …+bjpxijp +(ij
                     (bj1, bj2,…,bjp)~ N([mj1, mj2,…,mjp],(b)

                      mjg = (g1+(g2wj2+… (grwjr.

A useful incremental strategy for this form of model is suggested by McNab et al (2004) which commences with a simple variance components analysis (no predictors at all), then introduces level 1 predictors without random slopes, and then considers random intercepts and slopes but without covariation between them in order to assess for which predictors there is significant slope variation. The next step considers a full random covariance model but only for the predictors showing significant slope variation at the previous stage. Finally intercept and slope variation is linked to level 2 predictors.

An additional tool in assessing the need for higher level random effects is based on selection of terms in covariance matrices such as (b. Cai and Dunson (2006) adopt a particular Choleski decomposition permitting discrete mixture priors that assign positive probability to zero diagonal and off-diagonal elements of (b; this is analogous to the procedure of Kuo & Mallick (1998) for selecting predictors. Offdiagonal elements (bjk are subject to further selection even if the corresponding diagonal  elements ((bjj and (bkk) have been retained. Other forms of mixture prior are possible for covariance term selection, e.g. analogues to the SSVS prior of George & McCulloch (1993).

The above framework assumes unstructured (fully exchangeable) random cluster effects at level 2 and higher (e.g. McNab et al, 2004, p 12). There are circumstances where structured variation is appropriate, as when subjects are clustered by neighbourhoods and bj are spatially correlated; then the MCAR or similar priors of Chapter 9 are relevant.

11.2.2 General Linear Mixed Models for Discrete Outcomes

The general linear mixed model (abbreviated as GLMM) for discrete outcomes (e.g. Breslow & Clayton, 1993) retains the structure of (11.1) at the expense of non-conjugacy and more complex MCMC techniques. For example, Browne and Draper (2000) consider hybrid Gibbs-Metropolis sampling for normal cluster effects in binomial logit multi-level regression, while Gamerman (1997) considers options such as blocked sampling and Metropolis-Hastings steps within Gibbs updating schemes for parameters in GLMMs. In general yij follows an exponential form (Zeger and Karim, 1991), such that conditional on the cluster effects bj, 

   P(yij |bj) = exp[{yijθij - a(θij)+c(yij)}/ω ]            (11.2)

with μADVANCE \d3ijADVANCE \u3=E(yADVANCE \d3ijADVANCE \u3|bADVANCE \d3jADVANCE \u3)=a((θADVANCE \d3ijADVANCE \u3) and Vij=var(yij|b j)=a(((θij)ω specified via

                h(μij) = Xij(+Zijbj                                    
               Vij = g(μij)ω
where h and g define link and variance functions, with vectors of possibly overlapping covariates Xij and Zij.

Consider nested binomial or count data yij (i=1,..nj, j=1,..J) with an appropriate link to the regression model Xij(+Zijbj. To model dependence within clusters, J cluster specific scalar parameters (e.g. random intercepts) or vector parameters (random intercepts and one or more regression slopes) may be included in the linear predictor of the mean outcome. An observation specific (level 1) random effect may be added when overdispersion remains despite cluster specific effects, as in the study of count outcomes in a longitudinal study of epileptic patients by Gamerman (1997). In MCMC estimation identifiability may be improved by assuming Xij and Zij are distinct. So if a predictor k has an effect varying over clusters, then it appears only among the Zij and the corresponding cluster effect bjk has a non-zero mean equivalent to the average regression effect (jk (Gelfand et al, 1995; Chib et al, 1998). 

It may be noted that the interpretation of fixed effect regression coefficients in a GLMM are conditional on the cluster effect. For example with yij ~ Bern((ij), a single predictor xij, and varying intercepts with logit link, a hierarchical model represents   

             logit((ij|bj)=bj+(xij 

and ( is the log-odds of the outcome conditional on bj (i.e. on common membership of a cluster). A unit difference in xij for two subjects in the same cluster is associated with a difference ( in their log odds of the outcome. Marginal or population averaged effects of xij (without conditioning on a particular cluster), as in can be obtained by MCMC sampling (Carlin et al, 2001) by averaging over draws of bj. 

Assuming only random cluster intercepts, the model specification is completed by conditional independence assumptions: namely, for bj given hyperparameters φb (e.g. mean mb and covariance (b under a multivariate normal prior for bj), and for yij given bj and β. The posterior density has the form

        P(b1,..,bJ,(,β,φb|y) ( {eq \O((,i=1,nj)

eq \O((,j=1,J) P(yij|β,bj,xij) P(β)}{ eq \O((,j=1,J)P(bj|φb)P(φb)}

where P(yij|) is as in (11.2), and the full conditionals are P(β| ) (  eq \O((,i=1,nj)

eq \O((,j=1,J)P(yij|β,bj,Xij) P(β), P(bj| ) ( eq \O((,i=1,nj)P(yij|β,bj,xij) P(bj|(), and P(φ| ) ( eq \O((,j=1,J) P(bj|φ)P(φ), with the first two not being log concave. Gamerman (1997) and Browne and Draper (2000) consider hybrid Metropolis-Gibbs sampling schemes for such models, as an alternative to adaptive rejection sampling. Browne and Draper use Metropolis updates on the fixed and cluster effects, ( and bj, with Gibbs updating on  (b, while Gamerman suggests a scheme for ( based on the iterative weighted least squares method used to obtain maximum likelihood estimates.

11.2.3 Multinomial and Ordinal Multilevel Models

More complex GLMM hierarchical forms occur in multilevel multinomial models, with responses that may fall into one of K categories (Skrondal and Rabe-Hesketh, 2004; Daniels & Gatsonis, 1997; Hedeker, 2003; Hedeker, 2006). Thus let yij be unordered multinomial observations with probability (ijk that yij=k, k(1,..,K. Choice between goods or behaviours k is often represented in econometric or psychometric applications as comparing latent utilities Uijk with 

                (ijk=Pr(yij=k)=Pr(Uijk > Uijm),    m(k

In multilevel logistic models, Uijk typically includes a systematic component and a random error (ijk following the Gumbel (extreme value type I) density, namely P(()=exp(-(-exp(-()).  Thus

                  Uijk=(k + Aijk(+Xij(k +(ijk
where the (ijk are independent across subjects and alternatives, and the regression component involves vectors of both subject specific predictors Xij, and predictors Aijk specific to both subjects and choices. The impact of subject specific predictors Xij may vary between alternatives k=1,..,K.

Consider voters i nested in constituencies j and choosing between parties k. Then Aijk might be political distances between the voter i and party k, and Xij might be voter age. In a consumer application Aijk might be individual/household specific costs or valuations of brands k that also vary between market zones or regions j. 

Differences between Gumbel errors follow a logistic distribution, and choice probabilities reduce to the multinomial logit

        Pr(yij=k)=exp((k + Aijk(+Xij(k)/ eq \O((,m=1,K)exp((k + Aijk(+Xij(k)

with suitable constraints on the parameters of a reference choice (e.g, k=1 or k=K). This model conforms to the sometimes dubious IIA assumption (Chapter 7). To modify this assumption, random variation in predictor effects across subjects and/or clusters may be introduced, subject to empirical identifiability.  Some random effects might be in the form of factor loadings multiplying effects with known variance (see Chapter 12 and Skrondal and Rabe-Hesketh, 2003a). So the utilities of different choices might be expressed

          Uijk= Xijb1i + Aijkb2i+Bijk(j+Hij(jk +(kjc1j+ (kc2ij + (ijk
where the regression now includes unobserved heterogeneity that indices dependence over alternatives. Thus random b1i and b2i allow effects of subject attributes or subject-choice predictors to vary between subjects (e.g. effects of political distances varying between voters), and the (j allow the effect of alternative specific predictors Bijk to vary between clusters j. The (jk allow the effect of unit specific predictors Hij to vary randomly between clusters and/or alternatives. The c1j and c2ij are common factors with known variance, one at cluster level, the other at unit level, and {(k,(k} are loadings (see Chapter 12). 

For ordered choices k=1,..,K one form of modelling framework compares utilities

            Uijk= Aijk( +Xij(k + (ijk

to ordered cut points (k, where the distribution function F of ( is logistic, namely F(( < E)=1/[1+exp(-E)], or standard normal (Das & Chattopadhyay, 2004; Qiu et al, 2002). Thus yij=1 if Uijk ( (1, yij=2 if (1< Uijk( (2 and so on till yij=K if Uijk > (K-1. So

        Pr(yij=k)=Pr((k-1< Uijk ( (k) = F[((k-Uijk)/(]- F[((k-1-Uijk)/(]

If all cut points are free parameters then the regression term excludes an intercept for identifiability. In multi-level applications, refinements might include cut-points differing by cluster. The proportional odds model also assumes (k=(, namely that effects of predictors W relating to subjects (as opposed to subject-choice interactions X) do not vary across alternatives.

Setting Rijk=Aijk( +Xij(k, choice or allocation to categories is then determined by cumulative probabilities (ijk= (ij1+…+(ijk where, under a logistic F,

                    Pr(yij( k) =  (ijk =Pr(Uijk ( (k)

                                    =  Pr(Uijk – Rijk ( (k  – Rijk)

                                    =  1/[1+exp(Rijk– (k)]

                                    = exp((k-Rijk) /[1+exp((k-Rijk)].

Random subject or cluster effects may be included (Hartzel et al, 2001), for example, cluster specific effects as in

           Uijk= Hij(jk + Xij(k + (ijk                 k=1,..K-1

or 

           Uijk= Hij(j + Xij( + (ijk                 k=1,..K-1

under proportional odds.

11.2.4 Robustness regarding Cluster Effects

The analysis of hierarchical data structures is naturally associated with multivariate forms of random variation, since contextual differences in the impact of level one variables are likely to be correlated (i.e. correlations between varying slopes for predictors xih and xik, or between varying intercepts and slopes) (e.g. Shouls et al, 1996). Fully Bayes multi-level methods may improve on empirical Bayes methods in this situation by taking into account the uncertainty in (co)variances of higher level effects, and the influence this uncertainty has on estimates of fixed regression effects (Seltzer et al, 1996). On the other hand, a fully Bayes method may show sensitivity to the prior density assumed to model the cluster level covariance structure, with a flat prior on (b leading to bias in the estimated elements of the dispersion matrix (Browne and Draper, 2000). By contrast, a multivariate normal assumption may lead to over-shrinkage in terms of outlying schools or hospitals, when in fact one of the substantive goals of multi-level applications is often to identify potential extreme performance. This is especially so when the number of clusters is small. 

The question of robustness to outlier units at higher levels has been considered in inter-laboratory trials (Analytical Methods Committee, 1989) where j=1,..J laboratories each conduct T measurements on sets of nADVANCE \d3jADVANCE \u3 specimens. Estimates of the precision and overall mean of the analyte may be distorted by large variability between replicates within one or two (‘outlier’) laboratories. In such cases more robust alternative for both cluster and observation random effects include multivariate student t or discrete mixtures of multivariate normals (Gamerman, 1997, p 65). As Chib and Carlin (1999, p 19) note, the multivariate t density may be achieved by scale mixing and this provides a cluster or observation level measure of outlier status. One may also use scale mixing to assess stability in the level 2 covariance matrix (McNab et al, 2004). 

Alternatives to normality may be needed to represent substantive features of the data. Discrete rather than continuous mixing at level 2 may be applicable: Langford & Lewis (1998, p 139) report that random intercept variation disappears when a discrete (cluster) mixture is used while Carlin et al (2001) adopt a discrete mixture that allows a subgroup of subjects immune to a binary outcome (smoking in their application) while random variation only exists within the other or susceptible sub-group. Nonparametric mixing via Dirichlet processes may also be applied to such models. Unlike the t density, DP mixing  can allow for multiple modes and skew distributions (van de Merwe and Pretorius, 2003). Hirano (1999) and Kleinman and Ibrahim (1998) demonstrate DP priors on random effects in panel models. 

11.2.5 Conjugate Approaches for Discrete Data

An alternative to general linear mixed models for count and binomial data is provided by conjugate mixing of random effects at various levels. For example, Van Duijn and Jansen (1995) suggest a model for counts based on the Goodman product interaction approach (Goodman, 1979) can be applied to repetitions (e.g. of educational tests j) within subjects i, such that the Poisson means are specified as 

                (ij=(i (ij 

where the subject effects (i ~ Ga(c,s), where c and s are additional parameters, and the (ij represent subject specific difficulty parameters, with the identifiability constraint eq \O((,j)(ij=1. A Dirichlet prior is assumed on each subjects difficulty parameter vector  ((i1,…(iJ) ~ Dir(b1,..bJ), where the bj are additional unknown parameters. If the subjects fall into known (or possibly unknown) groups k=1,..K with subject indicators Gi ( (1,…,K) then a more general model specifies ((i | Gi =k) ~ Ga(ck,sk). 

The marginal likelihood here is the product of a negative binomial for the subject total yi+=eq \O((,t)yit (with parameters c and s) and a Dirichlet-multinomial for yij conditional on yi+ with parameters (ij/(i+. The posterior densities for (i and (ij follow from conjugacy as ((i|y) ~Ga(c+yi+,s+1) and ((i1,…(iJ|y) ~ Dir(b1+yi1,..bJ+yiJ). 

This model represents overdispersion in the total counts yi+ or the multinomial distribution of the yij (Van Duijn and Jansen, 1995, p 247). It can be tested against the equidispersed alternatives for yi+ and yij, namely a Poisson distribution for yi+ with the (i as fixed effects and a multinomial distribution for the (ij where these parameters are fixed effects, possibly equated over subjects (ij=(j. 

Example 11.1 Poisson model for small area cancer deaths

Congdon (1997) considers a Bayesian multi-level model for heart disease deaths in 758 small areas (electoral wards) in the Greater London area of England over the three years 1990-92. These areas are grouped into j=1,..,33 boroughs (i.e. J=33 clusters). There is a single regressor xij at ward level, an index of socio-economic deprivation. The model assumed cluster (i.e. borough) level variation in the intercepts and the impacts of deprivation; this variation is linked to the category of borough (wj=1 for inner London boroughs and 0 for outer suburban boroughs). Here a similar model is applied to all male cancer deaths (ages under 75) over the 5-year period 1999-2003, under a revised boundary configuration with 625 wards in London. The predictor x is the log of a small area index of multiple deprivation (IMD).

Death totals are relatively low in relation to populations and so a Poisson model for counts yij is adopted (though with an allowance for overdispersion). The means are Eij(ij where Eij are expected deaths based on external standardisation using age-specific rates for England 1999-2003.  Note that a stacked data arrangement is used in the WINBUGS code for analyzing these data. However retaining a nested perspective, 

                            yij ~ Poi(Eij (ij)

                            log((ij) = bj1 + bj2(xij - eq  \O(_,x)) +eij               (11.4.1)
                            (bj1,bj2) ~ N2([mj1,mj2], (b]

and the cluster level model for varying intercepts and slopes is

                              mj1=(11 + (12wj                             (11.4.2)

mj2=(21 + (22wj
The errors eij ~ N(0,1/() model overdispersion in relation to the Poisson assumption that is not explained by the regression part of the model. From Chapter 6 an alternative prior for eij might involve a discrete mixture of levels to model overdispersion, while the Normality assumption on bj might also be assessed. A Wishart prior on (eq \O(-1,b) is assumed with 2 degrees of freedom and scale matrix with diagonal elements 0.001.

A two chain run (5000 iterations, 500 to convergence) shows borough level slopes bj2, representing the varying impact of deprivation within boroughs, to average 0.33. However, the outer London average is given by 0.24 (posterior mean of (21) and the inner London average by 0.24+0.22=0.46 (Table 11.1). There is support for varying intercepts and slopes with the square roots of (b11 and (b22 having 95% intervals (0.06,0.12) and (0.013,0.087). However, correlation between slopes and intercepts (b12/((b11(b22)0.5 does not appear significant. The average scaled deviance is 659, broadly consistent with the expected value of 625 areas if the Poisson model were appropriate (and the DIC =784). Without the observation level effects eij, the posterior standard deviations of the cluster level effects bj1 and bj2 may be understated.


Table 11.1 Posterior Estimates, Cancer Deprivation Effects


Mean
2.5%
97.5%

(21
0.24
0.18
0.29

(22
0.22
0.12
0.32

Corr (b1,b2)
0.16
-0.89
0.94

DIC
      784
 (   eq \O(D,_)= 659, de=125)



To assess robustness of the MVN assumption for varying intercepts and slopes a Dirichlet process mixture approach may be adopted. There are two options, either modelling the coefficients bjk themselves nonparametrically, or modelling the deviations bjk from the central fixed effect nonparametrically, as in bjk=mk+ujk. In the former case the parameters have non-zero means, in the latter they have zero means and the mk are modelled as fixed effects.  Taking the first option, the baseline density G for the J=33 intercepts and slopes is assumed to be N2[ms, (], s=1,..M, with a maximum of M=10 possible clusters, with Wishart prior on (-1 with 2 degrees of freedom and scale matrix with diagonal elements 0.001. Thus the intercept and deprivation slope ms=(ms1,ms2) differ by cluster s but a constant covariance matrix is assumed. There is also no regression on borough category wj under this approach, but examining the posterior means of bj2 over boroughs j will confirm whether the regression on a known categorisation wj is sensible, or whether a latent categorisation is more appropriate.

The second half of a two chain run of 5000 iterations provides a DIC of 791.3, using the approximation (2.14.2). The mean slopes under the nonparametric approach have a correlation 0.48 with those obtained under the model in (11.4); see Table 11.2. Hence the two models have similar fit but provide different inferences to some degree. The posterior mean for the DP concentration parameter, updated using the conditional of Ishwaran & Zarepour (2000, p 387) is 0.7, with an average M*=3 non-empty clusters. A more formal comparison can be conducted by calculating marginal likelihoods and Bayes factors, following Basu and Chib (2003). 

Table 11.2 Posterior Mean Deprivation Slopes by London Borough

Borough
Borough Category (2=Inner)
Model 1, Slopes related to borough category
sd
Model 2, Non-parametric
sd

City of London  
2
0.459
0.056
0.273
0.093

Barking & Dagenham 
1
0.253
0.047
0.258
0.026

Barnet 
1
0.245
0.043
0.233
0.053

Bexley 
1
0.237
0.039
0.253
0.029

Brent 
1
0.250
0.053
0.480
0.118

Bromley 
1
0.258
0.038
0.257
0.026

Camden 
2
0.461
0.049
0.457
0.132

Croydon 
1
0.244
0.036
0.245
0.036

Ealing 
1
0.228
0.049
0.229
0.059

Enfield 
1
0.228
0.045
0.226
0.054

Greenwich 
1
0.250
0.039
0.258
0.028

Hackney 
2
0.442
0.061
0.225
0.097

Hammersmith & Fulham 
2
0.456
0.051
0.273
0.095

Haringey 
2
0.456
0.052
0.406
0.137

Harrow 
1
0.253
0.044
0.242
0.052

Havering 
1
0.239
0.036
0.251
0.031

Hillingdon 
1
0.246
0.037
0.254
0.028

Hounslow 
1
0.249
0.041
0.263
0.069

Islington 
2
0.461
0.050
0.327
0.130

Kensington & Chelsea 
2
0.453
0.049
0.478
0.109

Kingston upon Thames 
1
0.244
0.043
0.252
0.031

Lambeth 
2
0.458
0.050
0.279
0.086

Lewisham 
2
0.465
0.057
0.258
0.027

Merton 
1
0.228
0.039
0.242
0.040

Newham 
2
0.457
0.052
0.362
0.138

Redbridge 
1
0.239
0.041
0.232
0.051

Richmond upon Thames 
1
0.231
0.042
0.244
0.040

Southwark 
2
0.470
0.052
0.301
0.123

Sutton 
1
0.245
0.039
0.254
0.029

Tower Hamlets 
2
0.454
0.052
0.337
0.125

Waltham Forest 
1
0.244
0.041
0.340
0.137

Wandsworth 
2
0.467
0.066
0.258
0.026

Westminster City of 
2
0.481
0.053
0.554
0.096

Example 11.2 Multi-Level Multinomial Logit Model for Voting Choices

Skrondal and Rabe-Hesketh (2003b, p 397) consider panel data from the British Election Study involving two elections (1987, 1992), and 1344 voters in 249 constituencies. These data are clustered by time as well as involving choice between S=3 alternatives (1=Conservative, 2=Labour, 3=Liberal). Thus a two level model is indicated: elections (level 1), nested within voters (level 2). A further nesting in constituencies (level 3) is also considered subsequently. Because some voters only appear at one election and not the other the most convenient data structure is stacked in terms of 2458 ‘occasions’, namely election-voter combinations. For example subjects 1-7 are included at both elections so occasions 1-14 involve them but subject 8 only appears in the 1992 election and so is only present at occasion 15. 

The first model involves fixed effects parameters only (with no random effect pooling strength) and is a multinomial two level model (elections within voters). The predictors are gender (GE=1 for males) and age in 1987 (AG) which are fixed, but two predictors can vary between elections and are occasion specific: perceived inflation (PI) on a five point scale, and whether in manual class or not (CL=1 for manual). Finally there is a predictor that varies across voters, elections and alternative parties, namely the distance D between each voter and the parties on a right-left spectrum; so for each voter (and at each election), there is a distance between them and the Conservatives, the Labour party, and the Liberals. 

Thus for occasions h, h=1,..2458 we have

                yh ~ Categorical((h)

                (h=((h1,(h2,(h3)

and for each occasion there is a voter identifier vh, and an election identifier eh. The Conservatives are taken as the reference category, and the effect of political distance is assumed constant across alternatives. Expressing the probabilities of choice between parties s (s=1 for Conservatives) in terms of voter-election indices (v and e respectively) leads to

     (evs=(evs/eq \O((,s=1,S)(evs

     (ev1= 1

log((evs) = (es+ (s1GEv+(s2AGve+(s3CLve+(s4PIve+(Dves   (s=2,3)

where the fixed effects (es represent average party shares in each election. N(0,100) priors are assumed on all parameters. The last 2000 of a two chain run of 2500 iterations shows similar estimates to those reported by Skrondal and Rabe-Hesketh in terms of the impact of voter characteristics. For example, the coefficients (mean & sd) for manual class background are 0.66 (0.12) for Labour vs Conservative, and –0.18(0.12) for Liberal vs Conservative. The impact of political distance is stronger though with mean –0.83. 

A second model introduces an index ch for constituencies. A number of random effect models can be applied to model correlated voting behaviour within voters or within constituencies or to allow predictor effects to vary randomly over voters or constituencies. Here random variation between alternatives at constituency level is introduced - this corresponds to differences between constituencies in voter allegiances that are persistent between the two elections. So for s=2,3 and c denoting constituency

(evcs=(evcs/eq \O((,s=1,S)(evcs

(evc1= 1

log((evcs)=(es+(s1GEv+(s2AGve+(s3CLve+(s4PIve+(Dves+(cs   (s=2,3)
where (c=((c2,(c3) are bivariate normal with precision matrix T( assigned a W(I,2) prior. Since the Conservative Party is the reference category these errors amount to latent constituency preferences for Labour vs. Conservative and Liberal vs. Conservative. These preferences go beyond what can be explained by voter characteristics and may reflect particular aspects of constituencies (e.g. urban vs. rural, prosperous or otherwise) or allegiances to particular personalities. The difference (c2-(c3 can be interpreted as a constituency specific Labour vs Liberal preference.  A two chain run of 2500 iterations shows the DIC to fall from 4112 (fixed effects model) to 3736, so that significant variation in constituency allegiances unrelated to voter views or attributes is apparent. For example, (c3 in constituency 123 has a 95% interval (2.18,3.63) implying loyalty to a Liberal candidate or other unusual factors favouring Liberal as against Conservative voting.  

11.4 Heteroscedasticity in Multi-Level Models

Regression models for continuous outcomes, whether single or multi-level, most frequently assume that the error variance at level 1 is constant. In a multi-level analysis, for instance, this means that the level 1 variance is independent of explanatory variables at this or higher levels. It is quite possible however that the variance is non-constant over the space of the predictors. In discrete data models (e.g. Poisson or binomial) random effects at level 1 may be introduced if there is over-dispersion, and such errors may have a variance that depends on explanatory variates. Variances at level 2 and above may also be related to predictors at these levels (Snijders and Bosker, 1999, p 119). Browne et al (2002) argue that proper specification of the random part of a multi-level model (i.e. allowing for possible non-homogenous variances at one or more levels) may be important for inferences on regression coefficients. There may also be impacts on the extent of intercept or slope variability if heteroscedasticity is allowed  for (Snijders & Bosker, 1999).

 Therefore one way towards more robust inference in multi-level, and potentially better fit also, is to model the dependence of variation on relevant factors; these might well be, but are not necessarily, among the main set of regressors. It is possible that heteroscedasticity in relation to a particular predictor xij reflects mis-specification: that the effect of xij is non-linear rather than linear or that an interaction involving xij has been omitted (see Example 11.3). Random variation in linear slopes on xij may be much reduced when heteroscedasticity related to xij is present and explicitly included in a model (Snijders and Bosker, 1999, p 113).

It should be noted that a random slopes model in itself implies heteroscedasticity. Consider the random intercepts and slopes model for y metric

        yij=(1+(2xij+bj1+bj2xij+(ij
where var((ij)=(2,var(bjk)=(eq \O(2,k), cov(bj1,b j1)=(12. Then

     var(yij |xij)= (2+(eq \O(2,1) + (eq \O(2,2) xeq \O(2,ij)+2(12x ij.

By contrast, explicit heteroscedasticity models (for intercept variance) replace eij by an error Rij involving predictors, for example 

           yij=(1+(2xij+bj1+bj2xij+Rij
           Rij=(ij1xij1+(ij2xij2+(ij3xij3+…+(ijpxijp
where xij1=1, var((ijh)=(eq \O(2,h), cov((ijg, (ijh)=(gh and

           var(Rij)=eq \O((,h=1,p) (eq \O(2,h)xeq \O(2,ijh)+ eq \O((,g=1,p-1) eq \O((,h=g+1,p)(ghxijgxijh                      (11.5).



This is a quadratic form for the intercept variance.  For a single predictor (xij2=xij), the quadratic model is

             var(Rij) = (eq \O(2,1) + 2(12 xij + (eq \O(2,2)x eq \O(ij,2) 
while a linear heteroscedasticity model is a reduced form of this, namely

            var(Rij) = (eq \o(1,2)  + 2(12 xij . 

One might also relate variances to a general function of predictors or to the entire regression term. Thus for two level data

               yij = (1+ (2x ij2 +(3xij3+  ..+ Rij
               Rij = (ij1 + (ij2(ij
and  (ij=Xij( is the total linear regression term. With var((ij1)=(eq \o(1,2) , var((ij2)=(eq \o(2,2)and  cov((ij1, (ij2) = (12 the leve1 1 intercept variance is 

             var(Rij) = (eq \o(1,2)  + 2(12(ij + (eq \O(2,2)( eq \O(ij,2)           

If different variances are specified according to levels of a categorical variable Cij at level 1, then one might simply take variances specific to the levels 1,…,M of Cij. For instance, if (m denotes the precision for the mth level of Cij, then one might adopt a series of gamma priors (m ~ G(am,bm). Alternatively the logarithm of an individual level precision log((ij) can be regressed on a categorical\factor defined by the levels 1,..,M of Cij. The log variance or log precision can also be related to predictors or to interactions between predictors (see example 9 in Spiegelhalter et al (1996). This approach has the advantage that it can be fitted using adaptive rejection sampling, whereas Browne et al (2002) propose an adaptive Metropolis-Hastings scheme for heteroscedasticity as specified in (11.5).

Example 11.3 Language Score Variability by Gender 

As an example of the two level situation for continuous data, consider language scores in 131 Dutch elementary schools for Tn=2287 pupils in grades 7/8, and aged 10 and 11 (Snijders and Bosker, 1999). In each school a single class is observed, so the nesting structure is of pupils within J=131 classes. Language scores are related to pupil IQ and social status (SES) (Table 11.3); for IQs above 12 there is a lesser variability in test scores (as well as higher average attainment).

Table 11.3 Means and Variances of Scores by IQ Group 

IQ Group
Average Language Score
St Devn of Language Score

4-5.99
28.3
8.1

6-7.99
28.8
8.5

8-9.99
32.3
7.7

10-11.99
37.7
8.1

12-13.99
43.9
6.8

14-15.99
48.5
5.5

16+
50.2
4.7

Also relevant to explaining differences in intercepts and slopes (on IQ and SES) are class level variables: class size, the average IQ of all pupils in a class, and whether the class is mixed over grades 7 and 8 (COMB=1), with COMB=0 if the class contains only grade 8 pupils. 

Following Table 11.3, as well as considering a constant level 1 variance, we allow for possible heteroscedasticity according to pupil IQ. A two level model for language scores is proposed with complex variation at level 1. Let Gij denote the gender of pupil i in class j (=1 for girls, 0 for boys), and IQCLj denote average class IQ. Variable slopes for the impact of pupil IQ are assumed, but a homogenous effect of SES and gender. The model may then be set out as follows

            yij ~ N(ij, Vij)        i=1,..nj; j=1,..J

           ij =  bj1 + bj2 (IQij- eq \o(IQ,_)) +  1(SESij- eq \o(SES, _)) + (2Gij+(3IQCLj
           (bj1,bj2)~ N2(mm, (b)                                                     

            Vij = (1 + (2IQij

Informative priors for (1 and (2 are based on the results reported by Snijders and Bosker but with precision downweighted by 10. The prior for m1, namely m1 ~ N(40,1000), is adjusted to the approximate mean of the y scores but still diffuse, while a W(I,2) prior is assumed for (eq \O(-1,b).

Analysis is based on 5000 iterations from two parallel chains (500 iteration burn-in). The correlation of –0.51 between intercepts and IQ slopes shows a contextual effect: classes with lower attainment have higher impacts of individual IQ. The coefficients (1 and (2 have posterior means (sd) of  47.3 (2.2) and –0.48 (0.10). Thus language scores also become more dispersed at lower IQ values, in line with Table 11.3. The coefficient on IQ in the model for Vij is lower than reported by Snijders and Bosker but still significant (95% CI entirely negative). The coefficients m2, (1,(2 and (3 are also significant with means (sd) of 2.28 (0.09), 0.150 (0.014), 2.61 (0.26) and 1.05 (0.33). 

Snijders and Bosker report that the variance of the slopes bj2 (0.25 in the preceding analysis) falls to zero when a two sided quadratic spline model (see chapter 10) with a single knot at the mean IQ, namely  eq \o(IQ,_), is used. Thus

 ij =  bj1 + bj2(IQij- eq \o(IQ,_)) + (1(IQij- eq \o(IQ,_))eq \O(2,+) +(2( eq \o(IQ,_)-IQij)eq \O(2,+) 

                +3(SESij- eq \o(SES, _)) + (4Gij+(5IQCLj
Analysis of this alternative is left as an exercise.

11.5 Random Effects for Crossed Factors

The most common multi-level structure is when contextual variables are nested (clusters j within higher level strata k), with random effects at level j regressed on predictors at level j and k. However, in many situations the context involves overlapping or crossed classifiers rather than nested levels. An example is when pupil attainment reflects both school and area of residence, or a patient’s health event reflects both small area of residence and the primary care practice with which a patient is registered. 

Let h=[jk] denote the cross-hatched factor formed by crossing levels j and k, with nh subjects for h=1,..,H. Often there may be no subjects in certain combinations of contextual factors, but for the moment define H=JK to cover all possible combinations. Rather than let i (for pupil or patient) in cell h (=1,..,H) range from 1 to nh, it is simpler to use a stacked notation and define i to range from 1 to N where N= eq \o((,h)nh. Also let j=j[i] denote the level of the first factor (pupil’s school) for subject i, k=k[i] denote the second factor (pupil’s area of residence), and h=h[i] denote the crossed index jk[i]. As in ordinary nested models predictors can be of several kinds: X at subject level, W at the level of the first crossing factor, Z at the level of the second crossing factor, and possibly U at the crossed level (e.g. average characteristics of pupils in school j from area k).

Then for a binary outcome (say) with yi ~ Bern((i), i=1,..,N, with predictor vectors (X,W,Z,U) of order (pX,pW,pZ,pU) possible models include a single random effect (h at the cross-hatched level 

            logit((i)=Xi(+Wj[i] (+Zk[i]( + Uh[i](+(h[i] 

or separate random effects u1j and u2k for the two crossed factors

            logit((i)= Xi(+Wj[i](+Zk[i](+ Uh[i](+u1j[i]+u2k[i].

Random variation in predictor effects over one or both crossed factors is also possible, as when pX=2 and  

            logit((i)=(1+((2+u1j[i]+u2k[i])xij+Wj[i] (+Zk[i]( + Uh[i](.

Knorr-Held (2000) considers a crossed factor model arising from comparisons i(j of n subjects, sports teams, etc. In a sport application  yij is the ordered response resulting from a ‘comparison’ between teams i and j, with yij = 1 if home team i wins; = 2 for a draw; = 3 for home team i losing. Then  

                    Pr(yij( k) =  F((k+(i-(j)

where (i is the latent ability of team i. The threshold parameters represent the home team advantage since when (i=(j (equal ability teams), then Pr(yij=1)=(1 and the larger is (1 the more likely it is that the home team wins.  This model is estimated over whatever pairings occurred, e.g. if all n teams met each of the other teams only once then there would be n(n-1) terms in the likelihood. A restriction such as  eq \O((,i)(i=0 is needed for identification because only the differences (i-(j are identified by the likelihood. A somewhat analogous comparison, of (unordered) origin and destination regions, occurs in migration analysis (see Example 11.5).

Sometimes data may only be available for factor combinations without individual information being available. For discrete data, this leads to log-linear or logit-linear random effects models. For example, deaths or hospital referrals may be recorded for area of residence (j) and for the general practitioner practice (k) the patient is registered with. Let h range from 1 to H and let j[h] and k[h] denote the factor levels at particular levels of the cross-hatched index h=1,..H. Let yh be counts, yh ~ Po((hEh), Eh being exposed to risk totals (e.g. populations that are both living in area j and also registered with GP practice k). Then as above there are alternatives for modelling random effects, such as 

        log((h)= (+Wj[h](+Zk[h]( + Uh( + (h                                                         

where (for example) (h ~ N(0,( eq \o(2,()). Another option is separate random effects u1 and u2 for the two factors

       log((h)= (+Wj[h](+Zk[h]( + Uh(+u1j[h]+u2k[h].                                             

where u1j ~ N(0,( eq \o(2,1)), and u2k ~ N(0,( eq \o(2,2)). An additional possibility (Congdon and Best, 2000) is to define a bivariate effect (h=((h1,(h2), (h ~ N2((h,(), where (h1 changes when factor 1 changes and (h2 changes when factor 2 changes, so 

          log((h)= (+Uh(+(h1+(h2

         (h ~ N2((h,()

         (h1= Wj[h](         

         (h2= Zk[h](
This structure expresses correlations in the overlapping impact of the crossed factors and generalises to more than two factors. If one or more of the factors were spatially or temporally structured then one may introduce structured effects into the means. For example,  

           (h1= Wj[h](+sj[h]
where the sj, j=1,..J are spatially structured.  Unstructured effects specific to one or more factor may also be included in the means.

Example 11.4 Avoidable Emergency Admissions

This analysis relates to emergency hospital admissions for residents of H=352 English local authorities for conditions that are judged to be usually manageable in primary care, namely primary diagnosis which is an ear/nose/throat condition, a kidney/urinary tract infections or heart failure). The data are for persons in the financial year 2003-2004 (with the standard used to calculate expected admissions being England in 2001-2002). The local authorities are classified by two non-nested geographical factors, namely strategic health authority (there are 28 of these),  and a socio-economic classification (the ONS Cluster scheme, with 12 clusters). An area level deprivation score Uh is also used in the analysis. The ONS scheme can be said to correct for the influence of social structure on morbidity as can the deprivation score. So effects at SHA level (an administrative/organisational category) may reflect ‘performance’ in terms of managing avoidable admissions. 

Poisson sampling is assumed and to allow for overdispersion a gamma mixture is used rather than an additive error in the log link. So with jh and kh denoting SHA and ONS Cluster respectively 

                 yh ~ Po(Eh(h)

                 (h ~ Ga((,(/mh)

                 log(mh)=(1+(2(Uh-eq \O(U,_))+u1jh+u2kh
where u1j ~ N(0,1/(1) , j=1,..,28 and u2k ~ N(0,1/(2), k=1,..,12. A E(1) prior is assumed for ( and Ga(1,0.001) priors for (j. 

A two chain run of 5000 iterations (1000 burn-in) shows relatively few conclusively significant SHA or cluster effects (Table 11.4), though two SHAs in NW England (namely Cheshire & Merseyside and Cumbria & Lancashire) have effects biased towards excess avoidable admissions.

Table 11.4 Centred Effects for Crossed Factors, u1j and u2k





Mean
2.5%
97.5%

SHA




Avon Gloucestershire & Wiltshire
-0.0163
-0.0843
0.0503

Bedfordshire & Hertfordshire
-0.0121
-0.0844
0.0555

Birmingham & The Black Country
0.0109
-0.0659
0.0952

Cheshire & Merseyside
0.0601
-0.0084
0.1502

County Durham & Tees Valley
0.0229
-0.0488
0.1034

Cumbria & Lancashire
0.0503
-0.0133
0.1253

Dorset & Somerset
-0.0096
-0.0789
0.0571

Essex
-0.0292
-0.1028
0.0354

Greater Manchester
0.0189
-0.0475
0.0995

Hampshire & Isle of Wight
0.0189
-0.0434
0.0898

Kent & Medway
0.0192
-0.0474
0.0895

Leicestershire & Northants
-0.0204
-0.0896
0.0412

Norfolk Suffolk & Cambridgeshire
0.0241
-0.0364
0.0957

North & East Yorkshire & N. Lincolnshire
0.0100
-0.0558
0.0800

North Central London
-0.0394
-0.1460
0.0396

North East London
-0.0116
-0.0930
0.0640

North West London
-0.0099
-0.0909
0.0647

Northumberland, Tyne & Wear
-0.0632
-0.1625
0.0107

Shropshire & Staffordshire
-0.0197
-0.0927
0.0461

South East London
0.0099
-0.0620
0.0926

South West London
0.0005
-0.0825
0.0808

South West Peninsula
0.0379
-0.0278
0.1174

South Yorkshire
0.0004
-0.0841
0.0854

Surrey & Sussex
-0.0331
-0.1030
0.0259

Thames Valley
0.0010
-0.0675
0.0653

Trent
-0.0209
-0.0844
0.0383

West Midlands South
-0.0010
-0.0697
0.0682

West Yorkshire
0.0012
-0.0781
0.0850

ONS Cluster




Regional Centres
-0.0225
-0.1057
0.0596

Centres with Industry
0.1048
0.0056
0.2096

Thriving London Periphery
0.0025
-0.1134
0.1178

London Suburbs
0.0484
-0.0456
0.1530

London Centre
-0.1868
-0.3739
-0.0202

London Cosmopolitan
-0.0340
-0.1667
0.0921

Prospering Smaller Towns
0.0116
-0.0481
0.0742

New and Growing Towns
0.0942
0.0170
0.1826

Prospering Southern England
-0.1056
-0.2015
-0.0216

Coastal and Countryside 
0.0614
-0.0257
0.1638

Industrial Hinterlands
0.0352
-0.0315
0.1079

Manufacturing Towns
-0.0092
-0.0774
0.0569

Example 11.5 US Interregional Migration

This analysis considers migration data for 1995-2000 from 9 US regions (origins, i) to destinations  j constituted by the same regions (i,j ( 1,..,R where R=9). This constitutes the crossed effects feature of the observations. The data yijx are also classified by age x in 2000 (1=age 0-4, 2=age 5-9, etc up to 16=age 80-84 and 17=age 85+), with x=1,..,X and X=17. The age decomposition be regarded as a nesting within each origin-destination flow total yij+. Intraregional migrations are not modelled here (i.e. yiix=0 are structural zeros) though it is possible to include them in a model framework. The data are highly overdispersed and an extended version of the  Rasch count mixture model is applied. 

The main origin and destination effects are represented by positive parameters (1i and (2j. In migration studies, these are variously called origin, push or expulsiveness parameters and destination, pull or attractiveness parameters respectively. As well as the main effects migration interaction parameters (ij are included. These have average 1 over all R(R-1) origin-destination pairs and in a log-linear model would be paralleled by random effects having mean zero. The (ij represent deviations from the average or expected flow (1i(2j between regions implied by the main effects. So (ij >>1 for origin-destination pairs with higher interaction than expected, and (ij << 1 for origin-destination pairs with distinctly lower interaction than expected (Raymer & Rogers, 2005). This may in part be related to contiguity between regions. Thus the first model specifies 

               yijx ~ Po((ijx)

               (ijx=(1i (2j(ij(ijx
where eq \O((,x)(ijx=1. The origin (push or expulsiveness) parameters and the destination (pull or attractiveness) parameters are distributed as (1i ~ Ga(c1,s1) and (2j ~ Ga(c2,s2) respectively. The (ij are obtained via the prior (ij =exp((ij), (ij ~ N(0,1/(() where (( ~ Ga(1,0.001); a gamma prior with mean 1, as in (ij~ Ga(r,r), could also be used.

A Dirichlet prior is assumed on each origin-destination pairs age structure parameter vector  ((ij1,…(ijX) ~ Dir(b1,..bX) with bx ~ Ga(1,0.001). The equivalent gamma version of the Dirichlet is used (Chapter 3).  One would expect the pattern of the bx to follow the typical migration age shape: high rates at young childhood and young adult ages corresponding to job migration and early family building migrations whereas older children and adults have lower rates. Sometimes a retirement migration effect is observed centred on the ages 60-65 (Rogers & Raymer, 1999).

One thing that we seek is that overdispersion is satisfactorily modelled, and this entails monitoring the scaled deviance

          D(y|()=2[yijxlog(yijx/(ijx) – (yijx - (ijx)]

where (=((,(,(,c,s,b). One requires that eq \O(D,_) to be approximately equal to R(R-1)X for a satisfactory model with overdispersion controlled for (Knorr-Held & Rainer, 2001). The DIC is then obtainable as eq \O(D,_)+de where de=eq \O(D,_) - D(eq \O((,_)). It is also required that the model checks satisfactorily against the data in terms of its predictions.: the proportion of actual flows yijx lying within the 95% intervals of the predictions yijx,new serves as a predictive model check (Gelfand, 1996). Starting parameter values are based on exploratory runs. A two chain run of 2500 iterations (1000 burn in) gives eq \O(D,_)=1222 and de=1214, so DIC=2436. Since R(R-1)K=1224 one can see that the model accounts for overdispersion.  The predictive check shows all flows to lie in the 95% intervals of the new data whereas in fact one would expect around 95% of them to do so. So in fact the model may be overfitting the data – a simpler model may produce an acceptable eq \O(D,_) and involve less parameterisation.  

An alternative modelling structure replicates features of the numerical decomposition method of Raymer and Rogers (2005). This is not framed as a stochastic model though can potentially be converted to various such models. They propose a multiplicative decomposition for origin-destination flows (without age disaggregation) as  

    yij  = y++
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This is applied as a numerical decomposition but corresponds to the total migrations in the system times the proportions of outmigrants who are from region i times the proportion of inmigrants who are to region j times an interaction effect averaging 1. This implies various possible model forms. For example, one option is yij ~ Po((ij) with

                   (ij=Eij(ij
where 

                 Eij = y++
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are known offsets and (ij are positive stochastic interaction parameters with mean 1. Application of this model is not described here but shows that the Eij have the role of effectively removing overdispersion, so that the Poisson assumption is merited. 

Another option sets 

                                    (ij = M (1i(2j (ij
where M is a positive parameter (e.g. gamma distributed) and (1i and (2j are proportions with Dirichlet priors with unknown parameters, while (ij are positive interaction parameters with mean 1. Including age-nesting, one has  

              yijx ~ Po((ijx)

               (ijx= M(1i(2j (ij(ijx
where eq \O((,x)(ijx=1, eq \O((,i)(1i =1, eq \O((,j)(2j =1, 

          ((ij1,…(ijX) ~ Dir(b1,..bX), bx ~ Ga(1,0.001)

          ((i1,…(iR) ~ Dir(c1,..cR), ci ~ Ga(1,0.001)

          ((j1,…(jR) ~ Dir(d1,..dR), dj ~ Ga(1,0.001)
The ( and ( have the same interpretation and priors as above, with again (ij=exp((ij), (ij ~ N(0,1/(() where (( ~ Ga(1,0.001). For M it is assumed that M=exp(a) where a ~ N(16,1000). The prior mean parameter for a of 16 follows exploratory analysis and corresponds to a total system migration of around 9 million over the 5 years 1995-2000.

This analysis (again using a two chain run of 2500 iterations) shows a similar close fit with eq \O(D,_)=1224 and de=1219, so the DIC is slightly higher at 2443. Table 11.5 shows the posterior mean migration interactions resulting from this model.

Table 11.5 Posterior Means of Migration Interaction Parameters


NE
MA
ENC
WNC
SA
ESC
WSC
MTN
PAC

NE
0.00
2.28
0.85
0.32
2.14
0.32
0.54
0.74
1.39

MA
1.44
0.00
1.31
0.37
3.72
0.49
0.66
0.87
1.26

ENC
0.40
1.06
0.00
2.04
2.34
1.87
1.42
1.65
1.61

WNC
0.24
0.51
2.92
0.00
1.05
0.69
2.12
2.11
1.57

SA
0.92
2.68
2.55
0.89
0.00
2.43
1.85
1.20
1.86

ESC
0.16
0.39
1.84
0.48
1.97
0.00
1.51
0.49
0.67

WSC
0.32
0.74
1.81
1.92
1.84
1.76
0.00
2.10
2.23

MTN
0.38
0.71
1.55
1.72
1.03
0.53
2.12
0.00
4.74

PAC
0.28
0.51
0.78
0.63
0.70
0.34
1.00
2.35
0.00

NE (New England), MA (Middle Atlantic), ENC (East North Central), WNC (West North Central), SA (South Atlantic), ESC (East South Central), WSC (West South Central), MTN (Mountain, PAC (Pacific)

11.6 Panel Data Models: The Normal Mixed Model and Extensions 

Panel data without nesting of subjects is defined by t=1,..,Ti repeated responses yit for each subject i (i=1,..,n), where the number of repetitions and the times of observations vit may differ between subjects. Panel data analysis includes many of the principles discussed in Chapter 8, such as observation vs. process driven dependence, involving lagged dependence in observations as against process models for structured errors, or identifying discontinuities and changepoints (Joseph et al, 1997). As in Chapter 8, random effects over subject-times {i,t} may employ state space priors (typically nonstationary) for time evolving parameters or autoregressive error sequences constrained to stationarity. 

However, replication of time paths over individuals introduces new features that draw on the general principles of multilevel modelling and affects inferences on parameters. It is possible to model permanent subject effects that are often taken to measure omitted variables relevant to the outcome. As examples of permanent effects, in firm patent applications such effects might reflect unmeasured entrepreneurial and technical skills which affect patent applications and are difficult to operationalize with observable variables (Winkelmann, 2000). Partly for this reason, the analysis of time paths over several subjects has greater potential than cross-sectional data in assessing causal mechanisms in economic, health and social applications, and improves precision of fixed regression effects (Fitzmaurice et al, 2004). Longitudinal studies may also be used for predictions to future times of individual growth paths: Lee and Hwang (2000) consider the best choice of prior for the purposes of such extended prediction. The fact that T is usually small weakens the need for constraints such as stationarity (Frees, 2004, Chapter 8).

As well as modelling the mean response (it the covariance structure at subject level must also be modelled, involving choices with regard to modelling intercept and coefficient variation over subjects, as well as modelling possible autocorrelation in errors. Additionally rather than assuming all the parameters in the Ti ( Ti covariance measurement error covariance matrices are unknowns, one may model these parameters as functions of subject level predictors or time itself – this is especially relevant for long panels involving relatively few subjects (Cepeda & Gamerman, 2004).

As mentioned by Hsiao et al (1999), neglect of coefficient heterogeneity over subjects in panel models causes correlation between predictors and the error term as well as causing serial correlation in disturbances. Coefficient variation might refer, for example, to different growth paths (coefficients on time t, or on functions of time) between subjects. Consider a model for univariate y, subjects i=1,..n and equal panel lengths t=1,..T, with coefficient variation confined to permanent subject level effects, as in

             yit=Xit(+bi+uit                                       (11.6)
where bi ~ N(0, ( eq \O(b,2)), the observation errors uit are independently N(0,(2), Xit =(xit1,…xitp) is 1(p with xit1=1, and ( is a (p(1) vector of regression coefficients modelled as fixed effects. This model is equivalently written

           yit=beq \O(*,i)+Xeq \O(*,it)(*+uit                                     (11.7)       

with Xeq \O(*,it) =(xit2,…xitp) excluding an intercept, and beq \O(*,i) ~ N((1, ( eq \O(b,2)). Consider the form (11.6) and let (=1/(2,(b=1/(eq \O(b,2) and wit=yit-Xit(=bi+uit. Then with priors

          (|(2 ~ Np(g0,(2Geq \O(-1,0)), 

          (eq \O(b,2) ~ Ga(eb,fb), 

           (2~Ga(eu,fu), 

the full conditional for bi may be obtained (Chib, 1996) as 

        p(bi |b[i], (2, (eq \O(b,2), () ( P(yi|bi, (2, ()P(bi|(eq \O(b,2))

                                       ( exp(-0.5beq \O(2,i)/(eq \O(b,2) – 0.5(wi-bi)((wi-bi)/(2]

                                           =exp{-0.5((b+T()[bi-T(eq \O(w,_)i/((b+T()]2}

So

     p(bi |b[i], (2, (eq \O(b,2), ()  = N(T(eq \O(w,_)i/((b+T(), ((b+T()-1)

Possible extensions to (11.6) include the two way error component model

            yit=Xit(+bi+ct + uit                                      
with ct  random, or with time varying regression effects as in

             yit=Xit(t+bi+ct + uit.
The sorts of questions that such models address are exemplified by stochastic frontier analysis in econometrics, that involve comparison of cluster effects bi against their maximum - see Griffin & Steel (2004) for a recent review. Thus (Horrace and Schmidt, 2000) consider multiple comparisons with the best (MCB), namely of bi against the maximum b[n] of sorted effects b[i], resulting in the comparisons (i=b[n]-bi. When equation (11.6) describes a logarithmic production function, one may define efficiency measures Ei=exp(-(i), and (Koop et al, 1997) describe the calculation of the marginal posteriors of Ei.  

There are possible caveats against random effects models in observational (non-experimental) panel studies, including frontier analysis. A fixed effects model may be more sensible if the analysis concerns a finite population (e.g. US states) rather than a sample of subjects from a larger population (Frees, 2004). Additionally a random effects model assumes permanent subject effects bi to be independent of observed characteristics Xit. This may be justified in randomized designs but less likely in observational settings where selectivity effects operate Allison (1994). Fixed effects models may be less restrictive: as well as not assuming the independence of bi and Xit, parametric assumptions are avoided when the bi are modelled as fixed effects. On the other hand estimation and identifiability are problematic for large N and small T.

More general formulations than (11.6)-(11.7) are illustrated by the linear random effects model for continuous panel data, parallel to the multi-level model (11.1)

           Yi=Xi(+Zibi +ui                                                (11.8)

where Yi = (yi1,…yiTi), ui is Ti(1, Xi is a Ti(p predictor matrix, ( is a vector of fixed varying regression effects, and Zi is a Ti (q matrix of predictors the varying impacts of which are expressed by the q(1 vector bi. This model extends to augmented data applications involving binary or multinomial data (see section 11.7). A multivariate error structure, typically multivariate normal, is assumed for varying coefficients bi, though heavier tailed densities or discrete mixture densities may be used to assess the robustness of this default assumption. 

If the observation level errors uit are uncorrelated with variance ( eq \O(u,2), then with (it=uit+bi, there is a constant correlation between (it in different periods s and t, namely 

            (b=cov((it,(is)/var((it)=(eq \O(b,2)/((eq \O(b,2)+(eq \O(u,2))                          (11.9).

A common factor perspective on permanent effects in (11.6) is provided by Dagne (1999) 

               yit = (tbi + Xit(+ uit                                   

with the variance of the bi pre-defined (e.g. (eq \O(b,2)=1) for identifiability (or one of the (t set to a fixed value). This allows for a noconstant correlation 

               (st=(t(s(eq \O(b,2)/[((eq \O(t,2)(eq \O(b,2)+(eq \O(u,2))0.5((eq \O(s,2)(eq \O(b,2)+(eq \O(u,2))0.5]

between periods s and t.

11.6.1 Autocorrelated Errors

Alternatively suppose the errors in (11.6) or (11.7) are autocorrelated. Consider an AR(1) model  with permanent effects as in (11.7), but with beq \O(*,i) denoted instead by bi. Then

                  yit = bi + Xit( + (it




       (11.10.1)

                  (it = ((i,t-1 + uit               t>1

                  uit ~ N(0, ( eq \O(u,2)) ; bi ~ N((1, ( eq \O(b,2));    (i1 ~ N((,( eq \O(1,2))
where in a stationary model ( eq \O(1,2)=( eq \O(u,2)/(1-(2). As for time series data, the AR(1) error  model (11.10.1) may be restated for t>1 as

           yit = (yi,t-1+bi- ()+ Xit( - (Xi,t-1(+ uit                      (11.10.2)

                 = ((yi,t-1 - Xi,t-1) + bi(1-() + Xit( + uit.

Certain prior specifications on the permanent effects bi in (11.10) may improve identifiability. Following Chamberlain and Hirano (1999) one might link initial conditions (i1 and permanent effects bi via the prior

                    bi ~ N((1+(1(i1, ( eq \O(b,2))

where (1 can be positive or negative. This amounts to assuming a bivariate density for bi and (i1, with independence corresponding to ( being effectively zero. 

An AR(1) error model without permanent effects, and Xit including an intercept, namely

                  yit = Xit( + (it




(11.11.1)

                  (it = ((i,t-1 + uit               t>1

is re-expressed for t>1 as 

                 yit = (yi,t-1+ Xit( - (Xi,t-1(+ uit                       (11.11.2)

                       = ((yi,t-1 - Xi,t-1) + Xit( + uit.

With ( unconstrained to stationarity, the effects (i1=ui1 represent the composite latent term ((yi,t-1 - Xi,t-1(). Other forms of error structure are sometimes used (Verbeke & Molenberghs, 2000) such as MA1 with 

        yit = bi + Xit( + eit - (ei,t-1



      

or ARMA (1,1), with

         yit = bi + Xit( + (it + eit - (ei,t-1



      

         (it = ((i,t-1 + uit               t>1.

11.6.2 Autoregression in y

To exploit observation driven dependencies, one may introduce AR lags on previous values of y, and possibly allowing lag coefficients to vary over subjects – so pooling strength over series and possibly improving forecasts also (Nandram & Petrucelli, 1997; Hsiao et al, 1999). Nandram and Petrucelli (1997) consider a model 

           yit=(1+(i1yi,t-1+(i2yi,t-2+…(ipyi,t-p+uit                 (11.12)

with errors in different series having different variances Vi, 

                 uit ~ N(ct, Vi) 

and 

                 ct ~ N(0,(). 

Correlation between series i and j at a given time points is then 

                 (ij=[(1+Vi/()(1+Vj/()]-0.5.

Unless stationarity is assumed latent pre-series values (yi0,..yi,1-p) are additional parameters, assumed to be multivariate normal. In their analysis, Nandram & Petrucelli show that restricting stationary series to be stationary provides no new information, while restricting nonstationary series to be stationary leads to different inferences. Bollen and Curran (2004) consider models combining autoregressive lags with permanent effects and varying growth paths, for example

           yit=bi1+bi2t+(yi,t-1+uit
where the uit are unstructured. It would be possible to make ( vary between subjects too.  Other mechanisms for modelling observational dependence include hidden Markov models (Scott et al, 2005) and latent variable state space models (for multivariate longitudinal data) (Molenaar, 1999). 

Example 11.6 Multiple Comparison with the Best

To illustrate a multiple comparison model where both fixed and random effects approaches to the permanent subject effect may be relevant consider data from Horrace and Schmidt (2000) applied to loglinear production functions. The observations are rice outputs for n=171 Indonesian farms over T=6 seasons with inputs being 

1) metric variables: seed in kg(KGS), urea (KGN), and trisodium phosphate (KGP), labour-hours (LAB) and land in hectares (LAND). 

2)  categoric variables: namely BP=1 if pesticides used, 0 otherwise;   VAR (=1 if high yield rice varieties planted,= 2 mixed varieties planted, =3 traditional varieties planted); and  BWS (=1 for wet season).

The model is a Cobb-Douglas production function, with additional dummy variables. A random effects assumption is initially made for varying intercepts bi, namely

      yit = bi + Xit( + uit                                                                                

with Xit excluding the intercept, so bi ~ N((1, ( eq \O(b,2)). A uniform prior on (b in (11.9) is assumed, a lognormal prior on (( eq \O(b,2) + ( eq \O(u,2)), and N(0,100) priors on the fixed regression effects (j. It is of particular substantive relevance to monitor the contrasts (i=b[n]-bi and the productive efficiency measures Ei=exp(-(i). 

A two chain run of 10000 iterations (1000 for convergence) gives posterior means on the bi ranging from 4.67 to 5.03, the (i ranging from 0.09 (farm 164) to 0.45 (farm 45), and Ei from 0.64 (farm 45) to 0.92 (farm 164). Horrace and Schmidt consider upper bounds for Ei. If these are 1 then evidence for inefficiency is inconclusive. This is equivalent to Pr(Ei=1|y) exceeding zero and so the MCMC sequence can be monitored to assess whether there is at least one occasion when Ei=1 (i.e. when bi=b[n]). On this basis, only twenty farms (16,34,42,45,53,62,65,82,86,89,90,106-7,113-4,117, 142-5) have a zero probability that Pr(Ei=1|y).

A fixed effects approach may be applied to provide a sensitivity analysis on random effects multiple comparison analysis and the production function coefficients; this applies even though the fit is likely to deteriorate because of the large number of fixed effects parameters. Nonparametric methods (e.g. a discrete mixture model for the bi) might also be applied. The fixed effects estimates of bi vary more widely than the random effects, from 4.36 to 5.32. However, now 104 farms have Pr(Ei=1)=0; so only 67 farms are assessed as efficient. Five farms have Pr(Ei) above 0.10, with the highest being 0.33 (farm 164) and 0.17 ( farm 118). 

Comparing the fixed and random effects results confirms that shrinkage of the bi under the latter leads to fewer farms being assessed as inefficient. A predictive error sum of squares (comparing replicate to actual data) is the same as for fixed and random effects model (around 221)  though the DIC is much worse under fixed than random effects bi (809 vs. 709 with de=181 vs. de=79). Regression coefficient estimates are similar under the two models except for the coefficient on the binary seasonal indicator.

Example 11.7 Firm Investments

This example illustrates autoregressive error modelling and predictive cross validation, using the setup in (11.11). An exercise extends it to include a permanent effect (variable intercept) as in (11.10). A much analysed data set, drawing on work by Grunfeld and Griliches (1960) considers investment levels by a set of N=10 US firms over a twenty year period (1935-54). The causal part of model relates investment yit by firm i in year t to lagged levels of firm value xit2=Vi,t-1 and capital stock xit3=Ci,t-1, where xit1=1. Maddala (2001) assumes AR(1) dependence in the errors leading to a specification for years 1936-54

          yit=1 + 2Vi,t-1+3Ci,t-1+ (it
          (it = ((i,t-1+uit
with uit ~ N(0,-1) being unstructured white noise. This model can be expressed in the form (11.11.2) giving the model

     yit=(yi,t-1 + 1(1-() + 2(Vi,t-1- (Vi,t-2) + 3(Ci,t-1-(Ci,t-2) + uit . 
The first prior specification assumes stationary errors (, and a uniform prior on the AR parameter is assumed, namely  ~ U(-1,1). The model for the first year 1935 (t=1) can then be written

                yi1 =1 + 2Vi0+3Ci0+ (i1
                (i1 ~ N(0,1/(1) 

where1 =  (1‑(2)A flat prior for (1 is assumed, and N(0,1000) on the other regression parameters. Cross validatory predictions (via one step ahead forecasts to t+1) are made using yit, Vit and Cit (i.e. currently observed indicators of investment, value and capital stock), and assessed using relative absolute deviations from the actual value.

The posterior estimates of the regression parameters (from a two chain run of 5000 iterations with 1000 burn in) are close to the maximum likelihood estimates cited by Maddala. 2 and 3  have means (sd) of 0.091 (0.001) and 0.295 (0.036) respectively. The autoregressive coefficient ( is estimated to have mean 0.92 with 95% credible interval (0.87,0.96). The DIC is 2140 (de=5) and total one step relative absolute deviations have an average of 353. 

A second prior specification allows a non-stationary error process, possibly justified by the shortness of the panel series (Zellner and Tiao, 1964). Accordingly, ( is assumed normal with mean 0 and variance 1. The model for the first observation is now 

                  yi1=1(1-() + 2Vi0+3Ci0+ui
where ui is a composite random effect representing the term ((yi0-Xi0() where Xi0=(1,Vi,-1,Ci,-1) with variance 1/(u unlinked to that of the (it. With (u ~ Ga(1,0.001) and using the last 4000 of a 5000 iteration two chain run, one finds posterior means (sd) of 2 and (3 virtually unchanged at 0.093 (0.007) and 0.289 (0.037), but with a 95% interval on ( now from 0.90 to 1.02, with an 8% chance of ( exceeding 1. The DIC and average total one step relative absolute deviations are both lower, at 2132 and 348 respectively. So nonstationarity is confirmed as a better model option. 

11.7 Models for Panel Discrete (Binary, Count and Categorical) Observations

11.7.1 Binary Panel Data

Panel data methods for binary observations are important in fields such as econometrics (e.g. in modelling histories of labour participation), demography (e.g. fertility histories), and clinical trials (e.g. are patients in remission or not). The structure of (11.6)-(11.8) transfers over to augmented data models for binary and other types of discrete data (e.g. multinomial and ordinal). For binary yit, the latent continuous data Wit are obtainable by truncated sampling (Albert & Chib, 1993; Albert & Chib, 1996). Then, subject to identifiability, one might allow for both unstructured and serially dependent errors (e.g. persistent impacts of unmeasured behavioural propensities) via 

                  Wit = Sit+uit = Xit(t + (it + uit 
                  (it = (((i,t-1 + vit
with uit and vit unstructured. A restriction such as (eq \o(2, u)=1 is needed for identification, with the variances of other random effects then being free parameters. The full random effects model analogous to (11.8) is

                  Wit =  Xit(t +Zitbi +(it + uit
True state dependence (e.g. Heckman, 1981) would involve a lag on yit itself, and both types of dependence are included in the model  

                  Wit = Xit(t + Zitbi + (yyi,t-1+(it + uit
                   (it = (((i,t-1 + vit
where (y measures the impact of preceding actual choice on the current propensity. One may also model binary panel data with Bernoulli likelihood and with appropriate parameterisation, a model involving a lag in observed outcome yi,t-1 may be cast as a Markov chain model (Hamerle and Ronning, 1995). Including lags in the observations themselves raises issues about the implied initial condition: if yi1 is the first observation then a model including a lag in the observations refers to latent data yi0 (Aitkin and Alfo, 2002). One possibility is to assume yi0 ~ Bern((i0), where logit((i0)=ui0 where ui0 are random with unknown variance.  

Under either approach, it is assumed that the probability of success is expressed as (it=F(), where F(.) is a distribution function. So a success occurs according to

             Pr(yit=1) = Pr(Wit  > 0 ) = Pr (uit > - Sit) = 1 - F(-Sit) 

For forms of F that are symmetric about zero, such as the cumulative normal distribution function, the last element of  this  expression equals F(Sit). Then W may be sampled from a truncated normal, with ceiling zero if the observation is yit=0, and to the left by zero if yit=1. To approximate a logit link, Wit can be sampled from a Student t density with 8 degrees of freedom, since, following Albert and Chib (1993), a t(8) variable is approximately 0.634 times a logistic variable. This sampling based approach to the logit link additionally allows for outlier detection if the scale mixture version of the Student t density is used, rather than the direct Student t form. The scale mixture option retains truncated Normal sampling but adds positive mixture variables (it or λi, as in

                  Wit ~ TN(Xit(t +Zitbi +(it,1/(0.6342λi))    

with λi most commonly sampled from a Gamma density G((,() with (=4 to approximate the logit link. Taking ( to be a free parameter amounts to mixing over links. 

Fitzmaurice and Lipsitz (1995) adopt a model for binary panels which considers the interrelation between binary responses at times s and t. Assume a logit link with marginal probabilities (is = Pr(yis =1) given by

                  logit((is)=θis
Define 

                 (ist = πis πit+ (ist[πis (1- πis)πit (1-πit)]0.5
where 

                 (ist =(|t-s|              0<(<1

represents the marginal correlation between periods s and t. Then the probabilities of joint events Pr(yis=1, yit=1), Pr(yis=1, yit=0), Pr(yis=0, yit=1) and Pr(yis=0, yit=0) are given by (ist, (is - (ist, (is - (ist and 1-(it - (is + (ist respectively. The likelihood is now multinomial over T(T-1)/2 possible combinations of s and t (t>s) using indicators zit=1 if (yis=1, yit=1), zit=2 if (yis=1, yit=0), zit=3 if (yis=0, yit=1), and zit=4 if (yis=0, yit=0).

The probability (ist can also be written in terms of the marginal odds ratio ( > 0. Defining

                ψist = πist (1-πis-πit+πist)/[(πis-πist)(πit-πist))=( 1/|t-s|
the probability (ist  can be written 

                (ist = {aist – [aeq \O(ist,2) - 4ψist(ψist-1) (is(it]0.5}/[2(ψist-1)]

where aist= 1 – (1-(ist)( (is+(it). Both this ‘serial odds’ model and the above ‘serial correlation’ model might allow these parameters to vary between subjects, e.g. 

             (ist =(i|t-s|              0< bi <1.

11.7.2 Repeated Counts

For repeated count data, intercept variation is often modelled using Poisson-gamma and negative binomial models with random or fixed effects (Hausman, Hall and Griliches, 1984; Allison & Waterman, 2002; Lee & Nelder, 2000; van Duijn and Jansen, 1995). Thus Lee and Nelder, 2000) specify 

                (it = exp(Xit ()(i
                 (i ~ G(r1,r1) 

with an observation level effect (it ~ G(r2,r2) to model overdispersion if required, so that (it = exp(Xit()(i(it. The Rasch-type Poisson count model of Van Duijn and Jansen (1995) can similarly be applied to panel data, such that 

                (it=(i(t 

where the subject effects (i ~ Ga(c,c/m) have mean m. The occasion parameters (t might follow a structured prior (e.g. a random walk or AR prior in (t = log(t) or involve a regression such as 

                (t =(1+((t.

For identifiability it is necessary that eq \O((,t)(t=1.  If the subjects fall into known groups, with indicators Gi ( (1,…,K), then a more general model specifies ((i | Gi=k) ~ Ga(ck,ck/mk). Variation between subjects in occasion parameters can be modelled via

                     (it=(i (it 

with a Dirichlet prior on each subject’s parameters ((i1,…(iT) ~ Dir(b1,..bT). The marginal likelihood here is the product of a negative binomial for the subject total yi+=eq \O((,t)yit (with parameters c and c/m) and a multinomial-Dirichlet for yit conditional on yi+ with parameters (it/(i+. The latter component is modelling how the total count for a subject is distributed between occasions. Hausman, Hall and Griliches (1984) consider a negative binomial model 

        P(yit| (i,(it)=((yit+(it)/[((yit+1)(((it)]
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where log((it)=Xit(. Allison and Waterman (2002) note problems with regarding the (i as varying intercepts and instead propose 

        P(yit| (it,(i)=((yit+(i)/[((yit+1)(((i)]
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where log((it)=(i+Xit( and (i are fixed effects. Bockenholt (1993) also considers Poisson-multinomial models for yi+ and (yi1,…yiT) conditional on yi+ but introduces a latent discrete mixture with S states; so for si ( 1,..,S, 

                       yi+ ~ Po((i,si) 

                      (yi1,…yiT) ~ Mult(yi+,[pi,si,1, pi,si,2,… pi,si,T]).

The alternative to conjugate approaches is a generalised linear mixed model with random intercepts and slopes in a log linear regression term 

            log((ir )= Xit(+Zitbi 

as in (11.8), or possibly including an observation level error to account for any overdispersion. To model variation between subjects in slopes and intercepts one may assume

             bi ~ Nq(Wi(,(b)

where Wi are fixed subject attributes. Robust alternatives to normal subject effects might involve scale mixing or discrete mixtures. For example, a scale mixture would specify 

            bi ~ Nq(Wi(,(b/(i)

where (i are gamma (leading to multivariate t or Cauchy distributed bi) Weiss et al (1999) suggest a contaminated mixture prior with a low probability inflated dispersion component

          bi ~ (1-()Nq(Wi(,(b) + (Nq(Wi(,k(b)

where k >> 1 and (=0.05, say. An autocorrelated error structure in count models, namely

             log((it )= Xit(+(it
             (it=((i,t-1 +uit
with u unstructured is considered by Chan & Ledolter (1995), with Oh & Lim (2001) and Congdon et al (2001) providing a Bayesian treatments of this model.
11.7.3 Panel Categorical Data

Longitudinal multinomial responses are common in economics and marketing (panel brand choice data) and politics (panel data on voting choce), whereas repeated ordinal responses are quite common in health applications (Saei and McGilchrist, 1998). Models for aggregate multinomial data, for instance, successive voting patterns (yit1,…,yitJ) for parties j in constituencies i,  might be modelled via a multinomial logit link

                     (yit1,…,yitJ) ~ Mult(nit, [pit1,…,pitJ])

                     log(pitj/pitJ)= aij +(tj +(itj             j=1,…J-1

where aij (with non zero means (j) represent permanent loyalty effects, (tj are overall trend parameters specific to category j (e.g. national party affiliation trends), and (itj represent constituency differences from the overall trend. Both the ( and ( parameters may follow autoregressive or RW priors in the time dimension (Cargnoni et al, 1997), and whether structured or unstructured, need to be centred during MCMC updating. For identification (J=aiJ=(tJ=(itJ=0. This model might be generalised to cross-effects between choices, as occur in brand choice models (Chintagunta et al, 2001). Thus the probability that a consumer chooses brand j in period t might be modelled as

          (ijt=Pr(yit=j) = Pr(dijt=1) =(ijt/eq \O((,J,k=1)(ikt
          log((ijt)= eq \O((,J,k=1)(kjdik,t-1+Aijt(+Xij(t+aij +(ijt
where Aijt are individual/brand specific characteristics, and aij are permanent individual/brand specific taste effects. Autocorrelation in panel categorical data may also be modelled via a latent class-trait model with the class evolving via a Markov chain. Consider a latent category Cit ((1,..K) following a Markov chain with 

      Pr(Cit=k)= q[i, Ci,t-1,k]    

for t>1, where

      log(qijk/qijK)=(jk+(jkFi
where (jk and (jk are fixed effects, the traits Fi have known variance, and (jK=(jK=0. Also

       Pr(yit=j)=p[i,Cit,t,j] 

where

      log(piktj/piktJ)=a1kj+a2ij+a3tj
with aikJ=a2iJ=a3tJ=0 for identification. The a1kj represent choice factors that vary according to the latent class, and the subject-choice random effects a2ij have dimension J-1. The initial conditions Ci1((1,..K) might be modelled using a separate multinomial logit regression on known subject attributes.
For ordinal data, repeated observations raise additional issues in relation to modelling thresholds and the proportional odds assumption. Thresholds on a continuous scale, possibly time specific, may be assumed to underlie observed gradings, namely (1t, (2t,.. (J-1,t (Saei and McGilchrist, 1998). However, in applications involving latent traits – such as a mood factor as in Steyer and Partchev (1999) – attempts to measure whether the trait is changing over time (e.g. average levels falling) would be complicated by allowing changing scales. Under proportional odds with changing thresholds a cumulative odds logit model specifies 

             logit(Pr(yit ( j|Xit) = logit((ijt)= (jt - Xit(t - Zitbi
with (ijt =(i1t +…(ijt and (ijt =Pr(yit=j). Departures from proportional odds would allow (t and/or bi to be rank specific, with 

           logit(Pr(yit ( j|Xit) = logit((ijt)= (jt - Xit(jt – Zitbij.

Example 11.8 Binary Panel Data, Respiratory Status

Augmented data sampling (section 11.7.1) is illustrated by binary yit from a clinical trial of patients with respiratory illness. The serial correlation model is also suitable for these data. Patients in two clinics (56 in one, 55 in the other) are randomized to receive either active treatment or placebo (Stokes et al, 1995).  Their respiratory status (1 = good, 0 = poor) is assessed at baseline and at four subsequent visits. Apart from clinic (x2) and treatment (x3) further predictors are x3=age at baseline (divided by 10) and x4=gender (1=F,0=M). 

For augmented data sampling corresponding to the logit link one possible data generating mechanism is

                       Pr(yit=1|(,(it)=Pr(Wit >0|(,(it)

                       Wit ~ N(Xit(,1/(0.6342(it))

                        (it ~ Ga(4,4)

Another assumes subject level scaling

                        Wit ~ N(Xit(,1/(0.6342(i))

                        (i ~ Ga(4,4).

As it stands this model only allows unstructured errors and the mean Xit(. To introduce serial dependent errors involves taking

                       Wit ~ N(Xit( +(it,1/(0.6342(it))

                        (it = ((i,t-1 + uit                     t > 1

where var(u)= (2. Since (i2=((i1+ui1 and var((i2)=var((i1), one may specify

                     (i1 ~ N(0, (2/(1-(2))




providing |(| <1. 

To assess predictive concordance replicate Wit values are sampled and compared to the observed y: a match occurs if Wit,new is positive and yit=1 or Wit,new is negative and yit=0. One may also assess predictive concordance for individual patients, and so assess possible outlier or poorly fitted patients. Individual observations (i.e. specific for both patients and times) can also be assessed via the (it or via residuals Wit-Xit(.

The second half of a two chain run of 10,000 iterations provides posterior means (sd) for the four predictors are 1.88 (0.57),1.36(0.56), -0.30 (0.20) and -0.39
(0.70); so the 1st clinic has a higher success rate and the treatment appears effective. These regression effects have reduced precision because the error autocorrelation is included: there is a high autocorrelation (averaging 0.92 with sd=0.03) in the errors. The overall predictive concordance is 77%, but patients vary widely in predictive concordance, from 55% (patient 21) to 95% (patient 85).

The alternative approach to intra-subject correlation is the serial correlation model where the joint probability that yit=1 and yis=1 for t(s is

              (ist = πis πit+ (ist[πis (1- πis)πit (1-πit)]0.5
and (ist =(|t-s| represents the marginal correlation between periods s and t. Then the probabilities of the other joint events Pr(yis=1, yit=0), Pr(yis=0, yit=1) and Pr(yis=0, yit=0) are given by  (is - (ist, (is - (ist and 1-(it - (is + (ist respectively where (is is modelled by a logit link.

Again from the 2nd half of a two chain run of 10000 iterations the mean effects (and sd) of the predictors under this model are 1.10 (0.11), 0.74 (0.11),-0.18 (0.04) and –0.21 (0.14). So now age reduces the chance of good respiratory status. The correlation  parameter ( has mean 0.59 with a standard deviation 0.03.

Example 11.9 Patent Applications

A number of studies (e.g. Hausman et al,1984; Cameron & Trivedi, 1999; Allison & Waterman; 2002; Chib et al, 1998)) consider data on patent applications by 346 technology firms over 1975 to 1979. Trends in patent activity may be partly explained by levels of current and past research inputs Rit, Ri,t-1, etc, by type of firm, and by time t itself. However, unobserved variation is likely to remain between firms in terms of factors such as entrepreneurial and technical skills – suggesting the need for a permanent firm effect. There remain possible overdispersion issues as the mean of the data (namely 35 patents) is considerably exceeded by the variance. 

Among many possible models considered for these data a Poisson log-normal model is adopted with varying firm intercept bi1 and slope bi2 on log(Rit) taken to be variable over firms, together with the intercept. Rather than assuming zero means for these parameters and retaining separate ‘fixed effects’ for the intercept and the coefficient on logRit, it may be preferable for MCMC identifiability and convergence to take (bi1,bi2) to be bivariate with a mean ((1,(2) corresponding to the central fixed effects. So with yit ~ Po((it), and with a simple growth effect included also, one has

     log(μit)= bi1 + bi2 log(Ri,t) + β3log(Ri,t-1)+ .. β7log(Ri,t-5) +(8t

Stationarity in the lag coefficients is not assumed and N(0,1) priors are adopted for (2 through to (7, with (1 and (8 taken as N(0,1000).

The last 1000 iterations of a  two chain run of 4000 shows a mean deviance of 2725 compared to 1730 observations, so there is scope for an improved model; although Gelman-Rubin diagnostics indicate earlier convergence there was still a downward trend in the average deviance till around 3000 iterations.  Under this model, the coefficient on the contemporaneous research input log(Rit) has a posterior mean (sd) 0.56 (0.05), with the sum of elasticities averaging 0.85 (0.05). The research lags at 1 to 5 years have means (sd) of -0.01 (0.03),
0.10 (0.04), 0.16 (0.04),
0.03 (0.04) and
 0.08 (0.03). There is a correlation of –0.72 between the firm specific slopes and intercepts, implying that research inputs have greater impacts when patent applications are relatively low.

11.7 Growth Curve Models

In growth curve models the design matrix Xit reduces to (or includes) functions of time or time gaps between observations (e.g. Lee & Lien, 2001). The most general models might include pupil or patient attributes (e.g. intelligence, treatment group, gender) and consider interactions between attributes and growth paths. As in multilevel models, a typical growth curve analysis includes intercept and/or coefficient variation over subjects. For example, in a linear growth curve model

          yit = bi1 + bi2t + (it                                                   (11.13)

the bi1 describe differences in baseline levels of the outcome (e.g. the underlying average attainment for subject i) and the bi2 are varying linear growth rates. A multivariate normal prior for the subject effects would be

         (bi1, bi2) ~N2((,Σb),

where the mean values of (bi1, bi2) are the intercept (1 and average linear growth rate (2. Extensions of linear growth models might include K-1 functions of time, possibly using a fractional polynomial approach. 

       yit = bi1 + bi2F1(t) +…+biKFK-1(t) + (it
For example, Congdon (2006) considers fractional polynomial models of teenage conception trends in 32 London boroughs during the 1990s, allowing the bik to follow a multivariate CAR density. More complex growth curve models include nonlinear and spline models (applying the methods of chapter 10 to panel growth data), for example generalized logistic and Gompertz curves. Other options include latent growth curve and discrete mixture models; see, for example, Scaccia and Green (2002) and Pan & Fang (2002).

Given the role of bi =(bi1,..biK) in representing individual variations, including correlations between the growth paths and the levels of each subject, it may become more reasonable after introducing varying bik to assume that the εit are independent, with εit ~ N(0,σ2I). This conditional independence assumption can be assessed against assuming a general unstructured dispersion matrix εit ~ N(0,Σ), or correlated time dependence such as AR(1) dependence in the εit (Lee & Hwang, 2000; Lee & Chang, 2000). Other questions of interest might include establishing whether variations in growth rates bik can be explained by fixed attributes Xi of individuals: for example, whether differential declines in marital quality are related to initial spouse age, or to spouse education (Karney and Bradbury, 1995).

If individuals i have different observation times, or are nested hierarchically within groups j, then more complex growth curve models are defined. Diggle (1988) proposes a model for panel data with observation times vit  varying between subjects, namely

      yi(vit)= (i(vit) + Wi(vit) + (it + bi                                       (11.14)

where (it is an unstructured measurement error, and the Wi(vit) are autoregressive errors. The prior for the latter would incorporate a model for correlation ((() between successive observations according to the time difference (it=vi,t+1-vit between readings. The error association typically decreases in (, since measurements closer in time tend to be more strongly associated. 

When individuals i are classified by group j=1,..J, the corresponding model to (11.13) contains measurement error, as well as possibly autoregressive dependence, at observation level (Diggle, 1988). Permanent effects aij may now be specific both to subject i and group j, and growth curve parameters may vary over group and/or over individuals. For common observation times, a model with group varying linear growth effects and intercepts, and permanent effects for subjects, might take the form

              yijt = bj1 + bj2t + aij + eijt  + uijt                                   (11.15)

              eijt= (eij,t-1 + vijt.

with both vijt and uijt are unstructured, and ( not necessarily constrained to being stationary. Taking bj1 to have a nonzero average requires the aij to be centred during MCMC updating. Lee and Hwang (2000) consider alternative priors for out of sample prediction under this model, with particular focus on the variance ratios (eq \O(2,()/ (eq \O(2,v) and (eq \O(2,u)/ (eq \O(2,v), while assuming a stationary process with ( ( (-1,1); Lee and Lien (2001) consider a generalisation of (11.15) with permanent subject effects applying to elements of a design matrix.

Example 11.10 Hypertension Trial

Brown and Prescott (1999) present an example of a prospective clinicial trial data which illustrates a time trend in a metric response combined with clustering of subjects (into clinics). Useful guidelines for such data are presented by Fitzmaurice et al (2004, p 174), namely that a model would typically include treatment effects, and treatment interactions with time. If available, a baseline proxy for subject frailty is relevant, despite randomization, as well as latent variation in patient trends (e.g. linear effects that differ by patient). In the trial 288 patients are randomly assigned to one of three drug treatments for hypertension (C=Carvedilol, N=Nifedipine, A=Atenolol). Patients are also allocated to one of j=1,...,J clinics (J=29). Treatment success is judged in terms of reducing blood pressure.

The data are a baseline reading Bi of diastolic blood pressure (BP), and four post-treatment BP readings yit at two weekly intervals (weeks 3,5,7 and 9 after treatment); one B value is missing and modelled as MAR (see Chapter 14). Additionally some patients are lost to follow up but for simplicity their means are modelled for all T=4 periods. A first analysis includes a random patient intercept and takes the new treatment Carvelidol as reference in the fixed effects comparison vector (=((C,(N,(A), so (C=0. The first model applied is then 

                  yit = bi + β2Bi + ηN + ηA + uit
with uit uncorrelated. The variance of the subject effects bi ~ N((1, (eq \O(b,2)) is determined by a uniform prior on the correlation (b in (11.9), with the inverse of (eq \O(b,2)+(eq \O(u,2) assigned a Ga(1,0.001) prior. Estimates from iterations 1001-10000 of a two chain run of 10000 iterations (Table 11.6) shows existing drugs have lower BP readings than the new drug, though part of the density of ηN is above zero. The density of (eq \O(b,2) is bounded away from zero so patient frailty beyond that present in the baseline readings is apparent. 

Table 11.6 Hypertension Trial





Normal subject effects, no clinic effect (DIC 9030, de=231)


Mean
2.5%
97.5%

(
34.7
25.7
43.4


0.57
0.48
0.66

Nifedipine (N )
-1.21
-3.22
0.70

Atenolol  (A
-3.05
-5.04
-1.05

(
0.51
0.44
0.57

(eq \O(b,2)
39.7
31.8
49.2

To introduce the information on clinics into the analysis one may adopt a form of the multi-level growth curve model in (11.15). Clinic effects express variations in quality of care, so a growth effect at clinic level measures differential trends in BP through time (the general trend is downwards). To control for differences in baseline frailty a clinic-specific slope on baseline readings is also added. As in (11.15) a autocorrelated error at patient level is included. 

Thus with j denoting clinic and patients denoted i=1,..nj nested within clinics (so Σjnj=288), the revised model has the form

         yijt = bj1 + bj2t + bj3Bij + ηN + ηA + aij + eijt + uijt 

with

          eijt=(eij,t-1+vijt                                                     

and with wij, vijt and uijt being unstructured normal errors. (Note that the worked analysis involves a stacking of data over clinics). The initial conditions eij1 have a distinct variance term (eq \O(v,2)/(1-(2) according to stationarity in e, with a U(-1,1) prior for (. The clinic effects bjk (k=1,3) are taken to be independent with means and variances {(k, (k}. 

The second half of a two chain run of 10000 iterations suggests this model is overparameterised as the DIC rises to 9294 (de=196). This model confirms a significant linear decline in the blood pressure readings with 95% interval for (2 between –1.63 and –0.64. It also confirms the apparently beneficial effect of the established drug Atenolol, with 95% interval –4.5 to –1.1. The baseline regression parameter (3 increases to 0.84 (s.d. 0.07). However, the posterior density for ( straddles zero, so eijt may be subject to exclusion to achieve a better fitting model. 
11.8 Dynamic Models for Longitudinal Data: Pooling Strength over Units and Times 

In dynamic linear models for longitudinal data, one or more parameter sets describing slopes, growth rates, or the impacts of subject attributes evolve through time via state space priors. These parameters are drawn from a common hyperdensity leading to a pooling of strength over time and subjects. For example, whereas time series state space models typically have fixed effect initial conditions, a panel model may employ random effects for initial conditions due to replication over subjects.  MCMC sampling frameworks for DLM priors applicable to discrete responses are considered by Gamerman (1998), with applications illustrated by Glickman and Stern (1998), Gamerman and Smith (1996) for metric data, Fruhwirth-Schnatter & Wagner (2005) for count data, and Kao & Allenby (2004) for binary and categoric data.

Such models may be highly non-linear, as in the Kao and Allenby model where a purchase decision model involves an observation process

                 yit = 1        if          [(Wit +()(-Weq \O(it,() ] ( (
                     = 0         otherwise

and state space evolution for Wit, namely

                 Wit =(Wi,t-1+(yi,t-1 +(it             (it ~ N(0,1)      t=2,..,T

where Wit are latent continuous data (representing the inventory of subject i at time t), the Wi1 follow a separate random density, ( is the inventory equivalent of a particular good, ( reflects diminishing marginal returns to holding inventory, ( reflects inventory depletion, and ( is a  purchase threshold. 

Multivariate linear random walk priors in regression effects for count data are illustrated by models for health events yit for area i at time t, with expected events Eit, underlying relative risks θit, and risk factors Xit. With Poisson sampling yit ~ Poi(Eitθit), first-order autoregressive time dependence in errors and autoregressive dependence in the observations may be combined with random evolution in the level (changing incidence) and time varying regression effects (changing impacts of risk factors). So for t>1, with a lag on log(yi,t-1+1) and autoregressive errors,

            log(θit)=bt1+bt2xit1+…+btpxit,p-1+(ylog(yi,t-1+1)+eit
             eit=(eit+vit
with a multivariate RW1 prior for time varying intercepts and slopes on p-1 predictors

                 [bt1,bt2,……,btp] ~Np([bt-1,1,bt-1,2,……,bt-1,p],(b),     t>1, 

In this model the first period regression parameters {b11,b12,…b1p} would usually be assumed to be fixed effects. With spatially configured panel data (see section 11.9), one could assume

               [bit1,bit2,……,bitp] ~ Np([bit-1,1,bit-1,2,……,bit-1,p],(b),

where (i1p are spatially correlated.

Alternative approaches to discrete panel data use conjugate priors, e.g. Poisson-gamma mixing for count data. In the absence of fixed regression effects, Harvey (1991) proposes a scheme for count panel data whereby  y it ~ Po((it) and 

                θit ~ Ga(cit,dit)                                   

with  cit=wci,t-1 and dit=wdi,t-1for t=2,..,T, and w is a discount factor constrained to lie between 0 and 1. The initial conditions (ci1,di1) may be modelled as separate random effects and w might vary randomly between times or subjects. To include evolving regression coefficients one option is

                θit ~ Ga(cit,cit/(it) 

                log(μit ) = bt1+bt2xit1+…+btpxit,p-1
with cit=wci,t-1. 

Sometimes conjugate mixing might involve time specific population means without regressors, with the goal in industrial settings being the monitoring of quality trends and possible adverse trends in particular processes or units. For example, Martz et al (1999) consider trends in the scram rate in US nuclear plants with scrams yit ~ Poi(Hitθit), where Hit are critical hours and (it~Ga(ct,ct/(t) or (it~Ga(ct,ct/(it).  To assess adverse trends one may then define a time smoothed transform of (it such as an exponentially weighted moving average

                   zit=((it+(1-()zi,t-1.

Martz et al assume zi1=((i1+(i2)/2 and adopt a preset smoothing parameter 0 < ( ( 1. 

For growth curve data one may consider random walk priors at subject level, but with the option of referring to a population level process (Gamerman & Smith, 1996; Camargo & Gamerman, 2000) . For metric data yit, a baseline model with dynamic population variability in level and trend is yit ~ N((t, (2) with 

t=t-1+t + u1t


t =t-1 +u2t
where the average difference between successive t is analogous to the slope in a constant linear trend model. By contrast, individual variability in level and trend involves random walk priors specific to individuals, as in

            yit ~ N((it,(2)

it =it + itt 



with population level evolution in level and growth via 

             it =(t+1it              (t= (t-1 +1t 

             it =t+2it             t = t-1 +2t.

Another way to combine individual variability in growth paths with dynamic evolution in population parameters is through a mixture specification, with probability p on the population process and (1-p) on the individual process. The mixture process applies to individual specific levels and trends:

it = (1-p)(i,t-1 +it) + pt +v1it 
                         (11.16)

it= (1-p)i,t-1 + pt + v2it
with (t and (t evolving as above. A variation on this method is to allow the mixture to be in terms of distributions rather than means, so that 

it ~ (1-p)N(i,t-1 +it,A1) + pN(t,A2)                            (11.17)

           it ~ (1-p)N(i,t-1,C1) + pN(t,C2)

So the choice in the mixture is between an aggregate growth process described by parameters {t, t} and an individual level growth process with level and trend parameters it and it. The latter is obtained by setting p=0 in equation (11.16) or (11.17). This specification is most suitable to moderately large samples and observed growth processes with steady evolution in means and perhaps small variation between individuals around the average growth path. It may well need simplification in specific examples to avoid being over-parameterised.  

Example 11.11 Scram Rates

This example uses data from Martz et al (1999) on annual scram rates at 66 US nuclear plants over T=10 years (1984-1993) to illustrate smoothing and forecasting with count data. The number of scrams yit may be assumed Poisson-gamma distributed with 

              yit ~ Po(Hit(it) 

              (it ~ Ga(ct,ct/(t)

              (t=exp(bt)

              ct = wct-1; bt ~ N(bt-1,1/(b)              t=2,..T

where Hit are critical hours, w is between 0 and 1, and b1 and c1 are fixed effects. As ct ( ( the Poisson density is approximated (i.e. all plants have the same scram rate in year t). A two chain run of 5000 iterations shows early convergence with w=0.986 and a clear downward trend in scram rates, with the successive means for bt being 0.05,-0.21,-0.42,-0.8,-1.1,-1.16,-1.23,-1.35,-1.42 and –1.56. The DIC is 2582 (de=267).

A form of exponential smoothing is then applied, combining a population driven process with parameters {bt,ct} with a plant level process with parameters zit. Thus 

              yit ~ Po(Hitzit) 

              zit= ((t+(1-()zi,t-1  

              ( ~ U(0,1)              

              (t ~ Ga(ct,ct/(t)

              (t=exp(bt)

              ct = wct-1; bt ~ N(bt-1,1/(b)

with the pre-series latent data zi0 being gamma distributed zi0 ~ Ga(r1, r2), where r1 and r2 are themselves unknowns with gamma priors. With Ga(1,1) priors on r1 and r2, the 2nd half of a 10000 two chain run shows smoothing parameter ( estimated at 0.38 (s.d. 0.03). The DIC rises to 2595 though complexity is lower at de=57. The zit are considerably smoother in terms of total squared deviations  eq \O((,i)

eq \O((,t=2,T)(zit-zi,t-1)2 = 17.8 evaluated using the posterior means of the zit. This compares to  eq \O((,i)

eq \O((,t=2,T) ((it-(i,t-1)2 = 48 from the first model. One may retain this emphasis on smoothing each series while developing a model oriented to forecasting, for example by letting ( vary over time and taking {logit((t), bt} to follow a bivariate random walk (see Exercises).

Example 11.12 Animal Movements

Jonsen et al (2003) consider a nonlinear state-space model for meta-analysis of individual pathway information for a set of marine animals. Their analysis is for n=15 such pathways over T=50 time points (based on observed turtle behaviours) in which observed pathway data are longitude and latitude measurements {yit1,yit2} subject to a small measurement error. In turn the true, but unknown, pathways Zitm, m=1,2 evolve with a variance structure related to lagged sea temperatures experienced in the ith animal pathway, Xit. This reflects a behavioural assumption: that movement variance declines with increasing temperature. The latent series is initialized by the observed values. Thus 

                     yitm=Zitm+uitm
                      Zitm=Zi,t-1,m+eitm
                      uitm ~ N(0,1/(i)

                      eitm ~ N(0,(eq \O(itm,2))

                      (itm=(iexp(-(iXi,t-1)

where the (i are assigned independent gamma or lognormal priors, but the (i are governed by a population model, for example (i ~ N(((,(eq \O(b,2)). Following Jonsen et al, informative LN(-1.39,0.1) priors are used for animal precisions (i, while LN(0,1) priors are assumed for 1/(eq \O(b,2) and (i. Fit is assessed using the DIC (based on the error sum of squares) and the expected predictive deviance. A two chain run of 5000 iterations (convergent from 2000 on the basis of trend in the fit measures) provides a mean (sd) of 0.83 (0.09) for ((, with posterior means for (i varying from 0.35 to 3.47 and those for (i from 0.43 to 1.20. The mean deviance is 4963, the DIC is 6280 (de=1340), the EPD is 10170, and 98.5% of the observations are contained within 95% intervals of replicate data yitm,new sampled from the model.

Here a slightly different framework is considered as an alternative model (model 2). This involves a population model for both ‘intercepts’ and temperature coefficients in the state variance model, namely 

                   (itm =  exp((i0 -(i1Xi,t-1)

with a bivariate Normal prior on (i={(i0,(i1} and a Wishart prior with identity scale on the precision matrix (eq \O((,-1). This model (run with 5000 iterations and 2 chains, 2000 to convergence) produces a similar mean for the (i1but reduces the mean deviance to 4932. The DIC falls slightly to 6255 (de=1322), and the EPD to 10100. An additional step might be to make the ( parameters specific for latitude and longitude.

11.9 Area APC and Spatio-temporal models 

Death or disease data are often reported in terms of totals yat by age group a (a=1,..,A) and period t (t=1,..,T). A typical arrangement of data is in terms of five year age groups totalled over periods of five year duration. Sometimes individual record data are available with year of birth recorded so that cohort of birth is known accurately (Robertson and Boyle, 1986). However, more frequently the cohort is obtained as c=t-a+A and cohorts are overlapping in terms of the years of birth of their constituents. Defining cohort is simplest when age bands and periods are of the same width though there are ways to define cohort when widths are unequal. Bayesian developments in age-period-cohort (APC) or the simpler options such as age-cohort (AC) and age-period (AP) models have thrown a new light on some of the identifiability issues raised by classical approaches.  Some work has also been done on area APC models (AAPC models) where spatial correlation in time or cohort effects may be important (Lagazio et al, 2003; Schmid and Held, 2004).   

11.9.1 Age-Period Data

Suppose the data are two way totals by age and period (i.e. not three way data based on individual records). Typical sampling assumptions reflect the sort of relatively rare mortality events that APC models are applied to (e.g. Bray, 2002), namely cause specific deaths with cancer mortality a common focus. Then one may take the yat as Poisson, in relation to person-years or expected events Eat, or binomial in relation to at risk populations Pat. Suppose yat ~ Po(Eat(at) when event totals are small in relation to populations at risk. A working assumption that mortality is declining at a similar rate across all age bands leads to a main effects only model in age and time (the proportional age-period or AP model), with

                       (at= exp((a) exp((t)

                       log((at) = (a + (t                                 

Typically the effects (a and (t are modelled as Gaussian RW1 or RW2 (Berzuini and Clayton, 1994, p 828), though serially correlated priors are also possible (Lee and Lin, 1996), and may alleviate identification problems. The difference (a-(b is the logged relative risk for age a compared to that for age b. 

Identifiability may be gained by one or other series (e.g. centering on the fly during MCMC iterations), or by setting one parameter to a fixed value, e.g. (1=0. An alternative strategy (Besag et al, 1995) does not impose such constraints but monitors only identifiable contrasts such as (a-(b and (t-(s. 

An age-cohort (AC) model is 

                      log((at)=(a + (c                                   

where the cohort effects (c represent factors that influence the mortality or disease incidence of a particular birth cohort throughout their lives. An APC model including a mean and age, period and cohort effects is then

                    log((at)=M+(a + (t+(c                                   

Identifiability in this model requires all sets of effects to be centred or the use of devices such as (1=(1=(1=0 to set the level of the three series. Additionally the relation c=A-a+t introduces an extra identifiability issue and an extra constraint is needed for full identification. Often early cohort effects are poorly identified and so one might set (1=(2 as well. Knorr-Held and Rainer (2001) suggest that RW(1) priors introduce a stochastic constraint that obviates the requirement for a an additional formal constraint. Again a possible alternative is to summarise the model - and gauge convergence - using only identifiable parameter subsets or contrasts. These include the means (at, projections to new years (Bray, 2002) and contrasts such (a-(b and (c-(d. Identification is often compromised by cohort or time effects that are virtually linear. Actually modelling time or cohort as linear trends or ‘drifts’ raising particular identification issues because of the relation c=t-a+A (Clayton and Schifflers, 1987).

Possible interactions of substantive interest include age-cohort interactions, for example when the age slope is changing between cohorts (e.g. lung cancer deaths at younger ages are less common in recent cohorts) (Robertson and Boyle, 1986). In demographic and actuarial mortality forecasting applications (Lee & Carter, 1992) age-time interactions are of interest. The product interaction  (at = (a(t has been proposed as an interaction term in the equation for log((at), so that

              log((at)=M+(a + (t+(c + (a(t 

with (a ( 0, and identifiability constraints eq \o((,t)(t = 0 and eq \o((,a)(a = 1. (t might be a random walk, ARMA model, or polynomial in time. The (a parameters are highest for ages a most sensitive to the trend (t: for declining (t larger (a indicate for which age groups mortality is declining most. 

11.9.2 Area-Time Data

Models defined over space and time without an age dimension are often used and may simplify the model specification and avoid identification issues. These are a form of panel data (times within areas) and illustrate that the random effects prior governing the second level (areas) need not necessarily assume exchangeability. One possible framework might include constant spatial and unstructured effects for areas combined with area specific linear growth rates. Thus for yit ~ Po(Eit(it) the mixed model of Besag et al (1991) might be extended as follows to include a spatially varying growth curve:

 
log((it ) =  +(it + (1i + (2i
where the effects (i may be unstructured or spatially correlated (Bernardinelli et al, 1995), for example with ICAR form. More general or more heavily parameterised models may be proposed, for example: time varying heterogeneity or spatial effects, ( eq \O((t),1i)  or ( eq \O((t),2i)  (Waller et al, 1997; Carlin and Louis, 2000). Random effects specific to both area and time may be introduced to account for excess dispersion in relation to the Poisson or binomial. Sun et al (2000) propose a model form adapted both to Poisson overdispersion and correlated prediction errors, namely

       log((it) =  M +(1i + (2i + (it + (it
with (it is autocorrelated in time with  (it= ((it-1+ vit for t > 1, where vit ~ N(0,(),  while (i1 ~ N(0,(/(1-(2).

11.9.3 Age-Area-Period Data

Consider area-age-period mortality or disease counts yait  (areas i=1,..,n), assumed to be Poisson, yait ~ Po(Eait (ait). Lagazio et al (2003) propose area APC (or AAPC) models focusing on area-cohort and area-time interactions, namely 

            log((ait) = M +(1i + (2i +(a + (t+ (c +(1ic +(2it 

where (1i is an unstructured area effect, and (2i follows an intrinsic spatial autoregressive model (the ICAR model of Chapter 9). Schmid and Held (2004) suggest a similar model except for adding a three way unstructured error term (3ait. The substantive interpretation of (2it is reasonably clear: in developed societies where mortality decline is typical, more slowly declining effects than average might reflect deficiencies in health policy and resource distribution. However, the terms (1ic will be affected by inter-area migration and a ‘cohort’ will be a heterogeneous mixture of people born in that area and immigrants from other areas. When time or cohort effects are close to linear, a choice between one or other form (rather than including both) is a possible strategy, as suggested by Schmid and Held (2004). Interaction priors (for ( terms) proposed in the APC literature include those using a Kronecker product of the structure matrices for the relevant dimensions (Knorr-Held, 2000; Lagazio et al, 2003; Schmid and Held, 2004).

11.9.4 Interaction Priors

For AAPC models there are potentially five possible interactions to consider (area-time, area-age, area-cohort, age-cohort, and age-time). Replication over areas alleviates identifiability problems associated with time drift in standard APC models (Clayton and Schifflers, 1987), and  linear time paths varying over age and/or area might be considered. For example, Sun et al (2000) propose a model area and age linear time effects 

         log((iat) = (a + (1i + (2i + ((i+(a)t + (iat 

Congdon (2004) considers age-period or area-period product interactions, whereby

             log((iat) = (a + (t + (i + (a(t
with (i of ICAR form, and age-period product interactions (a(t subject to identifying restrictions as discussed above. Space-time interactions might be modelled via

             log((iat) = (a + (t+ (i+ (a(t +(tbi1
where (t are multinomial or Dirichlet and represent differences between periods in the extent of spatial clustering defined by the bi1 (e.g. clustering might be growing over time). Finally age-area interactions might be modelled as

              log((iat) = (a + (t+ (i+ (a(t +(tbi1 +(abi2
where the (a represent age group differences in adherence to the spatial mortality regime defined by bi2. If spatial relative risks bi2 are higher in deprived areas then (a would be higher in those age groups (e.g. middle aged and children) where deprivation had the most marked mortality impact (Congdon, 2006). One might also consider joint age-time loadings (summing to 1) multiplying a single area effect (constrained to sum to zero during MCMC sampling), as in 

            log((iat) = (a + (t+ (i+ (a(t +(atbi.
Clayton (1996, p 291) suggests a prior for interactions in GLMMs (and the particular types of model considered here) based on multiplying the structure matrices underlying the joint priors in (say) cohort and area separately. Let the structure matrix of the separate area and cohort effects be denoted K( and K( respectively. Then the Kronecker product of these structure matrices K((=K(
[image: image7.wmf]Ä

K( defines the structure matrix for the joint prior and the structure of the conditional prior on (ic can then be derived.  Knorr-Held (2000) describes how different baseline priors (whether unstructured or structured, and whether for age, area, time, or cohort) can be defined in this way. This presumes a model with paired ‘main’ random effects, one structured and one unstructured, in age, time, area, etc. Thus a full baseline model would be 

    log((iat) = M +(1i + (2i +(1a +(2a +(1t+(2t +(1c +(2c
where the subscript 1 corresponds to an unstructured effect and the subscript 2 to a structured effect (usually an ICAR in space and a random walk in time, cohort and age). In practice this sort of model will tend to strain empirical identifiability since all effects are confounded with the mean M and various centering and constraining devices will be needed.   

The second order interactions are defined by crossing main effects in the above scheme. For example, an RW(1) prior in cohort effects has a structure matrix with the form 

                         K([cd] = -1 if cohorts c and d are adjacent

                                       0 if cohorts c and d are not adjacent

                                       1 if c=d=1 or c=d=C

                                       2 if c=d=k where k(1 and k(C.

while an RW(2) prior has a structure matrix

                      K(=
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The prior for spatially structured errors (=((1,..,(n) based on adjacency is MVN with precision matrix ((K( where 

             K([ij]  =  -1       if areas i and j are neighbours

                      =   0        for non adjacent areas  

                      =   Li       when i= j

and Li is the cardinality of area i (its total number of neighbours). Then a Kronecker product prior for (ic (based on crossing RW1 cohort and ICAR(1) spatial priors) has a conditional variance  (eq \o(2,()/Li when a=1 or a=A, and (eq \o(2, ()/(2Li) otherwise, while the conditional means eq \O((,_)ic are 

       eq \O((,_)i1= (i2+eq \O((, j~i)(j1/ Li -eq \O((, j~i)(j2/Li                                               (11.18)

        eq \O((,_)ic=     0.5((i,c-1+(i,c+1)+eq \O((, j~i)(jc/Li

                     –(eq \O((, j~i)(j,c+1+eq \O((, j~i)(j,c-1)/(2Li)              1<c<C

       eq \O((,_)iC= (i,C-1+eq \O((, j~i)( jC/Li -eq \O((, j~i)( j,C-1/Li                     

Identifiability requires that the (ic be doubly centred at each iteration (over both area for a given cohort c, and over cohorts for a given area i). Lagazio et al (2001) suggest instead contrasting against the first cohort effect. So if (ic is based on Kronecker crossing of (2c and (2i then (eq \O(*,ic)=(ic -(i1,and 

     log((iat) = M +(1i + (2i +(1a +(2a +(1t+(2t +(1c +(2c+( eq \O(*,ic).

Crossed structure matrix priors for area-time, cohort-time, age-time and age-area interactions are similarly defined.  

Example 11.13 Age-Area Models for London Borough Mortality

This analysis considers male deaths yia in n=33 London boroughs during 2001 for A=19 age groups, and with 2001 Census populations Pia as denominators. The models for these data can be regarded interchangeably as area-age or as area-cohort models. Often age effects are taken to be proportional with area effects leading to models with expected deaths based on applying a standard schedule to populations by age. Congdon (2006b) shows how this assumption may need to be critically evaluated. 

The first model for the data involves a Kronecker interaction between an RW(1) age prior and an ICAR(1) spatial main effect. The corresponding main effects in age and area are centred on the fly while unstructured area and age effects are contrasted with the first effect. So with yia ~ Po((iaPia)

    (eq \O(*,ia)=(ia -(i1
    (eq \O(*,1i)=(1i -(11
    (eq \O(*,1a)= (1a -(11
    log((ia) = M +(eq \O(*,1i) + (2i +(eq \O(*,1a) +(2a +( eq \O(*,ia)
where (2i is an ICAR prior and (2a follow a random walk. All precisions are assumed to follow Ga(1,1) priors. This model required exploratory runs to establish good starting values (e.g. for M) and even after 30000 iterations of a two chain run some parameters did not satisfy Gelman-Rubin criteria (e.g. the GR statistics were around 1.5 for (eq \O(*,1),9). Poor convergence may reflect excess parameterisation. The second half of the 30000 run gave a DIC of 3793 with de=103 and an average deviance (minus twice the likelihood) of 3690. The mean scaled deviance of 758 compares to 627 (=33(19) observations so the overdispersion is reasonably well modelled by the random effects structure.

The second model adopts the product interaction scheme defined above, with main spatial effects omitted to improve identification. So

        log((ia) = M +(1a+(2a +wasi
with the si following an ICAR prior and constrained to sum to zero (by centering at each iteration), while 

           wa=exp((a)/[1+eq \O((,b)exp((b)]

with (A=0, and (a ~ N(0,1/((), with prior (( ~ Ga(1,1). The (1a are also centred at each iteration rather than contrasted. The second half of a two chain run of 10000 iterations (convergence obtained by 5000) gives a DIC (unsaturated definition) of 3880 with de=63, while the saturated deviance Ds averages 884.

Table 11.7 Posterior Summary of Spatial Effects

Borough
Mean
2.5%
97.5%
Index of Multiple Deprivation

City of London
0.91
-1.97
3.88
15.2

Barking & Dagenham
1.92
0.60
3.09
32.7

Barnet
-3.39
-4.58
-2.43
16.7

Bexley
-1.89
-3.09
-0.69
18.1

Brent
-0.86
-2.04
0.12
27.0

Bromley
-2.76
-3.93
-1.74
13.3

Camden
2.91
1.84
4.04
31.1

Croydon
-2.16
-3.19
-1.19
19.5

Ealing
-0.67
-1.74
0.40
24.3

Enfield
-2.43
-3.46
-1.41
25.4

Greenwich
1.61
0.50
2.63
31.3

Hackney
2.43
1.39
3.55
42.7

Hammersmith & Fulham
-0.11
-1.23
1.15
26.6

Haringey
0.44
-0.78
1.54
38.2

Harrow
-4.09
-5.36
-2.89
13.0

Havering
-1.71
-2.89
-0.67
14.7

Hillingdon
-1.43
-2.62
-0.23
19.3

Hounslow
0.28
-0.80
1.32
22.7

Islington
3.97
2.61
5.14
41.1

Kensington & Chelsea
-4.29
-5.75
-2.81
20.5

Kingston upon Thames
-1.46
-2.87
0.03
16.7

Lambeth
3.87
2.83
5.23
32.0

Lewisham
2.26
1.20
3.25
28.4

Merton
-1.36
-2.80
0.06
18.2

Newham
3.84
2.93
4.93
39.5

Redbridge
-1.38
-2.35
-0.52
18.0

Richmond upon Thames
-3.46
-4.90
-2.09
9.8

Southwark
2.86
1.70
3.99
36.5

Sutton
-1.23
-2.40
-0.10
13.0

Tower Hamlets
4.32
3.27
5.37
45.2

Waltham Forest
1.92
0.83
2.93
29.9

Wandsworth
1.43
0.37
2.66
19.0

Westminster
-0.32
-1.24
0.67
27.7

The highest si values are in socio-economically deprived areas (see Table 11.7 with deprivation index in last column). The highest si values are in Islington and Lambeth (boroughs 19 and 22), while the most negative are in generally affluent suburban boroughs. The age weights wa peak for age groups 8 to 12 (ages 35-59) and group 1 (Figure 11.2), so the si are identifying boroughs with relatively high middle age and infant mortality. It may be noted that an alternative definition for effective parameters ( see Chapter 2 and Gelman et al, 2003) gives a more pronounced contrast between the models, with deq \O(*,e)=256 for the first model and deq \O(*,e)=92 for the second. Using these estimates in concert with a BIC criterion, namely BIC=  eq \O(D,_)s + deq \O(*,e)log(627) shows that the second model has a lower BIC (1348 vs. 2535). 

11.10 Exercises

11.1 For the data in Example 11.1 consider a heteroscedastic model for the level 1 random effects (the overdispersion error eij) involving the binary borough group indicator wj (wj=1 for inner boroughs). Thus

                             log((ij) = bj1 + bj2(xij - eq  \O(_,x)) +eij               
                            (bj1,bj2) ~ N2([mj1,mj2], (b)

                              mj1=(11 + (12wj                             

                              mj2=(21 + (22wj
                               eij ~ N(0,Vij)

                               Vij =(1+(2wj

For example a possible code using a stacked data arrangement with  borough indicators Gi could be 

for (i in 1:N) {  y[i] ~ dpois(mu[i]); tIMD[i] <- log(IMD[i])

                       log(mu[i]) <- log(E[i]) +beta[G[i],1] 

                                  + beta[G[i],2]*(tIMD[i] - mean(tIMD[])) + e[i]

                        e[i] ~ dnorm(0,tau[i]);   tau[i] <- 1/V[i];

                        V[i] <- th[1]+th[2]*w[G[i]]}
Informative priors on (j (e.g. (j ~ N(0,1)) are suggested, and initial values compatible with a positive variance (and precision).

11.2 In Example 11.2 re-estimate the model involving constituency-party random effects using a scale mixture model (equivalent to multivariate Student t). Assume 4 degrees of freedom and by monitoring the constituency specific scaling factors identify constituencies with distinct party allegiances. Does fit improve by virtue of this model extension, despite the extra parameters?

11.3 In Example 11.3 consider a model introducing a nonlinear IQ effect. Thus with yij ~ N((ij,Vij)

ij =  bj1 + bj2 (IQij- eq \o(IQ,_)) + (1(IQij- eq \o(IQ,_))eq \O(2,+) +(2( eq \o(IQ,_)-IQij)eq \O(2,+) 

                        +3(SESij- eq \o(SES, _)) + (4Gij+(5IQCLj
                   (bj1,bj2)~ N2([m1,m2], (b)                                                     

                    Vij = (1 + (2IQij

What impact does this have on the level 2 variance of IQ slopes (i.e. the parameter (b22)?

11.4  Analyse panel data on respiratory infections (Zeger & Karim, 1991) which involves a binary response, using a variable intercept and variable slope on time – see Exercise 11.4.odc. There are 275 preschool age subjects with full or partial histories over six quarters, so there are 1200 observations in all, compared to 6.275=1650 points if no observations were missing. Some nonresponse occurs because children are no longer in the age range, because of mortality, while some is through intermittent missingness or attrition. The random effects have means ((1,(2). Predictors apart from a linear time effect are age in months (centred at 36), presence of xerophthalmia (an indicator for vitamin A deficiency), seasonal cosine, seasonal sine, gender (1=F), height for age, presence of stunting (below 85% of expected height for age) and time (quarters 1 to 6), and quarter itself. Thus 

        yit~Bern((it),

        logit(pit)=bi1+bi2t

                     +(3Age+(4Xerop+(5Cos+(6Sin+(7Fem+(8Ht+(9Stunted

       bi ~ N2(mb,(b)

       mb=((1,(2)

The analysis can be performed using stacked data.  Taking the likelihood to be independent of the missingness mechanism corresponds to a MAR model (chapter 14). As well as a model with varying intercepts and slopes on time apply a model with varying intercepts only. Assess the predictive match between actual and replicate data under the two models.   Repeat the analysis using the augmented data method (Albert & Chib, 1993), with W as latent normal or latent logistic variables underlying the observed binary data. Assess predictive fit comparing replicate data (yrep=1 if  Wrep > 0) with actual data; this amounts to assessing how well the model classifies observations compared to actuality.                                       

11.5 In the random intercept model 

             yit = ( + Xit(+ bi + uit                                                                       

with bi ~ N(0, ( eq \O(b,2)) ,uit ~ N(0,(2), let (=((,(), (=1/(2,(b=1/(eq \O(b,2). Then with (|(2 ~ Np+1(g0,(2Geq \O(-1,0)), (b ~ Ga(eb,fb), (~Ga(eu,fu) obtain the full conditionals for (, ( and (b.

11.6 In Example 11.6 (Indonesian rice farm data) assess gain from introducing AR1 errors (in addition to unstructured errors) in both random and fixed effects bi models. Also find the posterior probabilities that farms 1 to 171 are the best - in terms of having highest bi after allowing for inputs. Which farm has the highest probability of being best? 

11.7 In Example 11.7 (firm investments), does the conclusion that a nonstationary AR1 model is preferred still hold true when permanent random subject effects are  added to the model. Thus

         yit =bi+ 2Vi,t-1+3Ci,t-1+ (it

          (it = ((i,t-1+uit
with uit ~ N(0,-1) unstructured and bi centred at (1. There are only ten firms so a fixed subject effects approach may be run also to assess default assumptions such as bi normal. 

11.8 In Example 11.8 apply the serial odds ratio model of Fitzmaurice and Lipsitz (1995). A possible partial code is

model { for (i in 1:N) {  for (s in 1:T-1) {   for (t in s+1:T)  {

                 z[i,s,t] <- equals(y[i,s],1)*equals(y[i,t],1)

                               +2*equals(y[i,s],1)*equals(y[i,t],0)

                               +3*equals(y[i,s],0)*equals(y[i,t],1)

                               +4*equals(y[i,s],0)*equals(y[i,t],0)

                z[i,s,t] ~ dcat(p[i,s,t,1:4])

   for (j in 1:4) {p[i,s,t,j] <- phi[i,s,t,j]/sum(phi[i,s,t,])}             

                phi[i,s,t,1] <- pi[i,s,t]

                phi[i,s,t,2] <- pm[i,s]-pi[i,s,t]

                phi[i,s,t,3] <- pm[i,t]-pi[i,s,t]

                phi[i,s,t,4] <- 1-pm[i,s]-pm[i,t]+pi[i,s,t]

  pi[i,s,t] <- (a[i,s,t] - sqrt(a[i,s,t]*a[i,s,t]- 

                       4*eps[i,s,t]*(eps[i,s,t]-1)*pm[i,s]*pm[i,t]))                 

                       /(2*eps[i,s,t]-2)

a[i,s,t]    <-  1- (1-eps[i,s,t])*(pm[i,s]+pm[i,t])

eps[i,s,t] <- pow(omega,1/abs(t-s))}}}

where omega is a positive parameter.

11.9 In Example 11.8 apply the augmented data method with (i constant over periods and assess fit as compared to using the subject and time specific scale parameters (it. Also consider both models when the gamma parameter ( is unknown, i.e. (it ~ Ga(0.5(,0.5() and (i ~ Ga(0.5(,0.5(). Does this option favour a probit or logit link?

11.10 In Example 11.9 extend the varying slope model to all research inputs (lags 1 to 5 as well as the contemporary effect), as in (11.12). Following the McNab et al (2004) strategy, it may be preferable to model the varying lag effects without a full 6 by 6 covariance structure, but first select lags where lag variation between firms is significant and then adopt a full covariance structure for that subset of effects. Does this model extension move the average deviance closer to the observation total of 1730? Another option is to allow firm-varying linear slopes (on time itself).

11.11 In Example 11.10 (second model) adopt a reduced model with autocorrelated eijt excluded, but with multivariate normal and multivariate t (via scale mixing with unknown degrees of freedom) priors for the clinic effects (bj1,bj2,bj3). Do these models improve on the fit of the independent prior model, and are any unusual clinic effects detected by the scale mixture approach? Finally consider the model

        yijt = bj1 + bj2t + bj3Bij + ηN + ηA + wij + uijt 

where bj2 have means mj2 which are modelled in terms of patient treatment (so differential gain by treatment can be assessed).

11.12 Consider three wave data on a skin treatment trial (Saei & McGilchrist, 1998), with the responses yit being on a five point ordinal scale and a categorical predictor namely clinic Ci (1 to 6) – see Exercise 11.12.odc. Treatment (1=test drug, 2=placebo) is denoted Gi. Apply a constant (but treatment specific) threshold model with random patient intercepts bi, and fixed clinic effects (Ci, namely

             logit(Pr(yit ( j|Gi,Ci,bi) = logit((ijt)= (jGi - (Ci - bi.

For all the {(k, k=1,6} to be identified, only J-2=3 threshold parameters are estimated, while if (1=0 there are four free threshold parameters. Compare this model’s predictive fit (the proportion of observations correctly classified on sampling new responses yit,new) with a model allowing changing thresholds (jm (m=1,2) over the T=3 periods.  

11.13 In Example 11.11 (scram rates) consider a model with ( varying over time, and taking {logit((t), bt} to follow a bivariate normal random walk. Omit the tenth years observations (namely replace yi,10 by NA though keeping the offsets Hi,10 as they are). The actual data for the last year will then be a separate vector. Compare the predictions (e.g. posterior mean of absolute deviations between predictions and actual divided by 66) of the constant ( model (and RW1 prior in bt only) with the extended model. 
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