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Chapter 4 Normal Linear Regression, General Linear Models and Log-Linear Models

4.1  The context for Bayesian regression methods

The Bayesian approach to univariate and multivariate linear regression with normal errors has long been of interest in areas such as econometrics (Zellner, 1971; Koop, 2003; Poirier, 1995). Bayesian methods have more recently played a major role in developments in general linear models with discrete or survival time outcomes (Dey et al, 2000), and in models with complex non-linear structures, as in pharmacokinetics (Gelman et al, 1996). This chapter considers Bayesian regression applied to metric data, binary and binomial data, and count data. Issues relating to overdispersion (e.g. in count regression) and discrete mixture regression are considered in Chapters 5 and 6 respectively, while Chapter 7 considers the more complex questions involved in regression for ordinal and multinomial responses.

The application of regression methods involves a range of issues, including selection of an appropriate sampling density and error form, selecting a subset of significant predictors, and checking for outlier or influential observations that distort the overall regression. Sometimes an outcome may be alternatively modelled by more than one sampling distribution or, for example by adopting one of several different transformations of the outcome. Thus a proportion based on large sample sizes may be modelled as normal as well as via a form (logit, probit, etc) designed for proportions. For binary data, one may also model the data in its latent metric form (Albert and Chib, 1993).  

Bayesian specification and MCMC estimation in linear and general linear regression modelling has several advantages. These include the ease with which parameter restrictions or other prior knowledge about regression parameters are incorporated (e.g. Chen and Deely, 1996), the ready extension to robust regression methods, for example, via scale mixing in normal linear regression to achieve downweighting of aberrant cases (Fernandez & Steel, 1999), the availability of simple regression model choice methods involving the selection of significant predictors (Chipman et al, 2001), and ability to monitor the densities of non-standard outputs such as functions of parameters and data. 

In estimating a regression model one usually specifies a probability distribution for the data y1,..yn such as a member of the exponential family (normal, Poisson, etc). The Bayesian approach additionally necessitates one to specify the prior distributions of the regression parameters and whatever extra parameters the chosen density involves: the error variance in linear regression, selection indices in model choice applications (George and McCulloch, 1993; 1997), degrees of freedom in Student t regression (Geweke, 1993), etc. For example, consider a simple linear regression with a univariate normal outcome y and p-1 predictors apart from the constant xi1=1

           yi=(1+(2xi2+…+(pxip+ei




(4.1)

with homoscedastic errors, ei ~ N(0,(2), or equivalently

            yi ~ N((i,(2)






(4.2)

            (i= (1+(2xi2+…+(pxip
With (=((1,…(p), priors then specify the form of density assumed for (=((,(2). A linear Student t regression for continuous responses includes a degrees of freedom parameter (, with  yi ~ t((i,(2,(). 

Many analyses assume reference or just proper diffuse priors for the parameters of (4.1)-(4.2). However, a model building on prior knowledge might base priors on the regression parameters using elicitation procedures (Kadane et al, 1980; Kadane and Wolfson, 1988; Garthwaite and Dickey, 1988), or subject matter knowledge, for example, in specifying the sign of a regression effect or its range. This is often the case with economic analysis, for example with coefficients representing marginal propensities to consume or invest. One way of incorporating prior knowledge involves devising prior means for notional observations (Laud & Ibrahim, 1995). For example, in a logit regression with a single predictor

                 yi ~ Bin((i,ni)

                 logit((i)=(1+(2xi
it may be easier than eliciting priors on the ( coefficients to specify prior expectations in terms of expected success probabilities  eq \O((,~)1, eq \O((,~)2 specified for two different values of x. This conditional means prior (CMP) amounts to specifying prior data points (Bedrick et al, 1996; Christensen, 1997). A related device when there is parallel or historical data closely resembling the sample data is to use power priors (Chen & Ibrahim, 2000); this approach can be seen as a form of meta-analysis but with downweighting of the parallel data.

A major question in regression, as in other statistical models, is that of empirical identifiability and robustness: namely, are the data sufficient to precisely identify a complex model involving several influences on the response, and are the estimates for that model robust to changes in prior specification or to the influence of particular sample observations. Poor identification may be apparent in slow convergence or low parameter precisions. Identifiability is also related to the information included in the priors on the model parameters. Thus a regression model with a flat likelihood over one or more parameters can be made more identifiable by adding more information in the priors – ridge regression being a particular example of this (Lindley and Smith, 1972; Hsaing, 1975). 

One source of weak identification is multicollinearity between multiple predictors (p > 2) and consequent difficulty in selecting a parsimonious model based on a subset of regressors. Exact multicollinearity exists when the X matrix of dimension nxp has rank less than p, namely if there are exact linear relations between the explanatory variables: in this case the matrix X(X has determinant zero and cannot be inverted. In practice what is often observed is that the matrix X(X is close to singularity and slight changes in the X matrix, for example omitting one or two observations or an explanatory variable, can produce large changes in the regression coefficients.

Convergence in MCMC regression applications will be related to identifiability but may also depend on the form of the parameters and variables. Correlations between regression parameters may be reduced and MCMC convergence improved by taking centred forms of the independent variables; this is sometimes known as an orthogonalizing transformation (Naylor and Smith, 1988; O’Hagan et al, 1990). 

Regression results may also be affected by influential observations and outliers, which are aberrant in terms of the majority associations between outcome and predictors. Special  techniques such as mixture regressions (see chapter 6) may then be used. Alternatively robust regression methods using heavier tailed densities than the normal may be used to identify such cases and reduce their influence on parameters (West, 1984).

When there are real departures from asymptotic normality in the distribution of regression parameters, the Bayesian sampling approach will better represent the actual or exact posterior density of the parameters. Thus Zellner and Rossi (1984) and Dellaportas & Smith (1993) show how the asymptotic normality assumption may be violated in small sample estimation of logit regression, so that the maximum likelihood standard errors will be incorrect. 

4.2 The normal linear regression model

The linear regression model (4.1)-(4.2) describes the relation between a univariate metric outcome yi (i=1,..,n) and one or more predictors variables xi=(xi1,xi2,...xip) including an intercept xi1=1. The x variables are assumed fixed or if they are stochastic are assumed to follow a density with parameter ( independent of the regression model parameters ((,(2). Hence p(y,X|(,(2,()=p(y|X,(,(2)p(X|(). The regression model needs therefore only consider the conditional density p(y|X,(,(2). This model has wide applicability for situations where the predictors are either (a) levels, or functions of levels, of continuous variables such as height, income, etc, or (b) binary indicators taking the value 0 or 1 according to the presence of an attribute, or (c) categorical factors, indicating which of one of several categories case i belongs to (e.g. of a medical treatment or political party). In this way applications such as analysis of variance and covariance amount to forms of regression model. 

Major interest with normal linear regression focuses on updating prior knowledge about parameters with the observations, and often in predicting future responses based on future values of x, either known or hypothetical. The linear model is an approximation involving assumptions of linearity, normal errors and constant variance, and with the same effect of predictors across all subjects. In practice departures such as outlier points, nonlinear effects of predictors, nonconstant error variances, or heavy tailed or skewed errors will suggest modified models.

Suppose the variance 2 is known, with precision =1/2. Also let y denote the nx1 column vector of responses, X the nxp matrix of predictors, ( the p(1 regression parameter vector, and set

                 b=(X(X)-1X(y 

namely the least squares regression estimate. Then (4.1) becomes y=X(+e with likelihood proportional to 

                exp[-0.5(y- X()((y- X()]                     


Writing y-X(=y-Xb+Xb-X(=y-Xb+X(b-), the likelihood is equivalently proportional to

                exp[-0.5{(y-Xb)((y-Xb)+(-b)X(X(-b)}]



since the cross product term (y-Xb)((b-) is zero from the definition of b. Regarded as a function of the variable , the last expression is proportional to a multivariate normal density function for  with mean b and covariance (X(X)-1. 

Assuming a normal proper prior for  with mean b0 and covariance B0 (precision T0=B0-1), the product of prior and likelihood will be normal after regrouping terms in the exponent. This product has an exponent equal to –0.5 times 

(-b)X(X(-b) + (-b0)B0(-b0)

      = (X(X) - 2(X(X)b + b(X(X)b + T0 - 2T0b0 + b0T0b0
      = (X(X +T0) - 2(X(Xb + T0b0) + b(X(X)b + b0T0b0
      =(-)(X(X+T0)(-) + terms not involving 
where 

        =(X’X+T0)-1(X’Xb+T0b0) 


is a precision weighted average of b and b0. So the posterior density of  is normal with mean  and covariance (X’X+T0). The form of (( suggests that multicollinearity may be reduced, either by incorporating prior information from previous studies or subject-matter considerations, so that the matrix X(X+T0 is less subject to singularity.

4.2.1 Unknown Regression Variance

When  is unknown, the likelihood L((,(|y) is proportional to

     (s2n/2 exp[-(y-Xb)((y-Xb)/2]   exp[-(-b)(X(X(-b)/2]

          =  (s2n/2 exp[-(n-p)s2/2]  exp[-(-b)(X(X(-b)/2]


where 

                 s2=(y-Xb)((y-Xb)/(n-p) 





is the moment estimator of the residual variance. A possible reference prior for ((,(2) is 

                  p((, (2) ( 1/(2 





        

which is equivalent to a uniform (flat) prior on {(,log(()} (Lee, 1997; Gelman et al, 2004). The corresponding joint posterior distribution p((,(|y) is then proportional to

       {((n+1)/2 exp[-(n-p)s2(/2]} {exp[-0.5((-b)X(X(-b)]}
(4.3) The second term in (4.3) shows that the conditional posterior p((|y,() is multivariate normal with mean b and precision (X(X)(. The first term is a marginal posterior for ( which is a scaled chi-square (s2(eq \O(2,() with (=n-p degrees of freedom. So the joint posterior can be factored

          p((,(|y) = p((|y) p((|y,()

Integrating out (, it can be shown that the marginal posterior density of ( is a multivariate t with mean b, precision (X(X)(, and (=n-p degrees of freedom. A normal linear regression may therefore be implemented by sampling directly from this multivariate t form, without involving MCMC estimation. 

While reference priors are advantageous in ‘letting the data speak for themselves’ they will not be suitable when formal model choice via Bayes factors is required. A typical proper prior involves prior independence between ( and (2, with multivariate normal ( ~ Np(b0,B0) on the regression coefficients, with b0 taken as known, and precision T0=B0-1. The matrix B0 may be assumed diagonal, equivalent to specifying separate univariate normal priors on the regression coefficients. There is considerable debate about suitable priors for ( or (2. For example, the prior may be set on some transformation of (, such as a uniform prior on log(() or ( (Gelman et al, 2004). Taking ( ~ Ga((0/2,(0/[2(0]) where (eq \O(2,0)=1/(0 is a prior guess at the variance and (0 measures strength of belief in that guess, one has

         p((,(|y) ( p(y|(,()p(() p(()

                        ( ((n/2+(0/2-1)exp(-((0/[2(0])

                              exp[-0.5{((y-X()((y-X()+((-b0)T0((-b0)}    (4.4)

from which full conditionals needed for MCMC sampling are obtained. Thus define   Bu=(T0+(X(X)-1 and (u=Bu(T0b0+(X(y), with Tu= Beq \O(-1,u). Then the term in the second exponential in (4.4) becomes

         ((-(u)Tu((-(u)+R

where R=(y’y + beq \O((,0)T0b0 - (eq \O((,u)Tu(u is independent of (. It follows that p((|(,y) is multivariate normal with mean (u and variance Bu. Considering p((,(|y) as a function of ( shows that

    p((|y,() ( ((n/2+(0/2-1)exp(-0.5([(0/(0+(y-X()((y-X()])

namely, a gamma density with parameters (u/2=(n/2+(0/2) and (u(eq \O(2,u)/2, where

         (eq \O(2,u) = [(0/(0+(y-X()((y-X()]/(u.

Prior interdependence between ( and (=1/(2 with p((,()=p((|()p(() provides the conjugate multivariate normal prior of dimension p (e.g. see Fernandez et al, 2001, p 388; Raftery et al, 1997, p 180), with prior mean b0  for (, and covariance (2B0, where B0 is known. Set B0=Teq \O(-1,0) and assume ( ~ Ga((0/2,(0/[2(0]). This is sometimes denoted as the normal-gamma prior joint density for ( and (, namely ((,() ~ NG(b0,B0,(0,(0). Then the updated density is

       (,(|y ~ NG((u,Bu,(u,(u)

where  

       Bu=(T0+(X(X)-1, 

       (u=Bu(T0b0+(X(y),

       (u=(0+n

       (u(eq \O(2,u)=(0(eq \O(2,0)+(n-p)s2+(b-b0)(Tu(b-b0).

where b and s2 are as above. 

With the normal-gamma prior and posterior, marginal densities p((|y), p((|y), predictive densities p(ynew|Xnew,y) and marginal likelihood                     p(y)=( ( p(y|(,() p((,()d(d(
are all analytically defined. This has the advantage of facilitating model search and model averaging. Thus (|y ~ Ga((u/2,(u/[2(u]) and (|y ~ t((u, (eq \O(2,u)Bu,(u) and 

        log[p(y)]=log(k)+0.5{log|Bu| - log|B0| - (ulog((u(eq \O(2,u))}
(4.5)

where 

        k={((0.5(u)((0(eq \O(2,0))(0/2}/{((0.5(0)(n/2}.

For prediction of new responses {y1,new,…ym,new}with new predictors in an m(p array Xnew, the model analogous to (4.1) is

          ynew=Xnew(+(new
where (new is independent of the error terms in the observed data model y=X(+(. It follows that p(ynew|(,(,y)=p(ynew|(,() and that

       p(ynew|y) = ( ( p(ynew|(,()p((,(|y)d(d(
The first term after the integral signs is a normal with mean Xnew( and precision ( while the second term is the normal-gamma posterior.  Integration leads to ynew|y ~ t(Xnew(u, (eq \O(2,u)[Im+X(newBuXnew], (u).

Among options proposed for the prior covariance between predictors is the Zellner g prior (Zellner, 1986), namely B0=g(X(X)-1, where X may be specified with standardized predictor variables, and where g is typically set large so that the prior does not outweigh the data. This is arguably not a data based prior because the X are known. Examples are g between 10 and 100 (Smith and Kohn, 1996) or g=max([p+1]2,n) as in Fernandez et al (2001). 

Another approach to specifying priors on regression coefficients in the normal linear model (and general linear models of all types) is to set them to ensure a Bayes factor that is insensitive to changes in the prior. Raftery et al (1997) propose proper data based priors for general linear models that are relatively flat over a range of plausible range of values for (j. For continuous predictors Xj, the priors on each (j are independent, with the priors on predictors other than the intercept being of the form (j ~ N(0,(2(2/Vj) (j=2,..p), where Vj is the empirical variance of Xj. So the priors on (j have increasing precision as the variance of Xj increases. The prior on the intercept is 

           (1 ~N( eq \O(b,)1,Vy) 

where Vy is the observed variance of y and eq \O(b,)1 is the ordinary least squares estimate of the intercept under a null model. The prior on ( has the form  (0(0( ~ (2((0). 

Raftery et al establish default values {(0=0.28, (0=2.58, (=2.85} for application in alternative model averaging strategies, one being the Markov chain Monte Carlo model composition (MC3) method of Madigan and York (1995). This is a stochastic process that moves through a space of several models {M1,..MK}, and relies on the availability of a simply computed estimate of the marginal likelihood p(y|Mk), such as in (4.5), to make moves between models. A Metropolis step is used under which the chain moves from the current model Mj to new model Mk with probability    

               (=min{1,Pr(Mk|y)/ Pr(Mj|y)}

The chain remains at Mj with probability 1-(. To reduce the range of new models Mk may be confined to models with one fewer or one more predictor than Mj. Noble et al (2004) consider the MC3 method  using the BIC approximation to the marginal likelihood, namely

    p(y|Mk) ( exp(-0.5BICk) 

                   = exp(-0.5nloge(1-req  \O(2,k))+dklog(n)

where dk is the number of parameters in Mk and req  \O(2,k) can be represented by various possible association measures.

Example 4.1 York rain

Lee (1997, p 169) considers data on rainfall in successive months in York (England) over n=10 years, 1971-1980. Specifically y is December rainfall and x is November rainfall in millimetres. Contrary to expectation, the association tends to be negative: a wet November is typically followed by a dry December. So with x centred,

           yi|xi ~ N((i,(-1)

            (i= (1+(2(xi-eq  \O(x,_)) 

Under the reference prior p((, (2) ( 1/(2, the posterior density of {(1,(2} is bivariate tn-2 around the least squares estimates. Here proper but diffuse N(40,1000) and N(0,1000) priors are adopted for (1 and (2 respectively and a just proper gamma prior is assumed for (, with ( ~ Ga(1,0.001). 

The second half of a two chain run of 50,000 iterations gives a 50% credible interval (i.e. from lower to upper quartile) for (2 of (150,302). This compares to an interval of (139,277) obtained by Lee. Lee also considers a prediction for December given a new November observation xnew of 46.1mm. The prediction of December rainfall for the new November observation is 42.5 with a standard deviation of 16.7; Lee has a smaller standard deviation of the prediction, namely 14.6. By contrast, the 50% interval for the slope is (-0.246,-0.077), the same as obtained by Lee. 

4.3 Normal Linear Regression: Variable and Model Selection, Outlier Detection and Error Form 

Formal comparison between normal linear regression models using Bayes factors is possible, and simplifies under the conjugate normal prior with analytic marginal likelihood as in (4.5). However, MCMC methods offer ways of model choice and averaging based on stochastic search algorithms that may be combined with other regression choice mechanisms, e.g. outlier detection, different links (for binomial and count data), and response and predictor transformation choice (George & McCullough, 1993; Hoeting et al, 1996, Clyde & George, 2004). These methods can be extended to augmented data models, e.g. for binary outcomes (Lee et al, 2003), which become normal linear models for the augmented data.

Consider Bernoulli distributed binary indicators (j, j=2,..,p relating to the inclusion ((j=1) or exclusion ((j=0) of the jth predictor (with the intercept always included). Kuo and Mallick (1998) and Smith and Kohn (1996) propose an unconditional priors approach whereby the prior for (j is independent of (j. Thus the linear regression model (4.1) becomes

                  yi = (1+(2(2xi2+(3(3xi3…+(p(pxip  + ei,            

The prior probability (j=P((j=1) may be preset, with the choice (j= 0.5 ensuring equal probabilities for the 2(p-1) possible models. Dellaportas et al (2000) note possible problems under this approach if a prior for any (j is overly diffuse compared to the posterior, so prior runs might be used to select moderately informative priors.

A MCMC run of length T provides marginal posterior probabilities that (j=1 (i.e. that Xj should be included in the regression model), while model averaged estimates of the regression parameters are provided by the posterior profiles of (j =(j (j. If the 95% intervals for (j straddles zero then the inclusion of a predictor is in doubt. Also obtained are posterior probabilities on each of the K=2(p-1) regression models. If models {M1,…MK} are visited T1,…TK times, where T=eq \O((,k)Tk, then posterior model probabilities are estimated as Pr(Mk|y)=Tk/T. An equivalent procedure selects a model indicator ( ( 1,2,…,K (corresponding to a particular predictor subset) from a multinomial probability vector with equal prior probabilities 1/K, or possibly with prior probabilities that take account of the size of the subset (Clyde & George, 2004; Wang & George, 2004). Thus model (=1 includes all predictors, model 2 excludes X1 only, model 3 excludes X2 only and so on till model j excludes all predictors apart from the intercept. 

George and McCullough (1993, 1997) propose a mixture prior as a basis for stochastic search over alternative predictor subsets (see chapter 6 for more extensive examples of discrete mixture priors). This is known as the stochastic search variable selection (SSVS) strategy, with conditional prior

               P((j|(j)=(jP((j|(j=1)+(1-(j)P((j|(j=0)          

whereby j has a relatively diffuse prior when (j =1 and Xj is included in the usual way, but for (j =0 the prior is centred at zero with high precision, so that while Xj is still in the regression, it is essentially irrelevant to that regression. For instance, if 

               (( j |(j =1) ~ N(0,Vj)

one might assume Vj large, leading to a prior that allows a search among values that reflect the predictor’s possible effect, whereas                        (( j |(j =0) ~ N(0,cj Vj)

where cj is small and chosen so that the range of (j under P((j|(j =0) is confined to substantively insignificant values. So the above prior becomes

             P((j|(j)=(j N(0,Vj)+(1-(j) N(0,cjVj)


(4.6).          

Selecting predictors alone may be giving a partial view on the best model subset as it is neglecting other aspects of the data. So predictor selection may be combined with outlier detection, link selection (in discrete GLMs), models for non-constant error variance, transformation selection and so on (Ntouzfras et al, 2003). For instance, outlier detection also often involves a mixture prior (the contaminated normal model) in which each observation is a potential outlier with a low probability ( and outliers have inflated variances (Verdinelli and Wasserman, 1991; Hoeting et al, 1996; Justel & Pena, 2001), so that

              P(yi|(,(2, (, () =(1-()N(yi|(,(2) + (N(yi|(,((2)

where (>1. Either ( or ( is preset (e.g. (=0.05, or (=10), since they are difficult to identify if both are unknowns. An alternative may be informative priors on both. For example, taking ( to be small, e.g. ( ~ U(0,0.1) and ( ~ U(2,3) allows protection against a low level of contamination (of up to 10% of the observations) and variance inflation in that contaminated component of between 4 and 9 times the overall level. Setting (small, e.g. (=0.01, and ( to have an essentially unrestricted ceiling, allows for a small number of extreme outliers. This may be combined with predictor selection (e.g. using SSVS), so that

        yi ~ N((i,Vi)








            (i = (1+(2(2xi2+(3(3xi3…+(p(pxip            

        P((j|(j)=(j N(0,Vj)+(1-(j) N(0,cjVj)



        Gi ~ Bern(()






(4.7)

        Vi = (2

if Gi=0

        Vi = ((2

if Gi=1.

Another possibility for outlier detection is to use Student t regression, 

achieved via scale mixing, whereby unknown weight parameters (i scale the overall variance or dispersion parameter(s) of the Normal (see Chapter 5). Non-normality in regression errors due to skewness can be modelled in combination with modelling heavier tailed errors (see Chapter 5). 

Heteroscedasticity may occur when the conditional variance is a function of the size of the fitted values (Boscardin and Gelman, 1996), so that 

             yi=(i+wi(i
where (i~N(0,1) and wi is a positive function of (i such as  wi = (1|(i|(2 . For heteroscedasticity is related to predictors (Aitkin, 1997; Cepeda and Gamerman, 2000) consider yi ~ N(Xi(,Vi) where log(Vi)=Zi( where Zij (j=1,..q) are predictors that may include some of the Xi, and Zi1=1. Homoscedasticity would be shown by values of {(j, j>1}, not clearly differing from zero.            

4.3.1 Other Predictor & Model Search Methods

Regression variable selection may also be based on separately running all models and considering predictive summaries or criteria (Meyer and Laud, 2002; Laud and Ibrahim, 1995). Marriott et al (2001) argue that a cross-validatory predictive approach (which they apply to normal linear regression) is most appropriate to a M-open setting (the models being considered are not necessarily taken to include the  true model) rather than an M-closed setting where the model set includes the true model – see also Bernardo and Smith (1994). 

Joint parameter-model space procedures such as that of Carlin and Chib (1995) can also be applied to regression selection. With two models, one defines not only ‘standard’ priors, (1(() and (2((), (where (j are error precisions) but pseudo-priors (1(() needed when model 2 is chosen, and (2(() on (() when model 1 is chosen. These are linking densities needed to completely define the joint model, and ideally approximating the posterior densities p((y) and p((y); so they might be estimated from initial single model runs. The standard priors may be taken as much less informative, but mildly informative priors are needed for sensible Bayes factor interpretation. Suppose a single model run provides estimates of a regression vector {,(1}  namely mean be variances e and precisions eTo obtain the pseudo-prior (1(),  one might scale e by a factor f set close to unity, while for the standard prior the precision is reduced by a factor g << 1 giving precisions fge in (1(,(1). The choices (f,g) can be varied to identify sensitivity to prior specification, or taken as unknowns; a typical pair of values might be {1,0.001}.

Dellaportas et al (2000, 2002) develop a Gibbs variable sampling (GVS) method combining the Carlin-Chib and unconditional priors approach to predictor selection, whereby Xj is included when (j=1 and the conditional prior on (j is

            P((j |(j) = (j N(0,Vj) + (1-(j)N(bej,Bej)

where Vj is chosen to allow unrestricted parameter search and {be,Be} are obtained from a pilot run. For any particular MCMC iteration, let (( denote the parameters for included predictors, and ([(] the parameters for excluded predictors; similarly let ([j] be inclusion indicators other than (j. Then Dellaportas et al (2002, p 30) describe the links between the full conditionals P(((|y,(,([(]), P(([(]|y,(,(() and Pr((j=1|([j],(,y)/ Pr((j=0|([j],(,y) under the Kuo-Mallick, GVS and SSVS alogorithms.

Example 4.2 Variable Selection with Simulated Data.

This example follows George and McCulloch (1993) in generating a sample of 60 Normal linear outcomes yi as follows:

                           yi = x4i + 1.2x5i + ei
where x1,x2,x3,x4 and x5 are distributed as N(0,1), and the ei are N(0,6.25). A variable selection model with all five predictors potentially included or excluded (and with no intercept), is then applied, namely:

                            yi~N((i,(2)

                            (i=(1(1x1i+(2(2x2i+(3(3x3i+(4(4x4i+(5(5x5i.

Model selection is based on the SSVS discrete mixture form (4.6), with Vj=10 (all j) and cj=0.01, but instead of the full version with 25=32 possible choices, choice is confined to K=12 options: 

           all included (i.e. x1,x2,x3,x4,x5);

           none included;

           x4 and x5 only; 

           x4 only;

           x5 only; 

           (x1,x2,x3) but neither x4 nor x5;

and then the six options formed by retaining either one or two from (x1,x2,x3) in addition to (x4,x5). This is achieved by aligning the discrete model indicator with the subset of (j=1 appropriate to the each particular one of the 12 models.  

A prior probability of 1/12 is adopted for each of these options. The 2nd half of a two chain run of 20,000 iterations provides relative sampling frequencies on each of these options which enable calculation of Bayes factors on the possible models. The relative frequencies in percent terms are (1.1,0.6,34.1,11.9,1.6,0,6.8,5.6,27.5,1,5,4.9), so the combination (x3,x4,x5) is selected in 27% of the iterations, the true model (x4,x5) in 34%, and x4 alone in 12%, though the model with x5 alone is supported infrequently. The option (x1,x2,x3) is selected only 4 times out of 20,000.

Example 4.3 Joint Space Model Choice with the Hald Data.

The Hald data on heat evolved in a chemical reaction are often used in studies of variable selection; they are reproduced in Draper and Smith (1980) who also give results on a range of possible models for the data. There are n=13 cases, and four predictors (apart from the intercept) denoting inputs to the reaction. Draper and Smith identify two models with just two predictors which have high explanatory power. These are, with constant x1 included, (x1,x2,x3) and (x1,x2,x5). Here these form models 1 and 2 with respective regression parameters ( and (, and error precisions (1 and (2. 

Initial single model runs provide estimates of {bej,Bej; j=1,2} for defining the pseudo priors which assume independent priors for the parameters. A pilot run on model 1 give the following estimates, with standard errors, for the regression parameters on  (x1,x3,x3): 53 (2.7), 1.47 (0.12), and 0.66 (0.05). So the standard prior (1((1) on ( is set as ( ~ N(53,1/() where ( = [fg/(2.7*2.7)]. The pseudo prior (1((1) on ( is N(53, 1/) where ( = [f/(2.7*2.7)]; a similar process is used for the other two ( coefficients and for the coefficients in (. Initially f is set to 1, and g to 0.001.

The estimated means (SDs) of the precisions (j from the pilot runs are 0.17 (0.07) and 0.13 (0.06), so pseudo-priors on the error precisions are set to be Ga(4.8,28.7) and Ga(4.8,35.7) densities. The standard priors on (j are Ga(1,0.001) densities. 

Taking equal prior model probabilities of 0.5 in a two chain model choice run of 20000 iterations (and burn in of 5000) results in a posterior probability on model 2 of 0.167. Changing the parameters (f,g) successively to (1,0.002),(1,0.01), and (1,0.02) gives model 2 probabilities of 0.168,0.166 and 0.166. So there is slight evidence in favour of model 1 with (x2,x3) as predictors. This is broadly consistent with the least squares evidence in Draper and Smith (1980) which gives model 1 an R2 of 97.9% and model 2 an R2 of 97.2%. The Monte Carlo standard deviation of the model 2 probability can be obtained from the binomial formula as (0.167 x 0.833/30000)0.5 = 0.0022.

Example 4.4 Stack Loss Data: Model (Predictor) Selection and Outlier Detection

These data, also much analysed, illustrate both predictor redundancy and observation outliers. They relate to percent of unconverted ammonia escaping from a plant during 21 days of operation in a stage in the production of nitric acid. The three predictors are: x2, airflow, a measure of the rate of operation of the plant; x3, the inlet temperature of cooling water circulating through coils in a counter-current absorption tower and x4, which is proportional to the concentration of acid in the tower. Small values of y correspond to efficient absorption of the nitric oxides. Previous analysis suggests x4 as most likely to be redundant and observations {3,4,21} as most likely to be outliers.

Here two methods for variable selection are considered and combined with outlier detection as in (4.7), with (=0.1 and (=7. The assumed priors for (j are N(0,1000), while (1 ~ N(20,1000) and 1/(2 ~ Ga(1,0.001). The product of the selection indicator and the sampled value of the coefficient is denoted (j =(j (j.

In the first model, variable selection is based on binary indicators (j ~ Bern(0.5), j=2,..,4.  A two chain run of 10000 iterations (1000 burn-in) shows highest posterior probabilities of outlier status for observations 4 and 21, namely 0.74 and 0.94, as compared to prior probabilities of 0.10.  The posterior probabilty that (2=1 is 1 (relating to the first predictor x2), while those for the second and third predictors are 0.47 and 0.04.  While the posterior density of (2 is clearly confined to positive values, those for (3 and (4 straddle zero. One may obtain Bayes factors on various models by considering the K=23 models corresponding to combinations of (eq \O(j1,(t))=1 and (eq \O(j2,(t))=0 and accumulating over the iterations.

The other option is a re-expression of the first but differs in explicitly specifying a discrete prior over the 8 possible models formed by including/excluding the three predictors, with a prior probability of 1/8 on each. The posterior model probabilities are highest (0.55 and 0.45 respectively) on the models 1+x2 and 1+x2+x3. 

4.4 Bayesian Ridge Priors for Multicollinearity 

In observational studies, the data generated by uncontrolled mechanisms may be subject to biases not present in controlled experiments. The most common problem is interrelationships among the independent variables that hinder precise identification of their separate effects. In such circumstances, regression parameters will tend to exhibit large sampling variances, perhaps leading to incorrect inferences regarding their significance, and there will be high correlations between parameters. Possible solutions to multicollinearity include

- the introduction of extra information, for example via prior restrictions on the parameters based on subject matter knowledge

- the multivariate reduction of the set of covariates (e.g. by principal components analysis) to a smaller set of uncorrelated predictors

- ridge regression (e.g. Marquardt & Snee, 1975), in which the parameters are a function of a shrinkage parameter k>0, with least squares estimate

           b(k) = (X(X + kI)-1X(y.

This will induce bias (which increases with k) but yield a more precise regression parameter estimate. 

The ridge regression approach is closely related to a version of the standard posterior Bayes regression estimate, but with an exchangeable prior distribution on the elements of the regression vector. Thus in y=X(+(, with ( ~N (0,(2), assume the elements of ( are drawn from a common normal density

            (j ~ N(0, (2/k)         j=2,..p



where a preliminary standardisation of the variables x2,..xp may be needed to make this prior assumption more plausible. The mean of the posterior distribution of ( given y is then (Hsaing, 1975)

           ( = (X(X + kI)-1X(y. 

If the prior on ( specifies a location, as in

           (~N((,(2/k) 

then the posterior mean of ( becomes

           ( = (k/(2 + X(X/(2)-1(k(/(2+ X(y/(2).

One may set a prior on k so that it is updated by the data, or on the ratio of (2 to k, or assess sensitivity to pre-specified fixed values. Estimates for k may be based on the least squares regression coefficients bs of y on standardised predictors (Birkes and Dodge, 1993), and might be used to form the basis for a prior on k. The extremes k (0 and k ( ( correspond respectively to diffuse priors for (j, and (j=0 with certainty. So a SSVS variable selection ridge prior might be specified 

               ( j |( j ~  ( j N(0, (2/k1) + (1-( j )N(0, (2/k2)

with k2 >> k1 and at least one being a free parameter. 

One might also as in generalized ridge regression (Walker & Page, 2001; Maruyama & Strawderman, 2005), specify the ridge parameters to be different but follow an exchangeable prior, e.g. 

             ( j  ~ N(0, (2/exp((j))         j=2,..p



with (j=log(kj) taken to be multivariate normal. 

Example 4.5 US Consumption and Income

Judge et al (1988) present data originally analysed by Klein and Goldberger (1955) on the relation of total US domestic consumption (y) to wage income (x1), nonwage-nonfarm income (x2) and farm income (x3). The time series spans 1921-41 and 1945-50. Assume

             y=X(+e

where e ~ N(0,(2). Least squares estimates of the regression coefficients show an incremental effect (1 of wage income on consumption of 1.06, implying that a one dollar rise in income generates more than one dollar extra spending, whereas on subject matter grounds a marginal propensity to consume is expected to be between 0 and 1. The effects of the other two variables appear non-significant though subject matter knowledge would suggest otherwise.

One approach to obtaining more precise estimates is to introduce restrictions on the parameters. Thus Klein and Goldberger assumed that the wage effect on consumption ((1) exceeds the other effects, and that (2>(3. (In fact they assumed (2=0.75(1 and (3=0.625(1).

Introducing only the order constraint (1>(2>(3 does not improve the estimation. In fact, the coefficient (1 becomes more in excess of one. However, introducing also the knowledge that income-consumption effects are positive and lie between 0 and 1 leads to posterior estimates on all the coefficients (Table 4.1) in accordance with economic theory expectations (using the 2nd half of a two chain run of 10000 iterations)

Table 4.1 US Consumption and Income; (1 Constrained 

Parameter
Mean
St devn
2.5%
97.5%


0.95
0.04
0.86
1


0.71
0.18
0.29
0.95


0.39
0.22
0.03
0.8

To introduce an exchangeable prior on the (j, it is assumed that k ~ Ga(1,1) and 1/(2 ~ Ga(1,0.0001).Then the precision of (j is k/(2. This model converges quickly and inferences are based on iterations 500-10,000 of a two chain run. This also leads to substantively more sensible estimates for (1, but with low precision for (2 and (3 (Table 4.2). Judge et al (1988, p 882) find a similar result (in terms of low precisions except on (1) though report a lower value of k.

Table 4.2 US Consumption and Income; Ridge Regression

Parameter
Mean
St devn
2.5%
97.5%


0.95
0.18
0.58
1.29


0.64
0.68
-0.68
1.99


0.71
1.10
-1.45
2.91

 k
0.38
0.31
0.05
1.21

4.5 General Linear Models

The general linear model embeds the normal linear model within a framework that includes both metric and discrete outcomes. Assume that continuous or discrete outcome data y1,..yn follow a distribution drawn from the exponential family (Chen et al, 1999; Dellaportas & Smith, 1993)

      f(y|(,() = exp{[y(-b(()]/a(() + c(y,()}

where a(), b() and c() are monotonic, ( is the canonical parameter, and ( is a non-negative scale parameter. The mean and variance functions are given by b((() and b(((() respectively, with (i=h((i)=h( eq \O((,k=1,p)(kxik) and g=h-1 is known as the link function.  For example, a normal density with mean (,variance ( and identity link can be written

        N(y|(,() = (2(()-0.5              exp[-0.5(y-()2/(]

                       = exp(-0.5log[2((] -0.5(y2+(2-2(y)/(]

                       = exp{ [y(  - 0.5(2] /(   -0.5(y2/(+ log[2((])}

so that b(()=0.5(2, a(()=( and c(y,()= -0.5(y2/(+ ln2((). Then the mean is b((()=( and the variance function is b(((()=1. For a Poisson density yi ~ Po(e(i), a comparable procedure taking (i=(i gives b(()=e(i, and c(y,()=-ln(y!), so that b((()=e(i and var(y)= e(i also.  

4.6 Binary and Binomial Regression

A major class of general linear model is for outcomes measured on a binary scale or aggregated over binary events to give binomial data. Suppose yi denotes a binary outcome for case i, i=1,…n, with (i = Pr(yi=1). Alternatively suppose the data yi are binomial among ti cases with common predictors Xi, yi ~ Bin(ti,(i). For both binary and binomial regression it is generally assumed that (i=F(Xi() where F(.) is a distribution function and so lies between 0 and 1. The inverse of F, g=F-1, is the link function relating the probability of success to the regression term, namely g((i)= Xi(. A frequently used form for F is the standard normal cumulative density where

              (i = F(xi() = 1/(2()0.5 ( eq  \O(Xi(,-()  exp(-t2/2)dt = ((Xi()


where ( denotes the cumulative probability function of a standard normal variable. The coefficients (j represent the change in standard units of the normally distributed variable per unit change in xij. The link function g=F-1 is then the probit. 

Also frequently used to model a binary outcome is the distribution function of the logistic density F(t)=et/(1+et), so that

              (i = F(Xi() = 1/ (1+ e-Xi()


             

with g= F-1 being the logit, namely  logit((i) = log((i/{1-(i}) = Xi(. Dellaportas and Smith (1993) demonstrate log-concavity of the full conditionals on ( in this model, so enabling Gibbs sampling via adaptive rejection. 

Also sometimes used is the link function derived from the cdf of the extreme value distribution,

              F(u) = 1-exp(-exp(u))

The inverse of F is then the complementary log-log function

              log{-log(1-(i)} = Xi(.

The probit and logit links are symmetric about (=0.5, and satisfy g(()=-g(1-(), whereas the complementary log-log link allows asymmetry, tending to 1 faster than it tends to zero. Where there is uncertainty about the best link, one may average over different links, which is relatively straightforward using the augmented data method  (Albert & Chib, 1993) – see section 4.7.

4.6.1 Priors on Regression Coefficients

Setting priors for binary regression parameters follows similar principles as for those in normal linear regression. Assuming flat priors may have analytic advantages (O’Hagan et al, 1990). Alternatively, separate univariate normals (j~N(0,Vj) where Vj are known may be assumed, or a multivariate normal prior on ((1,..(p). Note that priors on regression parameters permitting a wide range of values may lead to numerical problems if a large change in value of the total regression term results from certain combinations of parameter and covariate values. In epidemiological and clinical applications diffuse priors on (j may be incompatible with known (i.e. evidence based) variations in relative risk associated with predictors. 

Obtaining an impression of the relative risk may therefore be important in such applications. Consider a binary risk factor, and let E and eq \O(E,_) represent exposed and non-exposed subjects and D and eq \O(D,_) be those with and without a disease. The association between a risk factor and a disease is most easily conveyed by the risk ratio or relative risk (RR), namely
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whereas exp((j) in a logistic regression measures the odds ratio (OR), namely   
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Prior information on risk is simpler to express in relative risk form, though for rare diseases, with P(D)=Pr(y=1) under 0.10, the two measures are similar, since P(eq \O(D,_))(1. A good approximation even for non-rare diseases is (Zhang & Yu, 1998)    

           RR=OR/[1-P(D|eq \O(E,_))+ OR(P(D|eq \O(E,_))].

Procedures have been suggested for providing a relative risk directly, for example using a binary regression with a log link (Nijem et al, 2005) or applying a Poisson regression to the binary data (Zou, 2004) (see Example 4.6). 

One may also introduce prior evidence on relative risk by eliciting the likely success rate associated with various combinations of covariate values (Bedrick et al, 1996). Suppose there is a single covariate, and one selects r=2 indicative values are selected from within the observed range of the covariate. For each of these values the probabilities of success, s1 and s2, are elicited, and measures of certainty on these guesses (prior sample sizes), C1 and C2 This is equivalent to adding C1+C2 prior data points.  Suppose Pr(y=1|x) is the annual risk of heart attack on the basis of a binary covariate for hypertension status, and the elicited risk is s1=0.1 for x=1 and s2=0.02 for x=0, with these estimates rated as worth one data point each, C1=C2=1. This information is converted into a prior beta density for r probabilities, with respective parameters Cisi and Ci(1-si), i=1,..r  (see Example 4.7). 

A related procedure (Meyer and Laud, 2002) involves a prior prediction for the mean response. In particular a conjugate priors for ( takes the form of a logit regression

       g((1,…(p|(0, (0) ( exp{eq \O((,i)(0[(i0[Xi(]-log(1+exp[Xi(])]}

where (i0 is an elicited probability for (i based on the predictor vector Xi and 0 <(0 ( 1 measures the strength of belief in the elicitation. The power prior method as applied to binary regression (Chen et al, 1999) may involve actual historic data D0={y0,X0} such that the prior for ( conditions on D0 with

   g((1,…(p|D0,(0, (0) ( exp{(0 eq \O((,i) (yi0Xi0(-log(1+exp[Xi0(]))} P(() 

where (0 is an unknown with a beta prior that weights the prior data relative to the likelihood of the current study.

Predictor and outlier selection for binary and binomial regression may follow a similar process to that in section 4.3. For example, a model allowing for predictor selection and outlier detection in a logit binary regression could be based on shifted intercepts, as in 

        yi ~ Bern((i)








            logit((i) = bGi+(2(2xi2+(3(3xi3…+(p(pxip,            

        P((j|(j)=(j N(0,Vj)+(1-(j) N(0,cjVj)



        Gi ~ Categoric((1,(2,(3)




        b1=(1-(

(when Gi=1)

        b2=(1 

(when Gi=2)

        b3=(1+( 

(when Gi=3)

If the tail selection probabilities are set, as in (1=(3=0.025 (say) then ( may be an extra unknown parameter. The ratio of  max(P(Gi=1|y),P(Gi=3|y) to 0.025 is a measure of outlier status.

4.6.2 Model Checks

Gelman et al (2000) consider posterior predictive checks to assess discrepancies between the model and the data – as distinct from detecting outliers from an otherwise acceptable model. This involves sampling replicate responses yrep,i and comparing discrepancy statistics T(yrep, () and T(y,(). These include analysis of binned residuals where subjects are formed into groups (e.g. based on similar patterns of predictor values) and residuals averaged within groups to provide approximately symmetric distributions for residuals yrep-X( and y-X(.

The search for robust or resistant fits in general linear models extends to consider outlying points in the design space (of the X variables) as well as outlying responses (y). Logistic models may be especially sensitive to such outliers, and regression coefficients may be sensitive to particular points with unusual configurations of design variables, xi2,..,xip. To detect such points, estimates of the regression coefficients β when all cases are included may be compared with the same coefficient estimate β[i] when case i is excluded (Weiss, 1994; Geisser, 1990). The differences

               Δβj[i] = βj - βj[i]         j=2,..,p 

may then be plotted in order of the observations. A cross-validatory approach to model assessment omitting a single case at a time therefore has the advantage not just of providing a pseudo marginal likelihood and pseudo Bayes factor (Gelfand, 1996), but of providing a measure of the sensitivity of the regression coefficients to exclusion of certain observations. One may obtain posterior summaries of the Δβj[i], ascertain which are most clearly negative or positive, and so produce the most distortion of the all cases estimate β. 

Example 4.6 Diabetes Control & Complications Subset

This example uses the data considered by Zou (2004) to illustrate a modified Poisson  regression to estimate relative risks as opposed to odds ratios. The exposure of interest is intensive treatment vs standard therapy (x2=0 and 1 respectively) in relation to the occurrence or otherwise of microalbuminuria after 6 years follow-up; the data are originally analysed by Lachin (2000). Other predictors for the n=172 diabetic patients are the percent of total hemoglobin that is glycosylated at baseline (x3), the prior duration of diabetes in months (x4), systolic blood pressure (x5) and gender (x6=1 for female).

To compare odds ratios for microalbuminuria between treatments with relative risks,  binary regression under both logit and log links is applied. N(0,1000) priors are assumed on the regression coefficients and predictors scaled to reduce the chance of numeric overflow. The posterior mean for the odds ratio for the control vs. new treatment (from the last 4500 iterations of a two chain run of 5000 iterations) is 5.85 with 95% interval 2.3 to 13.3. The posterior density for this parameter shows positive skew, whereas that for the log odds ratio (the parameter (2) is symmetric. By contrast, a log link provides a mean relative risk of 2.98 (median 2.81) with 95% interval 1.61 to 5.23. 

Example 4.7 O-ring failures by temperature

Christensen (1997) presents an analysis of 23 binary observations of O-ring failures yi in relation to temperature xi in Fahrenheit (from 30,32,34.. up to 80 degrees). The conditional means prior proposed by Christensen takes r=2 such that for a low temperature of 55 degrees the probability of failure is  eq \O((,~)1 ~ Be(1,0.577). This gives an approximate probability of 2/3 that the failure risk  eq \O((,~)1 exceeds 0.5. For a higher temperature of 750F the prior probability is assumed to be  eq \O((,~)2 ~ Be(0.577,1). These two prior probabilities are used to determine {(1,(2} by solving the expression 

            logit((i)=(1+(2xi. 

If there were three regression parameters and another covariate wi then a CMP might involve three probabilities at different paired values of x and w. 

Here less precise Be(0.1,0.058) and Beta(0.058,0.1) priors are adopted on  eq \O((,~)1 and  eq \O((,~)2 respectively, since they lead to more variability about the mean prior probabilities of 0.63 and 0.37 and have the advantage that the modal prior probabilities are not at the extremes 0 and 1. With temperatures centred, estimates of β1 and β2 from the 2nd half of a 10000 iteration two chain run are as in Table 4.3. They show a fall in risk of O-ring failure at higher temperatures.

Table 4.3 O-Ring Regression parameters, CMP Prior

Parameter
  Mean
   St dev
   2.5%
  97.5%

1
  -1.23
   0.62
  -2.53
   -0.10

2
  -0.28
   0.12
  -0.59
   -0.08

By contrast, a conventional logit regression with relatively diffuse priors, (1 ~N(0,100) and (2~N(0,10), leads to a similar posterior summary as in Table 4.4.

Table 4.4 O-Ring Regression parameters, Standard Prior

Parameter
  Mean
 St dev
   2.5%
  97.5%


  -1.26
  0.62
  -2.58
  -0.07


  -0.29
  0.13
  -0.59
  -0.09

The temperature below which the chance of an O-ring failure is at least 50% (the median ‘effective dose’ in centred temperature) is estimated as the mean of the sampled ratios -(1/(2= -4.30F (Collett, 2003), or 65.20F in terms of uncentred temperature. In general the formula for these ‘effective dose’ parameter at a particular percentile ( is ED=[F-1(()-(1]/(2 where ( is between 0 and 1.

The sensitivity of inferences to particular observations can be examined from divergences in failure rate predictions resulting from deleting one case at a time from the full set of 23 observations. Thus we first estimate the model, and predict for 11 x-values ( 31,33,..510F), omitting the 1st observation and using data {y2,..y23;x2,..x23}. The predictions of O-ring failure (with case k omitted) for the 11 new points are denoted Peq \O(j,[k]) for j=1,..11. Omitting case 2 gives predictions Peq \O(j,[2]), and so on. These are compared with predictions based on retaining all 23 cases, denoted Pj (j=1,..11) via a Kullback-Leibler diagnostic, which for case i is 

          Di =   eq \O((,j=1,11) K(Peq \O(j,[i]) , Pj)

where K(r,s)=(r-s)[log(r-rs)-log(s-rs)]. This procedure is illustrated with statistics D1,D10,and D18. Case 18 has a high temperature but an O-ring failure is observed. The K-L divergence statistic (Table 4.5) confirms it as a potential outlier.
Table 4.5 Posterior mean predictions of O-ring failure at 11 new temperature values (31(,33(,etc,…51()  retaining all cases and with single case deletion

Predictions (all cases)
Predictions omitting cases 1,10,18

       Pj
0.972

0.969

0.965

0.960

0.954

0.947

0.938

0.926

0.912

0.893

0.869
Peq \O(j,[1])
Peq \O(j,[10])
Peq \O(j,[18])


0.953
0.982
0.992


0.948
0.979
0.991


0.942
0.976
0.989


0.936
0.972
0.986


0.928
0.968
0.983


0.919
0.962
0.979


0.908
0.954
0.974


0.895
0.944
0.967


0.878
0.932
0.957


0.858
0.916
0.944


0.833
0.896
0.925

K-L Divergence
0.128
0.059
0.341

4.7 Latent Data Sampling for Binary Regression 

MCMC sampling of binary regression models is simplified by considering latent data W (e.g. utilities, frailties) such that y=1 when W ( 0 and y=0 when W < 0 (Albert and Chib, 1993). The introduction of augmented data may also assist in residual analysis. The underlying comparative utility may be derived by considering the choice specific utilities Ui1 and Ui0 of options 1 and 0 with

      Uij= Vij+(ij = Xi(*j + (ij              
      Wi=Ui1-Ui0
The probability that option 1 is selected is then

      Pr(yi=1)=Pr(Wi > 0)=Pr((i0-(i1<Vi1-Vi0)

Assume (ij is normal with mean zero and variance (2 and define (=(*1-(*0. Then the comparison of utilities leads to a probit link with

         Pr(yi=1)=((Xi(/().

( and ( cannot be separately identified and so typically (2=1 is assumed. It is then possible to sample the latent differences Wi. Alternative forms for ( lead to different links (e.g. a type 1 extreme value density for ( leads to the logit link).

To replicate a probit regression Wi is constrained to be positive and sampled from a normal with mean Xi( and variance 1. If yi=0, Wi is sampled from the same density but constrained to be negative:

           Wi ~ N(Xi(,1) I(0,()           yi=1                       

           Wi ~ N(Xi(,1) I(-(,0)          yi=0

A sampling method to alleviate posterior correlation between W and ( is proposed by Holmes & Held (2006). 

Alternative links to the probit may be replicated by appropriate forms of sampling W. The logit link may be sampled directly

              Wi ~ logistic(Xi(,1) I(0,()           yi=1                  (4.8)

              Wi ~ logistic(Xi(,1) I(-(,0)          yi=0

where the logistic density logistic((,() with mean ( and scale parameter ( is

      f(x|(,() = ( exp(([x-(])/{1+exp(([x-(])}2.                       

with variance (2/(( where (2=(2/3. Note that the standard logistic density with mean 0 and variance 1 has the form

      f(x) =  (exp((x)/{1+exp((x)}2.

Groenewald and Mokgatlhe (2005) suggest a sampling mechanism which takes Ui uniform on (0,1) with yi=1 if (i=Xi( exceeds the logit of Ui. 

Alternatively the logit link may be approximated by sampling Wi from a Student t with 8 degrees of freedom (Albert and Chib, 1993). This can be implemented by constrained normal sampling, as for the probit, but with the precision of 1 replaced by subject-specific variances sampled from an inverse Gamma density:

                   Wi ~ N(Xi(,1/(i)  I(0,()           yi=1                   (4.9)

                   Wi ~ N(Xi(, 1/(i) I(-(,0)          yi=0                     

                   (i ~ Ga(4,4). 

Other mixtures are possible, for example taking (i ~ Ga((,() with ( as an unknown amounts to model averaging over an unknown link function. Fruhwirth-Schnatter & Kepler (2005) suggest augmented data sampling for the logit link using a ten point discrete normal mixture to approximate the type 1 extreme value error density.

One useful diagnostic feature resulting from this latent variable approach is that the residuals Wi-Xi( are nominally a random sample from the distribution F (Johnson and Albert, 1999). There are certain problems with testing goodness of fit for binary outcome data with classical analysis of deviance: for Bernoulli data, the deviance reduces to a function of the posterior mode/maximum likelihood estimate (Collett, 2003). So this approach assists in assessing outliers or other aspects of poor fit (Albert and Chib, 1995). Thus for the augmented data probit, the residual           

            (i=Wi- Xi(
is approximately N(0,1) if the model is appropriate, whereas if the posterior distribution of (i is significantly different from N(0,1) then the model conflicts with the observed y. For example, following Chaloner and Brant (1988) one may monitor the probability

           Pr(|(i|) > 2                                                       

and compare it to its prior value, which is 0.045. For the augmented data version of the logit as in (4.8), one monitors

           Pr(|(i|/ ( eq \O(0.5,)) > 2                                            

while for the logistic approximation by constrained normal sampling (4.9), one monitors

           Pr(|(i| ( eq \O(0.5,i)) > 2.                                            

The data augmentation method also facilitates application of the method of Chib (1995) for calculating marginal likelihoods via the relation log[P(y)]=log[P(y|()]+log[P(()]-log[P((|y)]. An estimate of P((h|y) at a high density point such as the mean (h=eq \O((,_) uses the relation

        P((|y) = (P((|y,W)P(W|y)dW

where W is a vector of normal latent data (under a probit link). Assuming a prior ( ~ Np(b,B), the conditional posterior P((|y,W) may be estimated (Albert and Chib, 1993) as  (|y,W ~ N(eq \o((,^)w,VW) where 

         eq \o((,^)w = (B-1+X’X)-1(B-1b+X’W) 

         Vw=(B-1+X’X)-1. 

Given t=1,…,T draws of the latent data vectors W(t), a Monte Carlo estimator for P(eq \O((,_)|y) is therefore provided by 

        eq \O(P,^)( eq \O((,_)|y) =  eq \O((,t=1,T)(( eq \O((,_)|eq \o((,^)

 eq \O((t),w), Vw)

where ( is the normal density function.

Example 4.8 SAT scores for maths students

An example of the latent variable approach to binary outcomes is provided by data from Johnson and Albert (1999) on grades obtained by 30 university students of maths. The grades are dichotomised such that grades C or higher correspond to success (yi=1) and failure (yi=0) corresponds to grade D or below. The binary outcomes are then related to a Math SAT score on college entry (SAT-M). It is assume that each student is characterised by a continuous latent performance variable Wi with a logistic or normal distribution centred on a linear function of the SAT-M score. 

Johnson and Albert pay particular attention to outlier detection, with observation 5 identified as a potential outlier: the student failed despite having a relatively high SAT-M score. The latent variable form with both logistic and probit links is applied. Thus the logit model is 

             (i= Pr(yi=1) = Pr(Wi>0) = 1-F(-(i)

             (i = (1 + (2 SATMi
where F is the logistic distribution function and SATM scores are centred. Two options for sampling the latent data are used. One is a direct translation of the mechanism that produces a logit link for Pr(y=1) by sampling Wi from a standard logistic. The other follows Groenewald and Mokgatlhe (2005). N(0,100) priors are assumed on the regression coefficients.

These sampling options gives similar results. The first gives (from the 2nd half of a two chain run of 100,000 iterations) (1=1.4, and a SATM coefficient of (2=0.067, with a standard error of 0.03. Examining the residuals Wi-(i shows observation 5 as having an average residual of –3.92 (s.d.=1.42), and a 0.59 probability of being the lowest residual. The logistic regression sampling using uniform variables gives a more precise estimate of (2, with mean 0.07 and standard deviation 0.026.

The latent variable probit model based on truncated sampling according to the value of y gives (0=0.74, and (1=0.038 (2nd half of 100 thousand iteration run). The probit residuals Wi-(i show observation 5 as having a 0.60 probability of being the lowest residual. 

Example 4.9 City Store Use

Wrigley and Dunn (1986) consider issues of resistant and robust logit regression for data on city store use, relating to 84 family households in Cardiff, with the response yi being whether or not the household used a city centre store during a particular week. The predictors are income (Inc, ordinal), household size (Hsz, for number of children) and whether the wife was working (WW=1 for working). Positive effects of income and working wife on central city shopping are expected, but a negative effect of household size. Wrigley and Dunn cite estimates from a maximum likelihood fit as follows (with standard errors in brackets)

                 logit(i ) = -0.72 + 0.14 Inc - 0.56 Hsz  + 0.83 WW   

                                   (0.91)    (0.23)      (0.19)         (0.54)

So the significance of the working wife variable is only marginal (i.e. income is significant at 5% only if a one-tail test is used).

Here we adopt mildly informative priors in a logit link model: N(0.75,25) priors on (Inc and (WW are taken in line with an expected positive effect on central city shopping of income and female labour activity, while a N(-0.75,25) prior on (Hsz reflects the expected negative impact of household size. From a 10,000 iteration 3 chain run the analogous equation to that above, with posterior standard deviations in brackets, is

                  logit(i ) = -0.56 +    0.39 Inc - 0.61 Hsz + 1.07 WW

                                    (0.97)     (0.25)      (0.20)         (0.59)

The 90% credible intervals on both the income and working wife variables are entirely confined to positive values, though this is not true for the 95% intervals. The highest deviance components are obtained for observations 5,55,58, 71 and 83. These points account for about 20% of the total deviance (minus twice the log likelihood, which averages about -50). The highest deviance is for case 55. Monte Carlo estimates of conditional predictive ordinates are lowest for cases 55 and 71, and highest for cases 54 and 69. 

A second analysis applies cross-validation methodology based on single case omission, for selected cases, namely 55, 71, 54 and 69. The differences between βInc and βInc[i] for income show that major changes in this coefficient are caused by exclusion of particular points. Exclusion of case 71 raises the posterior mean for (INC by over half its full data standard deviation, from 0.39 to 0.59. Exclusion of case 55 raises the posterior mean for (WW from 1.07 to 1.30. (Case 71 has no store use but is high income with wife working, while case 55 uses a store but is medium income and has a non-working wife). There might therefore be grounds for excluding such cases, as they figure as possible outliers and are influential on the regression. Other options to assess robustness of inferences may be preferable, which retain the suspect case(s) but downweight them via contaminated priors, or scale mixing combined with augmented data sampling for each case, as in (4.9).

4.8 Poisson Regression

As noted in Chapter 3, Poisson data may be in the form of observed counts in relation to expected counts Ei, as in disease mapping or hospital mortality applications (Albert, 1999) or as counts observed for certain exposure times ti (McCullagh and Nelder, 1989, pp 193-208). For Poisson count data with mean (i a link g() is needed to convert the linear predictor (i=(0+(xi onto a positive scale for (i. The link most commonly used is the loge transform, so that 

               g((i)= loge((i)= Xi( 

since the inverse link g-1 = exp is analytically simple. For data with exposures or expected counts Ei so that yi ~ Po((i), one may specify (i=Ei(i with regression                 

              log((i)= Xi(
or equivalently

               log((i)=log(Ei)+ Xi(.                    

Commonly data are overdispersed with regard to the Poisson and random effects mixing is needed (see section 5.6 in Chapter 5). For example, one may assume yi  ~ Po((iEi), and a conjugate prior (i ~ Ga((,(/(i) where (i=exp(Xi(). Conditional on ( and (, the posterior mean of (i is (yi+()/(Ei+(/(i). Albert (1999) presents approximate marginal likelihoods for comparing such a hierarchical model against the Poisson alternative defined as ((0. 

As for binary regression, diffuse proper priors, typically univariate or multivariate normal, are frequently adopted for Poisson coefficients. Ibrahim and Laud (1991) consider prior and posterior propriety for ( when flat and Jeffreys priors are assumed in Poisson regression. Priors on coefficients (j can be combined with priors on indicator variables to achieve predictor selection: for example, George et al (1996) consider adaptation of the SSVS procedure to discrete responses, while Clyde and DeSimone (1998) illustrate Poisson regression predictor selection using a reversible jump extension of the SSVS algorithm.

Methods have also been suggested to more directly include historic or elicited information. Bedrick et al (1996) conditional mean priors for Poisson coefficients involves eliciting a mean value (jr at r=1,..,R values of the jth predictor Xj and then including this information as implicit 'prior data' in the form of a gamma density. For a large number of covariates the mean values might just be elicited for a given number (e.g. p) of predictor combinations. Consider the case (i=Ei(i with log((i)=(1+(2Xi, where Xi  is standardised, and eq \O((,i)yi= eq \O((,i)Ei, so that the intercept (1(0.  Taking R=2, the relative risk ( might be elicited as 1.5 for x=1 but as 0.75 when x=-1. If one were willing to assign five prior observations to each of these elicitations then the CMP prior for ( is Ga(7.5,5) for x=1 and Ga(3.75,5) when x= -1. If there were two predictors, both standardised and both factors that increase relative risk, then one might set a separate prior for (1, and consider just two combinations (x1,x2)=(-1,-1) and (1,1) of the predictors at which to obtain elicitations for a CMP prior on ((2,(3). 

In related work, Meyer and Laud (2002) propose conjugate priors for ( in Poisson regression of the form

     g((1,…(p|(0,(0) ( exp{eq \O((,i)(0[(i0Xi(-exp(Xi()]}

where the (i0 are elicited means and (0 measures strength of belief in the elicitation. This forms part of a model selection strategy based on comparing replicate data predictions P(yrep|y,X) and actual data. 

4.8.1 Poisson Regression for Contingency Tables

In social surveys or censuses variables are typically categorical or in grouped form, even if originally metric (e.g. income bands). The interest then focuses on modelling counts accumulated in cross- classifications formed by two or more categorical variables. Consider a two-dimensional table with I row categories and J column categories, with yij as the count of respondents having attribute i of the row variable and attribute j of the column variable, with n=yij as the total sample size. In some situations there may also be an exposure Eij defined for each table cell, if say the yij were cumulations of health events by age i and sex j over different lengths of exposure time or populations. 

The aim is to model the structure of the IJ counts without necessarily assuming one variable is an outcome and the other a predictor. So for yij ~ Poi(ij), there are four types of influence on the means: the overall level of the counts, the differential effects of rows (i), the effects of columns (j), and the interaction effect ij of each combination (i,j). An alternative would be to condition on the grand total in the table, so that the yij are multinomial with cell probabilities (ij
                         yij ~ Mult(n,ij). 

where eq \o((,i)

eq \o((,j)(ij=1. Row or column multinomial sampling may also be applicable. A saturated model (including all possible interactions and main effects) for a two way table has 1+I+J+IJ parameters, more than the total cells IJ, and to identify the parameters constraints must be imposed. The corner system imposes constraints by setting one row effect and one column effect to a known value, such as 1=1=0. Also fixed are the first row and first column of the interaction parameters so that 1j=0 for all j, and i1=0 for all i, while interaction parameters in each separate row and in each separate column must sum to zero, iij=jij=0. In estimation via repeated sampling it is possible to estimate parameters subject to one form of constraint (e.g. the corner system) but calculate the equivalent parameters which would have been estimated had a centred system (the other possible form of constraint) been used.

For higher dimensional tables a saturated model, or a nearly saturated model with several sets of interactions included, may achieve a close fit at the expense of parameter redundancy (‘overfitting’) with a number of parameters being poorly identified (e.g. in terms of the ratio of posterior means to posterior standard deviations). A four dimensional IxJxKxM table (e.g. political affiliation by sex by age by social class) would have four sets of main effects {(1i,(2j,(3k,(4m}, six sets of two way interactions {(1ij,(2ik,(3im,(4jk,(5jm,(6km}, four sets of three way interactions {(1ijk,(2ijm,(3jkm,(4ikm} , and a four way interaction term (ijkm. Several interaction schemes involving reduced parameter sets have been proposed. 

In the two-way model the interaction term may be simplified to an ‘intermediate’ form, leading to ‘quasi-independence’ models – see Leonard (1975) and Laird (1979) for Bayesian treatments. For example ij might be expressed as the product of a row and column effects or scores (note that these are distinct from the main row and column effects), such as ij=ij. For identifiability one set of interacting parameters sums to zero and the other to 1, so that instead of (I-1)(J-1) free parameters describing the interaction pattern  there are only I+J-2.

Another scheme for off-diagonal patterns such as those in social mobility tables is the quasi-symmetry model (QSM) of Caussinus (1965) based on the observation that upward and downward status change tend to be parallel in the sense that short distance moves outnumber longer distance moves; this would be expected to produce (approximate) symmetry in a square table, namely ij(ji. Exact symmetry implies that row marginal totals i+ equal column marginal totals +i, a pattern known as ‘marginal homogeneity’. 

The quasi-symmetry model retains interaction parameters ij but assumes that they are equal in off-diagonal cells, so that                                           log(ij) = ( + i + j + ij


         

with 

                   ij=ji 

and the usual corner or zero sum constraints applying to i and j. The identification constraint on the interaction terms applies just to the rows of ij, for example that iij=0 under a zero sum constraint. The quasi-symmetry model can also be stated in multiplicative form as 

ij = ai bj cij                 i#j

where cij=cji  and

                     (ii = ai
A particular QSM model is the diagonal parameters model (social distance model) for off-diagonal cells, namely

ij = aibjdk

   



               
where k=i-j for i#j, and k would have values 1,2,3,4, and -1,-2,-3,-4 in a 5x5 table. In the social mobility context, the dk would measure social distance impacts (i.e. expected declines in mobility as k increases in absolute size). It is usually assumed that downward and upward effects are the same, i.e that dk = d-k. As in quasi-perfect mobility, the diagonal parameters are intended to exactly reproduce the cells nii.

An epidemiological application of the quasi symmetry model is to case control data with equal numbers of controls for each case (Lovison, 1994). Suppose there are n matched pairs (one control to each case) and a polytomous exposure variable with I levels. Then the data can be represented as an IxI ‘concordance’ table with yij the number of pairs in which a case is exposed to exposure level i and a control is exposed to level j. The expected frequencies (ij can be modelled as follows 

                   (ij =n(ij (ij /(1+(ij) 



 

where (ij is the probability that one member of a pair is exposed to risk level i and the other to level j, and where (ij is the (i,j)th exposure odds ratio, namely

   (ij=Prob(exposure at level icase) Prob(exposure at level jcontrol)/

         Prob(exposure at level jcase)Prob(exposure at level icontrol)

If the (ij terms are constant over the matching variables they satisfy the condition 

                  (ij=(ib/(jb 

                       



where b is the baseline exposure (Breslow and Day, 1980, p. 183). Hence the I(I-1)/2 odds ratios can be expressed as (I-1) parameters 

                  (i=(ib/(1b  

 i=2,..I

So there is an effect of exposure on the disease outcome and its effect depends on the level of exposure - this is to be expected if the matching variables are appropriate. The equivalent log-linear model is 

                   yij ~ Poi((ij)





(4.9)

                   (ij = M + (ij + (i       ij

                   (ii = M + (i
with (ij =(ji, (i =exp((i) and the corner constraints (1=0, (1=0. The hypotheses of no effect and constant effect respectively correspond to (i=0 and (i=(.

Example 4.10 Social Mobility 

In a social mobility table, the independence model (no interactions between social origin i and respondent social group j) is known as the ‘perfect mobility’ model. Under this model 

            log(ij) = M + i + j
or in multiplicative form ij=aibj where ai=exp(i+0.5M) and bj=exp(j+0.5M).  Consider data from Glass (1954), as in Table 4.6.

Table 4.6 British Intergenerational Social Mobility


Son’s Status

Father’s Status
1
2
3
4
5

1
50
45
8
18
8

2
28
174
84
154
55

3
11
78
110
223
96

4
14
150
185
714
447

5
0
42
72
320
411

Assuming the data follow a Poisson density, and fitting the independence model gives a likelihood ratio G2 statistic averaging 808 as compared to 25 table cells. Fit along the main diagonal is not good, with status retention over generations underpredicted. The posterior mean for (11, or transition from high parental to high current status, is 37.6, and the other diagonal posterior means are 69.2,68.0,617.2 and 246. So a more satisfactory model might treat the main diagonal differently from the rest of the table. 

This is the basis of the ‘quasi-perfect mobility’ (QPM) model of Goodman (1981) where

ij=aibj         if i#j



ij=nii
       if i=j

The log-linear equivalent of this model involves L=2(I-1)+(J-1) + 2 parameters, so that IJ-L degrees of freedom remain, and has the form

                      log(ij) = M + si + tj  

i#j

                      log(ii) = u + vi 

where vi, si and tj are subject to corner constraints. Fitting this model gives an average G2 of 258. The fit off the main diagonal is improved but discrepancies still remain, for example in the predicted pattern of downward mobility from origin status 1 to status 2,3,4 and 5. Longer distance downward mobility is overpredicted and short distance mobility (from status 1 to 2) is underpredicted. 

By contrast, the quasi-symmetry model gives an average G2 of 28, while the ‘social distance model’ gives an average G2 of 35.5, compared to a maximum likelihood value of 19.1 obtained by Bishop et al (1975, p. 228). The dk parameters (with 95% credible intervals  from iterations 501-10000 of a two chain run) are respectively d1=1, d2=0.59 (0.53,0.66), d3=0.26 (0.21,0.32), and d4=0.085 (0.036,0.157).

There is the expected decline with social distance, and in fact an approximately geometric progression. The fitted means under the quasi-symmetry and distance models are as in Table 4.7. The G2 statistics for these two models suggest that there is no need to introduce an overdispersed model (e.g. see Poisson-gamma mixing in chapter 5), and that a Poisson assumption is adequate when combined with a satisfactory model. This is not always true of this sort of contingency table modelling (Fitzmaurice & Goldthorpe, 1997).

Table 4.7 Estimates under QSM and Distance Models

Parameter
Quasi-Symmetry 

    Model

 Diagonal Parameters

        Model


      Mean
     SD
     Mean
SD

11
46.9
6.4
51.6
6.6

12
43.3
6.2
35.7
4.8

13
11.5
2.7
15.4
2.2

14
18.4
3.2
21.4
3.3

15
7.1
1.6
5.4
1.9


30.3
5.4
24.2
3.5


174
12.9
174.1
13.1


78.2
7.4
85.8
7.1


155.5
11.2
155.9
11.1


56.9
6.2
55.3
5.8


8.5
2.2
11.2
1.7


83.4
7.7
92.2
7.2


109.9
10.6
109.9
10.5


215.2
13.4
208.2
12.6


101.2
8.6
96.8
8


12.4
2.8
13.8
2.4


148.7
11
148.5
10.7


193
12.4
184.6
11.8


714.6
27.4
712.9
26.5


441.7
20.1
449.1
20.4


3.5
0.9
2.6
1


40
4.7
38.7
4.3


66.8
6.3
63
5.8


324.7
17.1
329.6
17


410.7
20.4
410.3
20

Example 4.11 Matched Pairs by Blood Group

Lovison (1994) analyses data on 301 matched patient pairs classified by the risk variable blood group with 4 levels (groups O,A,B and AB) with group O is the reference category. The resulting contingency (concordance) table is in Table 4.8.

Table 4.8 Case-Control totals by blood group


Control




Case
       O
      A
     B
     AB

  O
      64
    18
     8
      3

  A
      66
    74
   14
      6

  B
        4
      2
     4
      2

  AB
      12
    10
   12
      2

The exposure odds ratios for groups A,B and AB are obtained assuming (ij =n(ij(ij /(1+(ij) under the condition 

                  (ij=(ib/(jb. 

                       



N(0,1000) priors are assumed on all parameters in the corresponding model (4.9). Estimates obtained from the 2nd half of a two chain run of 50,000 iterations are in Table 4.9.

Table 4.9 Exposure odds ratios


 Mean
 Sd
2.5%
Median
97.5%


3.69
0.93
2.26
3.56
5.81


0.59
0.26
0.22
0.54
1.23


5.33
2.37
2.26
4.85
11.36

As can be seen from Table 4.9, skew in the densities leads to the mean odds ratios exceeding the medians. The posterior medians are close to classical estimates reported by Lovison (1994), namely (2=3.50,(3=0.56 and (4=4.67.

4.8.2 Log-Linear Model Selection 

In a log-linear model for a contingency table, certain terms such as global intercept and main effects may be taken as necessarily included, but the inclusion of others (such as second and higher order interactions) subject to doubt. For example, let yij denote counts in a two way table of dimension r1(r2, with yij~Poi((ij), and 

                      log((ij)=u0+u1i+u2j+u12ij, 

with an independence model (model 1) compared to a model (model 2) including interactions. Albert (1996) proposes fixed effects priors for the main effects, with the corner constraint u11=u21=0, and u1i~N(0,T1-1),i=2,..I, u2j ~ N(0,T2-1), j=2,..J, where typically T1 and T2 are small. For the interaction terms, Albert proposes an exchangeable prior (see Chapter 5), u12ij ~ N(0,Peq \O(-1, m)) where Pm is the precision parameter under model m (m=1 or 2). The independence model with u12ij=0 corresponds to P1 ( , and in practice P1 may be set large enough to make interactions effectively zero. The prior for model 2 with non-zero interaction terms has a relatively small precision P2 on the value 0, allowing real non-zero effects to emerge. A prior may be set on P2, or Bayes factors B12 compared for various preset values of {P1,P2}. 

As a more general approach to robust log-linear model selection, Albert proposes a scale mixture prior for the parameters whose inclusion is in doubt. Thus for a two-way table, u12ij ~ N(0,b2/(ij), with (ij taken from a G((/2,(/2) density. Equivalently, when b is known, u12ij ~ N(0,1/(ij), with (ij taken from a G((/2,b2(/2) density. In particular, for the Cauchy ((=1) there is 75% certainty that the density is between -b and +b (i.e. these amount to prior expectations about the location of the lower and upper quartile respectively).

Albert investigates a data set also analysed by Raftery et al (1993) and Raftery (1996) concerning the impact of oral contraceptive use and age on a woman’s chance of myocardial infarction. The 2 x 5 x 2 data consist of observations yijk on contraceptive use i (=1 for No,=2 for Yes), age group j (25-29,30-34, up to 45-49), and infarction (k=1 for No, k=2 for Yes). The terms in doubt are the second order interactions, u13ik between contraceptive use and infarction, and the 3rd order terms, u123ijk. The other second order interactions are assumed to be necessary. So there are four possible hypotheses (models 1 to 4) to assess: 

       1. u13ik=u123ijk=0 for all i, j, k (i.e. no extra terms are needed in the model)

       2. u13ik # 0, u123ijk=0

       3. u13ik=0,u123ijk#0

       4. u13ik#0,u123ijk#0.

The third hypothesis does not, of course, conform to the usual hierarchical assumptions made in testing log-linear models. 

Example 4.12 Contraceptive Use

As a prior for the non-zero interaction alternative we adopt the scale mixture of Albert, but take b as an unknown scale parameter (standard deviation) for non-zero second order parameters under models 2 and 4, and under models 3 and 4 for the non-zero 3rd order interactions. Specifically u12ij ~ N(0,b2/(ij) where a Ga(1,0.01) prior is assumed on 1/b2 and (ij ~ Ga(0.5,0.5) in line with a Cauchy density. For the alternative zero interaction hypothesis, we initially take N(0,0.05) as representing a prior effectively equivalent to zero effects, i.e P1=20. However, results on posterior model probabilities may be sensitive to the value assumed  for P1.

A two chain run of 50,000 iterations (inferences based on the last 45000) with P1=20 shows posterior probabilities of 0.14,0.42, 0.14, 0.30. Albert adopts the approach outlined above where there is infinite precision P1= on the models where one or both of u13 and u123 are 0. He obtains more support for models 2 and 4 (posterior probabilities of 0.49 and 0.44), and none for model 1. Nevertheless the estimated log odds ratios for different age groups of women obtained here are very close to those cited by Albert. With P1=10 the posterior model probabilities of (0.385,0.36,0.135,0.12) favour model 1 more. The age effects given by this and the N(0,20-1) option are shown in Table 4.10.

Table 4.10 Estimated log-odds ratios (of MI by age group of woman)

   Unequal

  Risks (ML)
   Equal

    Risks
    Albert 1996

   Prior (Bayes)






Age Band


   (Saturated 

     Model)
 (ML)


25-29
1.98  (0.88)
1.38  (0.25)
1.33  (0.57)

30-34
2.18  (0.48)
1.38  (0.25)
1.83  (0.44)

35-39
0.43  (0.57)
1.38  (0.25)
0.71  (0.48)

40-44
1.31  (0.54)
1.38  (0.25)
1.22  (0.45)

45-49
1.36  (0.62)
1.38  (0.25)
1.16  (0.48)


Prior N(0,0.1) for zero interactions models
Prior N(0,0.05) for zero interactions models

Age Band
     Mean
    St devn
    Mean
       St devn

25-29
1.37
0.55
1.32
0.51

30-34
1.78
0.43
1.68
0.43

35-39
0.69
0.45
0.81
0.42

40-44
1.19
0.45
1.20
0.42

45-49
1.19
0.48
1.20
0.45

4.9 Multivariate Responses

For multivariate responses of continuous, binary or count data, several approaches are possible. For continuous multivariate data (K responses) with correlated errors but without endogenous dependence between responses, multivariate linear regression is a straightforward extension of normal linear regression with a multivariate error (e.g. MVN or MVt) replacing a univariate error. Another option are factor analytic methods (Chapter 12). For multivariate discrete data (e.g. binomial and count responses) one may apply multivariate error distributions (of dimension K) within the log or logit link regression (see chapter 5 for a worked example for count data) or apply common factor methods, also within the link regression (this has been applied recently in several spatial analyses). For binary and ordinal data another option involves multivariate modelling of the latent continuous scales producing the outcome. 

Consider the case of K binary outcomes, Yi={yi1,yi2,…yiK}. Among possible frameworks for such data are K separate Bernoulli likelihoods with correlations between outcomes modelled in by additive multivariate normal errors (ij in the logit or other link. The correlations between responses are obtained from the estimated covariance matrix ( of (i=((i1,(i2,..,(iK). Alternatively a multivariate probit model may be estimated directly (by multivariate integration) or by augmenting the data with K underlying latent continuous values {Wi1,Wi2,…WiK} (Chib and Greenberg, 1998). The correlations between responses may be modelled by assuming {Wi1,Wi2,…WiK} to be multivariate normal of dimension K, or a scale mixture of multivariate normal (equivalent to multivariate Student t). A multivariate logit regression may also be achieved with suitable mixing strategies (Chen and Dey, 2003; O’Brien and Dunson, 2004).  

Under the multivariate probit, identifiability is achieved by assuming the latent data to be multivariate normal with covariance matrix that is a correlation matrix R=[rjk]. There will also be outcome specific regression parameter vectors (k of dimension p, assuming that a common regression vector xi=(1,xi2,xi3,..xip) is used to predict all outcomes. The probability of a particular pattern yi={yi1,yi2,…yiK} is, with (={(j,R} 

                  Prob(Yi=yi|() = (Di1( Di2..( DiK (K(u|0,R)du 

with the regions of integration Dik defined according to whether yik=1 or yik=0. Thus Dik is between -( and Xi(k when yik=0, but between Xi(k and ( when yik=1. If the data are augmented by latent normal variables Wi={Wi1,Wi2,…WiK}, then Wi is truncated multivariate normal with mean (i={(i1, (i2,…,(iK}, where (ik=Xi(k, and dispersion (correlation) matrix R. Sampling of the constituent Wik of Wi is confined to values above zero when yik=1 and to values below zero when yik=0. 

For cross-classifications in which the joint response is defined by more than one of the classifiers, a multinomial likelihood log-linear model can be applied; see Maddala (1983, chapter 5), McCullagh and Nelder (1989, chapter 6), and Morimune (1979). For example, Grizzle and Williams (1972) consider aggregated counts yijkm from an international study of atherosclerosis. The categories i and j are  regarded as joint responses, both binary, namely infarct (i=1 for yes/=0 for no) and myocardial scar (yes/no), while categories k and m are defined by predictor variables, with k denoting population type (New Orleans White, Oslo, New Orleans Black) and m denoting age (35-44,45-54, 55-64, 65-69). The two binary responses then define a four category multinomial outcome and a question of interest is whether the responses are independent within each of the 12 subtables formed by specific levels of k and m, with subtotals nkm=eq \o((,i)

eq \o((,j)yijkm. A multinomial logit regression would involve parameters (1km, (2km, (3km, (4km in each subtable with eq \o((,h)(hkm=1 and each 2(2 subtable regression involving a main effect, a three parameter age effect, and a two parameter population type effect. In a reduced model, one may set the six parameters equal over subtables as in Grizzle and Williams (1972), or possibly adopt an exchangeable prior for the three parameter sets over subtables.

A simplified analysis is obtained when the subtables are obtained by banding a continuous variable (e.g. age, income). For a pairwise binary outcome with values 1 (success) and 2 (failure) there is a multinomial with 4 categories in each subtable. Suppose there is a single predictor with values in K bands (e.g. age bands), and covariate value x2k at each level (such as the middle age value of each age band). For subtable k, the model for the joint outcome involves parameters (ijk = ijk/hijh. (i=1,2;j=1,2) with 

(11k=exp(xk+xk +xk)

12k=exp(xk)

(21k=exp(xk)

(22k=1

where xk=(x1k,x2k) with x1k=1. So there are six unknowns, with (=((1,(2,(1,(2,(1,(2). To test for independence within each subtable of uses the log odds ratios among the (ijk, which are proportional to ijk,  namely 

         log(11k22k/12k21k)= log(11k22k/12k21k)= xk.

Example 4.13 Troy Survey

Consider bivariate binary data on educational choice and school voting for 95 residents of Troy, Michigan, from Chib and Greenberg (1998). Thus y1=1 or 0 according to whether the parent send at least one child to public school and y2=1 or 0 according as the parent votes in favour of the school budget. Predictors for the first response are logged household income in dollars (INC) and logged annual property taxes (TAX). These are also used for y2 with an additional predictor being number of years lived in Troy. 

Augmented data sampling is applied consistent with a bivariate probit model. N(0,1000) priors are taken on the regression coefficients and a uniform U(-1,1) prior on the only unknown in the dispersion (correlation) matrix of {Wi1,Wi2}. A two chain run of 5000 iterations shows early convergence with 95% intervals for INC and TAX confined to positive and to negative values respectively for the voting response. Other predictors have 95% intervals straddling zero. The correlation coefficient has 95% interval from –0.09 to 0.61, so suggests no significant association when predictors are included in the model.

Example 4.14 Respiratory Symptoms among Miners

Ashford and Sowden (1970) consider a joint binary response (wheezing and breathlessness) among coalminers who smoked but were without radiological pneumoconiosis (Table 4.11), with y1k=1 and y2k=1 if both breathlessness and wheeze are present. The predictor variable is age group, so that the covariate for each sub-table can be taken as continuous (the mid-point of the age band). 

Table 4.11 Breathlessness & Wheeze by Age Group


              Breathless            
          Not 

    breathless



 Age Group 
Wheeze
No Wheeze
Wheeze
No Wheeze
Total
Mid Age-Point

20-24
9
7
95
1841
1952
22

25-29
23
9
105
1654
1791
27

30-34
54
19
177
1863
2113
32

35-39
121
48
257
2357
2783
37

40-44
169
54
273
1778
2274
42

45-49
269
88
324
1712
2393
47

50-54
404
117
245
1324
2090
52

55-59
406
152
225
967
1750
57

60-64
372
106
132
526
1136
62

The covariate x2 is the centred mid-point of each age interval, namely

          x2=(midage-42)/5

Instead of form 11k=exp(xk+xk+xk), the parameterisation 

           11k=exp(xk) 

12k=exp(xk)

(21k=exp(xk)

is used with  estimated using sampled values of --. N(0,1000) priors are assumed on {(1,(1,(1} and N(0,10) priors on {(2,(2,(2}. The 2nd half of a two chain run of 10,000 iterations leads to posterior means (95% intervals) of 1=3.1 (2.9,3.2), 2=-0.17 (-0.23,-0.12), so that the interaction effect declines with age. These values are close to those reported by McCullagh and Nelder (1989, p.234). The log-odds in age group k is thus estimated

          log[(11k22k)/(12k21k)]= 3.1-0.17x2k
and posterior estimates of odds ratios k = (11k22k)/(12k21k) for joint occurrence of symptoms are in Table 4.12. They show a clear pattern of a decline in odds ratio with age, though estimates for younger ages are less precise. Even though the association between the responses falls with age, it remains pronounced even for the oldest age group.

Table 4.12 Odds ratios

Odds ratio for age group k
 Mean
 St devn
Median

1
43.4
7.3
42.9

2
36.5
5.2
36.1

3
30.6
3.6
30.5

4
25.8
2.4
25.7

5
21.7
1.6
21.7

6
18.3
1.1
18.3

7
15.4
0.9
15.4

8
13.0
0.9
13.0

9
11.0
1.0
11.0

4.10 Exercises

4.1 In Example 4.2 apply the same procedure, but with K=4, and with the included predictors under the four options being {x4,x5}, {x4},{x5} and {x4,x5,x4*x5}, where the last model includes the  product of x4 and x5.

4.2 In Example 4.3 (Hald data) compare the predictive least squares criterion (e.g. Gelfand and Ghosh, 1998)  eq \O((,i)(yi-ynew,i)2 under models (x1,x2,x3) and (x1,x2,x5) when ynew are sampled under separate estimations of each model. Also obtain a pseudo marginal likelihood for each model from single case omission. How do these approaches compare in terms of model choice.

4.3 In Example 4.3 (Hald data), consider the model {x1,x2,x3,x5} as a potential third model, with the models {x1,x2,x3} and {x1,x2,x5} constituting models 1 and 2. Use a trial run in order to assess its standard priors and pseudo priors when models 1 or 2 are selected. Similarly set up pseudo priors for models 1 and 2 when model 3 is selected. With equal prior probabilities what is the most likely posterior model? 

4.4 In Example 4.4 (stack loss data) assess the posterior probabilities of the eight alternative models when the parameters governing outlier selection under

           P(yi|(,(2, (, () =(1-()N(yi|(,(2) + (N(yi|(,((2)

are changed to (=0.05 and (=10.

4.5 Consider the acetylene data used by Marquardt and Snee (1975)

Reactor temperature, x1
Ratio of H2 to n-heptone, x2
Contact Time (Secs), x3
Conversion percent, y

1300
7.5
0.012
49

1300
9
0.012
50.2

1300
11
0.0115
50.5

1300
13.5
0.013
48.5

1300
17
0.0135
47.5

1300
23
0.012
44.5

1200
5.3
0.04
28

1200
7.5
0.038
31.5

1200
11
0.032
34.5

1200
13.5
0.026
35

1200
17
0.034
38

1200
23
0.041
38.5

1100
5.3
0.084
15

1100
7.5
0.098
17

1100
11
0.092
20.5

1100
17
0.086
29.5

and apply conventional normal linear regression of standardised y values on standardised predictors x1-x3. Then apply ridge regression with a) k set at 0.05 and b) k an unknown additional parameter, and compare inferences over the three approaches.

4.6. Consider the stochastic search variable selection model (George & McCulloch, 1993, 1997) under the prior

        P((j|(j)=(j N(0,ceq \O(j,2)(eq \O(j,2))+(1-(j) N(0, (eq \O(j,2))




where (j =1 corresponds to including Xj, and {ceq \O(j,2), (eq \O(j,2) } are chosen so that (j=0 means that effectively (j=0, whereas ceq \O(j,2)(eq \O(j,2) is large and permits search for non-zero (j. Assume a preset prior probability pj=Pr((j=1). Then with y=X(+(, where X[n(p] includes an intercept, and ( ~ N(0,(2), the prior on ( has the form

        (|( ~ Np(0,D(RD()

where (=((1,…(p), R is a prior correlation matrix and D(=diag(ap(p,..ap(p) where aj=1 if (j=0, and aj=cj if (j=1. Assume (2 ~ IG((,() and 

        P(() =  eq \O((,j=1,p) p eq \O(j,(j) (1-pj)(1-(j)
Obtain the joint posterior of (,(2, and ( given y, and the conditional posteriors ((|(2, (, y), ((2| (, (, y) and ((j|(, ([j], y) where ([j]
=((1,..(j-1,(j+1,…(p).

4.7 In Example 4.6 assess predictive accuracy by sampling new binary data and assessing whether or not ynew equals the observed y. This provides what is called the sensitivity for binary data and is an example of model checking based on comparing the match between actual and predicted data (see Gelfand, 1996). On this basis which of the log or logit links provides the highest predictive accuracy.

4.8 Prosecution Success Probability. Hutcheson and Sofroniou (1999) consider logistic regression for the probability of a successful prosecution in a survey of 70 legal cases involving child evidence, but demonstrate lack of significant effect for any of six predictors (Hutcheson and Sofroniou, 1999, Table 4.19). These are age (binary, =1 for age band 5-6, vs 0 for ages 8-9), coherence of evidence (a scale which is in fact higher for less coherent evidence), delay between witnessing the incident and recounting it, gender, location where evidence given (home, school, formal interview room, specially designed interview room) and quality of evidence. So a full logit model would involve nine parameters. Consider the independent priors scheme of Kuo and Mallick (1998), namely

        (j|(j ~ (j N(0, (eq \O(2,j)) + (1-(j)N(0,(eq \O(2,j)) 

to select among possible models; the file Exercise4.8.odc contains the data and a simple logit model. There are in fact 28 possible models (remembering that the location variable is expressed in terms of three binary predictors) and most will have negligible posterior probability. So Bayes factors can be expressed using posterior probabilities on the most frequently selected models. One strategy is to filter potential models by carrying out an initial run only aiming to find predictors with Pr((j=1|y) exceeding 0.5 or some other threshold. Then enumerate a restricted set of models based on this subset. Consider both the direct logit model and the augmented data approach of Albert and Chib (1993), either via logistic errors or scale mixing combined with normal errors.  




4.9 In Example 4.9 (store use) introduce latent data via logistic sampling, namely

                   Wi ~ logistic(Xi(,1) I(0,()           yi=1                  

                   Wi ~ logistic(Xi(,1) I(-(,0)          yi=0

and introduce variable weights as in 

                  Wi ~ logistic(Xi(,1/(i) I(0,()           yi=1                  

                  Wi ~ logistic(Xi(,1/(i) I(-(,0)          yi=0

                    (i ~ Ga((/2,(/2)

with (=4. Compare the pattern of weights (i to that of the Monte Carlo estimates of the CPO. Also apply the shifted intercept model to these data, namely

               yi ~ Bern((i)








                     logit((i) = bGi+(2(2xi2+(3(3xi3…+(p(pxip 
               Gi ~ Categoric((1,(2,(3)




               b1=(1-(

(when Gi=1)

               b2=(1 

          (when Gi=2)

               b3=(1+( 

(when Gi=3)

with (1=(3=0.025, and (>0 as an unknown parameter. The latter is best implemented with a mildly informative prior such as ( ~ Ga(1,1) or 

           ( ~ N(0,1) I(0,) 

in order to prevent numerical overflow in the regression.

4.10 In Example 4.12 (contraceptive use and MI) find the posterior model probabilities under the option P1=30 and under a discrete prior for P1 with five (equal prior probability) values of 10,20,30,40 and 50.
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