Chapter 1 Introduction: the Bayesian method, its benefits and implementation

1.1 The Bayes Approach and its potential advantages

Bayesian estimation and inference has a number of advantages in statistical modelling and data analysis. For example, the Bayes method provides confidence intervals on parameters and  probability values on hypotheses that are more in line with commonsense interpretations. It provides a way of formalising the process of learning from data to update beliefs in accord with recent notions of knowledge synthesis. It can also assess the probabilities on non-nested models (unlike classical approaches) and, using modern sampling methods, is readily adapted to complex random effects models that are more difficult to fit using classical methods. However, in the past, statistical analysis based on Bayes Theorem was often daunting because of the numerical integrations needed. Recently developed computer intensive sampling methods of estimation have revolutionised the application of Bayesian methods, and such methods now offer a comprehensive approach to complex model estimation, for example in hierarchical models with nested random effects (Gilks et al, 1993). They provide a way of improving estimation in sparse data sets by borrowing strength (e.g. in small area mortality studies or in stratified sampling) (Richardson & Best 2003; Stroud, 1994), and allow inferences without assumptions of asymptotic normality that underlie maximum likelihood and other classical estimation methods. Sampling based methods of Bayesian estimation provides a full density profile of a parameter so that any clear non-normality is apparent, and allow a range of hypotheses about the parameters to be simply assessed using the sample information. 

Bayesian methods may also improve on the properties of classical estimators in terms of the precision of estimates. Specifying the prior amounts to introducing extra information or data based on accumulated knowledge, and the posterior estimate in being based on the combined sources of information (prior and likelihood) therefore has greater precision. Indeed a prior can often be expressed in terms of an equivalent ‘sample size’.

Bayesian analysis offers an alternative to classical tests of hypotheses under which P-values are framed in the data space: the P-value is the probability under hypothesis H of data at least as extreme as that actually observed. Many users of such tests more naturally interpret P-values as relating to the hypothesis space, i.e. to questions such as the likely range for a parameter given the data or the probability of H given the data. The Bayesian framework is more naturally suited to such probability interpretations. The classical theory of confidence intervals for parameter estimates is also counterintuitive, saying that in the long run with data from many samples a 95% interval calculated from each sample will contain the true parameter approximately 95% of the time. The particular confidence interval from any one sample may or may not contain the true parameter value. By contrast, a 95% Bayesian credible interval contains the true parameter value with approximately 95% certainty.

1.2 Expressing Prior Uncertainty about Parameters and Bayesian Updating 

The learning process involved in Bayesian inference is one of modifying one’s initial probability statements about the parameters before observing the data to updated or posterior knowledge that combines both prior knowledge and the data at hand. Thus prior subject matter knowledge about a parameter (e.g. the incidence of extreme political views or the relative risk of thrombosis associated with taking the contraceptive pill) are an important aspect of the inference process. Bayesian models are typically concerned with inferences on a parameter set ((d) of dimension d, that includes uncertain quantities, whether fixed and random effects, hierarchical parameters, unobserved indicator variables, and missing data (Gelman & Rubin, 1996). Prior knowledge about the parameters is summarised by the density p(), the likelihood is p(y), and the updated knowledge is contained in the posterior density p(y). From Bayes theorem

p((y) = p(y()p(()/p(y)


   (1.1)

where the denominator on the right side is the marginal likelihood p(y). This is an integral over all values of  of the product p(y)p() and can be regarded as a normalizing constant to ensure that p((y) is a proper density. This means one can express Bayes theorem as

            p((y) ( p(y()p(().

The relative influence of the prior and data on updated beliefs depends on how much weight is given to the prior (how ‘informative’ the prior is) and the strength of the data. For example, a large data sample would tend to have a predominant influence on updated beliefs unless the prior was informative. If the sample was small and combined with a prior which was informative, then the prior distribution would have a relatively greater influence on the updated belief: this might be the case if a small clinical trial or observational study was combined with a prior based on a meta-analysis of previous findings.

How to choose the prior density or information is an important issue in Bayesian inference, together with the sensitivity or robustness of the inferences to the choice of prior, and the possibility of conflict between prior and data (Andrade & O’Hagan, 2006; Berger, 1994). In some situations it may be possible to base the prior density for ( on cumulative evidence using a formal or informal meta-analysis of existing studies. A range of other methods exist to determine or elicit subjective priors (Berger, 1985, chapter 3; O’Hagan, 1994, chapter 6; Garthwaite et al, 2005; Chaloner, 1995). A simple technique known as the histogram method divides the range of ( into a set of intervals (or ‘bins’) and elicits prior probabilities that ( is located in each interval; from this set of probabilities, p(() may be represented as a discrete prior or converted to a smooth density. Another technique uses prior estimates of moments to derive a normal N(m,V) prior density including estimates m and V of the mean and variance. Other forms of prior can be reparameterised in the form of a mean and variance (or precision); for example beta priors Be(a,b) for probabilities can be expressed as Be(m(,(1-m)() where m is an estimate of the mean probability and ( is the estimated precision (degree of confidence in) that prior mean. 

To illustrate the histogram method, suppose a clinician is interested in  the proportion of children aged 5 to 9 in a particular population with asthma symptoms. There is likely to be prior knowledge about the likely size of  based on previous studies and knowledge of the host population which can be summarised as a series of possible values and their prior probabilities, as in Table 1-1. Suppose a sample of 15 patients in the target population shows 2 with definitive symptoms. The likelihoods of obtaining 2 from 15 with symptoms according to the different values of  are given by (152)2(1-)13, while posterior probabilities on the different values are obtained by dividing the product of the prior and likelihood by the normalising factor of 0.274. They give highest support to a value of =0.14. This inference rests only on the prior combined with the likelihood of the data, namely 2 

Table 1.1 Deriving the Posterior Distribution of a Prevalence rate ( using a discrete prior





Possible ( values
Prior weight given to different possible values of (
Likelihood of data given value for (
Prior times likelihood
Posterior probabilities

0.10
0.10
0.267
0.027
0.098

0.12
0.15
0.287
0.043
0.157

0.14
0.25
0.290
0.072
0.265

0.16
0.25
0.279
0.070
0.255

0.18
0.15
0.258
0.039
0.141

0.20
0.10
0.231
0.023
0.084


1

0.274
1

from 15 cases. Note that to calculate the posterior weights attaching to different values of  one need only use that part of the likelihood in which  is a variable: instead of the full binomial likelihood, one may simply use the likelihood kernel 2(1-)13 since the factor (152) cancels out in the numerator and denominator of equation (1.1).

Often, a prior amounts to a form of modelling assumption or hypothesis about the nature of parameters, for example, in random effects models. Thus small area mortality models may include spatially correlated random effects, exchangeable random effects with no spatial pattern, or both. A prior specifying the errors as spatially correlated is likely to be a working model assumption, rather than a true cumulation of knowledge. 

In many situations, existing knowledge may be difficult to summarise or elicit in the form of an ‘informative prior’ and to reflect such essentially prior ignorance, resort is made to non-informative priors. Since the maximum likelihood estimate is not influenced by priors, one possible heuristic is that a non-informative prior leads to a Bayesian posterior mean very close to the maximum likelihood estimate, and that informativeness of priors can be assessed by how closely the Bayesian estimate comes to the maximum likelihood estimate. 

Examples of priors intended to be non-informative are flat priors (e.g. that a parameter is uniformly distributed between -( and +(, or between 0 and +(), reference priors (Berger & Bernardo, 1994), and Jeffreys’ prior 

        p(() ( |I(()|0.5
where I(() is the information
 matrix. Jeffreys prior has the advantage of invariance under transformation, a property not shared by uniform priors (Syverseen, 1998). Other advantages are discussed by Wasserman (2000). Many non-informative priors are improper (don’t integrate to 1 over the range of possible values). They may also actually be unexpectedly informative about different parameter values (Zhu & Lu, 2004). Sometimes improper priors can lead to improper posteriors, as in a normal hierarchical model with subjects j nested in clusters i,

               yij ~ N((i,(2), 

               (i ~ N((,(2).

The prior p((,()=1/( results in a improper posterior (Kass & Wasserman, 1996). Examples of proper posteriors despite improper priors are considered by Fraser et al (1997) and Hadjicostas & Berry (1999).

To guarantee posterior propriety (at least theoretically) a possibility is to assume just proper priors (sometimes called diffuse or weakly informative priors): for example a gamma Ga(1,0.00001) prior on a precision (inverse variance) parameter is proper but very close to being a flat prior. Such priors may cause identifiability problems and impede MCMC convergence (Gelfand and Sahu, 1999; Kass & Wasserman, 1996, p 1361). To adequately reflect prior ignorance while avoiding impropriety, Spiegelhalter et al (1996, p 28) suggest a prior standard deviation at least an order of magnitude greater than the posterior standard deviation.

In Table 1-1 an informative prior favouring certain values of  has been used. A non-informative prior, favouring no values above any other, would assign an equal prior probability of 1/6 to each of the possible prior values of . A non-informative prior might be used in the genuine absence of prior information, or if there is disagreement about the likely values of hypotheses or parameters. It may also be used in comparison with more informative priors as one aspect of a sensitivity analysis regarding posterior inferences according to the prior. Often some prior information is available on a parameter or hypothesis though converting it into a probabilistic form remains an issue. Sometimes a formal stage of eliciting priors from subject-matter specialists is entered into (Osherson et al, 1995).

If a previous study or set of studies is available on the likely prevalence of asthma in the population, these may be used in a form of preliminary meta-analysis to set up an informative prior for the current study. However, there may be limits to the applicability of previous studies to the current target population (e.g. because of differences in the socio-economic background or features of the local environment). So the information from previous studies, while still usable, may be down-weighted: for example, the precision (variance) of an estimated relative risk or prevalence rate from a previous study may be divided (multiplied) by ten. If there are several parameters and their variance-covariance matrix is known from a previous study or a mode finding analysis (e.g. maximum likelihood), then this can be downweighted in the same way (Birkes and Dodge, 1993). More comprehensive ways of downweighting historical/prior evidence have been proposed, such as power prior models (Ibrahim & Chen, 2000).

In practice, there are also mathematical reasons to prefer some sorts of prior to others (the question of conjugacy considered in chapter 3). For example, a beta density for the binomial success probability is conjugate with the binomial likelihood in the sense that the posterior has the same (beta) density form as the prior. However, one advantage of sampling based estimation methods is that a researcher is no longer restricted to conjugate priors, whereas in the past this choice was often made for reasons of analytic tractability. There remain considerable problems in choosing appropriate neutral or non-informative priors on certain types of parameter, with variance hyperparameters in random effects models a leading example (Daniels, 1999; Gelman, 2006; Gustafson et al, 2006).

To assess sensitivity to the prior assumptions on may consider the effects on inference of a limited range of alternative priors (Gustafson, 1996), or adopt a ‘community of priors’ (Spiegelhalter et al, 1994); for example, alternative priors on a treatment effect in a clinical trial might be neutral, sceptical, and enthusiastic with regard to treatment efficacy. One might also consider more formal approaches to robustness based  on non-parametric priors rather than parametric priors, or via mixture (‘contamination’) priors. For instance, one might assume a two group mixture with larger probability 1-q on the ‘main’ prior p1((), and a smaller probability such as q=0.2 on a contaminating density p2((), which may be any density (Gustafson, 1996). One might consider the contaminating prior to be a flat reference prior, or one allowing for shifts in the main prior’s assumed parameter values (Berger, 1990). In large datasets inferences may be robust to changes in prior unless priors are heavily informative. However, inference sensitivity may be greater for some types of parameter, even in large datasets; for example, inferences may depend considerably on the prior adopted for variance parameters in random effects models, especially in hierarchical models where different types of random effect coexist in a model (Daniels, 1999; Gelfand et al, 1998).
1.3 MCMC Sampling and Inferences from Posterior Densities

Bayesian inference has become closely linked to sampling based estimation methods. Both focus on the entire density of a parameter or functions of parameters. Iterative Monte Carlo methods involve repeated sampling that converges to sampling from the posterior distribution. Such sampling provides estimates of density characteristics (moments, quantiles), or of probabilities relating to the parameters (Smith and Gelfand, 1992). Provided with a reasonably large sample from a density, its form can be approximated via curve estimation (kernel density) methods; default bandwidths are suggested by Silverman (1986), and included in implementations such as the Stixbox Matlab library (pltdens.m from http://www.maths.lth.se/matstat/stixbox). There is no limit to the number of samples T of  which may be taken from a posterior density p(y), where (=((1,…,(k,…,(d) is of dimension d. The larger is T from a single sampling run, or the larger is T=T1+T2+..TJ  based on J sampling chains from the density, the more accurately the posterior density be described.

Monte Carlo posterior summaries typically include posterior means and variances of the parameters. This is equivalent to estimating the integrals 

       E((k|y) = ( (k p((|y)d(                                                    (1.2)

       Var((k|y) =((eq \O(k,2)p((|y)d( - [E((k|y)]2

                                =  E((eq \o(k,2)|y) – [E((k|y)]2                                        (1.3)

Which estimator d=(e(y) to choose to characterise a particular function of ( can be decided with reference to the Bayes risk under a specified loss function L[d,(] (Zellner, 1985, p 262),  

              eq \O(min,d) ( L[d,(] p(y|()p(()d(, 

or equivalently

              eq \O(min,d) ( L[d,(] p((|y)d(.

The posterior mean can be shown to be the best estimate of central tendency for a density under a squared error loss function (Robert, 2004), while the posterior median is the best estimate when absolute loss is used, namely L[(e(y),(]=|(e-(|. Similar principles can be applied to parameters obtained via model averaging (Brock et al, 2004).

A 100(1-()% credible interval for (k is any interval [a,b] of values that has probability 1-( under the posterior density of (k. As noted above, it is valid to say that there is a probability of 1-( that (k lies within the range [a,b]. Suppose (=0.05. Then the most common credible interval is the equal-tail credible interval, using 0.025 and 0.975 quantiles of the posterior density. If one is using an MCMC sample to estimate the posterior density, then  the 95% CI is estimated using the using 0.025 and 0.975 quantiles of the sampled output {( eq \O(k,(t)), t=B+1,..T} where B is the number of burn-in iterations (see section 1.6). Another form of credible interval is the 100(1-()% highest probability density (HPD) interval, such that the density for every point inside the interval exceeds that for every point outside the interval, and is the shortest possible 100(1-()%  credible interval; Chen et al (2000, p 219) provide an algorithm to estimate the HPD interval. A program to find the HPD interval is included in the MATLAB suite of MCMC diagnostics developed at the Helsinki University of Technology at http://www.lce.hut.fi/research/compinf/mcmcdiag/.

One may similarly obtain posterior means, variances and credible intervals for functions (= ((() of the parameters (van Dyk, 2002). The posterior means and variances of such functions obtained from MCMC samples are estimates of the integrals 

      E[((()|y] = (((()p((|y)d(                                              (1.4) 

      Var[((()|y] = ((2p((|y)d( - [E((|y)]2

                                       =  E((2|y) – [E((|y)]2 .

Often the major interest is in marginal densities of the parameters themselves. The marginal density of the kth parameter (k is obtained by integrating out all other parameters 

      p((k|y)=(p((|y)d(1d(2…(k-1(k+1..(d                                                     
Posterior probability estimates from an MCMC run might relate to the probability that (k exceeds a threshold b, and provide an estimate of the integral

      Pr((k > b|y) = ( eq \O(b,() p((k|y) d(k.                                       (1.5)      

For example, the probability that a regression coefficient exceeds zero or is less than zero is a measure of its significance in the regression (where significance is used as a shorthand for “necessary to be included”). A related use of probability estimates in regression (Chapter 4) is when binary inclusion indicators precede the regression coefficient and the regressor is only included when the indicator is one. The posterior probability that the indicator estimates the probability that the regressor should be included in the regression.

Such expectations, density or probability estimates may sometimes be obtained analytically for conjugate analyses - such as a binomial likelihood where the probability has a beta prior. They can also be approximated analytically by expanding the relevant integral (Tierney et al, 1988).  Such approximations are less good for posteriors that are not approximately normal, or where there is multimodality. They also become impractical for complex multi-parameter problems and random effects models.

By contrast MCMC techniques are relatively straightforward for a range of applications, involving sampling from one or more chains after convergence to a stationary distribution that approximates the posterior p(y).  If there are n observations and d parameters, then the required number of iterations T to reach stationarity will tend to increase with both d and n, and also with the complexity of the model (e.g. on the number of levels in a hierarchical model, or on whether a non-linear rather than a simple linear regression is chosen). The ability of MCMC sampling to cope with complex estimation tasks should be qualified by mention of problems associated with long-run sampling as an estimation method. For example, Cowles and Carlin (1996) highlights problems that may occur in obtaining and/or assessing convergence (see section 1.6). There are also problems in setting neutral priors on certain types of parameters (e.g. variance hyperparameters in models with nested random effects), and certain types of model (e.g. discrete parametric mixtures) are especially subject to identifiability problems (Fruhwirth-Schnatter, 2004; Jasra et al, 2005).

A variety of Markov Chain Monte Carlo methods have been proposed to sample from posterior densities (section 1.5). They are essentially ways of extending the range of single parameter sampling methods to multivariate situations, where each parameter or subset of parameters in the overall posterior density has a different density. Thus there are well established routines for computer generation of random numbers from particular densities  (Ahrens and Dieter, 1974; Devroye, 1986). There are also routines for sampling from non-standard densities such as non log-concave densities (Gilks & Wild, 1992). The usual Monte Carlo method assumes a sample of independent simulations u(1),u(2)…u(T) from a target density ((u) whereby E[g(u)] = (g(u)((u)du is estimated as 

                           eq \o(g,_)T = eq \o((,t=1,T)g(u(t))    

With probability 1,  eq \o(g,_)T tends to E([g(u)] as T((.  However, independent sampling from the posterior density p((|y) is not feasible in general. It is valid, however, to use dependent samples ((t) provided the sampling satisfactorily covers the support of p((|y) (Gilks et al, 1996). 

In order to sample approximately from p((|y), Markov Chain Monte Carlo (MCMC) methods generate dependent draws via Markov chains. Specifically let ((0), ((1),.. be a sequence of random variables. Then  p(((0),( (1),…,( (T)) is a Markov chain if

         p(((t)|((0),( (1),..( (t-1)) = p(((t)|((t-1)),

so that only the preceding state is relevant to the future state. Suppose ((t) is defined on a discrete state space S={s1,s2,..}, with generalisation to continuous state spaces described by Tierney (1996).  Assume p(((t)|((t-1)) is defined by a constant one step transition matrix 

      Qi,j = Pr(((t)=sj|((t-1)=si)

with t step transition matrix Qi,j(t)=Pr(((t)=sj|((0)=si). Sampling from a constant one step Markov chain converges to the stationary distribution required, namely ((()=p((|y), if additional requirements
 on the chain are satisfied (irreducibility, aperiodicity and positive recurrence) - see Roberts (1996, p 46) and Norris (1997). Sampling chains meeting these requirements have a unique stationary distribution  eq \O(lim,t(()Qi,j(t) =((j) satisfying the full balance condition ((j)= eq \o((,i)((i)Qi,j. Many Markov chain methods are additionally reversible, meaning ((i)Qi,j=((j)Qj,i.

With this type of sampling mechanism, the ergodic average  eq \o(g,_)T tends to E([g(u)] with probability 1 as T(( despite dependent sampling. Remaining practical questions include establishing an MCMC sampling scheme and establishing that convergence to a steady state has been obtained for practical purposes (Cowles and Carlin, 1996). Estimates of quantities such as (1.2) and (1.3) are routinely obtained from sampling output along with 2.5% and 97.5% percentiles that provide equal tail credible intervals for the value of the parameter. A full posterior density estimate may be derived also (e.g. by kernel smoothing of the MCMC output of a parameter). For ((() its posterior mean is obtained by calculating ((t) at every MCMC iteration from the sampled values ((t). The theoretical justification for this is provided by the MCMC version of the law of large numbers (Tierney, 1994), namely that

                    eq \O((,t=1,T)(((eq \o(,(t)))/T   (   E([((()]

provided that the expectation of ((() under ((()=p((|y), denoted E([((()], exists.

The probability (1.5) would be estimated by the proportion of iterations where (eq \O( j,(t))  exceeded b, namely   eq \O((,t=1,T)1((eq \o(j,(t))> b)/T, where 1(A) is an indicator function which takes value 1 when A is true, 0 otherwise. Thus one might in a disease mapping application wish to obtain the probability that an area’s smoothed relative mortality risk (k exceeds zero, and so count iterations where this condition holds, avoiding the need to evaluate the integral

          Pr((k > 0) = ( eq \o(0,() p((k|y)d(k. 

This principle extends to empirical estimates of the distribution function, F() of parameters or functions of parameters. Thus the estimated probability that ( < h for values of h within the support of ( is  

               eq \O(F,^)(d) = eq \O((,t=1,T)1((eq \o(,(t))(  h )/T.

The sampling output also often includes predictive replicates yeq \O( (t),new)  that can be used in posterior predictive checks to assess whether a model’s predictions are consistent with the observed data. Predictive replicates are obtained by sampling ((t) and then sampling ynew from the likelihood model p(ynew|((t)). The posterior predictive density can also be used for model choice and residual analysis (Gelfand, 1996, sections 9.4-9.6).

1.4 The Main MCMC Sampling Algorithms

The Metropolis-Hastings algorithm is the baseline for MCMC schemes that simulate a Markov chain ((t) with p((|y) as its stationary distribution.. Following Hastings (1970), the chain is updated from ((t) to (* with probability

     (((*|((t))= min(1, 
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where f is known as a proposal or jumping density (Chib and Greenberg, 1995). f((*|((t)) is the probability (or density ordinate) of (* for a density centred at ((t) , while f(((t)|(*) is the probability of moving back from (* to the original value. The transition kernel is k(((t)|(*)=(((*|((t))f((*|((t)) for (*(((t), with a nonzero probability of staying in the current state, namely k(((t)|((t))=1- ((((*|((t))f((*|((t))d(*. Conformity of M-H sampling to the Markov chain requirements discussed above is considered by Mengersen & Tweedie (1996) and Roberts & Rosenthal (2004). 

If the proposed new value (* is accepted, then ((t+1)=(* while if it rejected the next state is the same as the current state, i.e. ((t+1)=((t). The target density p((|y) appears in ratio form so it is not necessary to know any normalising constants. If the proposal density is symmetric, with f((*|((t))= f(((t)|(*), then the Metropolis-Hastings algorithm reduces to the algorithm developed by Metropolis et al. (1953), whereby

   (((*|((t))= min[1, 
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If the proposal density has the form f((*|((t))=f(((t)-(*), then a random walk Metropolis scheme is obtained (Gelman et al, 1995). Another option is independence sampling, when the density f((*) for sampling new values is independent of the current value ((t). One may also combine the adaptive rejection technique with Metropolis-Hastings sampling, with f acting as a pseudo-envelope for the target density p (Robert & Casella, 1999, p 249). Scollnik (1995) uses this algorithm to sample from the Makeham density often used in actuarial work. 

The M-H algorithm works most successfully when the proposal density matches, at least approximately, the shape of the target density p((|y). The rate at which a proposal generated by f is accepted (the acceptance rate) depends on how close (* is to ((t), and this depends on the variance (2 of the proposal density. For a normal proposal density a higher acceptance rate would follow from reducing (2, but with the risk that the posterior density will take longer to explore. If the acceptance rate is too high, then autocorrelation in sampled values will be excessive (since the chain tends to move in a restricted space), while a too low acceptance rate leads to the same problem, since the chain then gets locked at particular values. 

One possibility is to use a variance or dispersion estimate V from a maximum likelihood or other mode finding analysis (which approximates the posterior standard deviation) and then scale this by a constant c>1, so that the proposal density variance is (=cV( (Draper, 2005, Chapter 2) where V( is an estimate of the d(d posterior covariance of (. Values of c in the range 2-10 are typical, with the proposal density variance 2.382V(/d shown as optimal in random walk schemes (Roberts et al, 1997). The optimal acceptance rate for a random walk Metropolis scheme is obtainable as 23.4% (Roberts & Rosenthal, 2004, section 6). Recent work has focussed on adaptive MCMC schemes whereby the tuning is adjusted to reflect the most recent estimate of V( (Gilks et al, 1998; Pasarica & Gelman, 2005). Note that certain proposal densities have parameters other than the variance that can be used for tuning acceptance rates (e.g. the degrees of freedom if a Student t proposal is used). Performance also tends to be improved if parameters are transformed to take the full range of positive and negative values (-(,() so lessening the occurrence of skewed parameter densities. 

Typical random walk Metropolis updating uses uniform, standard normal or standard Student t variables Wt. A normal random walk takes samples Wt ~ N(0,1) and a proposal (*=((t)+(Wt, where ( determines the size of the jump (and the acceptance rate). A uniform random walk samples Ut ~ Unif(-1,1) and scales this to form a proposal (*=((t)+(Ut. As noted above, it is desirable that the proposal density approximately matches the shape of the target density p((|y). The Langevin random walk scheme is an example of a scheme including information about the shape of p((|y) in the proposal, namely (*=((t)+((Wt+0.5(log(p(((t)|y)) where ( denotes the gradient function (Roberts & Tweedie, 1996).

As an example of a uniform random walk proposal, consider MATLAB code to sample T=10,000 times from a N(0,1) density  using a U(-3,3) proposal density - see Hastings (1970)  for the probability of accepting new values when sampling N(0,1) with a uniform U(-(,() proposal density. The code is

n=10000; th(1)=0; pdf=inline('exp(-x^2/2)'); acc=0;

    for i=2:n             thstar = th(i-1) + 3*(1-2*rand);

           alpha = min([1,pdf(thstar)/pdf(th(i-1))]);

    if    rand <= alpha     th(i)=thstar;  acc=acc+1;

    else  th(i)=th(i-1);  end 

    end

    sprintf('acceptance rate %4.0f',100*acc/n)

    hist(th,100);

The acceptance rate is around 49% (depending on the seed), while Figure 1.1 contains a histogram of the sampled values.

While it is possible for the proposal density to relate to the entire parameter set, it is often computationally simpler in multi-parameter problems to divide ( into D blocks or components, and use componentwise updating. Thus let ([j]=((1,(2,..(j-1,(j+1,..,(D) denote the parameter set omitting component (j, and (eq \o(j,(t)) be the value of (j after iteration t. At step j of iteration t+1 the preceding j-1 parameter blocks are already updated via the M-H algorithm while (j+1,..(D are still at their iteration t values (Chib & Greenberg, 1995). Let the vector of partially updated parameters be denoted

            ( eq \O([j],(t,t+1))=((eq \o(1,(t+1)),(eq \o(2,(t+1)),..,(eq \o(j-1,(t+1)),( eq \o(j+1,(t)),..(eq \o(D,(t))) 

The proposed value ( eq \o(j,*) for ( eq \O(j,(t+1)) is generated from the jth proposal density, denoted f(( eq \o(j,*)|(eq \o(j,(t)),( eq \O([j],(t,t+1))). Also governing the acceptance of a proposal are full conditional densities p((eq \o(j,(t))|( eq \O([j],(t,t+1))) specifying the density of (j conditional on other parameters ([j]. The candidate value ( eq \o(j,*) is then accepted with probability 

   (((eq \o(j,(t)),( eq \O([j],(t,t+1)),( eq \o(j,*))  = min[1, 
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1.5.1 Gibbs Sampling

The Gibbs sampler (Gelfand & Smith, 1990; Gilks et al, 1993; Casella and George, 1992) is a special componentwise M-H algorithm whereby the proposal density for updating (j equals the full conditional p(( eq \o(j,*)|([j]) so that proposals are accepted with probability 1. This sampler was originally developed by Geman and Geman (1984) for Bayesian image reconstruction, with its potential for simulating marginal distributions by repeated draws recognised by Gelfand and Smith (1990). The Gibbs sampler involves parameter by parameter updating which when completed forms the transition from ( (t) to ( (t+1):

   1.     (1(t+1)~f1((1| (2(t), (3(t),…, (D(t));

   2.     (2(t+1)~f2((2| (1(t+1), (3(t),…, (D(t));

.

    D.    (D(t+1)~fD((D| (1(t+1), (3(t+1),…, (D-1(t+1)).

Repeated sampling from M-H samplers such as the Gibbs sampler generates an autocorrelated sequence of numbers that, subject to regularity conditions (ergodicity, etc.), eventually ‘forgets’ the starting values ((0) = ((1(0), (2(0),.., (D(0)) used to initialize the chain, and converges to a stationary sampling distribution p((|y). 

The full conditional densities may be obtained from the joint density p((,y)=p(y|()p(() and in many cases reduce to standard densities (normal, exponential, gamma, etc) from which sampling is straightforward. Full conditional densities can be obtained by abstracting out from the full model density (likelihood times prior) those elements including (j and treating other components as constants (Gilks, 1996). 

Consider a conjugate model for Poisson count data yi with exposures ti and means (i that in turn are gamma distributed, i ~ Ga((,(), 

     p((i| (,() = (i(-1  e-((i  ((/((()

Assume priors ( ~ E(a),   ( ~ G(b,c)  where a, b and c are preset constants (George et al, 1993). The posterior density of the n+2 parameters (=((1,..(n,(,() given y is proportional  to

    e-a((b-1e-c({  eq \O((,i=1,n)exp(-ti(i) (iyi }{ eq \O((,i=1,n) (i(-1exp(-((i) }[((/((()]n 

where all constants (such as the denominator yi! in the Poisson likelihood) are combined in the proportionality constant. The full conditional densities of (i and ( are obtained as Ga(yi+(, (+ti) and Ga(b+n(, c +  eq \O((,i=1,n)(i) respectively. The full conditional density of ( is 

         f((|y,(, eq \O((,~)) ( e-a( [((/((()]n ( eq \O((,i=1,n)(i)(-1
This density cannot be sampled directly, and techniques such as adaptive rejection sampling (Gilks and Wild, 1992) may be used. Alternatively a Metropolis step may be included to update ( while other parameters are sampled from their full conditionals, an example of a Metropolis within Gibbs procedure (Brooks, 1999). 

Figure 1.2 contains Matlab code applying the latter approach to the well known data on failures in ten power plant pumps, also analysed by George et al (1993).  The number of failures is assumed to follow a Poisson distribution yi  ~ Poisson((iti), where (i is the failure rate, and ti is the length of pump operation time (in thousands of hours). Priors are ( ~ E(1),   ( ~ G(0.1,1). The code includes calls to a kernel plotting routine, and a Matlab adaptation of the coda routine, both from Lesage (1999); coda is the suite of convergence tests originally developed in S-plus (Best et al, 1995). Note that the update for ( is in terms of (=g(()=log((), and so the prior for ( has to be adjusted for the Jacobean (g-1(()/((=e(=(.  

Figure 1.2 Matlab Code: Nuclear Pumps Data Poisson-Gamma Model

[time,y] = textread('pumps.txt','%f %f')

n=10;T=10000; B=1000;lam=ones(n,1);beta=0.9*ones(1,T); acc=0;

scale=0.75;a.alph=0.1; nu=-0.4*ones(1,T);a.beta=0.1; b.beta=1; alph(1)=exp(nu(1));

for t=1:T     for i=1:n

loglam(i,t)=log(lam(i,t));end

P=exp(nu(t)-a.alph*alph(t)+n*alph(t)*log(beta(t))...

    -n*gammaln(alph(t))+(alph(t)-1)*sum(loglam(1:n,t)));

nustar=nu(t)+ scale*randn;

alphstar=exp(nustar);

Pstar=exp(nustar-a.alph*alphstar+n*alphstar*log(beta(t))...

    -n*gammaln(alphstar)+(alphstar-1)*sum(loglam(1:n,t)));

if    (rand <= Pstar/P)     alph(t+1)=exp(nustar); acc=acc+1;

else                                alph(t+1)=alph(t);  end

% update parameters from full conditionals

for i=1:n

lam(i,t+1)=gamrnd(alph(t+1)+y(i),1/(beta(t)+time(i)));end

beta(t+1)=gamrnd(a.beta+n*alph(t+1),1/(b.beta+sum(lam(1:n,t+1))));

% accumulate draws for coda input

for i=1:n pars(t,i)=lam(i,t);end 

pars(t,n+1)=beta(t); pars(t,n+2)=alph(t);  end

   sprintf('acceptance rate alpha %5.1f',100*acc/T)

  hist(beta,100); pause;   hist(alph,100); pause;

  [hbeta,smbeta,xbeta] = pltdens(beta);   plot(xbeta,smbeta); pause;

  [halph,smalph,xalph] = pltdens(alph);   plot(xalph,smalph); pause;

  for i=1:12    for t=B+1: T

  parsamp(t-B,i)=pars(t,i); end 

  end

  coda(parsamp)

Figure 1.3 shows the histogram of ( obtained from a single chain run of 10000 iterations, and its slight positive skew. Single chain diagnostics (with 1000 burn-in iterations excluded) are satisfactory with lag 10 autocorrelations under 0.10 for all unknowns. The acceptance rate for ( is 38%.

1.6 Convergence of MCMC Samples

There are many unresolved questions around the assessment of convergence of MCMC sampling procedures (Cowles and Carlin, 1996; Brooks & Roberts, 1998). One view is that a single long chain is adequate to explore the posterior density, provided allowance is made for dependence in the samples (e.g. Bos, 2004, Geyer, 1992). Diagnostics in the coda routine include those obtainable from a single chain, such as the relative numerical efficiency (Geweke, 1992; Kim et al, 1998), Raftery–Lewis diagnostics which indicate the required sample to achieve a desired accuracy for parameters, and Geweke (1992) chi-square tests. 

Relative numerical efficiency (RNE) compares the empirical variance of the sampled values to a correlation-consistent variance estimator (Geweke, 1999; Geweke et al, 2003). Numerical approximations of functions such as (1.4) based on T samples will have the same accuracy as (T ( RNE) samples based on iid drawings directly from the posterior distribution. The method of  Raftery & Lewis (1992) provides an estimate of the number of MCMC samples required to achieve a specified accuracy of the estimated quantiles of parameters or functions; for example, one might require the 2.5th percentile to be estimated to an accuracy (0.005, and with a certain probability of attaining this level of accuracy (say, 0.95). The Raftery-Lewis diagnostics include the minimum number of iterations needed to estimate the specified quantile to the desired precision if the samples in the chain were independent. This is a lower bound, and may tend to be conservative (Draper, 2005). The Geweke procedure considers different portions of MCMC output to determine whether they can be considered as coming from the same distribution; specifically initial and final portions of the chain (e.g. the first 10% and the last 50%) are compared, with tests using sample means and asymptotic variances (estimated using spectral density methods) in each portion.

Many practitioners prefer to use two or more parallel chains with diverse starting values to ensure full coverage of the sample space of the parameters, and so diminish the chance that the sampling will become trapped in a small part of the space (Gelman & Rubin, 1992; Gelman & Rubin, 1996). Single long runs may be adequate for straightforward problems, or as a preliminary to obtain inputs to multiple chains. Convergence for multiple chains may be assessed using Gelman-Rubin scale reduction factors that compare variation in the sampled parameter values within and between chains. Parameter samples from poorly identified models will show wide divergence in the sample paths between different chains and variability of sampled parameter values between chains will considerably exceed the variability within any one chain. To measure variability of samples (eq \O(j,(t)) within the jth chain (j=1,…J) define 

                wj = eq \O((,t=B+1,B+T)((eq \O(j,(t)) - eq \O((,_)j) 2/(T-1)

defined over T iterations after an initial burn in of B iterations. Ideally the burn in period is a short initial set of samples where the effect of the initial parameter values tails off; during the burn in the parameter trace plots will show clear monotonic trends as they reach the region of the posterior. 

Variability within chains W is then the average of the wj. Between chain variance is measured by 

             B =
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where eq \O((,_) is the average of the eq \O((,_)j. The potential scale reduction factor compares a pooled estimator of var((), given by V=B/T +TW/(T-1) with the within sample estimate W. Specifically the PSRF is (V/W)0.5 with values under 1.2 indicating convergence. 

Another multiple chain convergence statistic is due to Brooks and Gelman (1998) and known as the Brooks-Gelman-Rubin (BGR) statistic. This is a ratio of parameter interval lengths, where for chain j the length of the 
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 interval IP is also obtained. Then the ratio IP/IU should converge to 1 if there is convergent mixing over different chains. Brooks and Gelman also propose a multivariate version of the original G-R ratio which a review by Sinharay (2004) indicates may be better at detecting convergence in models where identifiability is problematic; this refers to practical identifiability of complex models for relatively small datasets, rather than mathematical identifiability. However, multiple chain analysis can also be a useful check on unsuspected mathematical non-identifiability, or on model priors that are not constrained to produce unique labelling. Fan et al (2005) consider diagnostics based on score statistics for parameters (k; for likelihood L=p(y|(), or target density ((()=p((|y), define score functions Uk=((/((k, and then obtain means mk and variances Vk of Ukj statistics obtained from chains j=1,..,J. Then (2=Jeq \O((,k=1,d) meq \O(k,2)/Vk is asymptotically chi square with d degrees of freedom under convergence.
The following Matlab program obtains univariate PSRFs and the multivariate PSRF for an augmented data probit analysis of the shopping data used in Example 4.9. Two chains are run for T=1000 iterations with a burn in of 50 iterations, with flat priors on the regression parameters. All scale factors obtained are very close to 1. The main program and the Gelman-Rubin functions called are as follows: 

[y,Inc,Hsz,WW] = textread('shop.txt','%f %f %f %f');  n=84;

for i=1:n      X(i,1)=1; X(i,2)=Inc(i); X(i,3)=Hsz(i); X(i,4)=WW(i); end

beta = [0 0 0 0]'; Lo = -10 .* (1-y); Hi =10 .* y;  T=1000; burnin=50;     

for ch=1:2 for t=1:T

% truncated normal sample between  Lo and Hi   

    Z = rand_nort(X * beta, ones(size(X * beta)), Lo, Hi);

    sigma=inv(X' * X);     betaMLE = inv(X' * X)* X' * Z;

    beta = rand_MVN(1, betaMLE, sigma)';

for j=1:4   betas(t,j,ch)=beta(j); end 

end

end

[PSRF] = GRpsrf(betas,T,4,2)

[MPSRF] = GRmpsrf(betas,T,4,2)

function [PSRF] =  GRpsrf(th,T,d,J)

W = zeros(1,d); B = zeros(1,d); mn = mean(reshape(mean(th),d,J)');

for j=1:J

  dw = th(:,:,j) - repmat(mean(th(:,:,j)),T,1);   db = mean(th(:,:,j)) - mn;

  W = W + sum(dw.*dw);  B = B + db.*db; end

  W = W / ((T-1) * J); S = (T-1)/T * W + B/(J-1); 

PSRF = sqrt((J+1)/J * S ./ W - (T-1)/J/T); end

function [MPSRF] = GRmpsrf(th,T,d,J)

W = zeros(d); B = zeros(d); mn = mean(reshape(mean(th),d,J)');

for j=1:J

  dw = th(:,:,j) - repmat(mean(th(:,:,j)),T,1);   db = mean(th(:,:,j)) - mn; 

  W = W + dw'*dw;  B = B + db'*db;  end

W = W / ((T-1) * J); B = B / (J-1); V = sort(abs(eig(W\B)));

MPSRF = sqrt( (T-1)/T + V(end) * (J+1)/J); end

Parameter samples obtained by MCMC methods are correlated which means extra samples are needed to convey the same information. The extent of correlation will depend on a number of factors including the form of parameterisation, the complexity of the model, and the form of sampling (e.g. block or univariate sampling of parameters). Analysis of autocorrelation in sequences of MCMC samples amounts to an application of time series methods, in regard to issues such as assessing stationarity in an autocorrelated sequence. Autocorrelation at lags 1, 2, and so on may be assessed from the full set of sampled values (t), (t+1), (t+2).. , or from sub-samples K steps apart (t), (t+K), (t+2K)…,etc. If the chains are mixing satisfactorily then the autocorrelations in the one step apart iterates (t) will fade to zero as the lag increases (e.g. at lag 10 or 20). Nonvanishing autocorrelations at high lags mean that less information about the posterior distribution is provided by each iterate and a higher sample size T is necessary to cover the parameter space. Slow convergence will show in trace plots that wander, and that exhibit short term trends rather than rapidly fluctuating rapidly around a stable mean. 

Problems of convergence in MCMC sampling may reflect problems in model identifiability due to over-fitting or redundant parameters. Running multiple chains often assists in diagnosing poor identifiability of models. This is illustrated most clearly when identifiability constraints are missing from a model, such as in discrete mixture models that are subject to ‘label switching’ during MCMC updating (Frühwirth-Schnatter, 2001). One chain may have a different ‘label’ to others so that applying any convergence criterion is not sensible (at least for some parameters).  Choice of diffuse priors tends to increase the chance of poorly identified models, especially in complex hierarchical models or small samples (Gelfand and Sahu, 1999). Elicitation of more informative priors or application of parameter constraints may assist identification and convergence. 

Correlation between parameters within the parameter set ( = ((1,(2,…(d) also tends to delay convergence and increase the dependence between successive iterations. Re-parameterisation to reduce correlation – such as centering predictor variables in regression - usually improves convergence (Zuur et al, 2002). Robert and Mengersen (1999) consider a re-parameterisation of discrete normal mixtures to improve MCMC performance. Slow convergence in random effects models such as the two way model (e.g. repetitions j=1,…,J over subjects i=1,..,I)

           yij = (+(i+uij
with (i ~ N(0,(eq \O(2,()) and uij ~ N(0, (eq \O(2,u)) may be lessened by a centred hierarchical prior, namely yij ~ N((i, (eq \O(2,u)) and (i~ N((,(eq \O(2,()) (Gelfand et al, 1996; Gilks & Roberts, 1996). For three way nesting with 

          yijk = (+(i+(ij+uijk
with (ij ~ N(0, (eq \O(2,()), the centred version is yijk ~ N((ij, (eq \O(2,u)), (ij ~ N((i, (eq \O(2,()), and (i~ N((,(eq \O(2,()). Vines et al (1996) suggest sweeping for the subject effects, so that 

           yij = (+(i+uij
where  (i =(i -  eq \O((,_), (=(+ eq \O((,_), so that  eq \O((,i=1,I)(i =0, with (i ~ N(0, (eq \O(2,()(1-1/I).

Scollnik (2002) considers WINBUGS implementation of this prior.

1.7 Predictions from sampling; using the posterior predictive density

In classical statistics the prediction of out-of-sample data z (for example, data at future time points or under different conditions and covariates) often involves calculating moments or probabilities from the assumed likelihood for y evaluated at the selected point estimate m, namely p(ym). In the Bayesian method, the information about  is contained not in a single point estimate but in the posterior density p(y) and so prediction is correspondingly based on averaging p(zy) over this posterior density. Generally p(zy)= p(z) namely that predictions are independent of the observations given (. So the predicted or replicate data z given the observed data y is, for  discrete, the sum

p(zy) =  p(z)p(y)

and is an integral over the product p(z)p(y) when  is continuous. In the sampling approach, with iterations t=B+1,..B+T after convergence, this involves iteration specific samples of z(t) from the same likelihood form used for p(y) given the sampled value (t).

There are circumstances (e.g. in regression analysis or time series) where such out-of-sample predictions are the major interest; such predictions may be in circumstances where the explanatory variates take different values to those actually observed. In clinical trials comparing the efficacy of an established as against a new therapy, the interest may be in the predictive probability that a new patient will benefit from the new therapy (Berry, 1993). In a two-stage sample situation where m clusters are sampled at random from a larger collection of M clusters, and then respondents are sampled at random within the m clusters, predictions of population wide quantities or parameters can be made to allow for the uncertainty attached to the unknown data in the M-m non-sampled clusters (Stroud, 1994).
1.8 The Present Book

The chapters below review several major areas of statistical application and modelling with a view to implementing the above components of the Bayesian perspective, discussing worked examples and providing source code which may be extended to similar problems by students and researchers. Any treatment of such issues is necessarily selective, emphasising particular methodologies rather than others, and particular areas of application. As for the first edition of Bayesian Statistical Modelling, the goal is to illustrate the potential and flexibility of Bayesian approaches to often complex statistical modelling and also the utility of the WINBUGS package in this context – though some Matlab code is included in Chapter 3. WINBUGS is S based and offers the basis for sophisticated programming and data manipulation but with a distinctive Bayesian functionality. WINBUGS selects appropriate MCMC updating schemes via an inbuilt expert system so that there is a blackbox element to some extent. However, respecifying or extending models can be done simply in WINBUGS without having to retune the MCMC sampling update schemes, as is necessary in more direct programming in (say) R, Matlab or GAUSS. The labour and checking required in direct programming increases with the complexity of the model. However, the programming flexibility offered by WINBUGS may be more favourable to some tastes than others – WINBUGS is not menu driven and pre-packaged, and does make greater demands on the researcher’s own initiative. A brief guide to help new WINBUGS users is included in an Appendix, though many on line WINBUGS guides exist; extended discussion of how to use WINBUGS appears in Scollnik (2001), Fryback et al (2001), and Woodworth (2004, Appendix B). 

Issues around prior elicitation and sensitivity to alternative priors may to some viewpoints be downplayed. In most applications multiple chains are used with convergence assessed using Gelman-Rubin diagnostics, but without a detailed report of other diagnostics available in coda and similar routines. The focus is more towards illustrating Bayesian implementation of a range of modelling techniques including multilevel models, survival models, time series and dynamic linear models, structural equation models, and missing data models. Any comments on the programs, data interpretation, coding mistakes, and so on would be appreciated at p.congdon@qmul.ac.uk.  The reader is also referred to the web site at the Medical Research Council Biostatistics Unit at Cambridge University, where a highly illuminating set of examples are incorporated in the downloadable software, and links exist to other collections of WINBUGS software.
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� If l (()=log(L((|y)) is the likelihood, then I(()=-E� EMBED Equation.3  ���


� Suppose a chain is defined on a space S. A chain is irreducible if for any pair of states (si,sj)( S there is a non-zero probability that the chain can move from si to sj in a finite number of steps. A state is positive recurrent if the number of steps the chain needs to revisit the state has a finite mean. If all the states in a chain are positive recurrent then the chain itself is positive recurrent. A state has period k if it can only be revisited after a number of steps that is a multiple of k. Otherwise the state is aperiodic. If all its states are aperiodic then the chain itself is aperiodic. Positive recurrence and aperiodicity together constitute ergodicity.
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