Chapter 13 Survival and Event History Analysis.

13.1 Introduction 

Social, health and engineering sciences frequently involve analysis of durations or survival times. Such times may be up to a single non-recurring (absorbing) event, such as mortality or age at first marriage, or may be times between repeatable or recurrent events (e.g. job mobility). Thus event history analysis generally refers to recurrent events with more than one spell possible on each individual (Tuma et al, 1979). By contrast, survival analysis generally refers to the duration till a single event (Chiang, 1968). In many applications changes of state may include transitions to several alternative states. Major application areas include reliability analysis, human lifetime studies, human behaviours (e.g. migration), and clinical trials. 

Central to the analysis of survival and event history data is the hazard rate, namely the probability of the event within a short interval given survival to the beginning of the interval (Hougaard, 1999). Essentially the rate at which the event occurs and the length of survival times are different views of the same process. In some processes, it is possible to never experience the event, leading to models including cure rate or permanent stayer fractions. Also central to such data is a form of missing data (see Chapter 14) where observations are incomplete in the sense that the terminating event is not observed within the sampling period. This is usually known as censoring and in terms of missing data analysis, it is usually assumed that the missingness is not related to the time that would have been observed (i.e. that censoring is non-informative).

Among the questions that occur in survival and event history analysis are (a) the impact of covariates on the length of survival or, equivalently, on the rate of changing states, (b) the shape of the hazard function, for example, whether it increases or decreases monotonically with time spent in the current state. The question of  time dependence is often of secondary interest, and the Cox regression model (Cox, 1972; Cox & Oakes, 1984)  and other developments involve semi and nonparametric treatment of the hazard function. These include seminal papers that reframe the Cox model in Bayesian terms (e.g. Kalbﬂeisch, 1978; Sinha et al, 2003). Recent papers including Bayesian semiparametric treatments of the hazard function include Gustafson et al (2003), Yin & Ibrahim (2005a), Beamonte & Bermudez (2003), Campolieti (2001), and Ghosh & Ghosal (2006). 

Additional issues occur concerning first, the possibility of multiple types of exit, or choices of new state, leading to multiple decrement or competing risk models (Salinas-Torres et al, 2002; Wang & Ghosh, 2000; Gasbarra & Kulathinal, 2000), and second, the impact that unobserved differences in frailty between subjects may have on survival chances or duration times, and how allowing for them may change the estimates of the survival curve and of the impacts of observed covariates (Hougaard, 2001; Shaban & Mostafa, 2005; Pennell & Dunson, 2005; Sahu & Dey, 2000). Frailty differences raise issues analogous to those of chapters 5 and 6 in terms of suitable random effects or mixture models for variability in proneness or frailty but in the context of event times. There is some debate regarding sensitivity of inferences to the method (for example, whether parametric or non-parametric) adopted for modelling unobserved heterogeneity (Paserman, 2004). Frailty models are often applied in situations with multivariate outcomes or nested data structures (Sahu & Dey, 2004).

Often survival times are recorded only for grouped time units (e.g. in days or months) even though the timing of the event is theoretically available to much greater accuracy (Lewis and  Raftery, 1999; Fahrmeir and Knorr-Held, 1997). Among several Bayesian treatments of discrete time frames, Fahrmeier and Knorr-Held (1997) demonstrate dynamic linear model (state-space) priors for discrete time hazard and regression parameters, while Manda and Meyer (2005) consider multi-level discrete survival data, raising questions regarding frailty at two or more levels. If survival times are grouped into discrete intervals, then the natural framework for analysis is provided by life tables defined on each of the discrete intervals (or possibly groupings of the original intervals). These may be used to compare the survival experiences of two or more samples in terms of expected lifetimes or proportions surviving to certain times. So within the scope of survival analysis are actuarial life tables when survival time is replaced by age, and large human populations are compared, for example in terms of life expectancies at different ages.

13.2 Parametric Survival Analysis in Continuous Time 

A number of papers discuss Bayesian estimation of parametric survival models (e.g. Dellaportas and Smith, 1993) and the facility with which standard MCMC estimation techniques (e.g. Gibbs sampling) may be applied to all model unknowns (Kuo and Smith, 1992; Yoo and Lee, 2004). Let T denote a random variable in continuous time representing a survival time or length of stay. Let the survival time for individuals in a sample follow a density f(t|θ) where θ denotes parameters defining how the event rate changes with time. From f is obtained the distribution function, or proportion of the population having changed state by time t. Thus the distribution, or cumulative incidence function (e.g. Gilbert et al, 2004), of T is


F(t|()=Pr(T<t|() =( eq \O(t,0) f(u|() du                           

and the complement of this function is the probability that the lifetime exceeds t,


S(t|() = l-F(t|() = Pr(T( t|().                           

This is the fraction of the population still not having died or changed state by time t, known as the survival or stayer rate. Consider a short interval (t,t+(t). The hazard function, h(t|(), which is analogous to the death rate in discrete time, is the limit as (t(0 of the ratio of the probability of an event (e.g. death, component failure) in that interval, conditional on surviving to time t, namely Pr(t ( T < t + (t|T ( t,(), to the length of the interval. Thus

         h(t|() =  eq \O(lim,(t(0)  Pr(t ( T < t + (t|T ( t,()  / (t

Because 

          Pr(t ( T < t + (t|T ( t,()

                 = Pr(t ( T < t + (t|()/Pr(T ( t,()       
      
in the limit as (t(0, 

        h(t|()=  eq \O(lim,(t(0)  Pr(t ( T < t + (t|()/Pr(T ( t,()       
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                =f(t|()/S(t|()
since the limit term is just the derivative of F(t|().  Equivalently the limit term is the derivative of 1-S(t|(), so


h(t|()    =  -S((t|()/S(t|()

                     =  -d/dt [log S(t|()]

It follows that


S(t|()     = exp [- H(t|()]

where H(t|() = (eq \O(0,t)h(u|()du is the integrated or cumulative hazard rate. 

Censored observations

A distinguishing feature of survival and event history analysis is censoring: an individual’s lifetime or length of stay is only partially observed and not followed through to its completion.  This would be the case in a clinical trial if some individuals withdrew from observation or were (say) still alive at the end of the trial. In some applications (e.g. models for marital status or job change) it is possible that a move never occurs and censoring is also present then. Bayesian analysis of censored waiting times is facilitated by considering them as extra unknowns. The full conditionals for the remaining parameters are then updated as if all the missing ti were in fact observed (Kuo and Smith 1992).

Right censoring occurs when the sampling period (e.g. the duration of a clinical trial) finishes before an event is observed; the censored survival time is less than the actual (unobserved) complete survival time. Less frequently survival data may be truncated form above (left censoring), when the observed time is greater than the actual time when the state commenced.  For example, population census data may record long term illness status by current age but not by age when illness commenced. Interval censoring may occur when the times of onset of disease are unknown and disease is only recorded when screening occurs (e.g. in the onset of HIV or AIDS) (Kim et al, 1993; Zhou, 2004).

For right censored data, the likelihood consists of S(ti) for censored cases and of f(ti)=h(ti)S(ti) for observed failures. With a censoring indicator (i=1 for observed failures and (i=0 for censored cases, the likelihood is the product 

             eq \O((,i=1,n)  [h(ti)](i  S(ti).

Equivalently the likelihood may be written as a product of terms over the subpopulations of censored and non-censored subjects, namely

             eq \O((,(i=1) f(ti)  eq \O((,(i=0) S(ti).

Forms of Parametric Hazard & Survival Curves

To avoid specification errors in estimating the hazard parametrically, it is useful to estimate the survival function S(t) non-parametrically, for example using the Kaplan-Meier or Altschuler-Nelson methods (Harrell, 2001), or piecewise constant hazard rates. Observed survival times and cumulative densities will typically be jagged with respect to time, and non-parametric methods for plotting and analysing survival reflect this. 

However, parametric lifetime models are also often applied for reasons of model parsimony, to smooth the observed survival curve, and to test whether certain basic features of time dependence are supported by the data. The first and most obvious is whether the exit or hazard rate is in fact a clear function of time. In the exponential model, the leaving rate is constant,  defining a stationary process, with a hazard

                     h(t|() = (,

mean failure rate (=1/(, a survival function


            S(t|() = exp(-(t)

and a density

                     f(t|() = (exp(-(t)

Commonly used parametric forms for lifetime distributions which exhibit time dependence include the Weibull, Gompertz and log-logistic densities (Hougaard, 1999; Washington et al, 2003). 

The slope dh(t)/dt of the hazard rate determines the nature of any ‘duration dependence’ whereby the probability of ending a duration depends on that duration (Cockx & Dejemeppe, 2002; Aaberge, 2002). Under a Weibull model, the hazard rate is monotonic in time and governed by shape parameter ( >0 and scale parameter (,

                     h(t|(,() =((t(-1



with S(t|(,()=exp(-(t(), f(t|(,()=((t(-1exp(-(t(), and mean ((1+1/()(1/( where (=1/(. This density is obtained from an exponential variable u ~ E(() and taking t=u1/(. Here values of ( exceeding one correspond to positive duration dependence and values between 0 and 1 to negative duration dependence (sometimes called ‘cumulative inertia’ in job and residential mobility applications). While any positive density can be sued as a prior for (, Mostert et al (2000) propose a discrete prior based on substantive prior knowledge. The Gompertz has hazard h(t|(,()=((t, with (>0 and ((1, and is distinguished from the Weibull in  having a non-zero density at 0, an important feature in human mortality applications. Similarly, Sinha et al (2003) consider the situation in reliability analysis where there is a positive permanent survival fraction so that F(t|p,() = pF0(t|() where 0<p<1, and F0(t|() is a standard lifetime density (e.g. Weibull), with F0((|() = 1. Data where a positive survival rate is possible are also called cure rate models; for example, in follow up to cancer therapy. These models typically necessitate sampling of latent risk events (Ibrahim et al, 2001, Chapter 5). 

The log-logistic density, t ~ LL((,() has hazard 

              h(t|(,()=((/() (t/()(-1 [1/(1+(t/()(]        (13.1)

and is sometimes used (e.g. Bennett, 1983) to allow for non-monotonic hazards, or for marked right skewness in survival times (Li, 1999; Wu et al, 2005). ( is the scale parameter and ( the shape parameter. The log-logistic can be obtained by taking log survival times to be logistic. Thus u=log(t), and u ~ L((,1/(), where (=e(, with survivor function in the u scale,  S(u) = 1/[1 + exp{((u-()}], and in the original scale S(t)=1/[1+(t/()(]. The logistic can be applied to left censored as well as right censored data (Aitkin et al, 2005, p 388), as it can be expressed in terms of failure probabilities

                logit(pi)=((ui-()                        

with F(t)=pi, S(t)=1-pi and f(t)=pi(-1pi)(. These are the likelihood components for left censored, right censored and failing subjects respectively. Among other options for non-monotonic hazards are discrete mixtures of the same or different parametric survival models, an example being the poly-Weibull model (Berger and Sun, 1993). Congdon (2001) also considers the sickle model (Blossfeld & Rohwer, 2002).

Modelling Covariate Impacts and Time Dependence in the Hazard Rate

Often the hazard will depend both on time t itself and on covariates X, which may be fixed throughout the observation period or time varying. The question is then whether interactions exist between time and covariate effects and if so, how to model them. Alternatively stated, one may ask whether the hazard model parameters are independent of the predictors or not. A simplifying assumption, analytically applicable to most survival densities (though still an empirical assumption), is known as proportional hazards, under which the mean function of covariates, B(X)=exp(X() is multiplicatively independent of the time function. Thus

               h(t|X,(,()= h0(t|() exp(X()                       

where h0(t|() is the baseline hazard rate as a function of time only. Another possible framework distinguishing time and predictor effects is the additive model  (Beamonte & Bermudez, 2003; Dunson & Herring, 2005), namely

                h(t|X,()= h0(t) + exp(X().                       

As usual in Bayesian models, there is a choice between relatively diffuse priors on regression coefficients or full exploitation of historical findings. Examples of the latter approach include Abrams et al (1996); they consider priors on treatment effect parameters in clinical trial survival analysis, and suggest meta-analysis of previous findings on the treatment effect to establish a prior for the current survival study. Ibrahim and Chen (2000) consider the power prior strategy for hazard regression, whereby a weight below 1 is allocated to the likelihood of data from a previous study to control its impact on the current study. By contrast, Kim and Ibrahim (2000) consider conditions for posterior propriety in Weibull hazard regression when the Weibull parameter is assigned a proper prior but the regression parameters have flat priors.

Under proportional hazards, the hazard ratio comparing two individuals will be constant over time, providing their relevant attributes X do not change. The exponential, Weibull and gamma models are all compatible with proportional hazards forms, whereas the logistic hazard 


h(t|(,() = (eD/(1+eD)

where D=((t-(), is an example of a non-proportional model.

Example 13.1 Veterans Lung Cancer Survival 

To illustrate a Weibull survival analysis and possible modelling options vis-à-vis the simpler exponential model, consider survival times on 137 lung cancer patients from a Veterans’ Administration Lung Cancer Trial. The available covariates are treatment (standard or test), cell type (1 squamous, 2 small, 3 adeno, 4 large), the Karnofsky health status score (higher for less ill patients), age, months from diagnosis, and prior therapy (1 = No, 2 = Yes).  

Aitkin et al (1989) apply a Weibull hazard to these data, because of an apparent positive relationship between log hazard and log time under a piecewise exponential model.  They estimate the Weibull parameter as ( = 1.08, suggesting that an exponential distribution for survival times is in fact suitable.  Their final model includes the Karnofsky score, cell type, prior therapy and an interaction between the Karnofsky score and prior therapy.  Aitkin et al (2005, p 395) note that the form of Weibull time dependence appears to differ between cell types, with the squamous shape parameter differing from the others; including this feature leads to a non proportional model (see Exercise 13.1).

Here a proportional model is estimated with diffuse priors on the covariate effects and a gamma prior, G(1,0.001) on the Weibull parameter. As well as initial values on these parameters, one may also supply initial values for the censored survival times (greater than or equal to the recorded times). With a two chain run of 10000 iterations (convergent from 500), one finds an average for the Weibull parameter of 1.11 with posterior standard deviation 0.074 and 95% interval from 0.97 to 1.26 (Table 13.1). There is a 94% chance that the parameter exceeds 1. The choice between exponential and Weibull is therefore not clear cut. 

The predictor effects show that mortality is lower (survival is longer) for patients with higher health status scores, those with squamous cell type, and those without prior therapy. Suppose a low (high) risk patient is one with Karnofsky score 80 (30), squamous (adeno) cell type and without (with) prior therapy. The median predicted survival time for such patients are 40 days and 2.3 days. 

A second analysis seeks to estimate relative support for exponential vs Weibull survival. This involves setting a discrete prior on two options, (=1 and a constrained log normal

           log(() ~ N(0,1) I(0,).

The prior probabilities governing these options have a Dir(1,1) prior. This structure results in satisfactory mixing over the options, and shows a 0.59 probability on the exponential model and 0.41 on the Weibull (after running two chain of 10000 iterations with 500 burn-in).
Table 13.1 Posterior Summary, Veterans Survival Model

Parameter


     Mean
   St devn
2.5%
97.5%

Deviance
1451
7
1439
1466

Median Survival High Risk
2.8
1.6
0.9
7.0

Median Survival Low Risk
42.7
15.1
21.5
78.3

Weibull shape
1.11
0.07
0.97
1.26

Constant
-4.29
0.54
-5.35
-3.26

Karnofsky
-0.26
0.06
-0.36
-0.14

Prior Therapy (PT)
1.96
0.70
0.52
3.25

Cell type 2
0.72
0.25
0.24
1.21

Cell type 3
1.17
0.29
0.60
1.75

Cell type 4
0.30
0.27
-0.23
0.83

Karnofsky-PT interaction
-0.32
0.12
-0.55
-0.10

Example 13.2 Commuter Delay in work-to-home trips

Washington et al (2003) consider the durations of delay in work-to-home trips for 96 Seattle area commuters. For such workers, the home trip is postponed to varying degrees to avoid evening rush-hour congestion. The hazard rate is effectively modelling early as against late departures for home. There is no censoring. The predictors are gender, X1 (M=1,F=0), X2=ratio of actual travel time (at expected departure time) to free-flow travel time, X3=distance from work to home (km), and X4=resident population density in workplace zone (divided by 10000). One might expect early departure to be negatively associated with X2 and X4. 

Actual delay times vary from 4 to 240 minutes. A non-monotonic hazard is suggested when the Kaplan-Meier survival curve is used to provide estimates of H(t) and hence h(t). The hazard is low at first (durations under 20 minutes), has a plateau at values of 0.017 to 0.031 per minute for durations between 20 and 100 minutes, and has a late peak between 120 and 140 minutes. Here we compare a Weibull with single component and two component log-logistic models.

For the Weibull a two chain run of 5000 iterations (convergent from 1000) shows a log-likelihood of –453 and mean ( of 1.75. Predictors X2, X3 and X4 all have negative effects (95% credible intervals entirely negative). Males are also less likely to leave early (i.e. are more likely to delay till congestion clears) though the effect is not significant. 

Shifting to a log-logistic increases the average log-likelihood to –451.5 with the same number of parameters. Predictor effects are consistent with the Weibull though parameterised in line with the probabilities defined by logit(pi)=((ui-Xi(), so differently signed. The shape parameter ( has 95% interval {2.3,3.2} from iterations 500-5000 of a two chain run.

Because of the unusual features of the empirical hazard a two component log-logistic is also fitted, with components differing in shape parameters. Priors (1=exp((1) and (2=(1+exp((2) are adopted, with (j ~ N(0,1), and with prior probabilities (j ~ Dir(1,1) on the components.  The second half of a two chain run of 10,000 iterations shows a small gain in average log-likelihood (to –450.7) but at the expense of two extra parameters.   The two ( parameters have means 2.3 and 3.2 with very similar a higher component probabilities (0.51 and 0.49). Aberrant cases (e.g. subject 94) with low CPOs still remain poorly fitted, and an unequivocal choice between different survival models is unclear.  Simulating replicate times from this model shows two widely separated modes, so perhaps a more elaborate mixture model for the shape parameter could be investigated. The fact that subject 94 has a delay of 240 minutes (the next highest delay is 150 minutes) possibly suggests the need for variable scales to downweight aberrant cases, for example, via           

           ui ~ L((i,1/(((i))

where ui are log times and (i are gamma with mean 1.
13.3 Accelerated Hazard Parametric Models
In an accelerated failure time (AFT) model the explanatory variates act multiplicatively on time, and so affect the ‘rate of passage’ to the event. For example, in a clinical example, they might influence the speed of progression of a disease. This results from a model for t of the form

                ti =exp(-Xi()Vi
where Vi is a multiplicative positive error, or in the log scale

   log(ti)=-Xi(+((i=Xi(+((i=(0 + (1xi1 +...+(pxip+((i   (13.2)

For Weibull survival ( follows the Gumbel density, while taking ( as logistic leads to the log-logistic model for t (e.g. Collett, 1994). A positive (k coefficient means that xik leads to longer survival or length of stay; a positive (k means xik is a risk factor causing earlier mortality or failure. 

The survivor function S(ti)=Pr(Ti ( ti) = Pr(logTi ( logti), so 

         S(ti|Xi) = Pr ((i  ( [log(ti) - (0 - (1xi1 -…-(pxip]/()

If, for example, ( is logistic with f(()=e(/[1+ e(]2, with S(()=1/[1+ e(] then

         S(ti|Xi) = [1+exp{(log(ti) - Xi()/(}]-1                  (13.3)

Let  (i = (1xi1 + (2xi2+...+ (pxip (excluding the intercept), then the AFT hazard function is

                   h(t|x) = e(i h0(e(i t)

For example, for Weibull survival times, 

                   h0(t)=  (( t (-1
and under an AFT model,

                   h(t,x) = e(i (( (t e(i) (-1
                             = (e(i)( [((t (-1 ].           

       

Hence the durations under an accelerated Weibull model have a density

                   W((e((i, ()

whereas under proportional hazards the density is

                   W((e(i,().

If there is a single dummy covariate (e.g. p=1, with xi=1 for treatment group, 0 otherwise) then (i=(( when xi=1. Setting (=e(, the hazard for a treated patient is

                (h0((t)

and the survivor function is S0((t). The multiplier ( is often termed the acceleration factor.

The median survival time under a Weibull AFT model is

                t50 = [ log2/{(e((i}]/(                 

In an example of a Bayesian perspective on the AFT model, Bedrick et al (2000) consider priors for the regression parameters expressed in terms of their impact on median survival times rather than directly on the (k. Thurmond et al (2005) consider multi-modal AFT models in a veterinary application, for times tij to abortion in cows i clustered in herds j. Their model includes cows who progress to normal births for which a survival model is not needed. The model also includes a logistic regression for the probability pij of an abortion event, yij=1 or 0. The abortion event and time models share random cluster (herd) and individual (cow) effects. This has obvious potential for other applications, including human births. Thus for g=1,..,G modal groups and latent categories Lij (1,..G

        log(tij)=  ([Lij]+Xij(+bj1+cij1
        (ij ~ N(0,([Lij])

        logit(pij)= Xij(+bj2+cij2.

where b and c are random and the (j might have an order constraint for identification. Core WINBUGS code for this scheme (adapted from Thurmond et al, 2005), with a single predictor and stacked data arrangement, is

model {for(k in 1:Nabort} {t[k] ~ dlnorm(m[k], Pr[T[k]])

m[k] < - alph[T[k]] + beta*x[k]  + b[clus[k],1] + c[subj[k],1] 

T[k] ~ dcat(P[])}

P[1:G] ~ ddirch(d[1:G])

for (g in 1:G) {Pr[g] ~  dgamma(a.g,b.g); mu[g] ~ dnorm(a[g],T.mu)}

for(k in 1:Nclus) {b[k,1:2] ~ dmnorm(m.b[1:2], tau.b[1:2,1:2])}

tau.b[1:2,1:2] ~ dwish(R[1:2,1:2],2)

for(k in 1:Nsubj) {c[k,1:2] ~ dmnorm(m.c[1:2], tau.c[1:2,1:2])}

tau.c[1:2,1:2] ~ dwish(R[1:2,1:2],2)

for (k in 1:Npreg) {r[k] ~ dbern(p[k])

logit(pr[k]) <  gam0 + gam1*x[k] + b[clus[k],2] + c[subj[k], 2]}}.
Example 13.3 Log-logistic AFT

For survival times or durations following a log-logistic density, consider the baseline hazard in (13.1) re-parameterised with (=exp(-(), so that  

        h0(t|(,() = e( ( t(-1 [1+e(t(]-1


(13.4)

with S0(t|(,()= [1+e(t(]-1. Under an accelerated failure time model,  the hazard at time t for subject i with regression term (i=Xi( is

         h(t|Xi) = e(i h0(e(i t)

                    = e(+((i ( t(-1 [1/(1+e(+((i t(]

namely a log-logistic, as in (13.4), with parameters (+((i and (. Comparing this with (13.3) shows that (=(0/(, (=1/( and (j=-(j, j=1,..p. The median survival time under an AFT log-logistic model for a subject with predictors X* and predictor effect (* is exp[-((+((*)/(] so, for example, one can compare median survival for those under treatment or placebo. 

Collett (1994) considers breast cancer survival  times for 45 women according to whether the tumour was positively stained (xi=1) or negatively stained. A logistic regression for the log survival times is adopted, with constrained sampling when such times are censored. So 

          log(ti) ~ logistic((0+(1xi,1/()  I(t eq \O(i,*),)

where priors (j ~ N(0,1000) and ( ~ Ga(1,0.001) are assumed and where t*=0 for known death times, but equals the censored survival time otherwise. The estimated ( from the 2nd half of a two chain run of 10000 iterations is 1.21, while (1 has a negative posterior mean of -1.21 (and 95% interval from –2.35 to –0.18), meaning that subjects with positive staining have shorter survival times.  Monitoring the median survival formulae exp[-((+((*)/(], with (* defined according as x*=1 or x*=0, shows that the median survival time for positively stained tumour subjects has posterior mean 79 compared to 298 days for negatively stained subjects.

13.4 Counting Process Models

The counting process approach to survival data has certain advantages in classical estimation in terms of the properties of the (Martingale) residuals obtained under this approach; see Kpozèhouen et al (2005), Kim (1999) and Watson et al (2001) for Bayesian applications. It is also useful in analysis of repeat or multivariate events, for example in the facility with which the current event intensity can be related to the previous event history (Lindsey, 1995). Consider a time W until the event of interest, and a time Z to anything other than the event of interest, whether another type of event, or loss to follow up. Then the observations for a case consist of a duration or survival time T = min(W,Z), and an event type indicator, with (=1 if T=W and (=0 if T=Z. A counting process is defined by a function N(t) that counts failure events up to t

                            N(t) = I(T ( t, (=1)

and an at risk function

                            Y(t) = I(T( t)

where I() is the indicator function. These functions re-express the information contained in the survival times Ti and censoring indicator (i. So the observed event history for subject i is Ni(t), denoting the number of events (failures) which have occurred up to continuous time t.  If only a single absorbing event (e.g. mortality) can be observed, then Ni(t) has value 0 until the event is observed and value 1 thereafter. 

Let dNi(t) be the increase in Ni(t) over a very small interval (t, t+dt), such that dNi(t) is (at most) 1 when an event occurs and zero otherwise.  The expectation of the increment in N(t) is given by the intensity function 

                   ((t)dt=Y(t)h(t)dt

where h(t) is the usual hazard rate defined by 

                   h(t)dt=Pr(t ( T ( t+dt, (=1| T ( t).

In the counting process approach, it is the intensity function that is modelled as a function of possibly time specific covariates, rather than the conditional hazard.  The intensity process is analogous to an expected number of events at time t, with Y(t) the number at risk and h(t) as the event rate. The predicted total of events to time t is obtained by integrating the intensity process, giving a cumulative intensity process (:

                  ((t) =( eq \O(0,t)  ((u) du

This is used in defining Martingale residuals M(t)=N(t)-((t) between actual and predicted cumulative events . 

If there are covariates then the proportional hazards assumption gives the intensity model

                 ((ti) =Y(ti) h0(ti)exp(Xi()

Denoting the integrated hazard by

                 H0(t) = ( eq \O(0,t) h0(u)du

the intensity may be written 


          ((ti) = Y(ti) dH0(t) exp(Xi()                (13.5)

in terms of the integrated hazard H0 and the regression parameter (. The hazard may be expressed parametrically (e.g. in Weibull form), or non-parametrically and may be combined with models for frailty, especially in multivariate count process models (Manda et al, 2005). Thus for variate k with times tik, one might specify

           (k(tik)=Y(tik) h0k(tik)exp(Xik(k+uik)

with parameter differentiation in the hazard, regression terms and in the parameterisation of random effects uik.

Lindsey (1995) points out that in empirical situations, an event history or survival process is observable only at discrete intervals and there is no information about how the intensity would change within intervals. Hence the appropriate likelihood is a step function with mass points at observed event times (leading effectively to a discrete time model, see. Thus define J intervals (a0,a1], ..(aJ-1,aJ] by knots a0, a1,...,aJ where aJ exceeds the largest observed time, censored or uncensored, and a0=0. If additionally censoring is confined to right censoring, the counting process likelihood is equivalent to a Poisson distribution for  indicators 

         zij= dNi(aj-1,aj) = YijI(aj > ti ( aj-1) (i
defined for each interval for each subject, where (i=1 for failures exiting in interval j (0 for censored cases exiting in interval j),  Yij=1 if the subject is still at risk, and with means (ij=Yijh0(ti)exp(Xi(). If the time grid is based on distinct failure times then the zij are binary.

The counting process model also allows for hazard non-proportionality to be assessed by defining suitable time-varying regressors in hazard models, for example

              h(ti|Xi) = h0(t) exp[Xi( + (wi(t)].

So wi(t)=xikg(t) could be the product of a covariate xik with a time function such as g(t)=t, or a function g(t)=1 up to time t* and zero thereafter. This is equivalent to proportional hazards if (=0. Cox (1972) proposed a function g(t)=ln(t), the  power of which was investigated by Quantin et al (1996). 

Example 13.4 Leukaemia Remissions

As an illustration of counting process approach,  consider the data from Gehan (1965) on completed or censored remission times for 42 leukaemia patients, some under a drug treatment and some a placebo. A censored time means that the patient is still in remission. Here the observation interval is a week, and of the 42 observed times, 12 are censored (all in the drug group). There are 17 distinct completed remission times, with termination of remission more common in the placebo group. An intercept is included in the regression term and the effect of placebo (xi=1) vs treatment (xi=0) on exits from remission is expected to be positive. 

The hazard is modelled parametrically, and for a Weibull hazard this is achieved by including the natural log of survival times in the log-linear model for the Poisson mean (e.g. Lindsey, 1995; Aitkin and Clayton, 1980). Thus 

                 ((t) = Y(t) exp((0+ (1xi+ (*logt)

where (* =(-1 and ( is the Weibull shape parameter. Taking a function in time itself

                  ((t) = Y(t) exp((0+ (1xi + (t)

corresponds to the extreme value distribution. For the Weibull a prior for ( confined to positive values is appropriate, while for ( a prior allowing positive and negative values may be adopted. 

Table 13.2 Leukaemia Treatment Effect, Weibull and Extreme Value Models


Mean
St devn
2.5%
97.5%

Weibull





Intercept
-4.70
0.64
-6.06
-3.52

Placebo
1.52
0.41
0.74
2.37

Shape
1.64
0.25
1.16
2.15

Extreme Value





Intercept
-4.31
0.49
-5.30
-3.40

Placebo
1.56
0.42
0.76
2.39

Shape
0.090
0.030
0.029
0.147

Here ( ~ G(1,0.001) prior), and ( ~ N(0,1). Three chain runs of 5000 iterations show early convergence on the three unknowns in each model. We find (excluding the first 500 iterations) a Weibull parameter clearly above 1 (Table 13.2). The 95% credible interval for the extreme value parameter is similarly confined to positive values. The extreme value model has a slightly higher pseudo marginal likelihood than the Weibull model (-101.8 vs -102.8). This is based on logged CPO estimates aggregated over subject-interval pairs where Y(t)=1. The exit rate from remission is higher in the placebo group, with the coefficient on xi being entirely positive, and with median hazard ratio, for placebo vs. drug group, of 4.6 under the EV model.

13.5 Semi-parametric Hazard Models

In the proportional hazards model

          h(t|x)=h0(t)exp(X()

the focus is often on predictor effects rather than the shape of the hazard function. The above worked examples show the possible difficulties entailed in choosing a parametric form for the hazard. To avoid specifying the time dependence parametrically, and possibly mis-specifying it by the wrong parametric form, a semi-parametric approach to specifying the hazard is often preferable (Sinha & Dey, 1997). Semi-parametric options are taken here to include piecewise exponential models. As well as flexible modelling of the baseline hazard, these approaches facilitate modelling non-proportional regression effects, as in

         h(t|X)=h0(t)exp(X((t)).

As mentioned above, semi-parametric priors have been suggested on the cumulative hazard, and implemented in counting process models (Clayton, 1991; Kalbfleisch, 1978). However, a semi-parametric approach may also be specified for the baseline hazard h0 itself (e.g. Gamerman, 1991; Sinha and Dey, 1997). 

Priors for the Baseline Hazard

Consider a discrete partition of the time variable, based on the profile of observed times {t1,...tn} whether censored or not, but with the partitioning also possibly referring to wider subject matter considerations. Suppose the partition specifies J intervals (a0 a1], ..(aJ-1,aJ], with breakpoints or knots at a0, a1,...,aJ where aJ equals or exceeds the largest observed time, censored or uncensored, and a0=0. Let 

         (j = h0(aj) - h0(aj-1)             j=1,..J

denote the increment in the hazard for the jth interval. Gamerman (1991) gives an example for gastric cancer survival times where the grid is defined either by the observed death times or by a more aggregated partition, ideally such that each interval includes a balance of events among intervals (see also Yin, 2005).  Both approaches may be applied to a particular dataset and resulting fit assessed. It is also possible to search over alternative sitings for knots or the total number of knots (Sahu et al, 1997). Gustfason et al (2003) suggest knots aj located at the {(j-1)/J}th quantiles of observed failure times, with a1=0 and aJ equal to the maximum failure time.
Under the approach taken by Dykstra and Laud (1981) the (j are taken to be gamma variables with scale ( and shape

            g(aj) - g(aj-1)

where g is monotonic transform (e.g. square root, logarithm, identity). Note that this prior strictly implies an increasing hazard, though Ibrahim et al (2000) cite evidence that this does not distort analysis in applications where a decreasing or flat hazard is more reasonable for the data at hand. Larger values of ( reflect more informative beliefs about the increments in the hazard. 

The likelihood is piecewise constant, using information only on the intervals in which a failure or censored exit occurs. Let grouped times si be based on the observed times ti after grouping into J intervals. The cumulative distribution function is 

             F(s) = 1 – exp {- eBi ( eq \O(0,s)h0(u) du }

where Bi is a function of covariates Xi. Assuming h0(0)=0, the cdf for subject i is approximated as

             F(si) = 1 - exp{-eBi  eq \o((,j=1,M) (j (si-aj-1)+ }       

where (u)+=u if u>0 and is zero otherwise. 

A wide class of semi-parametric models can also be defined by the piecewise exponential assumption (Ibrahim et al, 2001, p 106), with

                h0(ti|Xi) =(j exp(Xi()                            (13.6)

for ti ( (aj-1,aj], j=1,..J with aJ equal to or exceeding the largest observed time, censored or not. Thus the baseline hazard is constant within each interval. Under this approach generally one may also straightforwardly specify time varying (i.e. interval specific) predictor effects 

       h0(ti|Xi) =(j exp(Xi(j).                         

For a subject failing ((i=1) or censored (but exiting) in the jth interval the likelihood contribution is

       [(jexp(Xi(j)](i exp[-eq \O((,k=1,j)(kdikexp(Xi(k)] 
where dik=min(ti,ak)-ak-1 is the time spent in the kth interval. For a subject censored (but exiting), or actually failing, in interval j, dik is therefore ti-ak-1. Let zik=1 for a subject failing in interval k. The likelihood contribution can then be written 

        eq \O((,k=1,j)  [(kexp(Xi(k)]zik exp[-(kexp(Xi(k)dik]

which is proportional to the likelihood of k Poisson variables zik with means -(kexp(Xi(k)dik, and with dik as an offset.
The nonparametric model is approached as J increases (Sahu et al, 1997). To avoid excess parameterisation (as when the (j or (j are separate fixed effects), one may assume a random effects model linking the (j or (j=log((j); these are known as correlated prior processes for the baseline hazard (Sahu & Dey, 2004). For example, Sahu et al (1997) suggest a Martingale prior 

            (j ~ N((j-1,(() 

with (1=0, while Sinha & Ghosh (2005, p 900) mention   a local linear trend model in (j, namely 

             (j+1=(j+(j+e1j
             (j+1=(j+e2j
where e1 and e2 are independent. Gustafson et al (2003) propose a prior adapted to unequally spaced grid points; see also Chapter 11 and Fahrmeir and Lang (2001). Thus with wj=0.5(aj+aj+1), (j=wj-wj-1,  and eq \O((,_) as the mean of the (j, then 

          (j ~ N((j-1+((j-1 - (j-2)(j/(j-1,(2((j/eq \O((,_))2)

Arjas and Gasbarra (1994) suggest the prior 

          (j ~ Ga((,(/(j-1), 

with (0=1, where ( controls the degree of smoothness in the (j (larger values ( lead to smoothly changing (j). Such priors may also be used to model non-constant predictor effects (i.e. to model non-proportional hazards), as in Gamerman (1991), who suggests a variation of (13.6),namely

            h0(ti|Xi) = exp((j +(jXi)                           

where {(j,(j} may evolve according to a multivariate state space prior. Fahrmeir & Hennerfeind (2003) and Cai et al (2002) consider more general nonparametric regression methods for estimating non-constant intercepts and predictor effects.

Gamma Process Prior on Cumulative Hazard

As in the Cox model, Kalbfleisch (1978) considers a baseline hazard consisting of a number of disjoint time intervals, the hazard being constant within each interval, while Clayton (1991) considers frailty effects in such models. 

A non-parametric approach to specifying the cumulative hazard in a counting process model is possible via (13.5). With ( and H0 a priori independent, the joint posterior, with data D = (Ni(t), Yi(t), Xi ) is


          P((,H0|D) ( P(D|(,H0) P(() P(H0)

Since the conjugate prior for the Poisson mean is the gamma, it is convenient to adopt a prior for  dH0 as follows

            
dH0(t)~ G(c[dH*(t)],c)

where dH*(t) can be thought of as a guess at the unknown hazard rate per unit time and c>0 is higher for stronger belief in this guess. Equivalently 

                  H0(t2) - H0(t1) ~ G(c[H*(t2)-H*(t1)],c)

where possibly H*(t)=rt with r an extra unknown (Burridge, 1981). 

Conditional on (, the posterior for H0 is again of independent increments form on dH0 rather than H0 itself, namely


        dH0(t) ~ G(c[dH*(t)]+  eq \O((,i)dNi(t), c +  eq \O((,i) Yi(t) exp(Xi())

This model may be adapted to allow for unobserved sources of heterogeneity (‘frailty’) (see section 13.7).  This frailty effect may be at the level of observations or for some form of grouping variable.  For example, the observations i might in fact denote repetitions for a smaller number of individuals, e.g. if i = 1, 2, 3 for three repeated events for individual 1,  i = 4,5 for two repeated events for individual 1, and so on.  Alternatively the grouping variable might be institutional (patient survival times grouped by hospital). 

Example 13.5 Gastric Cancer

Gamerman (1991) considers a modification of the proportional hazard model h(t|Xi)=exp((0+(1xi1+..(pxip) to allow non-constant regression effects, as in h(t|Xi)=exp(Xi(t)= h0(t)exp((0t+(1txi1+..(ptxip). The baseline exponential hazard h0(t) is represented by the intercept (0, possibly time varying, with an equivalent representation being h(t|Xi)= (texp((1txi1+..(ptxip) with (t positive. A data set to exemplify this approach involves 90 gastric cancer patients with p=1, and 45 in a treatment group (xi=1, namely chemotheraphy plus radiation, CR), 45 in a control group (xi=0, namely chemotherapy only, C). Earlier study of these data had suggested a non-constant treatment effect – the CR group has initially worse survival but better survival in the long term, with a cross-over at around 1000 days. 

A piecewise exponential model is adopted (e.g. Ibrahim et al, 2001, pages 47 and 106), with a constant intercept (0 but a time varying treatment effect (1t (model 1). This is equivalently expressed as h(t|Xi)= (exp((txi) where (t=(1t. This follows Gamerman (1991, p 71) who found a loss of fit in taking both treatment and intercepts to have varying effects. It is possible to define a grid using the 77 distinct failure times, but here we follow a grid suggested by Gamerman, namely a J=30 knot grid with a={0,20,40,60,..200,250,300,…600,700,…1800}.

For comparison, an alternative model (model 2) involves a varying baseline hazard and constant treatment effect,

         h0(ti|Xi) = (jexp(Xi()                           

with Xi excluding a constant term. The time grid has J=30 as above, with prior (j ~ Ga((,(/(j-1) where (~Ga(1,0.1) (cf. Arjas and Gasbarra, 1994). 

For model 1, a mildly informative Ga(1,0.1) prior is applied to the precision ((  of the evolving treatment effects (j ~ N((j-1,1/(() (cf. Sargent, 1997). This is in line with beliefs that while the treatment effect may change through time it will do so in a smooth fashion. The posterior mean for ((, namely 12.9, is higher than the prior mean (based on the 2nd half of a 5000 iteration run of two chains), in line with such a belief. Treatment effects (j switch from positive to negative at j=19. The resulting cross-over in survival chances is shown in Figure 13.1, resulting from negative treatment effects at later stages in the trial.  The average deviance is 744.7, with complexity d*=9.7 (see section 2.9), and DIC*=754.4.

Application of model 2 reveals (from the 2nd half of a two chain run of 5000 iterations) a rather erratic but trendless hazard (Figure 13.2).  ( has a mean of 20, tending to support an essentially flat baseline hazard. The treatment parameter ( has a 95% interval {-0.3,0.6}, which is not significant, but in fact more in line with an adverse treatment effect (higher hazard for those under CR), as the predicted survival plots show. The average deviance is 749.6, with d*=9.5.

Example 13.6 Trial of Liver Disease Drug

Fleming and Harrington (1991) present a counting process analysis of clinical trial data concerning a drug treatment for primary biliary cirrhosis (abbreviated PBC). A total of 312 patients were randomized between treatments, and interest is in the impact of the drug treatment in improving survival chances. Survival times are in days, with the number of distinct and uncensored survival times being 122. 

Rather than use the full set of failure times to define the grid of intervals ((aj-1,aj], grid points are based on the 0.05,0.10,..0.95 percentiles of the failure times. Additionally a knot at 365 days is included to assess the relative one year survival rates of different risk groups. Risk variables are X1=patient age in days (divided by 10,000), X2=log(Albumin), X3=log(Bilirubin), X4= presence of Oedema and X5=log(Prothrombin time). The Oedema variable is coded as follows:

     0=  no  Oedema & no diuretic therapy for Oedema;

     0.5 = Oedema present without diuretics, or Oedema resolved by diuretics;

     1=  Oedema despite diuretic therapy.

N(0,1000) priors are assumed on predictor effects while the prior on the cumulative hazard is 

         H0(aj+1) -  H0(aj) ~ G(0.001[raj+1-raj],0.001)

with r=0.1. A two chain run of 2500 iterations converges from 500, with covariate effects (based on iterations 501-2500) generally reproducing those found by Fleming & Harrington (Table 13.3). There does not appear to be a significant treatment effect. The number of parameters is d=J+p+1 where J=21 and p=5 is the number of predictors. Hence criteria such as the DIC (deviance at posterior mean of parameters plus twice the model dimension) can be obtained directly.

One may define as high risk a patient at the 90th percentiles on predictors X1,X3,X5, and at the 10th percentile on X2 and with X4=1. Similarly a low risk patient is at the 10th percentiles of predictors X1,X3,X5, at the 90th percentile on X2, and has X4=0. The survival rate of the low risk patient at five years (using the knot a9=1822) is estimated as 0.97, but the high risk patient is estimated to have only a 0.52 survival probability at one year.

Table 13.3 PBC Survival Analysis, Posterior Summary


Mean
St Devn
2.5%
97.5%

Log(age)
0.83
0.22
0.43
1.28

Log(Albumin)
-2.54
0.79
-4.01
-1.07

Log(Bilirubin)
0.78
0.09
0.60
0.97

Edema
0.69
0.29
0.10
1.25

Log(Prothrombin time)
2.13
0.86
0.89
4.39

Treatment Group
0.17
0.18
-0.18
0.52

One year survival rate, high risk patient
0.521
0.089
0.345
0.690

Five year survival rate, low risk patient
0.967
0.008
0.948
0.981

13.6 Competing Risk-Continuous Time Models

The modelling of survival or event times can be extended to processes with several possible causes of exit, failure or death. In human mortality applications we may be interested in competing causes of death (e.g. cardiovascular diseases, cancers and other causes) (Lai and Hardy, 1999). For example, Kulathinal & Gasbarra (2002) consider termination of IUD use according to (1) pregnancy, (2) expulsion, (3) amenorrhea, (4) bleeding and pain, and (5) hormonal disturbances. More generally in event histories one may frequently be interested in rates of movement of different types or change of state to several different destinations (Hachen, 1988). In applications to human behaviour (e.g. migration, job mobility) the destinations may be alternative distance bands, occupation groups and so on. In this case it may be possible to effectively never move (i.e. be a permanent ‘stayer’). 

Let Ji ( 1...C be the cause of exit or type of move,  where the C causes are mutually exclusive and exhaustive. Then the survival process governing transitions to states j=1,..C for individual i is specified by a destination specific hazard

              hj(ti)dt=Pr(ti(T<ti+dt,Ji=j|T(ti)      
with the total hazard, assuming independence between destinations, given by

              h(ti) =  eq \O((,j=1,C) hj(ti)

As noted by Gasbarra & Kulathinal (2000) estimation may consider either cause specific hazards, or the total hazard and the probabilities (j(ti)=Pr(Ji=j|T=ti). Proportionality of cause-specific hazards is then equivalent to failure time and the cause of failure being independent, i.e. ((t)=[(1(t),..,(C(t)] is constant over t.

The survivor or stayer function is then

      S(ti) = exp [ - ( eq \O(0,ti) h(u)du]                                             

              = exp [-( eq \O(0,ti) h1(u)du -  ( eq \O(0,ti)h2(u)du  - …( eq \O(0,ti)hC(u)du]

The density fj(ti) governing waiting times till the jth type of exit or destination is therefore

                fj(ti)dt = Pr(ti ( T < ti+dt, Ji=j| T( ti) Pr(T( ti)

                          = hj(ti) S(ti)

The likelihood is taken over both individuals and all possible causes with censoring indicators δij = 1 if individual i exits for cause j, and δij=0 otherwise. For an individual with δij=1 survival times on other possible causes than j are regarded as censored. A ‘stayer’ is censored on all possible causes. Extra unknowns follow from a latent failure time interpretation where the observed waiting time is the minimum of C possible latent failure times (e.g. Dignam et al, 2006), though the latent failure time comcept is not relevant in all applications (Fahrmeir & Wagenpfeil, 1996). Kulathinal & Gasbarra (2002) consider the counting process version of the competing risk model.
If covariates are available their effects may be differentiated according to type of move or exit, as well as the parameters of the hazard function (Davies, 1983). For example, a Weibull model would be parameterised as

                   h(ti,xi) = αjtiαj-1exp(βjxi)

In behavioural applications, a competing risk model is most sensible when the decision to leave the current state j and the choice of the future state k are interdependent - for example, in voluntary job exits (Hachen, 1988). For example, predictor effects on the rate of job mobility from low status to high status occupations may differ from predictor effects on moves from intermediate to high status occupations. In that case the hazard or regression parameters may be specific to both j and k. 

Example 13.7 Competing Risks in Occupational Mobility

Blossfeld & Rohwer (2002, pp 101-109) report on a competing risks analysis of occupational history data obtained in the German Life History Study, involving 600 job episodes for 201 respondents. C=3 types of move are considered: 84 upward moves involving a prestige gain of 20% or more, 155 downward moves involving any loss of prestige, and 219 lateral moves (any other job change). There are 142 episodes which are right censored (no job change). Covariates used to predict mobility are education in years, cohort2 (born 1939-48), cohort3 (born 1949-51), labour force experience (time in ‘century months’ at start of episode minus time on entry to labour force), previous number of jobs and current prestige. Although Blossfeld & Rohwer apply an exponential model, they show elsewhere that job mobility declines with duration, so a Weibull model

    hj(ti|Xi,(j,(j) = αjtiαj-1exp(Xi(j)                j=1,…,C

is appropriate. N(0,1000) priors are assumed on the 21 regression parameters and E(1) priors on the (j. 

A two chain run of 3000 iterations (convergent from 1000) gives estimates as in Table 13.4. As might be expected from human capital and vacancy competition theory, upward mobility is related to education and negatively to current prestige (the higher up the occupational pyramid, the more opportunities contract); greater labour market experience protects against lateral and downward moves. All types of move show the hazard declining with duration (with 95% intervals for the Weibull shapes entirely under 1).

Table 13.4 Competing Risk Model for Job Moves











Upward


Lateral


Downwards



 node
Mean
2.5%
97.5%
Mean
2.5%
97.5%
Mean
2.5%
97.5%

Constant
-2.8
-4.1
-1.0
-4.1
-4.7
-3.4
-3.1
-4.3
-2.2

Education
0.20
0.10
0.30
-0.07
-0.12
-0.01
-0.11
-0.21
-0.02

Cohort2
0.35
-0.19
0.83
0.47
0.18
0.76
0.37
-0.03
0.73

Cohort3
0.50
0.00
1.01
0.46
0.12
0.78
0.41
-0.02
0.80

LFEX
-0.0033
-0.0078
0.0006
-0.0037
-0.0065
-0.0011
-0.0043
-0.0078
-0.0012

PNOJ
0.128
-0.069
0.308
0.026
-0.098
0.148
0.039
-0.120
0.189

Pres
-0.149
-0.172
-0.125
0.009
-0.003
0.023
-0.015
-0.031
0.006

Weibull shape
0.84
0.72
0.96
0.82
0.76
0.90
0.86
0.75
0.97

13.7 Variations in Proneness: Models for Frailty

Comparison of event histories and survival times between members of a population may well suggest heterogeneity among them in their underlying risk (Box-Steffensmeier & De Boef, 2005). The latter source of variability is variously known as proneness, susceptibility, or frailty; for recent Bayesian perspectives see Locatelli et al (2003), Yin & Ibrahim (2005a; 2005b) and Yin (2005). Thus in medical studies with death or relapse as an end-point, some patients will survive or stay healthy relatively long despite adverse observable risk factors whereas some will survive shorter than expected. Unobserved frailty can be modelled by discrete mixtures on the intercept or by assuming a continuous density for frailty. However, there may be also be heterogeneity over subjects in the impact of predictors. 

One possible form of model to address heterogeneity in both intercepts and predictors is analogous to the mixed model as in Chapter 11, namely

          h(ti|Xi,(,bi)= h0(ti) exp(Xi(+Zibi)            (13.7)                      

where Zi is of dimension q, and bi ~ Nq(0,(b) is a vector of random effects. Zero mean random effects are appropriate when the Zi are a subset of the Xi. When q=1 and Zi=1, then for identification, either a zero mean for bi is assumed or Xi omits an intercept (Sahu et al, 1997). Another possibility is for a mean zero random effect and the hazard level to be modelled by h0. 

Similarly, multiplicative frailty models typically positive (e.g. gamma) random effects wi with mean 1 for identification, when Xi includes a constant, for example

            h(ti|Xi,(,(,wi,()= h0(ti|() exp(Xi()wi
            wi ~ Ga(1/(,1/()                      

with ( being the frailty variance (e.g. Yin, 2005, p 554). 

One impact of neglected heterogeneity is that covariate effects may be both understated (in absolute terms) and estimated too precisely. Another is that in mortality and failure applications, the overall hazard rate may decline even though hazard rates for sub-populations with different frailty levels are constant; the more frail will tend to undergo the event earlier, so that with increasing time the overall hazard rate will descend to that of the sub-group with the lowest frailty. Consider a population with two sub-groups, hazard rates hj(t), and survivorship rates                              

            Sj(t) = exp[ - ( eq \O(0,t) hj(u)du]               j=1,2.

Let p1(0) and p2(0) denote the initial sub-group proportions, with p1(0) + p2(0) =1. The proportion of the surviving cohort at time t that comes from the first sub-group is then

               p1(t) =p1(0)S1(t)/[p1(0)S1(t) + p2(0)S2(t)]

and the hazard rate for the entire cohort at time t is

                he(t) = p1(t)h1(t)+p2(t)h2(t).

If the first sub-group is the more robust then it will come to dominate the population hazard rate. 

Frailty models are commonly used for modelling correlated processes with multivariate survival outcomes or repeated events (Sahu & Dey, 2004), and hence for joint modelling of survival and longitudinal data (Ratcliffe et al, 2004). They are also used for nested outcomes, for example, survival of patients by hospital. For example, Gustafson (1995) considers multiplicative frailty for multivariate nested data with the hazard for patient i, hospital j and outcome k. A typical model for this type of data might be

      hjk(t|Xij,wik)= h0jk(tij|(jk) exp(Xij(jk) wik(j
where the (j model hospital effects on each outcome, (j are gamma hospital frailties, and wik are patient frailties specific to outcomes.

A semiparametric form of the accelerated failure time model provides opportunities for modelling frailty.  Consider the AFT model 

                ti=exp(Xi()Vi 

or in the log scale

               log(ti)=Xi(+(i
Instead of standard assumptions regarding V or (, one may model their density non-parametrically, for example via a Dirichlet process or Polya tree prior (Walker and Mallick, 1999). This amounts to semiparametric intercept variation. A discrete mixture with known small number of groups is also possible, with a two group mixture representing high and low frailty subjects.

Example 13.8 Veterans Lung Cancer Survival 

To allow for heterogeneity in survival in the data from Example 13.1, a discrete mixture of parametric hazards (with known number of components) is one possible approach. This allows ready extension to include mixing on the hazard and regression parameters, as well as just the level, whereas a continuous mixture is most flexible for intercept variation only. Here only the intercept (i.e. the overall level of frailty) is allowed to vary between groups, and a two group mixture is adopted. Extension to varying Weibull slopes is left as an exercise. A Dirichlet prior on the mixing proportions (1 and (2 is used with equal prior weights of 1 on each group.  

The last 9000 of a two chain run of 10,000 iterations leads to estimates of (1 = 0.26, (2 = 0.74 with means (01 = -6.39 and (02 =-4.36 (Table 13.5).  So a small low mortality group is distinguished.  The Weibull parameter becomes more clearly above one, with an average of 1.51 and 95% interval from 1.12 to 1.76.  Among the covariate effects, the impact of the Karnofsky score in particular is enhanced 

Table 13.5 Veterans Cancer Data, Parameter Estimates

Single Group Model
 Mean
St dev
2.5%
97.5%

Constant
-4.26
0.55
-5.35
-3.13

Karnofsky score
-0.26
0.06
-0.37
-0.14

Prior Therapy (PT)
1.95
0.65
0.65
3.21

Small Cell Type
0.72
0.25
0.23
1.20

Adeno Cell Type
1.16
0.29
0.58
1.73

Large Cell Type
0.30
0.27
-0.24
0.81

PT x Karnofsky
-0.32
0.11
-0.53
-0.10

( (Weibull parameter)          
1.11
0.07
0.96
1.25

Two Group Model





Probability (group 1)
0.26
0.12
0.10
0.59

Probability (group 2)
0.74
0.12
0.41
0.90

Constant (group 1)
-6.39
1.01
-8.16
-4.07

Constant (group 2)
-4.36
0.77
-5.90
-2.82

Karnofsky score
-0.48
0.08
-0.65
-0.31

Prior Therapy (PT)
1.97
0.61
0.83
3.22

Small Cell Type
0.86
0.35
0.10
1.50

Adeno Cell Type
1.05
0.42
0.19
1.84

Large Cell Type
0.14
0.38
-0.64
0.87

PT x Karnofsky
-0.32
0.10
-0.53
-0.14

( (Weibull parameter)           
1.51
0.12
1.29
1.76

Example 13.9 Small Cell Lung Cancer

Ying et al (1995) consider survival times for 121 small cell lung cancer patients involving a cross-over trial for two drugs (etoposide E and cisplatin C); 62 patients were randomised to arm A (C followed by E), whereas arm B has E followed by C. Apart from treatment (X1=1 for arm B patients, X1=0 for arm A), patient age at entry to trial (X2) is another predictor – which a Cox regression suggests significantly enhances mortality (i.e. that age is negatively related to survival time). A Cox regression also shows a negative effect of arm B on survival. 

As a baseline for these data a logistic model is here adopted for natural logs of the survival times (Ying et al consider log10 transformed times), in line with an AFT log-logistic survival mechanism (Collett, 1994). So  

          log(ti) ~ logistic((0+(1x1i+(2x2i,1/()  I(t eq \O(i,*),)

with priors (j ~ N(0,1000), and ( ~ Ga(1,0.001); and where t* represents times at censoring, or 0 when failure times are observed. The median survival formulae are monitored for patients aged 62 (cf. Ying et al who find a median survival time of 603 days in arm A for patients of this age). Iterations 1001-10000 of a two chain run show posterior means on {(0,(1,(2} of {7.47,-0.42,-0.015} with the 95% intervals for treatment and age being (-0.71,-0.14) and (-0.033,0.001) respectively. So age is strictly not significant in diminishing survival times, but assignment to arm B does significantly reduce survival time. The median survival times under arms A and B (for patients aged 62) are estimated as 686 and 450 days. 

A non-parametric frailty effect is first introduced in the form of a two group discrete mixture for (0. A monotonicity constraint (02>(01 is used for identification; with the increment (=(02-(01 assumed to be N(0,1).  A Dirichlet prior on the probabilities (k of each intercept is assumed, with prior weight of 1 on each probability. The average intercept (required for obtaining median survival times) is estimated as each iteration as (0=(1(01+(2(02. Age and treatment effects are similar to the first model, with posterior means –0.014 (-0.030, 0.0006) and -0.41 (-0.67,-0.16).  The estimated median survival times are, however, increased to 476 (arm B) and 721 (arm A). This method detects a minority population with extended survival ((2=0.26, and (02=8.38)

A third model draws on the principles of the analysis of these data by Walker and Mallick (1999), who use a Polya tree prior on the errors ( in

         log(ti) =(0+(1x1i+(2x2i+(i.

Here a Dirichlet process prior is adopted on varying intercepts rather than the errors directly, with

        log(ti) ~ logistic((0Li+(1x1i+(2x2i,(-1) I(t eq \O(i,*),)

         Li ~ Categorical(p1,p2,…pM)

where M=20, and p=(p1,p2,…pM) is generated using a stick-breaking prior. With r1,r2,.. rM-1 being Beta(1,() random variables (and rM=1), this involves setting p1=r1, p2=r2(1-r1), p3=r3(1-r2)(1-r1), ...  pM=rM(1-rM-1)(1-rM-2)…(1-r1). ( is assigned a Ga(5,1) prior but sensitivity analysis to assuming different preset ( values, or other priors on ( can be adopted. The baseline density for the intercepts is

           (0j  ~ N((g,1/(g),                          j=1,…,M.

where (g ~ N(7,1) and (g ~ Ga(1,1). The relatively informative prior for (g is based on the earlier standard parametric analysis. 

The resulting plot of the posterior means of the intercepts, based on iterations 1000-20,000 of a two chain run, suggests positive skew or even bimodality: namely, some individuals with unusually high survival chances (Figure 13.3). The median number of clusters is 15. The median survival times for the two arms are estimated as 489 (arm B) and 723 (arm A), very close to the estimates under the simpler two group discrete mixture model. 

Another possibility for a nonparametric approach (analysis left to the reader) involves a Dirichlet process prior on multiplicative factors to produce varying scale (nonparametric scale mixing) with

        log(ti) ~ logistic((0+(1x1i+(2x2i,1/[((i])  I(t eq \O(i,*),)

        (i=([Li]

        Li ~ Categorical(p1,p2,…pM).

The baseline density for the scale mixing parameters is

         (j  ~ Ga((,(),                          j=1,…,M,

where ( ~ E(1). This approach may be relevant in the case outlier points were suspected.

13.8 Discrete Time Survival Models 

Even when events occur in continuous time, many event histories actually only record the nearest month or year (e.g. marital or job histories). Adopting a continuous time analysis in the presence of many tied failure times would give inconsistent estimates (Prentice & Gloeckler, 1978). Sometimes durations may be grouped by definition - for example the number of menstrual cycles to conception after marriage, or number of school years before removal (Muthen & Masyn, 2005).

Suppose the time scale is partitioned into J intervals (aj-1,aj], j=1,..J, not necessarily of equal length, with a0=0, and aJ equalling the maximum observed time, censored or failure.  Censoring (an individual exits in an interval without failure being recorded, e.g. due to dropout) is assumed to occur at the end of intervals. The observed survival times Ti define a discrete value j in the range {1,….J} if aj-1( T ( aj (written as Ti=j), with failure occurring in the jth interval if aj-1 ( Ti ( aj and (i=1. The actual location of the failure during the interval is usually not known. 

Conditional on time constant and time varying predictors, Xi and Zij respectively, the discrete hazard of failure in interval j given survival till then is the conditional probability

    h(Ti=j|Xi,Zij)=Pr(T=j|T(j,Xi,Zij)=F((j+Xi(j+Zij(j)       (13.8)

where F is a distribution function. A common approach to modelling this probability (Kalbfleisch & Prentice, 1980) assumes an extreme value distribution function

                 F(()=1-exp{-exp(()}

leading to a complementary log-log link for h. This can be obtained from assuming an underlying continuous survival process and proportional hazard effects. Another possibility (Thompson, 1977) is a logit link for h, with

                F(()=exp(()/[1+exp(()]



(13.9).

The impact of time can be modelled flexibly within the regression term (, for example via a random walk (Fahrmeier, 1994), via a polynomial function (Efron, 1988), or via any time series prior, for example a hidden Markov chain (Kozumi, 2000). If a distinct intercept or regression parameter is assumed for each interval, a random walk prior should adjust for any differential spacing between intervals; e.g. in an RW(1) prior, the variance Vj of (j or (j is proportional to aj-aj-1, as in 

                  (j ~ N((j-1,Vj)                                  (13.10)

                  Vj =(( (aj -aj-1)

                  1/(( ~ Ga(g(,h()

It is apparent from (13.8) that non-proportional regression effects are modelled relatively simply. Sometimes assuming a separate (j or (j for each interval may lead to excess parameterisation and not improve on the fit of a constant effect (proportional hazard) model with  

        hi(j|Xi,Zij) = Pr(T=j|T(j, Xi,Zij)=F((j+Xi(+Zij()             

Singer and Willett (2003, ch 12) consider less heavily parameterised but still nonproportional regression effects, for example, a quadratic effect

              (j = (1j+(2j2
or a change point model

             (j = (1+(2I(j(J0).

The survival function (the probability of surviving beyond the jth interval) is a cumulated product of the probabilities of not failing,

              Sj = Pr(T> j) =  eq \O((,k=1,j) [1-hi(k|Xi,Zik)]

Someone exiting in the jth interval due to censoring (with no events observed) has likelihood 

                 eq \O((,k=1,j-1) [1-hi(k|Xi,Zik)]

while a first failure during the jth interval has likelihood

               hi(j|Xi,Zij)  eq \O((,k=1,j-1) [1-hi(k| Xi,Zik)].

Suppose subject i is observed for Ji intervals. The above likelihoods are for single events, but the likelihood may be defined for repeatable events, e.g.  k events may be observed at T=j1,… ,T=jk, but the individual is censored (does nor undergo a further event) when observation on him/her ceases at Ji. 

Hence the likelihood involves Bernoulli sampling over individuals i and intervals j=1,..Ji, with probabilities hij=hi(j|Xi,Zij) and 1-hij modelled via complementary log-log or logit links. So an individual undergoing a first event at time Ji will have yij=0 for j=1,..Ji-1, and yi,Ji=1. Augmented data sampling is another possibility (Albert & Chib, 1993). 

The bernoulli likelihood is appropriate when there is only one type of risk or failure. Suppose there are competing risks with C possible destinations from the current state (e.g. C=3 if options are full time job, part time job, or retire, when current state is unemployment). When a move takes place then the binary observation is replaced by a categorical observation, yijk ( (1,…C), and a multiple logit model is relevant (Fahrmeir & Wagenpfeil, 1996). Note that regression and hazard parameters  are identified for all C causes as the current state is the reference.

Frailty effects can be included in the regression term ( or possibly multiplicatively via a beta prior. This is especially relevant in multi-level applications of discrete hazard regression (Manda & Meyer, 2005; Lewis & Raftery, 1999) or models for multiple events (Sinha & Ghosh, 2005), but is also used in single level models to counter selection effects: those most at risk of the event make an early exit leaving an at risk population disproportionately composed of lower risk subjects. Including a frailty term makes more sense when there are several covariates available as frailty variation emerges in the contrast between attributes and failure (or state change) behaviour.

Example 13.10 Head and neck cancer

Efron (1988) considered hazard functions h(T=j|X) as in (13.8) for 96 patients with head and neck cancer, randomized to radiation only treatment (arm A, 51 patients) or chemotherapy & radiation (arm B, 45 patients). The data were originally in days of survival but are recoded to months, where j=1 for a survival time under 30.44 days, j=2 for survival times 30.44-60.88, etc. The maximum time observed in group A is 47 months and in group B, 76 months. Here the time partition {0,1,2,…,43,44,45,50,55,60,65,75,80} is assumed with J=51 intervals, six of which are of length 5 months.

Efron (1988) fits a cubic spline with a logit link, namely

            logit[h(t)]= (0+(1t + (2(t-11) eq \O(2,_)  + (3(t-11) eq \O(3,_) 
where (t-11)_=min(0,t-11). This model is applied here with a complementary log-log link, and with coefficients {(0,..(3} differentiated by treatment group (model A). N(0,1000) priors are assumed on the coefficients. The second half of a 10000 iteration run shows excess mortality in group A (see Figure 13.4) with a DIC of 548 (de=6.7).

Fahrmeir & Wagenpfeil (1996) argue that greater flexibility in parameterising piecewise exponential and discrete time hazards is achieved by random effects modelling. Specifically for these data. Fahrmeir (1994) assumes random walks, as in (13.10), differentiated by treatment group. Here (model B) we assume a common random walk for both treatment arms and take (1 ~ N(0,1000) and 1/(( ~ Ga(1,1); allowing a different random walk for each treatment group is left as an exercise. So

           F((ij)=1-exp{-exp((ij)}          i=1,n; j=1,..Ji
           (ij = (j+(Gi 

where Gi denotes treatment group. If both (A and (B are taken as unknowns, the level of the random walk is not identified, and so the (j parameter estimates are recentred at each iteration. 

Here the 2nd half of a 5000 iteration two chain run shows a better fit for a random walk model – a DIC of 544 (de=11.5). Figure 13.5 shows the excess mortality (extra deaths per month) under the radiation only treatment. 

Example 13.11 Math Dropout

Nonproportional regression effects in discrete hazard modelling may be illustrated by data from Singer and Willett (2003) on dropout from mathematics courses among 3790 high school students followed through 11th grade, 12th grade and the first three semesters of college. A single constant predictor is student gender (X=1 for females, X=0 for males). Singer and Willett report that female students were more likely to quit and that this differential seemed to grow over time. A logit link as in (13.9) is used, with model structure

        hi(j|xij) =F((j +Xi(j)

There are only five time points so a random effects model for varying intercept or regression effects is not necessarily preferred to a fixed effects model. Instead a simplification of the {(j,(j} series  (e.g. as linear or quadratic functions in time) may achieve a better fit. 

A model with constant effect of female gender has DIC of 9816 (de=6), with the last 1500 of a two chain run of 2000 iterations giving posterior means (sd), for the parameters as follows: (=(-2.13(0.06), -0.94(0.05), -1.45 (0.06), -0.62 (0.08), -0.78 (0.14), and (=0.38 (0.05). By contrast, a general time varying effect of gender (via period specific fixed effects) gives no improvement in fit, namely a DIC of 9816.5 with de=10.1. It is apparent that the first period effect in this model is not significant, namely (1 =0.16 with 95% interval (-0.04,0.35), whereas those for later periods show an (irregular) increase, with the mean for (5 being 0.61. Hence a linear trend in the (j via a model with (j=((j or (j=(((j-1) might be tried.

13.9 Exercises

1. In Example 13.1 fit a nonproportional model where the Weibull shape parameter differs between squamous ((1) and the other cell types (a common parameter (( for all three other types) (Aitkin et al, 2005). Obtain the posterior probability that (1>(2.  

2. In Example 13.1 assess the health status score effect for nonlinearity using one of the techniques from Chapter 10, for example a quadratic spline with knots at 25, 35, 45, 55, 65, 75 and 85. How does this affect the estimate of the Weibull shape parameter or the formal model choice assessment against the exponential option via the discrete prior on (.

3. In Example 13.2 compare a 5 point discrete mixture on the log-logistic shape parameter with the variable scale model to downweight aberrant cases, namely ui ~ L((i,1/(((i)) where (i are gamma with mean 1. 

4. Fit the gastric cancer data in Example 13.5 using a grid (J=78 intervals) defined using every distinct failure time.

5. In Example 13.8 include try a two component discrete model varying on the Weibull slope as well as the regression intercept. Sample replicate times from this model to ascertain whether the 95% intervals of replicate data ti,rep contain the actual times (observed failures only). Also include code to obtain Monte Carlo estimates of CPOs and assess any subjects not well fitted by the model. Finally consider the predictive criterion C of Ibrahim et al (2001, equation 2.11), adapted to allow for latent failure times tcens of censored cases, as well as observed failure times tobs. Let D=(tobs,t*) where t* are the censoring times. This is best implemented by obtaining posterior means (i=E(ti,rep|D) and (i = E(ti,eq \O((2),rep)|D) for the replicate data ti,rep from an initial run. Then a second run is made sampling teq \O((r),cens) for iterations r=1,..,R and obtaining

     C = eq \O((,i=1,n)((i-( eq \O(i,2))+
[image: image3.wmf])
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 [eq \O((,ti observed)((i-ti)2+eq \O((,ti censored) eq \O((,r=1,R) ((i- teq \O((r),cens))2 /R]

    with k>0 defining the balance between precision and bias in 

    C .

6. In Example 13.9 (small cell lung cancer) find the median survival times under each group in the two group discrete mixture model (i.e. four possible median survival times, one for each group and each arm). Also assess  by any suitable procedure (e.g. the posterior predictive loss method used Sahu et al, 1997) whether adding a third group improves fit.

7. In Example 13.10 (head & neck cancer) and retaining the existing time partition, fit a random walk intercept model with the prior differentiated by treatment group. Second, redefine the partition to have equal intervals (e.g. of length one month or two months) and use a CAR prior to fit the RW1 model. This avoids the need to re-centre the random walk parameters at each iteration.  

8. Example 13.11 (math dropout) try a linear trend model for the effect of female gender and compare its fit to the general time varying regression effect model hi(T=j|xij) =F((j +Xi(j).
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