Chapter 3 The Major Densities and their Application

3.1 Introduction
The general principle of Bayesian updating is to combine prior knowledge about the density of the parameters (=((1,…,(d) with the information about the parameters provided by the sample data y, to produce revised knowledge about parameters. Using MCMC methods one may draw repeated samples of ( from the posterior density, p((|y) which combines prior assumptions p(() on ( with sampling distributions applicable to different types of observational data y, P(y|() ( L((|y). This chapter considers the more important densities  for continuous, count and categorical data and considers parameter estimation, assessment of hypotheses on parameters, and some practical applications (e.g. to screening and classification).

Bayesian methods of estimation via sampling can be applied to estimating functions of parameters (e.g. differences in normal means or binomial probabilities between groups of observations) and testing hypotheses about them. An example would be finding the posterior probability that a parameter based on a particular data set is within a particular distance of a reference parameter value (r, namely Pr(-d  (  (-(r ( d | y), or whether ( exceeds a particular threshold. MCMC sampling also applies to deriving densities of often complex summary statistics which are partly functions of the data but depend also on the model parameters. An example considered below is the Gini coefficient of inequality of an income distribution or health index. One may also obtain posterior probabilities on hypotheses for such data, e.g. that the Gini index in period t is greater than that in period t-1 (Congdon and Southall, 2005).

Another facet of the Bayes method is that of prediction. Integrating the joint posterior density

                         p(ynew, ( |y) = p(ynew|(,y) p((|y)

over the parameters gives the posterior predictive density 

           p(ynew|y)=( p(ynew, (|y)d( = (p(ynew|(,y) p((|y)d(
This density represents the data that can typically be generated from the model and these can be compared with the actual data. If the comparison shows the model provides a plausible data generating process (DGP), namely one consistent with the actual data, then the replicate data can be taken to provide predictions for a new patient, clinical trial etc. These are in principle verifiable since further values of y can be observed - whereas estimates of ( cannot be verified (Aitchison and Dunsmore, 1975). 

The chapter commences with an outline of the fundamental densities of statistical analysis, especially in terms of Bayesian inference, prediction, and hypothesis tests regarding their parameters. This includes the univariate normal and t densities, and their multivariate equivalents; the binomial and multinomial and the conjugate beta and Dirichlet priors; and the Poisson and its gamma conjugate. However, robust alternatives to the standard densities are also discussed. 

3.2 Univariate normal with known variance

The normal distribution is central to statistical inference and modelling, and is relatively simple in being characterised by two parameters, the mean as a measure of location, and the variance measuring scatter around that central location. The central limit theorem of classical statistics and its Bayesian analogue (Berger, 1985, p.224; Carlin & Louis, 2000, p 122-124) help justify the normal density as an approximation for the posterior distribution of many summary statistics, even those deriving from non-normal data1,2.

Modifications of the normal distribution for more complex data (e.g. skewed, multi-modal) include heavy tailed or asymmetric alternatives (Fernandez & Steel, 1999), or discrete mixtures of normal densities with differing means and variances (Richardson and Green, 1997). Draper (1995, p 52) mentions embedding the normal model (for linear regression errors) in the symmetric power-exponential family. Hurdle methods have been suggested for cost data that are rightly skewed except for a significant proportion of zero observations (Cooper et al, 2003).  Fully nonparametric methods are also an option (West, 1992). These may be applicable as robust alternatives in the event of asymmetric or multi-modal data, data with non-constant variance, or data subject to distortions by outlying observations. The same is true for prior densities used to describe the distribution of non-normal hyperparameters or non-normal random effects.

For the moment, assume the normal to be a reasonable approximation to a sample of continuous measures. Suppose the data consists of a single observation y from a univariate density with unknown mean  but known variance 2. Suppose uncertainty about (or prior knowledge concerning) the parameter  can be represented in a normal form,  ~ N(0, eq \O(0,2)) with (0 and (eq \O(0,2) both known. So the prior p() on ( is proportional to 

exp[-0.50(-0)2],  



 
on omitting terms from the normal density not depending on , and with  = 1/eq \O(0,2) denoting the precision. Similarly the likelihood p(y) ( L((|y) of the single observation y is proportional to

exp[-0.5(y-)2],                                           





where (=1/((. Constant terms not depending on  are omitted (this is known as the likelihood kernel). The posterior density of  is then also the kernel of a normal likelihood

p((|y) ( exp[-0.5{0(-0)2 +(y-)2}]

       (3.1)

with mean 

         1=(n00+y)/(n0+1) 

and variance 

         eq \O(1,2)=1/[0+]=2/(n0+1), 

where n0=(0/( is the ratio of precisions. This can be verified by rearrangement3 of the exponent in (3.1). The mean of the posterior density is thus a weighted average of y and 0 with weights 1 and n0 respectively. So the ratio of precisions 0/ can be seen as a measure of the “prior sample size”. Writing

       w = 
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namely as the ratio of prior precision to total precision, (1 is equivalently a precision weighted average

       (1=w(0+(1-w)y

of prior mean and data point.

Suppose one wanted to predict the value of a future observation ynew and its variability using posterior knowledge regarding (. The density of ynew conditional on the observed y, p(ynew|y) is based on integrating the product p(ynew|(,y)p(y) over all values of , namely  

            p(ynew|y) =(p(ynewy)p(y)d(=(p(ynew)p(y)d(. 

Using MCMC methods this integral is approximated by sampling y eq \O(new,(t)) from a normal density with sampled mean ((t) at iterations t=1,..T (and variance assumed known). For a known variance, ynew will be normal with mean 1 and variance 2+eq \O(1,2). The predictive distribution of a future observation therefore has two sources of variation: that due to sampling from a normal density for given , and that due to the posterior uncertainty in  itself.

Consider now a sample of n>1 observations (y1,y2,..yn)  with observed mean  eq \O(y,_). The prior for the parametric mean ( is as above, namely  ~ N(0,eq \O(0,2)). With unknown mean  and known precision (, the likelihood p(y1,y2,..yn ) is proportional to
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which, from the viewpoint of estimating μ, reduces to

exp[-0.5n( eq \O(y,_)-)2]

since viewed as a function of  the other terms in the likelihood are constants. Thus all the information about  in the sample is contained in the mean  eq \O(y,_). The mean is therefore a sufficient statistic for , in that the posterior density for  depends on the data only though  eq \O(y,_). This illustrates a general result is that if t(y) is sufficient for a parameter ( then P((|y)=P((|t(y)). Parallel to the single observation case, the posterior density for  is normal with mean

(1 = (n00 +n eq \O(y,_))/(n0 + n) 

and variance 2/(n0+n). (1 can be also obtained as a weighted average of prior and observed means with weights proportional to total precision 0 +n(, 

         (1= (00 +neq \O(y,_))/(0+n)  = w(0+(1-w)eq \O(y, _).

3.2.1 Testing Hypotheses on Normal Parameters

Often the intention in analysing sample data y will be to assess one or more hypothesis regarding the parameters taken to summarise the data or residuals from the model (e.g. Smith & Spiegelhalter, 1981; Chaloner, 1994). Under formal Bayes selection,  the choice between which of two or more hypotheses to accept involves specifying prior beliefs about their relative probability, and a comparison (after seeing the data) of their posterior probabilities, from which one can derive the posterior odds on and against each of the hypotheses. Thus if Pr(H0),Pr(H1),..Pr(HM) are the prior probabilities on the alternative hypotheses (totalling 1), then their respective posterior probabilities are, via Bayes Theorem,

             Pr(Hi|y)  p(y|Hi) Pr(Hi)             i=0,...M

Let M=1, and suppose one were comparing two interval hypotheses about a continuous parameter (, namely H0 specifying that ( lies in the interval (a0,b0), the other, H1, specifying ( lies in an interval (a1,b1) which does not overlap the first interval. Further suppose these alternatives encompass all possible values of (. For example, if ( was a scalar, the first interval might be all negative values on the real line, the second all positive values. The prior odds on H0 are Pr(H0)/Pr(H1). Since the alternatives cover all possible values of (, then Pr(H0)+Pr(H1)=1, and the prior odds on H0 are equivalently Pr(H0)/[1-Pr(H0)]. The posterior odds are

             Pr(H0|y)/Pr(H1|y) = [p(y|H0)/p(y|H1)] [P(H0)/P(H1)]                  where the ratio of marginal likelihoods p(y|H0)/p(y|H1) is the Bayes factor, denoted B01.

This result is not applicable when the priors on the parameters (0 and (1 are improper, though Smith & Spiegelhalter (1981) develop Bayes factors for the improper priors case based on introducing imaginary data. The formal approach also needs modification if H0 is a simple or point hypothesis, such as H0: (=(0 with alternative H1:(((0. In this case p(y|H0)=p(y|(0), while the marginal likelihood of H1 is, as usual, the integral of the likelihood times prior. Specifically

                P(y|H1)=P(y|()P(()d( = P(y)

with integration over the entire space of (, since the single point (0 does not affect the value of this integral. Thus

                 B01 = P(y|(0)/P(y)

For comparing two point hypotheses H0: ( = M0 and H1: ( = M1 regarding a normal mean (with variance (2 known), and with a flat prior on (, the Bayes factor reduces to a comparison of likelihoods evaluated at M0 and M1. Disregarding constants, and with (2=1, B01 is the ratio of exp(- eq \O((,i=1,n) exp(yi-M0)2 to exp(- eq \O((,i=1,n) exp(yi-M1)2.  More generally, consider a point hypothesis that a normal mean equals a certain value, H0: ( = M, while H1 denotes its complement H1:((M. Let (y1,..yn) be a random sample of size n from a distribution N(μ,σ2), where σ2 is known. Assume the prior density of μ (equivalently of μ given H1) is μ ~ N(0,eq \O(0,2)). Then it can be shown (Migon and Gamerman, 1999, p 183) that 

              B01=[((2+neq \O(0,2))/σ2]0.5 exp[-nD/2]               

where D=( eq \O(y,_)-M)2/σ2-( eq \O(y,_)-0)2/(σ2+neq \O(0,2)). If one takes 0=M, with prior for ( centred on the hypothesised mean, and also (eq \O(2,0)=(2 (prior variance for ( equals the observational variance), then 

                 B01=(n+1)0.5exp[-nZ2/(2n+2)]

where Z=n0.5( eq \O(y,_)-M)/σ. 

As mentioned above, the formal approach is usually problematic for improper or just proper priors. Alternative approaches to comparing and choosing models have been considered in Chapter 2, such as predictive model selection (Laud & Ibrahim, 1995; Gelfand & Ghosh, 1998). Of particular relevance to testing normal parameters and their connection with classical significance tests are the methods discussed by Dempster (1997), Aitkin (1997) and Aitkin et al (2005). These papers are also relevant to other comparisons or hypotheses involving parameters of standard densities, e.g. differences between two Poisson rates (Bratcher & Stamey, 2004), or two binomial proportions (Zelen & Parker, 1986). Thus Aitkin et al (2005) consider the comparison of H0: (=M versus H1: ((M (with (2 unknown), and demonstrate that a classical significance probability equals the posterior probability that the likelihood ratio (LR) exceeds 1. This is the same as the posterior probability that the deviance exceeds zero. Taking the deviance as minus twice the log likelihood, for the comparison mentioned the deviance is 

           D=-2log
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More stringent rules, such as Pr(LR > 10|y) may be applied.

Example 3.1 Systolic Blood Pressure

Consider a random sample of n=20 systolic blood pressure readings yi from a diagnostic sub-population of adult men and assume that population health survey data enables an assumption of a known variance of 169. In the case of human physical measures there might be information on which to base an informative prior regarding the mean of the group. We assume       

          ( ~ N(120,100)             (3.2) 

but since blood pressure is a positive quantity, a prior restricted to the positive values such as ( ~ N(120,100) I(0,) might also be used. Hence n0=100-1/169-1=1.69. The posterior inferences of interest include credible intervals for the mean, assessments of alternative hypotheses on the mean, and predicting the credible interval for the blood pressure of a new patient in the group. 

To illustrate the single observation case in (3.1) one may take the first observation only y1=98. In combination with (3.2), this gives a posterior mean of 112 (from a single chain run of 5000 iterations) with variance 62.1,  close to the expected value of 1/(100-1+169-1). For all 20 cases, output from the last 9000 of a two chain run of 10,000 iterations gives sample average and median of  both at 127.3, with variance 7.79 ( 169/(20+1.69). Pressures for a new individual in the group are centred at E(ynew|y)=127.3, with variance 175.3, reflecting posterior uncertainty in  as well as sampling variation in y.

Suppose population surveys say the typical blood pressure for all adult males is 125, so that one might wish to test whether the particular group has above or below average pressure; so H0:  ( 125 as against H1:< 125. From the MCMC samples, the proportion of iterations where the sampled  exceeds 125 is 0.801, giving a Monte Carlo estimate for p(H0y). Under prior (3.2) on , the prior probability p(H0) is 1-((5/10)=0.31, where Φ is the cumulative standard normal. The Bayes factor reduces to a comparison of the ratio 0.801/0.199 to 0.31/0.69, namely B01=8.96, so giving some support to H0. 

3.3 Inference on Univariate Normal Parameters, Mean and Variance Unknown.

In the case where both normal parameters are unknowns, one option is to assume that the mean and precision are a priori independent, p((,()=p1(()p2((). Suitable prior distributions for precision =1/(2 may then be provided by any density confined to positive values: examples are a uniform truncated to an interval ( ~ U(0,A), a gamma density, and less frequently, densities such as the Pareto. The gamma is here parameterised so that if ( ~ G(a,b), the expected value of  is a/b and its variance is a/b2. A G(a,b) prior on the precision is equivalent to an inverse gamma prior IG(a,b) on (2, where the Inverse Gamma density for a variate x is proportional to x-(a+1)e-b/x with mean b/(a-1). It can also be expressed as an inverse chi-squared density for (2 with scale b/a and 2a degrees of freedom. 

A convenient parameterisation of an inverse gamma prior is as (2 ~IG((0/2,(0S0/2), where S0 is a prior guess at the variance and (0 is the strength of this belief. Equivalently the precision =(-2 is specified to have a gamma prior G((0/2,(0S0/2) ( G((0/2,(0/20), where (0=1/S0 is a prior guess at the precision. So a G(5,1) prior on  is equivalent to a prior d.f. of (=10 on the belief regarding precision, and gives an the expected precision of 5.

There has been considerable debate about appropriate priors for variance and precision parameters, especially when random effects in hierarchical models are assumed normal (Gelman, 2005). On the basis of importing little prior knowledge, a just proper prior for the precision might be used. The most common option is a gamma with a=b=( and small (, such a (=0.001. In this case, one has approximately

p2()  1/

                        






Another just proper option (Besag et al, 1995) is to take a=1 and b small, so that p2(() is approximately a uniform density over positive values. If the prior on ( is specified directly as p2()  1/ it provides an example of an improper ‘reference prior’ intended to correspond to ignorance about the scale parameter. A standard reference joint prior for the variance and mean is (Lee, 1997, p 66)

                       p(,2)  1/2 

and equivalent to a density uniform over (,log) (Gelman et al, 2004). Fernandez & Steel (1999) consider the reference prior 

                    p(,2)  1/
and show its applicability as a reference prior - in the sense of Bernardo (1979) - to a wider set of location-scale densities4 than the normal. Improper priors are not necessarily inadmissible for drawing valid inferences providing the posterior density remains proper (Fraser et al, 1997). Such priors are suitable for simple density estimation and regression but likely to be problematic in random effects models, especially when they lead to improper posteriors, since then is posterior probability statements are not possible (Natarajan & McCulloch, 1998; Natarajan, 2001). 

The reference prior p(,2)  1/2 results in simplifications in posterior inferences for the normal parameters. Thus the marginal posterior density p(2y) is an inverse gamma with a=(n-1)/2 and b=(n-1)s2/2 where s2=eq \O(,i=1,n)(yi- eq \O(y,_))2/(n-1) is the sample variance. It follows that (n-1)s2/2=(n-1)s2 is a chi-square with n-1 degrees of freedom.  Secondly, the posterior density of ( eq \O(y,_))n0.5/s is a t-density with n-1 degrees of freedom, mean zero and scale 1. Similar simplifications hold in the general linear model y=x+e, where ei ~N(0,2) and the joint prior for (,2) is proportional to 1/2 (Tanner, 1996, p 18).

Posterior densities for precisions (or variances) often show positive skew so that the posterior median precision or variance is a better summary of location than the mean. Alternatively, one may adopt a normal prior on log(), since when the posterior density of  shows positive skew, log()|y is often approximately normal. A multivariate normal prior on more than one log precision term allows interdependence between variances in hierarchical models. Lognormal priors are also useful in time series with nonconstant variances (Chapter 8). However, a uniform prior on the log of the higher stage variance in hierarchical models may lead to an improper posterior, as in the example considered by Gelman (2005).

Joint prior specifications for univariate normal parameters usually involve the densities p() and p(), with

                        p((,() = p()p(). 

The conjugate joint prior takes gamma G(a,b) for ( with a=(/2 and b=(/(20)= ((eq \O(2,0)/2 and average 0 expressing prior beliefs about the precision in the data (Paciorek, 2006;  Gelman et al, 2004). The degree of strength of the prior beliefs is contained in the parameter (Given a sampled value , that is 1/2, from its prior G((/2,(/(20)), the prior for  is of the form N(0,2/m0). The ‘prior sample size’ m0 expresses the strength of belief about the prior location 0. Setting (=(0+n, and r=m0n/(m0+n), the posterior density of the precision is

                    (|y ~ G((/2, ((eq \O(2,1)/2)

where  ((eq \O(2,1)=(002 + eq \O(,i=1,n)(yi -  eq \O(y,_))2 + r( eq \O(y,_)-(0)2. The conditional posterior density of ( given the sampled (2 is then

       N(, 2/(m0+n))              

where =(n  eq \O(y,_)+m00)/(n+m0) is the precision weighted average of the prior and data means, 0 and  eq \O(y,_) respectively.

An example of a simple, though non-conjugate, option for allowing interdependence would be a bivariate normal on log  and . This enables one to actually model covariance between precision and mean parameters.

Example 3.2 Survival times from carcinoma

Aitchison and Dunsmore (1975) present data on survival times z in weeks after a combination of radiotherapy and surgery applied to a particular carcinoma. Because of the skewed form of the original observations, a log transformation is applied, with y=log(z) assumed normal (i.e. z is assumed to be log-normal). One question of interest is the length of survival expected for a new patient under this treatment. First, independent priors are assumed on the unknowns, namely (~ G(1,0.001) and ( ~ N(0,1000). 

The 2nd half of a two chain run of 10000 iterations gives posterior summaries as in Table 3.1 for the mean and variance of the log survival times and a new patient’s log survival time. A slight positive skew in (2|y can be seen. To estimate the probability that a new patient has a survival time z exceeding 150, namely that ynew exceeds 5.01= ln(150) involves obtaining the proportion of iterations where the condition ynew > 5.01 holds. The answer is 0.16, the same as obtained by Aitchison and  Dunsmore using analytic methods.

Table 3.1 Posterior Summary: Carcinoma Survival Parameters

Parameter
Average
     St. devn
  2.5%    percentile
97.5% percentile
   Median


3.86
0.25
3.38
4.35
3.86

2
1.21
0.41
0.65
2.22
1.13

   ynew
3.85
1.14
1.59
6.09
3.86

To illustrate possible sensitivity to prior assumptions, an informative joint prior p((,() = p()p() is then set. The variance of the log survival time has a prior mean 1/(0=2, with prior d.f.  = 10. A prior mean survival time of 30 days (0=3.4=ln(30)) is assumed, with a prior sample size m0=10. This prior results in a lower posterior estimate for ( but higher estimate for (2. This reflects the impact of both the discrepancy between (0=3.4 and  eq \O(y,_)=3.86, and the relatively high m0=10, on the last term in ((eq \O(2,1)=(002 + eq \O(,i=1,n) (yi-  eq \O(y,_))2 + r( eq \O(y,_)-(0)2. The predictive density for a new survival time has a correspondingly lower mean and larger variance. The probability of a survival time over 150 days is accordingly lessened slightly to 0.152. 

While one might proceed with formal model choice, it may be that neither of the models under consideration are plausible DGPs for the observations. Accordingly we assess whether skewness in the replicate data (as measured by the standardised excess of mean over median) checks against skewness in the observations. In fact both models check satisfactorily against the data: the proportion of samples where the replicate data skew exceeds the observed skew is 0.37 under both models. This amounts to a confirmation that the log transform removes skew in the original time observations.

3.4 Heavy Tailed and Skew Density Alternatives to the Normal

The t density arises in the case of small samples nj < 50 from a Normal with mean (. The means eq \O(y,_)j of such samples have a distribution with a higher variance than applies for larger nj. Estimating var(eq \O(y,_)j) by Sj/nj, where Sj = eq \O(,i=1,n) (yij -eq \O(y,_)j)2/nj understates the variability in eq \O(y,_)j because of variations from sample to sample in the value of Sj. In particular, standardised deviates (eq \O(y,_)j -)/(Sj /n j)0.5 are no longer standard normal. 

The t density is a heavier tailed or ‘overdispersed’ alternative to the normal. It provides a robust alternative to the normal in the event of suspected outliers in the data, especially if sample sizes are small and the symmetry assumption concerning residuals is still reasonable. It may also be used as a prior density to describe sets of parameters (e.g. exchangeable random effects) with potential extreme values among them. The density has the form 

p(y,,()  (1 + (y-)2/()-((+1)/2
where  and  are the mean and precision, and the degrees of freedom parameter ( determines the extent of overdispersion. Smaller values of ( allow for more marked departures from normality in the tails. Values of ( over 50 lead to a density indistinguishable from the normal. Congdon (2005) discusses a relatively effective prior for (, based on taking ( ~ E(() and ( ~ U(0.01,1). A lower limit of 0.01 for ( translates into a prior exponential mean of 100 (i.e. effective normality), whereas an upper ( limit implies a prior exponential mean of 1 (equivalent to a Cauchy density). 

The t density with ( d.f. is obtainable as a scale (variance) mixture, namely yi ~ N(μ,Vi), with variances Vi differing between individuals and obtained as Vi=σ2/(i, where σ2 is the overall variance and (i ~ G(0.5(,0.5() (Andrews & Mallows, 1974). Other densities for the (i are possible providing they have mean 1. Lower values of (i correspond to cases less consistent with the population model (West, 1984). 

An alternative heavy tailed alternative to the normal is provide by the logistic density 

         p(y|(,() = 
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with cumulative density P(y)=exp(y)/[1+exp(y)]. This density can be approximated by particular forms of scale mixing of the normal, for example (Albert & Chib, 1993, p 676),

                  wi ~ N((, 1/(i)     I(0,()              yi=1                    

                  wi ~ N((, 1/(i)     I(-(,0)             yi=0                     

                  (i ~ G(4,4). 

There have been several proposals to generalise densities such as the normal and Student t to take account of skewness and other irregularities (e.g. multiple modes) without adopting discrete mixtures; this amounts to continuous expansion (Draper, 1995). Let yi=(+((i where ( ~ N(0,1) and ( ~ t(0,1) denote the usual  normal and Student t models. Then Fernandez and Steel (1998) propose the following error models as skewed generalisations of the normal and Student t respectively
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where ( > 1 implies right skewness and 0 <( <1 implies left skewness. Jones & Faddy (2003) propose the model

    p((|a,b) ( 
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which can be obtained by transformation of a beta variable. Sahu et al (2003) consider a skew normal with mean (+((2/()0.5 and variance (2+(1-2/()(2,where (>0 (or <0) corresponds to positive (or negative) skewness.

The latter skew-normal model can be expressed in the additive form 

                yi =(+(ui +((i
where (i ~ N(0,1) and ui is truncated normal (positive values only) and the skewness parameter ( can have positive or negative values. Other positive densities (e.g. gamma) might be used also for ui. A skew t density with ( degrees of freedom is obtained under the Sahu et al (2003) scheme via

                   yi =(+(ui +((i
where (i ~ t(0,1,() and ui is truncated t(0,1,() (positive values only).

Similarly a model similar to that of Fernandez and Steel is obtained by a threshold form of heterogeneity in the normal or Student t densities -called the split normal or Student t by Geweke (1989) and Kottas & Gelfand (2001) - namely

        yi ~ N((,Vi)

        Vi=(2(2         (yi ( () 

        Vi=(2/(2        (yi < (). 

A possible generalisation allows for the axis of asymmetry to be located at a point ( other than the mean, leading to 

       Vi=(2(2        (yi ( ()

        Vi=(2/(2      (yi < ()

where ( is typically close to but not necessarily coincident with the mean. One might also link heteroscedasticity to a squared discrepancy term as in 

       log(Vi)=(0+(1(yi-()2
or

       log(Vi)=(0+(1(yi-()2.

For the additive skew model, the shifted asymmetry model is 

       yi ~ N((+(ui , (2)     yi ( (
       yi ~ N((, (2)             yi < (.

Example 3.3 Share Prices

This example applies some of the above options  to data on changes in the daily share price of the Abbey National Building Society, as considered by Fernandez and Steel (1998). A series of 50 prices pi is observed and their percent relative changes yi=100*(pi+1-pi)/pi (i=1,...,49) obtained.

We first apply the skewed Student t density p((|() of Fernadez & Steel (1998) using the BUGS option for non-standard likelihoods. Summaries are based on the 2nd half of a two chain run of 10000 iterations. A N(0,1) prior is assumed for (, a G(1,1) prior adopted for (, and the prior described above used for the Student (. This gives evidence of both heavy tails, with ( having posterior mean 9 (median 4), and of skew, with ( having mean 1.6. The extent of positive skew is not marked, however, with the 95% interval for ( from 1.03 to 2.4 just excluding 1. The mean ( is 0.82 slightly lower than reported by Fernandez and Steel who work with relative changes rather than percent relative changes.

Next the model 

           yi =(+(ui +((i
is applied with (i ~ N(0,1), ui ~ N(0,1) I(0,), and ( ~ N(0,10). Again positive skew is supported: the last 90 thousand of a two chain run of 100 thousand iterations shows a 95% CI for ( of (0.2,2.5) with mean 1.75. This model is, however, not that well supported as a plausible DGP. With the same posterior predictive check to that in Example 3.2 the proportion of samples where the replicate data skew exceeds the observed skew is only 0.07.

Finally the shifted asymmetry additive model proposed above is applied, namely

       yi ~ N((+(ui , (2)      yi ( (
       yi ~ N((, (2)              yi < (
with a U(-2,2) prior on (. Iterations 1000-10000 of a two chain run give posterior means (CIs) on ( and ( of –0.71 (-1.06,-0.39) and 0.03 (-0.57,0.62). The posterior predictive check on skewness is now satisfactory, namely  PR[D(ynew;) > D(yobs;) | yobs]=0.34 where D is the standardised excess of mean over median.
3.5 Categorical distributions: binomial and binary data

With categorical rather than continuous data, the major baseline distributions are the binomial, multinomial, Poisson and negative binomial. While data may be measured as counts or in categorical form, often originally continuous data may be recorded in, or converted to, a discrete form to assist in tabulation, e.g. age recorded in single years of age is grouped into ten-year intervals, which are then treated as discrete categories. In epidemiological studies, conversion of a continuous predictor to a set of categories is often used to explore non-linearities in regression (Woodward, 1999), while conversion to a binary scale may be used to provide simple effect measures for transmission to non-specialist audiences. 

With binomial data there is a single parameter of interest, the probability of a certain outcome (, and the density is proportional to the product of probability  over y subjects exhibiting the outcome, and of 1- over the n-y other subjects. Thus

          p(y)  y(1-)n-y                                                    




For a single subject (n=1) with binary outcome, the binomial reduces to a Bernoulli density, denoted y ~ Bern((). 

One way to represent prior beliefs about the size of  is via a discrete prior as in Chapter 1, assigning probabilities to a small number of possible alternative values. But  can have an infinity of values between 0 and 1, and so its prior may also be represented by a continuous density. The conjugate prior density for the binomial probability is the beta density with parameters a and b (both positive), denoted B(a,b) or Be(a,b), such that

p()  a-1(1-)b-1                                      



 

The posterior density of ( is then also a beta with parameters a+y and b+n-y, specifically:

p(y,n)   a+y-1(1-)b+n-y-1                          





So the parameters of the beta prior amount to a previous sample with a successes and b failures, with prior mean E(()=(=a/(a+b) and variance var()=V=(1-)/(a+b+1). The beta prior is also expressible in the form involving the mean ( and total sample size S=a+b, namely ( ~ Be((S,(1-()S). 

There are some uncertainties about a truly non-informative prior for (. The uniform prior ( ~ Be(1,1) leads to a posterior mean (y+1)/(n+2) whereas taking ((0 in ( ~ Be((,() leads to a posterior mean that tends to the maximum likelihood estimate y/n. However the prior Be(0,0) can be seen as informative in the sense it reduces to point masses at 0 and 1 (Zhu & Lu, 2004). A less extreme prior bimodality applies also to Jeffreys Be(0.5,0.5) prior (Agresti & Hitchcock, 2005), expressed analytically as  

         p(() ( 
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If there is accumulated evidence about the mean value of  and its spread about (, suitable values of a and b can be obtained for incorporating in the beta prior B(a,b). Thus in Chapter 1, one might expect the mean prevalence of childhood asthma to be =0.15, and that a 95% credible interval for  was between 0.1 and 0.2. So 0.05 (the difference between 0.1 and 0.15, and between 0.2 and 0.15) is approximately equivalent to two standard deviations. So s.d.()( 0.025 and V=var() is 0.000625, and the beta density parameters are obtained via  

a=[
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So the prior for the childhood asthma example might take a=30.5, b=172.5. This is a relatively informative prior, and since the “successes” in the Chapter 1 example were y=2 from a sample of n=15, the prior in this case overwhelms the data. 

A nonconjugate prior for binomial proportions (often applied in more general applications of the binomial, e.g. random effects regression) uses a logit scale to convert the probability to the full real line. Thus with c=logit()=log[/(1-)], one could set a prior on c, reflecting the same prior knowledge. Thus logit(0.15)= -1.7 and two standard deviations (to the logits of 0.1 and 0.2) are approximately 0.4. So the prior for c might be N(-1.7,0.04). If a comparison is being made between two probabilities (A and (B, then the log of the odds ratio (A(1-(B)/[(B(1-(A)] is often approximately normal (Woolf, 1955), and the joint prior for {(A,(B} can be expressed using normal priors on the logit of one probability and on the log odds ratio (Agresti & Min, 2005).

Evidence in observational studies is often reduced to the form of multiway tables, cross-classifying binary variables. In epidemiological studies, for example, one may wish to assess the enhanced disease incidence associated with a particular binary risk factor. In an epidemiological follow up study, the outcome is the disease (yes/no) conditional on exposure (Zelen and Parker, 1986) and a commonly used effect measure is the relative risk (A/(B comparing exposed group A and non-exposed group B. The outcomes may be described by the two binomials distributions, yA ~ Bin((A,nA) and yB ~ Bin((B,nB) for given totals nA and nB of exposed and non-exposed cases. One possible null hypothesis is that (A=(B=(, i.e. that the risk factor is not associated with an enhanced incidence rate. For case-control data, by contrast, the outcome is exposure (yes/no) conditional on disease state, and the standard effect measure is the odds ratio since the disease rate (and hence relative risk) is not obtainable. Rothman (1986, p. 159) illustrates ambiguity in common measures of effect in these situations. However, ambiguity in the central estimate may be resolved by considering whether credible intervals for these association measures straddle null values and/or posterior probabilities that the effect is non-null (Congdon, 2001, Chapter 3). 

Simulating Controls through Historic Exposure 

The facility for a Bayesian approach to incorporate existing knowledge extends to situations where only data on cases may be available. Usually the goal of a case-control study is to accumulate a set of cases and investigate whether their exposure to a suspected causal factor is unusual. The control group is used to derive the posterior distribution of exposure. Zelen and Parker (1986) argue that in some cases there may be extensive information about exposure levels in the population (e.g. on average levels of health behaviours) that can be used to set an informative prior for the exposure in the control group. So collecting data from a control group may be unnecessary, since the posterior distribution of exposure is typically very similar to the prior distribution. Let y=1 for cases and zero for controls, and x=1 for exposed to causal agent and 0 otherwise. The case control study considers the probabilities

         p(x|y)=e(x+(yx/(1+e(+(y)                     (3.3)        

with x and y independent only if the log odds ratio (=0. Suppose the observed data are as follows:


Exposed
Non-exposed
Total

Cases
s
c-s
c

Controls
r
m-r
m

Total
e
n
t

Then the likelihood (3.3) is 

          p(s,r,c,m|(,() = e((+()s+(r/ {(1+e()m(1+e(+()c }

The conjugate prior p((,() has the same form and relates to equivalent prior data s(,r(,c(, and m(. Then the posterior is 

           p((,(|s,r,c,m) ( e((+()S+(R/ {(1+e()M(1+e(+()C }

where S=s+s(,R=r+r(, C=c+c(, M=m+m(.

Zelen and Parker propose a method to elicit prior data for controls, namely r( exposed individuals among m( individuals without the disease or condition. These simulated control data constitute the entire control data in the analysis (i.e. so m=r=0 and M=m(, R=r() and are based solely on knowledge about population exposure. For example suppose (=30 % of a nation’s female population are smokers, then 

               r(/m( = 0.3                                                  (3.4.1)                     

Suppose the probability that the exposure rate exceeds (h=35% is put at 0.05. Then using a normal approximation

               log[(/(1-()]+1.64(=log[(h /(1-(h)]           (3.4.2).        

The normal parameter ( is also derivable from the formula

               (2=[1/r(+ 1/(m(-r()]                                    (3.4.3)               

so that using the value of ( derived from (3.4.2), one can solve (3.4.1) and (3.4.3) to provide prior values for r( and m(.

Example 3.4 Presidential actions

Wilcox (1996) presents data from a 1991 Gallup opinion poll about the morality of President Bush’s not helping Iraqi rebel groups after the formal end of the first Gulf War. Of n=751 adults responding, y=150 thought the President’s actions were not moral. Consider a diffuse Be(0.01,0.01) prior on the probability  that a randomly sampled adult would respond “immoral”; this is a ‘one-off’ situation that precludes an informative prior though there might be evidence from previous polls on the proportion of the population generally likely to consider a President’s actions immoral. With this prior a two chain run of 10000 iterations (omitting the first 1000) gives a 95% posterior credible interval on  of (0.172,0.229). Using the alternative diffuse U(0,1) prior (equivalent to a Be(1,1)) leads to a virtually identical interval of  (0.173,0.230).

However, suppose the sample size was only n=8, with y=0 adults considering the Presidential action immoral. Work by Blyth (1986) into the case where y=0 for binomial successes suggests that the (1-)% classical confidence interval should have upper limit 1-1/n rather than near 0 as would result from using the usual approximation. For n=8, and =0.05 this gives the upper limit of the 95% classical confidence interval as 0.31. Here under a uniform prior U(0,1) on (, its posterior mean is 0.10 with 95% interval (0.003,0.337). The 95% credible interval for ynew in a new survey of size 8 ranges from 0 up to 4. 

Example 3.5 Leukaemia Case-Control Study.
In a case control study the two binomial denominator populations are the numbers nA in the case series and nB in the control series. The number of subjects with positive exposure among the cases is yA ~ Bin(pA,nA), and total exposed among the controls is binomial yB ~ Bin(pB,nB). Ashby et al (1993) consider a case control study where cases have leukaemia following Hodgkins disease. The exposure suspected of being causal is chemotherapy as sole or partial treatment as against no exposure to chemotherapy. There are nA = 149 leukaemia cases of whom yA=138 had chemotherapy, and nB=411 controls of whom 251 were exposed to chemotherapy. 

The appropriate effect measure here is the odds ratio (of chemotherapy given leukaemia), and as mentioned above the log odds ratio  is often approximately normal even when the odds ratio itself is skew. The empirical value of the log odds ratio is g=log{138 x [411-251]/(251 x [149-138])}, with precision (=1/var(g), where the delta method gives

    var(g)=1/138+1/(411-251)+1/251+1/(149-138).

The observations {yj,nj-yj} in the cross-classification of exposure and caseness are such that the normal approximation will be adequate. We therefore assume the empirical value of the log odds is a draw from a normal density with unknown mean γ but known precision τ. This is a case of a single observation from a normal distribution as considered above. 

With a diffuse prior on , namely  ~ N(0,100), the posterior mean for the odds ratio OR=exp() is 8, from iterations 1000-10000 of a two chain run. Exponentiating the 95% credible interval estimates for  gives a 95% interval on the odds ratio from 4.2 to 15.1.

A Bayesian analysis enables one to use informative prior information when it is available. Ashby et al use results from a cohort study by Kaldor et al (1990) which reported a value for g=log(OR) of 2.36 with variance 1/106. This is taken as an informative normal prior with no downweighting of precision. In this case the prior tends to dominate the data, and the posterior mean for OR=exp() is exp(2.34)=10.4 with a 95% interval from 8.63 to 12.43. 

Example 3.6 Adenocarcinoma in young women. 

Herbst et al (1971) report on cases of adenocarcinoma of the vagina in 8 young US women, seven of whom had been exposed in utero to a drug (diethylstilbestrol or DES) intended to prevent pregnancy complications. Use of  this drug was indicated for women who had experienced miscarriages or premature deliveries (see http://www.cdc.gov/des/consumers/about/index.html). Historical data indicated a maximum exposure rate of 10% of the population: circa 10% of women were subject to such complications so this provides a (maximal) possible exposure rate to DES. A prior mean exposure of 10% with an upper limit of 20% is assumed (i.e.  (=10% and (h=20%) and using (3.4) gives r(=4.6 and m(=45.7.

Using the actual case data and simulated control data (together with a N(0,1000) prior on () gives an estimated log-odds ratio of 4.6 with 95% interval from 2.58 to 4.45. This compares closely to the  normal approximation, namely

           (NA= log(SR)-log{(N-S)(M-R)}=4.14

with a standard deviation

            (1/S+1/(C+M-S)+1/R+1/(C+M-R))0.5=1.17.

Zelen and Parker use the normal approximation to assess the strength of evidence in favour of (=0. The posterior probability ratio is based on comparing the probability of (=0 against the probability that an observed value of (NA would occur if the actual value of ( were zero. A hypothesized value of (=0 corresponds to a normal deviate of Z=4.14/1.17=3.54 and an ordinate 0.00082. Therefore the posterior probability ratio is 0.399/0.00082=486. The numerator is simply 1/(2()0.5, the ordinate corresponding to ( actually equalling 0. This provides overwhelming evidence in favour of an association between the outcome and exposure to DES in utero.

3.6 Poisson Distribution for Event Counts

There are circumstances however when the number of times an event occurs can be counted without there being any notion of counting when the event did not occur. Examples are the number of goals in a football match, the number of vehicles passing a check point, the number of lightning flashes in a thunderstorm, and so on. There are also many instances when there is a converse event (e.g. not being a new case of a disease) but if the event is rare then there may be a choice between a binomial or Poisson model: the less frequent the event, the more appropriate the Poisson becomes. The Poisson is the limiting distribution of a binomial as ((0, since then Var(y)(n(=E(y). Under a Poisson with mean ( the likelihood of y events is

   p(y|() ( e-x.

If event totals y1,y2,y3,...yn are observed, then the likelihood over is proportional to enT where T=eq \O((,i=1,n)yi. Often the number of events are set against an exposure of a certain extent (e.g. a population, a geographic area or time span). Then y has mean (=(E, the product of an underlying rate ( and an exposure E. Usually E is assumed known (i.e. a fixed constant). The Poisson likelihood is then proportional to e-(E(y since Ey is a constant. If event totals y1,y2,y3,...yn are observed with fixed exposures E1,E2,...En and common Poisson rate, the likelihood is proportional to exp(-(eq \O((,i=1,n)i)(T.

In all these cases the likelihood kernel is of gamma form and so a gamma prior G(a,b) for leads to a conjugate analysis. In the absence of exposure totals, with p()  a-1e-b, the posterior density for  will be gamma G(a+eq \O((,i=1,n)yi, b+n). If exposures are relevant the posterior density for ( will be of the form G(a+eq \O((,i=1,n)yi,b+eq \O((,i=1,n)i).

Often count data exhibits  overdispersion with respect to the Poisson distribution, with observed variability in the counts exceeding the mean (Cox, 1983). The extra variability can be modelled by a Poisson-log-normal model, namely

      yi ~ Po((i)

      log((i)=(0+ui
where ui are random effects. Alternatively using a conjugate gamma mixing distribution 

     yi ~ Po((i()

     (i ~ Ga((,()         

leading either to the poisson-gamma model or to a negative binomial model (Fahrmeir & Osuna, 2003). In the negative binomial model the parameter ( represents overdispersion and the gamma random effects are integrated out, with

    p(yi|(,()=
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var(y)=(+(2/( and ((( corresponding to the Poisson. Other mixing densities are possible (e.g. the inverse gaussian).

Following the discussion in 3.2.1 one may approximate classical p values using the posterior density of the likelihood ratio. This suggests a way of replicating frequentist power calculations using densities of fit or test statistics, including but not limited to likelihood ratios. In frequentist terms, the power is the probability that a test statistic will reject a false null hypothesis at a given significance level. There is no consensus regarding Bayesian sample size determination, since this partly depends on whether a formal Bayesian approach is adopted or not; see for example Ashby (2001), Rubin & Stern (1998), Sahu & Smith (2006), and Smeeton & Adcock (1997). 

In frequentist terms, the power is determined by sample size, the actual difference or effect present (e.g. the ratio ( of one Poisson rate to another, or the survival time difference between two treatments), and the significance level ( chosen. A high significance level corresponds to a type I error (the probability of rejecting a true hypothesis), while the complement of the power, =1-power, represents the chance of failing to reject a false null hypothesis (a type II error). For example, a significance level of =0.001 combined with a power of only 0.10, means the ratio of the two risks / is 900 to 1. This amounts to assuming that rejecting a null hypothesis when it is true is 900 times more serious than mistakenly accepting it. More typically power rates of 80 or 90% may be combined with a type I error rate of 5% to give risk ratios / of 4:1 and 2:1 respectively.

In terms of Poisson data, consider comparing event rates in two populations of size n1 and n2 units (e.g. airplane fleets of different sizes), with average exposure of t1 and t2 per unit (e.g. average flying hours per plane). One wishes to obtain the necessary sample size to give a power of 90% at significance level (=0.05 of detecting a given ratio (=(2/(1 of Poisson means ((>1). Let y1 ~ Po((1n1t1) and y2 ~ Po((2n2t2) be event counts in the two populations (e.g. (j are rates of aircraft component failure and yj are observed failures). The false null hypothesis H0 is that (2=(1=( while the alternative true hypothesis is that (2>(1. Test statistics for this situation have been discussed by Thode (1997) and Ng and Tang (2005). In particular the latter authors propose the statistic
             W=(y2-dy1)/(y2+d2y1)0.5
where d=n2t2/(n1t1). The power at (=0.05 is then given by the probability that W > 1.645 when y1 and y2 are random samples from Poissons with means (1n1t1 and (2n2t2. 

Following Thode (1997, section 3) suppose a component failure rate is 2 per 100 flying hours ((1=0.02) in a fleet of 10 new planes (n1=10) and 4 per 100 hours in a fleet of 20 older planes. Assume an average of t1=t2=90 flying hours per plane. Then sampling data conditional on point mass priors {(1=0.02, (2=0.04} and with known exposures njtj the probability that  W > 1.645 is obtained as 0.90. The relevant code is

    model {y1 ~ dpois(mu1); y2 ~ dpois(mu2)

    mu1 <- lam1*n1*t1; mu2 <- lam2*n2*t2; d <- n2*t2/(n1*t1)

    power <- step(W-1.645);  W <- (y2-d*y1)/sqrt(y2+d*d*y1)}.
The required average of 90 flying hours per plane is more than that obtained by Thode (1997) but less than that obtained by Shiue & Bain (1982).  One may also take a large number (e.g. T=1000) of samples of y1 and y2, treat these as observations, and obtain a power rate conditional on these T samples, with (1 and (2 taken as unknowns. Classical power calculations assume no prior information on parameters; by contrast in a Bayesian analysis, one might assess to what extent the power is affected, and possibly increased above 0.90, by using various levels of prior information on  (1 and (2, such as a prior constraint (2>(1.

Example 3.7 Area mortality comparisons

A common application of the Poisson is to comparing mortality between areas, hospitals, etc after standardising for age and perhaps other factors affecting risk. Suppose (yi1,..yiA) denotes a vector of observed deaths yia in areas i=1,..,n over a=1,..,A ages, and Pia denotes populations for age groups a in area  i. If death rates in a standard (comparison) population are ma, the expected deaths Ei in the index population are just eq \O((,a=1,A)maPia. If actual deaths are equal to expected deaths (or nearly so) then the mortality experience in area or hospital i appears comparable to that in the standard population. A frequently used model assumes there are no age-area interactions such that observed deaths yi =eq \O((,a=1,A)yia are Poisson with mean Eii where i=1 if the standard and index death rates are the same. 

Silcocks (1994) presents data on male myeloid leukaemia deaths in 1989 in Derby, denoted y1(=30), and in the remainder of the Trent region of England, namely y2, of which Derby is a part (i.e. n=2). Here ma are based on deaths in the entire Trent region, and E1=22.38. We assume y1 ~ Po(E1. A Ga(1,0.001) prior on (1 is adopted. A two chain run of 10000 iterations (with 1000 burn-in for convergence) gives a mean estimate of the SMR  of 1.385, with 95% credible interval of (0.94,1.9).

While the death rates in the standard population are usually assumed fixed, they may sometimes be more appropriately considered subject to sampling variation. Under this option, age specific deaths yia are considered outcomes from a Poisson distribution with means ia=iaPia where (ia are the underlying death rates by age and area. Expected deaths at age a across the region are then 1a+2a and expected deaths in the index area are obtained as 

E1 = eq \O((,a=1,A)sa(1a+2a)

where sa is the share of the total Trent population in age group a located in the index area,

sa =P1a/(P1a+P2a).

If the index population is a relatively large share of the standard population, then there will be covariation between y1=eq \O((,a=1,A)y1a and E1, and the credible interval of the SMR will be narrower than if the expected deaths are treated as fixed. N(0,1000) priors are assumed for log(ia). Under this approach, the credible interval for the Derby leukaemia SMR is narrower (and entirely above 1), namely from 1.12 to 1.65 with a mean of 1.36. Expected deaths average 22.2 with 95% interval from 18.2 to 26.8.

3.7 The Multinomial and Dirichlet Densities for Categorical and Proportional Data

The binomial distribution with two possible categories of outcome can be extended to a multinomial density, with more than two discrete levels of the outcome. These may be naturally nominal categories (such as political party choice, diagnoses for different cancer types, or religious affiliation), but may also result from categorisation of originally continuous outcomes. Combining continuous observations into categories may be useful in lessening the impact of outliers (Berry, 1996) or in the handling of large numbers of observations. For example national population data on age structure are commonly presented for grouped ages, either just grouping into single years of age, or for five year or ten year age groups. Similarly national data on incomes are frequently grouped. Converting a continuous explanatory variable to a categorical variable may also be a relatively simple way of examining non-linear relationships to an outcome with the predictor becoming a categorical ‘factor’.

Let y1,y2,..yk denote counts from K >2 categories of the outcome. Then the multinomial likelihood specifies

p(y1,y2,..yK(1,(2,..(K)  eq \O((,j=1,K) ( eq \O(j,y)j
where (j are probabilities of belonging to one and one only of the K classes, with eq \O((,j=1,K)(j=1. Just as the binomial is conditioned on the sample size n, with y as the number of positive responses, and n-y the number of negative responses,  the multinomial is conditioned on the sum of the yj, denoted Y. The multinomial can be represented as the product of K independent Poisson variables with y1~Poi(1), y2 ~ Poi(2),...,yK ~ Poi(K), subject to the condition4 that eq \O((,j=1,K)yj=Y, with the multinomial probabilities obtained as(j =(j /eq \O((,j=1,K)(j.

The conjugate prior density for the multinomial is the multivariate extension of the beta density, namely the Dirichlet density

       p((1,..(K|(1,..(K) = 

(1+2+...+K)/[(1)(2)...(K)] 

                                   (11-1(22-1...(KK-1 

where the parameters 1,2,..,K are positive. The Dirichlet is obtainable by sampling independent gamma densities:  if uk are drawn from gamma densities G((k,() with equal scale parameters (say =1), namely

       u1~G(1,(), u2~ G(2,(),..,uK ~ G(K,() 

then yj = uj / eq \O((,k)uk are draws from the Dirichlet with prior weights vector ((1,..(K). The Dirichlet may also be used to model proportion data directly (see Example 3.8).

One may assign known values c1,c2,..,ck to the 1,..,k representing prior knowledge regarding relative frequency of the categories; an alternative takes them as additional unknowns (e.g. Albert & Gupta, 1982; Nandram, 1998). The posterior density of the 1,..,K is then also a Dirichlet with parameters c1+x1,c2+x2,...cK+yK. So the total of the assigned values  (j) eq \O((,j=1,K)cj=C is equivalent to a ‘prior sample size’ but is also known as a precision parameter (Agresti & Hitchcock, 2005, p 307); the Dirichlet prior is sometimes written as Dirichlet(C,() (Albert & Gupta, 1982, p 1262). From the properties of the Dirichlet, the posterior means of the multinomial probabilities are obtained as

(yj+cj)/(Y+C), 

or equivalently as weighted means of prior and observed proportions, namely      

             {Y/(Y+C)}(yj/Y) + {C/(Y+C)}j 

where (j = cj/C.

Often the cj are assumed equal to each other, i.e. cj=C/K for all j. The choice is then how to select an appropriate total C. Bishop (1975, chapter 12) discusses estimating C in this case, but using the observed data. This amounts to an empirical Bayes approach, since the prior is estimated from the data. Adcock (1987) presents an alternative method, based on the assumption that before the data are observed, there are two separate and independent vector ‘estimates’ e1 and e2 of the unknown 1,2,..K, with C larger the closer together are the two vectors. Suppose K=3 for the outcome of a US presidential election, with Democrat, Republican and Independent Party candidates. On the basis of pre-election polls one might set the Democrat share of the vote to be either 0.40 or 0.43, and the Republican share at 0.47 or 0.45 respectively, so that the other candidate will receive 0.13 and 0.12 in each case. Then the averages of e1i and e2i are respectively 0.415,0.46, and 0.125 are taken as central prior estimates j of each multinomial probability. The sum of the squares of the differences 0.43-0.40 = 0.03, 0.47-0.45 = 0.02, and 0.13-0.12 = 0.01, namely (=0.0014 = 0.0009+0.0004+0.0001 has expectation

2(1-eq \O((,j=1,K)eq \O(j,2))/(C+1).

So the estimate of C is {2(1-eq \O((,j=1,K)eq \O(j,2))/(}-1= 857, and the prior on the multinomial parameters would be (c1,c2,c3)=(356,394,107). 

Example 3.8 Coefficients of Income Inequality

The multinomial is useful for obtaining estimates or densities of inequality indicators based on grouped data from an underlying continuous variable or ranking, such as income or health (Wagstaff and Vandoorslaer, 1994). For income proportion data the Dirichlet density can be applied directly. This example considers household data from Bartholomew (1996) on UK incomes before tax in 1991/92, with K=16 groups (Table 3.2). One inequality index, the Gini coefficient, measures the degree of departure from an even distribution of income, with values between 0 and 1 and greater inequality at higher values. Bayesian analysis of this and related inequality measures includes Chotikapanich and Griffiths (2001, 2002, 2003).

Table 3.2 Distribution of Personal Incomes (Households in 000s), 1991/92, UK







Group
Mid-Income
No. hhlds (000s)
% hhlds
Cum % hhlds (()
Income received (billions)
Cum Income %

1
3398
258
0.010
0.010
0.88
0.002

2
3750
621
0.024
0.034
2.33
0.008

3
4250
813
0.031
0.065
3.46
0.017

4
4750
838
0.032
0.098
3.98
0.028

5
5250
945
0.036
0.134
4.96
0.041

6
5750
776
0.030
0.164
4.46
0.053

7
6500
1650
0.064
0.228
10.73
0.081

8
7500
1710
0.066
0.294
12.83
0.114

9
9000
3330
0.129
0.423
29.97
0.193

10
11000
2990
0.115
0.538
32.89
0.279

11
13500
3570
0.138
0.676
48.20
0.406

12
17500
3920
0.151
0.827
68.60
0.586

13
25000
2920
0.113
0.940
73.00
0.777

14
40000
1120
0.043
0.983
44.80
0.895

15
75000
326
0.013
0.996
24.45
0.959

16
150000
104
0.004
1
15.60
1

      Total

25891
1

381.12


We consider a Lorenz curve model for the differences (j=Lj-Lj-1 in successive model proportions Lj (j=1,16) of cumulative income received. The (j are modelling the differences qj between cumulative proportions q1+q2+..qj are in the final column of Table 3.2. The approach adopted is gamma sampling of the observed income received totals Qj (penultimate column). Let (j be the observed accumulated proportions in the population (taken to be known and given in column 5). Following Kakwani (1980) one possible model for Lj is

             L=(-a(b(1-()c 

where a is positive and {b,c} lie between 0 and 1; then (j=Lj-Lj-1.  The aim is to replicate Dirichlet sampling for the qj as in Chotikapanich & Griffiths (2002) but to use the household frequency information.  Thus instead of

         (q1,…q16) ~ Dir((1,…(16)

we use gamma sampling for Qj, namely

        Qj ~ G(((j,1)

where ( is an additional unknown, expected to be close to the total 381.12 of income received (in £ billion). As well as the Gini index we monitor the Robin Hood index (Kennedy et al, 1996), the maximum gap between the Lorenze curve Lj and (j. 

A two chain run of 10000 iterations (last 9000 for summaries) gives a Gini coefficient of 0.353 (with 95% interval from 0.301 to 0.403), and Robin Hood index of 0.26. ( has a posterior mean of 388. The modelled Lorenz curve is close to the observed proportions in the last column, with successive means {0.0023, 0.0092, 0.0197, 0.0316, 0.0463, 0.0593, 0.0897, 0.125, 0.206, 0.294, 0.421, 0.601, 0.789, 0.9, 0.954}.

3.8 Multivariate Continuous Data: Multivariate normal and t densities

The most commonly used multivariate distribution for continuous outcomes is the multivariate normal Nq(,) describing the association between a vector y=(y1,…yq) of q continuous variates with likelihood

               p(y|(,() 
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where ( is the vector of means,  is a covariance matrix of order qxq, symmetric and positive definite, with precision matrix P=-1. For example, q=2 leads to the bivariate normal with covariance matrix 

     ( = 
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and  is the correlation between the two variables. If the variates y1,…,yq are standardised then  reduces to the correlation matrix R between the variates. Such standardisation may assist is setting a sensible prior on (. Skew versions of the MVN can be obtained (Sahu et al, 2003) using the model

                   yi=( + (i(+ui(
where yi=(yi1,..yiq), ( is a diagonal matrix with elements ((1,..(q), each of which can be either positive or negative, (ui1,…,uiq) ~ N(0,I) I(0,), and ((i1,…,(iq) ~ N(0,I). 

The conjugate prior for ( is inverse Wishart density, the multivariate generalisation of the inverse gamma. Similarly, the multivariate analogue of the gamma is known as the Wishart density and is the conjugate prior for P=(-1. The Wishart is specified in terms of two parameters, a degrees of freedom parameter ( which must be equal to or exceed q if the prior is to be proper, and a scale matrix  of order qxq, symmetric and positive definite. The Wishart density has alternative forms, but here, following De Groot (1970), is taken as         p(P|B,()  B |(/2 P( - q - 1)/2 exp-0.5tr(B(P)                (3.6.1)

with tr( ) denoting the trace of the matrix product (i.e. the sum of its diagonal elements). Similarly the inverse Wishart has the form

   p((|B,()  B |-(/2 (( + q + 1)/2 exp-0.5tr(B-1(-1)       (3.6.2).

The exponent to which the determinant of P is taken in (3.6.1) makes it clear why  must be at least equal to the order of B. Then 

                          E(P) =(B-1 

and so B/( amounts to a prior estimate C of the dispersion matrix ( based on ( observations, and B to an estimate of the sum of squares and cross-products matrix. Defaults for B or C are often used such as the identity matrix, in which case ( typically takes the default value (=q (e.g. Chib and Winkelmann, 2001, p 431). A more informative estimate for B or C would assume a larger value for ( (e.g. see Press and Shigemasu, 1989, in the context of Bayesian factor analysis), though in large datasets one would expect the data to outweigh the prior unless it is fairly informative.

The Wishart density is restrictive in assuming the same degrees of freedom for the diagonal elements of (, when there may be varying amounts of information regarding dispersion in their (marginal) densities. The Wishart also does not allow for differential prior knowledge regarding off-diagonal elements (including possible structural zero covariances). Priors for covariance matrices that allow more flexible inclusion of prior knowledge regarding correlated effects have been proposed. One is based on the variance-correlation decomposition (Barnard et al, 2000).  Thus one might provide a prior estimate of the covariance matrix C in the form C=DRD where D=diag((1,…, (q) is a diagonal matrix containing prior estimates of standard deviations (j, and R=[rkm] is a prior estimate of the matrix of correlations. Other approaches to covariance matrix estimation include conditional partitioning (see below), spectral decomposition, Cholesky decomposition (Daniels & Zhao, 2003), and factor-analytic decomposition. In the Cholesky decomposition, (-1=(((, where ( is a upper triangular matrix with positive diagonal elements. Alternatively the decomposition may be applied to the precision matrix (Sun & Sun, 2005). If multivariate normal priors are assumed on the off-diagonal elements of (, and independent gamma priors on its diagonal elements, this provides a conditionally conjugate prior (Daniels and Pourahmadi, 2002).

The usual joint conjugate prior distribution for [,]=[(|(][(] can be parameterised in terms of (a) a Wishart density prior for (-1 with scale matrix V0 and with (0 (q degrees of freedom, where larger values of (0 represent stronger beliefs in the guess V0, and (b) for a given sampled (, a mean generated from ( ~ Nq(m0,(/(0) where m0 is a known prior mean and 0 (analogous to the number of prior measurements) is a known measure of prior strength of belief about the mean. For vague prior knowledge, (0 and (0 might be small integers.  Suppose eq \O(y,_) and S are respectively an observed vector of means and a sum of squares and cross-products matrix. Let w0=(0/((0+n) denote the ratio of prior ‘sample size’ to total sample size, and =0+n denote the total degrees of freedom for the dispersion matrix. Then the posterior density for ( has vector mean m=w00+(1-w0)eq \O(y,_) and sum of squares matrix                  

                           W=B+S+nw0(eq \O(y,_)-0)((eq \O(y,_)-0). 

To draw samples t=B+1,..T from the joint posterior density of (,) given observed data y1,..yn (or eq \O(y,_) and S as sufficient statistics) involves sampling P(t) from a Wishart with parameters W and (0+n, and then drawing (t) from a multivariate normal with mean m and precision P. Predictions (replicate data) yrep(t) may be drawn using currently sampled values ( and P.

3.8.1 Partitioning Multivariate Priors 

Just as knowledge of the mean and variance completely specifies a univariate normal distribution, so knowledge of the means and variances of each of q variables, and of the covariances between them, is sufficient to specify a multivariate normal density,  y ~ Nq((, (). Further the marginal distribution of a lower dimension subset of the yj, j=1,..q, has a multivariate normal distribution with covariance defined by the appropriate sub-matrix of (. Suppose y is partitioned into two sets of variables y(1)= {y1,…yr} and y(2)={yr+1,….yq}. Then ( and ( may be partitioned as follows
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where (11 is r x r, (12 is r x (q-r), (21 is (q-r) x r and (22 is (q-r) x (q-r). (12 is the matrix of covariances between the variables in the two subsets of y. The conditional distribution of y(1), when the marginal density y(2) ~ N(((2),(22) has a known value A, is multivariate normal with mean

                              (1 + B1(A-(2)

and rxr covariance matrix

                              B2 = (11 - (12 (eq \O(22,-1) (21.

where B1=(12 (eq \O(22,-1). This property means that prior distributions of ( can be derived by considering the transformation of ( to the parameters of the conditional distribution y(1)|y(2), namely B1 and B2, together with the parameter (22 of the marginal normal of y(2). Specifically (Brown et al, 1994), ( can be written

       ( = 
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This means that the prior on the elements of ((,() may be expressed in a series of conditional multivariate models, or even as a sequence of conditional univariate models. Thus for q=3 and observations {yij, j=1,q}, one may use a series of regression models,

                            yi1 ~ N((i1,V1)

                            yi2 ~ N((i2,V2)





                            yi3 ~ N((i3,V3)

where (i1=(1, (i2=(2+(2(yi1-(i1) and (i3=(3+(31(yi1-(i1)+(32(yi2-(i2) (see e.g. Spiegelhalter & Marshall, 1998).

3.8.2 The Multivariate t Density

A robust alternative to the multivariate normal density for multivariate data y=(y1,..yq) is provided by the multivariate t density, with mean vector μ=(μ1,..μq), covariance (, and degrees of freedom (; for an application in asset pricing, see Kan & Zhou (2006). Thus, in a straightforward extension of the univariate t density,

             f(y|μ,(,() ( [ 1 + 
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with covariance for y given by ((/((-2). A vector y with a multivariate t distribution can be obtained as z/(u/(q) where z is a standardized multinormal vector with correlation matrix R and u is a chi-square variable with q degrees of freedom . 

A parallel partitioning as above for the multivariate normal may be applied to the Student t. Thus suppose y =(y1,..yr,yr+1,..,yq) is partitioned into sub-vectors y(1) and y(2) of dimension r and p=q-r, and ( and P=(-1 correspondingly partitioned:

         (= 
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Then the marginal distribution of y(1) is also multivariate t with degrees of freedom (+r, mean μ(1) =(μ1,..μr), and covariance 

               ((11/((-2)= ((P11-P12P22-1P21)-1/((-2). 

The conditional distribution of y(1) given y(2) is also multivariate t with mean 

                μ(1) + P11-1P12 (y(2)-μ(2))

and degrees of freedom (+p.

As well as direct sampling from a multivariate t, the scale mixture approach involves samples (i ~ G(0.5(,0.5() for each subject, and then a sample from a multivariate normal 

          (yi1,…yiq) ~ Nq(μ,(/(i).

This method is often useful in augmented data sampling when binary, multinomial or ordinal data are assumed to be produced by an underlying Student t continuous scale (e.g. Holmes & Held, 2006).  

Example 3.9 Bivariate Normal Data with Partial Missingness

Tanner (1996) presents 12 data points from a bivariate normal density {y1,y2} with known mean (1=(2=0, but unknown dispersion matrix (. The data contains four fully observed pairs {yi1,yi2}, with the remaining observations being partially missing: values on one or other of y1 and y2 are not available. Two of the fully observed pairs are consistent with a population wide correlation ( of –1, the other two with a correlation of 1. As noted by Tanner (1996, p 96) the posterior density of ( is bimodal, with modes close to +1 and –1. The true posterior of the correlation is obtainable analytically under the improper prior

                p(() ( |(|-(q+1)/2
with q=2. This prior is the limiting form of the inverse Wishart prior as B-1 tends to zero and ( tends to –1.

The information provided by the 8 data points subject to missingness does not add directly to knowledge about the covariance (12, but adds to knowledge of the variances (eq \O(1,2) and (eq \O(2,2) and so contributes to estimating (. To estimate the dispersion matrix and values for the missing data, one may use sampling based on partitioning the bivariate normal, rather than setting a prior on (. Thus for cases with yi1 observed but yi2 missing, sample yi2 from p(yi2|yi1) which is univariate normal with mean

                      (2 + (((2/(1)(yi1- (1) 

and variance

                     (eq \O(2,2) - (eq \O(12,2) /(eq \O(1,2)  =  (eq \O(2,2) - (2(eq \O(2,2)
The term (2.1=((2/(1 is familiar as the regression coefficient in a linear model relating y2 to y1. Assuming (1=(2=0 (as in Tanner, 1996), the mean of (yi2|yi1) reduces to ((2yi1/(1. An analogous density is defined for cases where yi2 is observed but yi1 missing. 

Equivalently, one may define a marginal regression for y1, then a conditional regression for y2 given y1. The correlation may then be estimated from the observed and imputed data through its part in defining the regression coefficient (2.1. The parameter samples for ( cycle through positive and negative values, with long run average zero, but two distinct modes. The posterior density for ( (Figure 3.1) is based on every hundredth sample in a two chain run of 100,000 (1000 burn in).

Example 3.10 Bivariate screening

In medical and quality control applications, one may have two correlated measures x and y, with means y and x, and with x less expensive to obtain. Under the quality scheme y must exceed a threshold (y, for example for a screened patient to be deemed at risk or not at risk, or for a product to be deemed defective or of acceptable quality. From the properties of the bivariate normal, one may specify a limit on x, say x such that, with probability , y exceeds (y given that x exceeds (x. For a bivariate normal p(y|xnew, y, x, , (y,x)with dispersion matrix

        (   =    
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the predictive density of a new y value, ynew, given a new x value, xnew, is found by sampling ynew from p(y|xnew,y,x,,(y,x) at each iteration and averaging over the samples. The density p(y|xnew,y,x,,(y,x) is a univariate normal with mean y + y(xnew - x)/x and variance y2(1-2).

Suppose, following Wong et al (1985), dissolution testing is used to measure the active ingredient in a pharmaceutical product at times 1 and 2 (denoted x and y), where observations of both y and x are obtained for a small sample only. Quality testing requires that at time 2 the cumulative release of y exceeds (y=1500 with probability =0.99. If x and y are highly correlated, it is possible to avoid taking a full sample of repeated measurements y at time 2 by using the complete first wave data x, and the sample data to model the association of x and y. From these data a threshold (x can be estimated which is expected to lead to ynew exceeding (y with high probability.

Suppose a sample of 10 measures at times 1 and 2 gives eq \O(x, _)=1256, eq \O(y,_)=1969, sx=133, sy=177, and r=0.975. To allow for the uncertainty in these sample estimates (sufficient statistics for a BVN likelihood for the 20 actual data points), a conjugate joint prior is assumed, namely

                              -1 ~ W[0,0], 

with scale 0 and 0 degrees of freedom, and a bivariate normal prior on x and y given (,

                              N2(0, /0). 

Here 0 is a vector of assumed prior means Y0 and X0, and  0 is a measure of the quantity of prior certainty regarding these means. For comparability with Wong et al, 0 is taken as a null matrix, and 0=0=0, with default prior mean values y0=1950, x0=1250, though these values are not used unless (0 >0.

One may define a range of new values xnew and assess the breakpoint (x at which ynew exceeds (y with 99% certainty. With MCMC sampling in BUGS, the step() function is used to test whether ynew exceeds (y=1500, given xnew and the current estimates of the bivariate normal parameters. These tests are accumulated in the vector ExcTh[]. An initial run with nine values of  xnew at intervals of 25 between 900 and 1100 inclusive narrows the likely range to between 975 and 1025. A second run then takes values of xnew at intervals of 5 between 975 and 1025. This yields a range of values from 96.7% to 99.8% of samples of ynew exceeding the threshold of 1500, with the threshold of 99% occurring between xnew=995 and xnew=1000.

3.9 Applications of Standard Densities: Classification Rules

Often it is necessary to determine whether a characteristic or condition D exists in a subject on the basis of a binary screening procedure. The aim is to classify observed subjects into one or more categories of D and establish a decision rule so that future subjects can be classified correctly; see, for example, Press (2005), Myles et al (2003), Branscum et al (2005), and Chen et al (2005).  Assume the  characteristic is binary (e.g. does a person have a disease or not), with outcomes D=1 and D=0, with the test result denoted T=1 or 0, where a positive result (T=1) indicates, usually with uncertainty, that the characteristic is present. 

Let Pr(D=1)=π denote the probability that an individual drawn at random from the population has the characteristic. For example, in epidemiology this would be known as the prevalence of the disease in the population. Then Pr(T=1|D=1)=η is the sensitivity of the test, namely the probability the test will give a positive result given that the condition is present, and Pr(T=1|D=1)Pr(D=1)=(( is the joint probability of having the condition and being identified as such by a particular screening tool. Of interest also in the probability that the test correctly identifies that an individual is disease free. So given an individual is disease free, Pr(T=0|D=0)=θ is the specificity, the probability the test will say they are disease free. The classification (T=1|D=0) results in a false positive. The joint probability of a false positive and being disease free is then Pr(T=1| D=0)Pr(D=0)=(1-()(1-(). 

Identification of the parameters {(,(,(} is not possible when there is a possibility of classification error (i.e. when ( and/or ( are not 1), without informative priors or repeated tests for the same disease (Walter & Irwig, 1988). For n subjects and a single test, the number n1 of subjects testing positive is 

   n1| (,(,( ~ Bin[n,  (( + (1- ( )(1-()].

Conversely, given that a test says an individual is diseased, the probability the individual is actually diseased is Pr(D=1|T=1)=((/[((+(1-()(1-()]=ψ, or the predictive value of a positive test, PVP. Pr(D=0|T=0)=Λ is similarly the predictive value of a negative test (PVN). Thus Gastwirth et al (1991) consider screening of donated blood for HIV (i.e. for antibodies to the HIV virus), where 1-Λ is the probability that an individual classed as HIV free is in fact donating infected blood. 

In the absence of a gold standard test, identification of (, ( and ( requires additional information (e.g. from the joint accuracy of several tests or from informative priors regarding prevalence and test performance). Following Dendukiri and Johnson (2001), informative priors are needed on at least as many parameters as would need to be constrained when using the frequentist approach to ensure identification. For two tests, we may arrange the decisions according to a two way table with n11 denoting the number of patients classified as positive under both tests, n10 as the number classified positive under test 1 but negative under test 2, n01 as the number positive under test 2 but negative under test 1, and n00 as the number negative under both tests. Among the n11 patients positive under both tests, a certain unknown number y11 will be true positives (T1=1, T2=1 given D=1) and the remainder will be disease free. The total probability of the screening results (T1=1,T2=1) is

Pr(T1=1,T2=1) = Pr(T1=1,T2=1|D=1) Pr(D=1) +

                                 Pr(T1=1,T2=1|D=0) Pr(D=0).

Assuming the two tests are conditionally independent given disease status, this probability can be written

Pr(T1=1,T2=1) = Pr(T1=1|D=1)Pr(T2=1|D) Pr(D=1) +

                                        Pr(T1=1|D=0)Pr(T2=1|D=0) Pr(D=0)


                 = (1(2 (+ (1-(1)(1-(2) (1-()                   

Hence the number of true positives y11 is binomial among a total of n11 with probability

      ((1(2 / [((1(2 + (1-()(1-(1)(1-(2)]                           (3.7.1)

The total probability of being classified as positive under test 1 but negative by test 2 is

Pr(T1=1,T2=0)= Pr(T1=1,T2=0|D=1) Pr(D=1) +

                                Pr(T1=1,T2=0|D=0) Pr(D=0)

Under conditional independence this is

Pr(T1=1,T2=0)= Pr(T1=1|D=1) Pr(T2=0|D=1) Pr(D=1)+

                               Pr(T1=1|D=0) Pr(T2=0|D=0) Pr(D=0)


               = ( (1 (1-(2) + (1-() (1-(1) (2
Hence true positives y10 among the set of n10 patients are binomial with probability

     ( (1 (1-(2) /[( (1 (1-(2) + (1-() (1-(1) (2]                        (3.7.2)

Similarly true positives y01 among the n01 cell total are binomial with probability

     ( (2 (1-(1) /[( (2 (1-(1) + (1-() (1-(2) (1]                        (3.7.3)

while true positives y00 among the n00 cell total are binomial with probability

     ( (1-(1)(1-(2) /[( (1-(1)(1-(2) + (1-() (1 (2].                   (3.7.4)

Dendukiri and Johnson (2001) model conditional dependence by introducing test covariances (1 and (0 among the diseased and nondiseased subjects (this provides the correlated tests, one population scenario). The above four binomial probabilities become

(((1(2 +(1)/ [(((1(2 +(1)+ (1-(){(1-(1)(1-(2)+(0}]                   (3.8.1)

(((1{1-(2}-(1)/ [(((1{1-(2}-(1)+ (1-(){(1-(1)(2-(0}]               (3.8.2)

(({1-(1}(2 -(1)/ [(({1-(1}(2 -(1)+ (1-(){(1(1-(2)-(0}]             (3.8.3)

and 

(({1-(1}{1-(2}+(1)/ [(({1-(1}{1-(2}+(1)+ (1-(){(1(2+(0}]    (3.8.4).

If interest is confined to positive covariances, one obtains the following constraints

   0 ( (1 ( min((1,(2)-(1(2
   0 ( (0 ( min((1, (2)- (1(2.

Geisser (1993) also considers a situation with two tests in the context of developing decision rules that incorporate information (Table 3.3) regarding costs consequent on the four possible combinations of the rule and condition (e.g. in terms of costs of incorrect treatments following mistaken diagnosis). The rule is based on the outcomes T1 and T2 of two tests as described below. Also assumed available is extraneous information on prevalence.

 Table 3.3 Costs under Loss Function


Condition

       Rule
 Present (D=1)
   Absent (D=0)

  Positive (R=1)
        L11
        L10

  Negative (R=0)
        L01
        L00

Let η11 be the probability Pr(T1=1,T2=1|D=1), namely the joint sensitivity of the tests. η10 and η01 are the probabilities that the first test alone and the second test alone are positive when the disease is actually present, while η00 is the chance Pr(T1=0,T2=0|D=1) that neither test detects the condition when it is present. Hence η11+η10+η01+η00=1. When the condition is absent, θ00 denotes the probability, Pr(T1=0,T2=0|D=0), that both tests yield a negative. Analogous notation follows where either one or both tests register the condition as present when it is not (i.e. give a false positive), with θ11 denoting the probability that both tests yield a false positive. Thus θ00+θ01+θ10+θ11=1 (see Table 3.4).

Table 3.4 Conditional Probabilities for Outcomes of Two Tests

Disease Present D=1)

 Disease Absent (D=0)



2nd test
2nd test

1st test
  Positive 

 T2=1
 Negative 

     T2=0
  Positive  

    T2=1
   Negative    

      T2=0

Positive, T1=1
      (11
     (10
      (11
      (10

Negative, T1=0
      (01
     (00
      (01
       (00

Four possible decision rules, R1,…R4, may be developed with regard to deciding whether D is present on the basis of the two test results. Under rules R1,..,R4, D is assumed present if

R1 : test 1 is positive, regardless of test 2 ( decision uses T1 only)

R2:  test 2 is positive, regardless of test 1 (decision uses T2 only)

R3 : both tests 1 and 2 are positive (T1 T2) (decision needs both positive)

R4:  either test 1 and 2 is positive (T1 T2) (decision needs one or other positive, or both).

The respective sensitivities and specificities under these rules,  denoted Si and Ci (i=1,..4), are then

Rule                         Si                                                 Ci
   R1       Pr(R=1|D=1) = η11+η10          Pr(R=0| D=0) = θ00+θ01
   R2       Pr(R=1|D=1) = η11+η01          Pr(R=0| D=0) = θ00+θ10
   R3       Pr(R=1|D=1) = η11                   Pr(R=0| D=0) = θ00+θ01+θ10
   R4       Pr(R=1|D=1) = η11+η10+η01  Pr(R=0| D=0) = θ00
Let Ai denote the administrative costs of each test administered separately (i=1,2) and A12 the cost of administering both. The total losses incurred given rule Ri are then 

                πSi(L11-L01)+(1-π)Ci(L00-L10)+πL01+(1-π)L10
so total costs consist of these losses plus administrative costs. 

Example 3.11 Two Tests for Detecting AIDS Antibodies

Two commercial preparations were applied in tests of serum specimens to detect antibodies to the AIDS virus by Burkhardt et al (1987) in a Canadian study. To evaluate costs as above requires information on the joint accuracy of the tests and on prevalence π, namely the contemporary proportion of contaminated samples in Canadian blood donations available for transfusion. A survey by Nusbacher et al (1986) found 14 out of 94496 blood samples positive by the Western blot test. As to joint accuracy, Burkhardt et al (1987) cite data (for known disease status) for two serum tests, ELISA-A and ELISA-D (Table 3.5).

Table 3.5 Serum Test Results


   Condition Present

              (D=1)

    Condition Absent  

            (D=0)



2nd test
2nd test

1st test
Positive, T2=1
Negative,

T2=0
Positive, T2=1
Negative,

T2=0

Positive, T1=1
92
0
8
9

Negative, T1=0
1
0
23
370

The condition being tested for here, and its converse, are respectively D=1 (blood contaminated), and D=0 (blood safe). The largest loss (L01=$100,000) is for a false negative (T=0|D=1), resulting in an individual having a transfusion of contaminated blood. The costs of a false positive (finding a sample to be contaminated when it is actually pure) are set at L10=$25. The other outcomes are assigned cost zero. Administrative costs are set at A1=A2=1 and A12=2.

One seeks to assign costs to the four above rules given the sample data in Table 3.5 and the loss costings. Given the relatively small sample in Table 3.5 the costs are expected to be imprecisely estimated. The two sets of probabilities (η11,η10,η01,η00) and (θ00,θ01,θ10,θ11) are assigned Dirichlet priors with total ‘prior sample’ size of 5 as follows

     (η11,η10,η01,η00) ~ Dir(3.9,0.5,0.5,0.1)

     (θ00,θ01,θ10,θ11) ~  Dir(3.9,0.5,0.5,0.1)

These priors are relatively weak but do incorporate a belief that simultaneous correct screening results are more likely than incorrect results. A Be(1,1) prior is assumed for the prevalence.

Estimates of the detection rates with two tests combined and costs of the four procedures are obtained from the 2nd half of a two chain run of 10000 iterations (Table 3.6). The costs are conditional on the prevalence data and the relatively small samples involved in the ELISA tests results, and so exhibit wide variability. Relying on test 2 alone (rule R2) seems to be slightly preferred. this being mainly the consequence of test 1 recording one false negative, though test 2 has considerably more false positives (hence lower specificity). Moreover the rule based on the second test only has the lowest positive predictive value.

Table 3.6 Costs, PVP, Sensitivity and Specificity by Rule


   Mean
  St devn
    2.5%
   97.5%

Cost(R1)
4.90
2.23
2.38
10.69

Cost(R2)
4.11
1.37
2.72
7.90

Cost(R3)
6.15
2.57
3.09
12.84

Cost(R4)
4.86
0.65
4.05
6.35

  PVP[1]
0.0032
0.0011
0.0015
0.0057

  PVP[2]
0.0019
0.0006
0.0010
0.0032

  PVP[3]
0.0059
0.0024
0.0025
0.0117

  PVP[4]
0.0015
0.0004
0.0008
0.0025

S1
0.984
0.013
0.951
0.999

S2
0.994
0.008
0.972
1.000

S3
0.978
0.015
0.942
0.997

S4
0.999
0.003
0.990
1.000


0.000159
0.000041
0.000089
0.000247

C1
0.948
0.011
0.925
0.968

C2
0.915
0.014
0.887
0.940

C3
0.971
0.008
0.953
0.985

C4
0.892
0.015
0.861
0.920

Example 3.12 Testing for Strongyloides Infection with no Gold Standard

Joseph, Gyorkos and Coupal  (1995) and Dendukiri and Johnson (2001) consider the problem of using the results of one or more diagnostic tests to make inferences about test accuracy and prevalence in a situation where there is no gold standard diagnosis. They present results of stool and serologic tests of strongyloides infection on 162 Cambodian refugees to Canada between July 1982 and February 1983. The sample prevalence using the stool test is around 25% (40 out of 162), while from serology alone it is considerably higher at 77%. It is desired to estimate the sensitivity ((), specificity (() and population prevalence (() from the results of each test separately, or from both test results combined.

In this situation, drawing useful inferences may require substantive prior information on these parameters to be introduced. There is in fact substantial accumulated knowledge about these two parasitological tests, in terms of their estimation of prevalence and their accuracy. Stool examination is known to understate population prevalence, and have lower sensitivity than serology but to yield high specificity (over 90%). Serology results in overestimates of prevalence but has accordingly higher sensitivity.

Joseph et al (1995) elicited priors on the accuracy parameters in terms of 95% probability intervals and converted these to beta densities, here denoted   (j  ~  Beta(sj,tj), (j ~   Beta(cj,dj) of the two tests, j=1,2. This prior information is presented together with observed test results counts {n11,n01,n10,n00} in Table 3.7. A uniform prior is used for the unknown prevalence ( ~ Beta(1,1) of the disease in the refugee population.  

Table 3.7  Results for two tests of strongyloides infection and priors on diagnostic accuracy

Data

Stool Test




      T2=1
    T2=0
   Total

Serology
     T1=1
     38
    87
   125


     T1=0
       2
    35
     37


   Total
      40
   122
   162

Elicited Priors
      Serology
         Stool


     2.5%
    97.5%
    2.5%
97.5%

Sensitivity (%)
       65
      95
      5
     45

Specificity (%)
       35
     100
     90
    100

Beta Parameters 


Sensitivity(a,b)
             (22,5.5)
       (4.4,13.3)

Specificity (c,d)
             (4.1,1.8)
       (71.2,3.8)

For a single test (say the first test, serology), let y1 and y0 be the unobserved numbers of true positives and false negatives among the totals with positive and negative test results, respectively n1=n11+n10 =125 and n0=n01+n00=37. So, for example, n0-y0 is then the number of true negatives, namely correctly identified patients with a negative diagnosis. From  above, the total probability of being identified by a single test as positive is (( + (1-()(1-(), so y1 is binomial from n1 total positives with probability (the PVP)

            (( / {(( + (1-()(1-()}.

The total probability of being identified negative is Pr(D=1)Pr(T=0|D=1) + Pr(D=0)Pr(T=0|D=0)= ((1-() + (1-()(, so y0 is binomial among n0 total negatives with probability

            ((1-() / {((1-() + (1-()(}.

Given sampled values y1 and y0 at a given MCMC iteration the prevalence then has an updated full conditional density

             ( ~ Beta(y1+y0+1,n1+n0-y1-y0+1),

the sensitivity has an updated density
             ( ~ Beta(y1+s,y0+t),

and the specificity an updated density 

             ( ~ Beta(n0-y0+c,n1-y1+d).

Estimates are obtained from the 2nd half of a two chain run of 20000 iterations using only the serology test results and the prior beta densities in Table 3.7. The results reflect the higher prevalence obtained from using serology results (Table 3.8, top panel). Closely comparable results are obtained by Joseph et al (1995).

Table 3.8 Screening Parameters & Prevalence


 Mean
 St devn
  2.5%
   97.5%

Serology only

  (
0.61
0.20
0.24
0.95

  (
0.83
0.05
0.74
0.93

  y1
108.9
22.4
38
125

  y0
21.6
9.0
4
36


0.80
0.18
0.29
0.99

Both tests

  (1
0.64
0.18
0.29
0.95

  (2
0.95
0.02
0.89
0.99

  (1
0.84
0.05
0.74
0.93

  (2
0.29
0.05
0.21
0.41

(
0.82
0.12
0.53
0.99

(
0.016
0.014
0.001
0.052

(
0.028
0.014
0.003
0.058

To make use of results from both tests, the correlated tests model is used with the priors adopted by Dendukiri and Joseph (2001); the relevant binomial probabilities are as in (3.8.1) to (3.8.4). Results are strongly influenced by the priors with prevalence still predominantly determined by the serology test data. The posterior density of (0 indicates a high probability of a zero value, whereas that for (1 is bounded away from zero.

3.10 Applications of Standard Densities: Multivariate Discrimination

Classification and decision rule problems also occur with multiple metric indicators of an underlying condition or a mix of metric and discrete indicators. In the typical discrimination problem data are collected on several variables of known relevance to the classification and combined to provide the likelihood that a patient, specimen or exhibit be assigned to a particular diagnostic class, or natural sub-population such as a plant species. Parameters are estimated from retrospective samples (sometimes called training samples) of observations on yi=(yi1,yi2,….yiq) from each of the diagnostic classes. The goal is to identify an allocation rule from the fully observed retrospective data {y,G} to predict classifications Gnew in a in a test or validation dataset, on the basis of observed ynew (Brown et al, 1999; Lavine & West, 1992; Buck et al, 1996).

Under a normal discrimination approach, observations {yik, k=1,..q} are typically taken to be exchangeably distributed as a mixture of C multivariate normal populations with indicators {Gi (1,..C}, prior probabilities Pr(Gi=j)=(j, q-vector means (j, and covariances (j. If the population class Gi =j is known for the ith subject then

       yi |Gi=j ~ Nq((j,(j).

Extensions to mixtures of Student t densities (allowing heavy tails) or of densities allowing for skew are possible. Both these extensions and the usual mixture of multivariate normals may include categoric indicators if augmented data sampling for binary and ordinal outcomes is applied (Albert and Chib, 1993). Dellaportas (1998) uses truncated normal sampling for a mix of two metric variables and three binary variables to construct a N5 metric variable density in an archaeological provenancing  study involving a mixture of C=2 sub-populations.

In the typical normal discrimination application, let Σ eq \O(-1,j)~ W(V0j,(0j) for the precision matrices of population j, with conditional prior for μj then q-variate normal

             μj ~ Nq(m0j, Σj/h0j). 

Suppose nj subjects are allocated to population j (i.e. have classifier Gi=j). The posterior for μj is μj|Σj,y ~ Nq(mj,Σj/hj) with mj=(h0jm0j+njeq \O(y,_)j)/hj, where eq \O(y,_)j is the vector of means for subjects in population j, and hj= h0j+nj. The posterior for Σj is Wishart with degrees of freedom (j = (0j+ nj and scale matrix

             Vj = V0j + Sj + (eq \O(y,_)j - mj)(eq \O(y,_)j - mj)(njh 0j /hj

where Sj are the matrices of observed sums of cross-products in subpopulation j

               Sj = Σ(yj -  eq \O(y,_)j)(yj -  eq \O(y,_)j)(.

A Dirichlet prior is used for the allocation probabilities (j. The probabilities that Gnew=j for the test sample i=1,..Nnew with data ynew are obtained as

        Pr(Gnew=j|y,G,ynew)( P(ynew|y,G,Gnew=j)Pr(Gnew=j|y,G)

where {y, G} are the training sample data (Lavine &West, 1992, p 455).

For logistic discrimination the focus is on the ratio of likelihoods log[Pr(G=1|y)/ Pr(G=2|y)] rather than the full distributional form of the attributes y within each sub-population, giving more flexibility in dealing with a mixture of categorical and metric indicators (Press & Wilson, 1978). For Bayesian inference under this model, see for example, Fearn et al (1999) and Yeung et al (2005). If the populations occur at a ratio ρ=π1/π2 the logistic model is 

      Pr(G=1|y) = 1-Pr(G=2|y) = exp[logρ + βy]/(1 + exp[logρ + βy])

with the logit of Pr(G=1|y) given by βy + logρ. For classification purposes a cut-point other than zero can be used to achieve different sensitivities (Phillips et al, 1990). For C>2 this generalises to a multiple logistic where 

                 log[Pr(G=j|y)/Pr(G=k|y)] = (βj-βk)y +log(πj/πk) 

where πj are prior proportions, and with (C=0 for identification.

Different sampling schemes may be envisaged as generating the {y,G}. The first is sampling conditional on y which might occur in a drugs trial with a set regime of dosages y. The second is known as mixture or joint sampling of y and G, with the sampled y viewed as resulting from the joint interaction of G and y. The third scheme conditions on the response G as when cases and controls are observed and the exposure y then obtained. 

The accuracy of the predicted classification in a new subject may be affected both by the mix of marker variables y and by the form of the predictor in the logit model. Thus for C=2 the usual relation is

       p1(y) = exp(log(+(y)p2(y) = exp(log(+(y)[1-p1(y)]

where pj(y)=Pr(G=j|y). More general forms might consider         

       p1(y) = g(y;(,()[1-p1(y)]

that prevent the allocation to classes being distorted by outlying population 1 cases that stray into the sample  space of the population 2 cases and vice versa. Cox and Ferry (1991) propose two alternatives to g(y;(,()=exp(log(+(y), namely

      g(y;(,() = eW1(eW2+elog(+(y)/(1+eW3elog(+(y)

and 

      g(y;(,()= (eW + elog(+(y)/ (1+ eWelog(+(y).

Thus the second alternative reduces to the logit link when W ( -(. 

Predictive accuracy as certain predictors y are included or excluded may be assessed by out of sample validation to cases where G is known (e.g. Bhattacharjee and Dunsmore, 1991) or by validation within the observed sample. Multicollinearity among the observed y within a discriminant function (y may adversely affect correct predictions of  Gnew (Feinstein, 1996), so variable selection (see Chapter 4) becomes relevant.

Example 3.13  Lung Cancer Cytology

Data from Feinstein (1996) are a subsample of 200 patients from a larger sample of 1266 from a study aimed to improve prognostic staging for primary lung cancer. Feinstein considers discriminant analysis to predict cell type for these patients (C=4 classes, namely well differentiated; small; anoplastic cell type and cytology only). There are respectively 83, 24, 19 and 74 patients in these groups. The indicators are age and sex (M=1, F=0), and five clinical variables relating to the cancer progress: TNMSTAGE = Anatomic extent (5 ordinal ranks); SXSTAGE = Symptom Stage (4 ordinal ranks); PCTWTLOS = Percent weight loss ; HCT = Hematocrit; and PROGIN = Progression interval in months and tenths.

Feinstein (1996, 469-470) reports on the apparently poor performance of discriminant analysis, assuming equal prior class probabilities of 0.25, namely 89 correct predictions (predicted matching actual class) out of 200; this scarcely improves on allocating all patients to the largest class which would yield 83 out of 200 correct. Altering the prior class probabilities to the actual relative frequencies (0.415, 0.12, 0.095, 0.37) raises the correct prediction count to 102.

Here we consider the reduced problem of predicting well differentiated cells (z=1; G=1) from the rest (z=0; G=2) with n1=83, and n2=117 patients in the two groups, and initially retaining all seven predictors. An exponential prior is assumed on the ratio (=(1/(2. The correct classification rate is obtained by monitoring the matrix of allocations (correct vs. predicted) at each iteration and averaging over all iterations (namely the last 4000 iterations of a two chain run of 5000). 

This leads to a correct prediction count of 136 out of 200 (using posterior medians of correct allocations), namely 56/83 correct predictions among the well differentiated and 80/117 among the remaining types. The predictor variables SXSTAGE and TNMSTAGE have well defined effects but the remaining predictors have effects βk straddling zero. The G2 statistic for a binary outcome can be used to compare models and has a posterior median of 49.5.

We then introduce the second of the robust logit formulations proposed by Cox and Ferry (1991) with an initial value for W, based on a exploratory analysis, set at -1.5. This extra parameter improves the correct prediction count to 139/200, with a worse prediction rate among the well differentiated (44/83) but a higher correct total among the remainder of 95/117. The median G2 is reduced to 46.3. The effect of PROGIN is somewhat clarified also, with 95% interval (-0.01,0.17).

3.11 Exercises

1. In Example 3.1 find the Bayes factor for H0:  = 125 as against H1: (125.

2. Generate 25 observations from a N(0.4,1) density and use the following code to obtain the probability that the likelihood ratio is under 1 (i.e. that the deviance is zero) when H0:(=0 and the alternative  hypothesis is general. The lines to obtain these probabilities need to be added. Following Aitkin et al (2005) the code uses flat priors on the parameters. How is inference affected if a just proper prior is assumed for the precision, e.g. 1/(2 ~ G(1,0.001).

     model {for (i in 1:n) {y[i] ~ dnorm(mu,tau)}

     LogL1 <- log(L1); LogL0 <- log(L0)

     log(L1) <-  -0.5*tau*(n*pow(ybar-mu,2)+(n-1)*s2)-  

                        0.5*n*log(6.2832)-n*log(sig) 

      log(L0) <-   -0.5*tau*(n*pow(ybar-mu0,2)+(n-1)*s2)-

                        0.5*n*log(6.2832)-n*log(sig) 

      mu ~ dflat(); logtau ~ dflat()

      tau <- exp(logtau); sig <- 1/sqrt(tau)

      ybar <- mean(y[]); sig2 <- 1/tau

      D <- -2*(LogL0-LogL1)}

3.  In Example 3.2 assess sensitivity in inferences under the     

      independent priors case with ( ~ N(0,1000) but the following 

      priors on the precision: ( ~ U(0,100) and log(() ~ N(0,0.1).

4.   In Example 3.3 try the additive skew model 

           yi =(+(ui +((i
      with ui is truncated Student t (positive values only) and unknown 

      degrees of freedom, and ( is also Student t with the same d.f.

      Compare the estimated ( with that obtained taking ui and (i to be

      normal.

 5.  In Example 3.3 apply the scale mixture version of the Student t 

      error model (Fernandez & Steel, 1998, section 5) to the share price

      data. 

6. In Example 3.5 introduce an extra parameter (uniform between 0 

     and 1) to downweight the historical data from Kaldor et al (1990). 

     What is the resulting mean odds ratio. This is a simple instance of 

     a power prior as proposed by Ibrahim & Chen (2000).

7.  The male and female populations aged 25-44 in Canada in 1996 

      were  4629975 and 4730640 respectively, while suicide deaths 

      were 1390 and 380. Use negative binomial sampling to obtain the 

      male to female suicide mortality rates per 100,000 and the 

      95% credible interval for the ratio (relative risk) of male to female 

      rates. For  example, using WINBUGS, the parameterisation of the 

      negative  binomial distribution y  ~ NB((,() is as the number of 

      failures y  before reaching ( successes with ( as the success 

      probability. The term  
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 in (3.5) is therefore equivalent to (.       In  terms of coding for  the suicide deaths exercise, one could use 

      the  code  

      model {  for (i in 1:2) { y[i] ~ dnegbin(p[i],del[i]) 

       p[i] <-  del[i]/(del[i]+mu[i]);  mu[i] <- (pop[i]/100000)*nu[i]}

     where coding for the relative risk and priors on del[i] and nu[i] is 

     to be completed. Although ( is notionally an integer it can be 

    assigned a prior (e.g. gamma) for any continuous positive value. 

8.  Consider data on the weights of cork borings in four directions 

    (north, east, south, west) for 28 trees in a block of plantations (see 

    Exercise 3.8.odc). These data were used by Mardia et al (1979) to 

    illustrate possible departures from multivariate normality. Apply a 

    multivariate normal model to these data  and then use a posterior 

    predictive check comparing Mardia’s multivariate skew and 

    kurtosis criteria for the replications to the same criteria calculated

    for  the observations themselves.   Does this check confirm that the 

    multivariate normal is a plausible data generating process?
9. Consider data on  Leptograpsus crabs data set as used by Ripley (1996) – see Exercise 3.9.odc. The objective is to classify the sex of the crabs from 5 scalar anatomical observations. The training set contains 80 examples (40 of each sex) and the test set includes 120 examples. Using multivariate normal discrimination gives correct classification rates (training and test samples respectively) of 93.4 and 94.3%. Adapt the following  code (where G=1 for males,=2 for females) to assess the benefit of multivariate Student t classification with differing degrees of freedom between sub-populations (McLachan & Peel, 1998).

model { # N training cases, N1-N test cases in C populations

for (i in 1:N) { G[i] ~ dcat(pi[1:C]); y[i,1:P] ~ dmnorm(mu[G[i],], Pr[G[i],,])}

       v1[1:P,1:P] <- inverse(Pr[1,,]);   v2[1:P,1:P] <- inverse(Pr[2,,])

# log determinants of dispersion matrices

  D[1] <- logdet(v1[,]); D[2] <- logdet(v2[,]);  pi[1:C] ~ ddirch(alph[1:C])

   # Priors:

   for (i in 1:C) {  mu[i,1:P] ~ dmnorm(mn[i,], Pr.mu[i,,]);Pr[i,1:P,1:P] ~ dwish(R[i,,],P)

   for (k in 1:P) {   mn[i,k] <- 0; Pr.mu[i,k,k] <- 0.000001;  

   for (l in (k+1):P) {  Pr.mu[i,l,k] <- 0; Pr.mu[i,k,l] <- 0.0 }}

   for (k in 1:P) {  R[i,k,k] <- 0.01;   for(l in (k+1):P) {  R[i,k,l] <- 0.005; R[i,l,k] <- 0.005}} }

# residual calculations

  for (m in 1:C){ for (i in 1:N1){ for (j in 1:P) {res[m,i,j] <- y[i,j]-mu[m,j];   

resPr[m,i,j] <- inprod(Pr[m,j,],res[m,i,])}       

sumsq[m,i] <-  inprod(res[m,i,], resPr[m,i,]) }}

# posterior classification probs

  for (i in 1:N1){  for (m in 1:C) { rankL[i,m] <- rank(logL[i,],m)      

  logL[i,m] <- log(pi[m])+D[m]-0.5*sumsq[m,i] }}

for (i in 1:N) { SensTRAIN[i] <- equals(2,rankL[i,G[i]])}

for (i in N+1:N1){ SensTEST[i-N] <-  equals(2,rankL[i,G[i]])}

Sens[1] <- sum(SensTEST[])/120; Sens[2] <- sum(SensTRAIN[])/80}

3.12 Notes
1. For continuous data y about which prior information provides both

     mean and variance but nothing else, the principle of maximum 

     entropy also leads to the assignment of a normal density (Sivia, 

     1996, chapter 5).

2. The Bayesian version of the Central Limit Theorem for a parameter vector ( of dimension d is expressed in the multivariate normal approximation

                    (( -  eq \O((,^) )   ~ Nd(0,V)

where V is the dxd dispersion matrix for  ( -  eq \O((,^), with   eq \O((,^)  the maximum likelihood estimate. This is based on a Taylor Series of the log-likelihood 
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where S( eq \O((,^)|y) is the score function at   eq \O((,^) defined by 

                   S( eq \O((,^)|y) = (
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and I( eq \O((,^)|y) is the observed information defined by 

                  I( eq \O((,^)|y) = (2
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The value of 
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( eq \O((,^)|y) is fixed and S( eq \O((,^)|y)=0 by definition. So providing the remainder term r((|y) is negligible and the prior for ( is flat in the region of   eq \O((,^), p((|y) ( exp[ -0.5(( -  eq \O((,^))T I( eq \O((,^)|y) (( -  eq \O((,^) )]. This has the form of a of multivariate normal density of dimension p with d(d covariance matrix V= I-1( eq \O((,^)|y). 

3. The exponent of this expression may be re-arranged as a sum of a quadratic function of , and terms not involving , namely as -0.5 times

2[0+] - 2[00+y] + terms not involving 
With the ratio of precisions denoted n0=0/, the function of  may in turn be expressed

[n0+]{2 - 2(n00+y)/(n0+)}

=[n0+]{2 - 2(n00+y)/(n0+1)}

The latter term is equivalent to 

[1/{2/(n0+1)}][-{(n00+y)/(n0+1)}]2 + terms not involving .

and this provides the terms in the exponent of a normal density for (.

4. Location-scale densities have the form 
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5. Y is the sum of the K Poisson variates and therefore is Poisson with mean j. So the distribution of y1,...yK conditional on Y is 

p(y1,....yK)/p(Y)

= {exp(-j) eq \O((,j=1,K) (jyj/yj!) }/{exp(-j) (j)Y/Y!)}

= Y! eq \O((,j=1,K) (jyj/yj!)

where j=j/j.
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