Chapter 7 Multinomial and Ordinal Regression Models

7.1 Introduction: Applications with Categoric and Ordinal Data

Many outcomes relating to political or religious affiliation, labour force or social status, or choice (e.g. between consumer goods or travel to work modes) involve ordered or unordered polytomous variables (Amemiya, 1981). Usually such categorical data are defined in terms of mutually exclusive alternatives: yi=j if the jth outcome of the J possible outcomes occurs and zero otherwise. Equivalently dij=1 if yi=j and dik=0 for k(j. For data not involving ordered categories, the multinomial logit and multinomial probit models generalise their binomial equivalents (e.g. Chen & Kuo, 2002; Chib et al, 1998; Daganzo, 1979) but ordinal categorical data introduce extra features in modelling an underlying scale over the category breaks (Best et al, 1996). This chapter focuses mainly on individual data but contingency table data can also be analyzed either as Poisson or multinomial (Agresti & Hitchcock, 2005), and section 7.6 considers models for contingency tables with ordered row or column variables. 

Just as binary regression has the negative response as reference, so a multinomial logit or probit involves stipulating a baseline category (say the first of J possible outcomes) and comparing the probabilities (ij of outcomes j=2,3,..,J to that of the first. As for binary data the ‘revealed’ choice or allocation may be regarded as reflecting the operation of an underlying latent utility or frailty (Albert and Chib, 1993; Scott, 2005), and MCMC techniques are especially useful for data augmentation at the level of the individual may be introduced to facilitate estimation of the (ij.

As for binomial and count data, representations of heterogeneity in choice modelling may involve discrete or continuous mixture models (Wedel et al, 1999), with discrete approaches exemplified by discrete multinomial mixture regression (Chapter 6). For continuous mixing, the conjugate approach is the multinomial-Dirichlet mixture where the Dirichlet is the multivariate generalisation of the beta density (see Chapter 5). However, as for binary logit and Poisson data, it is often easier to model random interdependent choices and heterogeneity within the regression link, as in random effects or mixed multinomial logit models. These are intended (especially in political science and econometrics) to includes heterogeneity in choice behaviour between subjects, not just via intercept variation but by variation in regression coefficients on predictors (Train, 2003; Glasgow, 2001). 

Categorical variables which are ordinal occur frequently in social and psychometric surveys and in applications such as the measurement of health functioning and quality of life, socio-economic ranking, and market research. Such scales may be intrinsically categorical or arise through converting originally continuous scales into ordinal ones. For example, Best et al (1996) convert continuous cognitive function scores from the Mini Mental State Evaluation instrument into a five-fold ordinal ranking, because using the scores as continuous would assume a constant effect across the whole scale, whereas a non-linear effect is more likely. The usual approach to ordinal scales assumes a latent (continuous) variable Wi underlying the ordered categories. This applies even if an ordinal scale arises from grouping an originally continuous scale, in which case a new continuous scale is in a sense being re-identified. 

Suppose the states are ranked from 1 (lowest) to J (highest), with cut-points j from the continuous scale delineating the transition from one category to the next. So if J=4, there are three cut points, from 1 to 2, from 2 to 3 and from 3 to 4. If there are additional start and end points to the underlying scale, namely (0 and (4, such as (0=-, (4=+, then (1,(2,and (3 are free parameters to estimate subject to the constraint 

               (0<(1<(2<(3<(4. 

Other choices of end-point are possible according to context; for example one might, again for J=4, take {(1=1,(4=4} without specifying (0 and just estimate the intervening parameters subject to (1<(2<(3<(4 (e.g. Chuang and Agresti, 1986, p 16).

The probability (ij that an individual i will be in state j is then the same as the chance that the subject’s underlying score is between (j-1 and (j. So the cumulative probability ij that an individual i with latent score Wi will be classified in a state in state j or below is ij = Prob(Wi < (j) = Prob(yi ( j). Hence (ij=ij-i,j-1 gives the chance of belonging to a specific category. Various link functions can be used for ij but the most common are the logit, namely log{ij/(1-ij)} and the complementary log-log, namely log{-log(1-ij)} (McCullagh, 1980). The proportional-odds or cumulative odds model uses the logit link for the cumulative probabilities with a parameterisation as follows:

            logit(ij) = (j-i                                                       (7.1)

where i=Xeq \O((,i)( incorporates predictors such as treatment allocation, age, and income, and the regression effect is assumed invariant over categories j. Usually a constant term is not included as the intercept effects are modelled by the (j. Consider the ratio of odds of the event Wi < (j at different values of X, namely X1 and X2. Under the proportional odds model (7.1) this ratio is

ij(X1)/(1-ij(X1))/[ij(X2)/(1-ij(X2))] =exp[-(X1-X2)((]

and is independent of category j. Another possibility is non-parallel effects of covariates (e.g. Peterson & Harrell, 1990) as expressed in a model such as  logit(ij) = (j-ij where ij=Xeq \O((,i)(j. The negative sign on i in the model ensures that larger values of X( lead to an increased chance of belonging to the higher categories.  In a medical context, this would mean that higher levels of an adverse risk factor are associated with a more adverse outcome or more severe condition. Often it is relevant to introduce random effects specific to individuals, especially if the data are clustered (Chapter 11). 

7.2 Multinomial Logit Choice Models

Consider first the case of an unordered choice response (e.g travel mode) observed for a set of n subjects and with covariates recorded relevant to the choice made. In multinomial logit regression, covariates may be defined either for individuals i, for choices j, or as particular features of choice j that are unique to individual i. In travel mode choice, the first type of variable might be individual income, the second a mode cost variable (specific to j), and the third might be the individual costs attached to different modes (specific to subject i). Consider a vector of covariates Xi specific to individuals i alone, and let dij=1 if option j is chosen and dij=0 otherwise. Then for J possible categories in the outcome the multiple or multinomial logit model (Scott, 2005), with the last category as reference and with only subject level predictors Xi, has the form

     Pr(dij=1)=(ij=exp((j+Xi(j)/{1+ eq \O((,k=2,J)exp((k+Xi(k)}    j=1,..J-1     (7.2)

     Pr(diJ=1) = (iJ = 1 /   {1 +  eq \O((,k=1,J-1) exp((k+Xi(k)}           

or equivalently

     log{(ij/(iJ} = (j + Xi(j
This is sometimes called the multiple logit link. Also for j and k less than J

      log{(ij/(ik} = ((j-(k) + Xi((j-(k)



 

so that choice probabilities are governed by differences in coefficient values between alternatives. A corner constraint on parameters is used in (7.2) but a sum to zero constraint is also possible. Diffuse proper priors on regression parameters are the most common approach but a conditional means prior can be obtained by a Dirichlet extension of the beta CMP for binomial/binary regression. Madigan et al (2005) suggest a Laplace prior to penalize dense parameter estimates from multinomial regression applied to author identification.

Considering instead prediction of choices using only known attributes Aij of the jth alternative specific for individual i, then what is sometimes termed a conditional logit model is obtained with

           (ij=exp(Aij()/ eq \O((,k=1,J)exp(Aik()                                                 (7.3)

with no reference category. Dividing through by exp(Aij() gives

          (ij = 1/  eq \O((,k=1,J)exp([Aik-Aij]()

In the conditional logit model, the coefficients ( are usually constant across alternatives, and so choice probabilities are determined by differences in the attribute values of alternative choices. A general choice model would include both individual level attributes Xi and alternative specific characteristics Aij. Thus 

         log((ij/(ik)=((j-(k)+Xi((j-(k)+(Aij-Aik)(.                               

with ( and ( parameters set to zero for the reference category.

Multiple logit models can be expressed in terms of a model for individual choice behaviour and much debate has focused on appropriate MCMC techniques for this option, especially when the probit rather than multiple logit link is used (section 7.3). Thus let Uij be the unobserved value or utility of choice j to individual i, with

               Uij = U(Xi, Sj,Aij,εij)

where Sj are attributes of choice j (e.g. climate in state j for potential migrants to that state), and εij are random utility terms. Assuming additivity and separability of stochastic and systematic components leads to

              Uij=(ij + εij     





            (7.4.1)

with a systematic component modelled as a linear function such as 

              (ij = (j+ Xi(j + Aij( + Sj(




 (7.4.2).

Then the choice of option j means

              Uij > Uik    all kj

and so

              (ij = Pr(Uij > Uik), all kj.

Equivalently

              dij=1       if         Uij = max(Ui1,Ui2,....UiJ)

Assume the εij follow a type I extreme value (double exponential) distribution with cdf

              F(εij) = exp(-exp(-εij))

and if the assumption in (7.4.1) holds also,

              Pr(dij=1|Xi,Aij,Sj) = exp((ij)/Σk exp((ik)             

with (J =(J=0 as in (7.2) for identifiability.

Latent utilities Wij=Uij-UiJ under the MNL model may be generated by assuming (ij are sampled from an extreme value density. Alternatively, consider the MNL model as 

        Pr(yi=j)  = (ij = (ij / {1 +  eq \O((,k=1,J-1) (ik}  ( (ij      j=1,…J-1       

        Pr(yi=J)  = (iJ = 1 / {1 +  eq \O((,k=1,J-1) (ik}     

where for example, (ij=exp((j+Xi(j+Wij() (for j < J) and (iJ=1 for identifiability. Scott (2003) proposed sampling exponential variables Wij ~ E((ij) with Wij=min(Wi1,…WiJ) when yi=j. It is necessary to sample WiJ ~ E(1) to ensure the scale is defined. If Ti = min(Wi1,…,WiJ), then Pr(Ti=Wij)= (ij/eq \O((,k=1,J)(ik and so the choice probabilities follow the MNL model (Scott, 2005).

In the multinomial and conditional logit models, the ratio (ij/(ik, namely the probability of choosing the jth alternative as compared to the kth, can be seen to be independent of the presence or characteristics of other alternatives. This is known as the independence of irrelevant alternatives (IIA) assumption or axiom (Fry & Harris, 1996; Fry & Harris, 2005). However, assuming this property may be inconsistent with observed choice behaviour in that utilities over different alternatives may be correlated (e.g. there may be sets of similar alternatives with similar utilities between which substitution may be made). One way to correct for clustering is to assume subject or subject-choice errors in the generalized logit link, leading to mixed logit models or mixed MNL (MMNL) models (section 7.4). Another option is the use multinomial probit models since these are not restricted to the IIA axiom (section 7.3). Estimation of the latter by classical methods is complicated by the need to evaluate multidimensional normal integrals. However, MCMC sampling using data augmentation is relatively easy computationally. Other options to tackle departures from IIA include nested logit models (e.g. Lahiri and Gao, 2002) which group the choices into subsets such that error variances differ between subsets. 

Example 7.1 Car Ownership

This example uses data from a 1980 survey of car ownership among 2820 Dutch households (Cramer, 2003). The options are 1) household owns no car, 2) household owns one used car, 3) household owns one new car, and

4) household owns two or more cars. The respective numbers in the four categories are 1010, 944, 691 and 175. Here the first 282 households only are used, containing 114, 92, 62, and 14 households respectively.

Predictors used here are the log of household income and the log of household size. These variables are both standardized. N(0,10) priors are assumed on the unknown coefficients. Iterations 501-2500 of a two chain run shows regression effects as in Table 7.1. The strongest effects of both income and household size are for the fourth category (2 or more car households). The average deviance is 605, with de=8.2, giving a DIC of 613.2. Cramer (2003) mentions that if household size is not included as a predictor the effect of income is reduced. The two variables are negatively correlated but both are positively related to car ownership of various kinds.

The predictive fit of the model can be assessed by sampling new multinomial variables and comparing whether they match the observed categories. On this basis there is around 39% predictive concordance. A more specific way of assessing the predictive fit involves a 4x4 classification matrix comparing actual and predicted categories; see Table 7.2 for posterior means on the elements of this matrix. The totals in each category are predicted satisfactorily and a posterior predictive check involving a chi square criterion over the four categories is satisfactory, with a probability of 0.49 that the chi square comparing new data and expected exceeds the chi square comparing actual and expected category totals.

Table 7.1 Car Ownership MNL Model (n=282) Parameter Summary


 
Mean
St devn
2.5%
97.5%


Predictive Match Rate
0.39
0.03
0.33
0.44

1 Used Car
Intercept
-0.11
0.15
-0.38
0.20


Log Income
0.51
0.18
0.18
0.86


Log Hhld Size
0.80
0.17
0.46
1.14

1 New Car
Intercept
-0.60
0.18
-0.94
-0.24


Log Income
1.09
0.20
0.69
1.50


Log Hhld Size
0.84
0.19
0.48
1.22

2 or More Cars
Intercept
-2.58
0.39
-3.41
-1.81


Log Income
1.29
0.33
0.66
1.94


Log Hhld Size
2.05
0.37
1.36
2.80

Table 7.2 Classification Matrix, Subject Totals by actual vs Predicted Category


Predicted

Actual
1
2
3
4
Total

1
56.3
33.5
20.0
4.3
114

2
32.7
32.7
20.8
5.8
92

3
19.4
20.9
17.7
4.0
62

4
2.5
5.2
3.9
2.4
14

Total
111.0
92.2
62.3
16.4
282

Examination of the Monte Carlo CPOs estimated via (2.12) shows households 122 and 259 as most at odds with the model; these households own 2 cars despite a low income (case 122) and low household size (case 259).

7.3 The Multinomial Probit Representation of Interdependent Choices

Independence between choices is a feature of the fixed effects multinomial logit considered in section 7.2 and  is often not appropriate.  Among the limitations of the multinomial logit forms for analysing individual choice data are inflexibility in the face of correlated choices (and substitutability between choices) and heterogeneity in predictor effects. The multinomial probit (MNP) model seeks especially to reflect interdependent choices, but may be extended to reflect heterogeneity in intercepts and predictor effects (Glasgow, 2001; Nobile et al, 1997), or to allow varying scale effects (Chen & Kuo, 2002). It starts with a random utility model, with systematic and stochastic components as in (7.4), namely 

             Uij=(ij + εij 





          

with a  systematic component such as 

             (ij = (j+ Xi(j + Aij( + Sj(
where dij=1 if Uij = max(Ui1,Ui2,..UiJ). Since the density y|X,W,S is unchanged by adding a scalar random variable to Uij, identifiability in terms of location requires differencing against the utility of a reference category, such as the Jth (McCulloch and Rossi, 2000, p 160; Geweke et al, 1994). So the latent utilities which are modelled are differences

                 Wij=Uij-UiJ,            j=1,..J-1 

giving J-1 unknown latent variables, with WiJ=0 by definition. So if category J is the reference, and dij=1 with j ( {1,…,J-1}, then both Wij = max(Wi1,Wi2,..Wi,J-1) and Wij > 0. If the observed choice is J (diJ=1) then all the Wij (j=1,..,J-1) are negative since WiJ=0 is the maximum. If category 1 is the reference, then dij=1 (j ( 2,…,J) if both Wij= max(Wi2,..,WiJ) and Wij > 0. 

The augmented data Wij enable Gibbs sampling of the MNP unknowns since conditional on Wij, the analysis reduces to a multivariate linear normal model; see Geweke et al (1994), McCulloch and Rossi (1994) and McCulloch and Rossi (2000) for discussion of MCMC sampling of the MNP model. The Wij are sampled in line with constraints imposed by the observations dij. For example, suppose J=4 and category 1 is the reference, then if di2=1, Wi2 must be the maximum, and {Wi3, Wi4} have Wi2 as a ceiling. Wi2 itself will have a minimum defined by the maximum of Wi3, Wi4 and Wi1 (which equals 0 when the reference category is 1). If di1=1 then Wi1=0 is the maximum Wij, and the maximum possible value for {Wi2,Wi3,Wi4} will be 0. The minimum for  {Wi2,Wi3,Wi4} in this case is -(, but in practice can be defined by an extreme ordinate of the normal density (e.g. –5 or –10). 

Under the multinomial probit, a multivariate normal prior is adopted for Wi=(Wi1,…,Wi,J-1) when J is the reference; other links are achievable by scale mixing. For example, a regression with both chooser characteristics Xi and subject specific choice attributes has the form

            Wij =(j+ Xi(j + Aij( + (ij                                           (7.5.1)

where 

             (i ~ NJ-1(0,()


                 
                (7.5.2). 

and (i=((i1,(i2,..(i,J-1). The correlation among the choices induced by this error structure means that the restrictive independence of irrelevant alternatives no longer holds. Scale mixing is achieved by options such as  

            (i ~ NJ-1(0,(/(i). 

where (i ~ Ga((/2,(/2) and ( is a degrees of freedom parameter (Linardakis and Dellaportas, 2003). These models may suffer weak identiability as both the Wij and (i are latent quantities.

There is still an issue of identifying the scale, since multiplying a model such as (7.5) through by a constant c leaves the likelihood unchanged. Unique identification usually involves fixing at least one element of (, leaving [J(J-1)/2]-1 free parameters at most (Glasgow, 2001; Albert and Chib, 1993). Setting the first diagonal term in ( to 1 is a common strategy.  Let this first variance term be denoted (11, the variance for (i1, with (1=(110.5. 

McCulloch and Rossi (1994) propose a Gibbs sampling scheme that involves an unrestricted ( but monitors the identified parameters, such as the regression parameters,  eq \o((,~)j=(j/(1 and  eq \o((,~) =(/(1, the scaled covariances

             eq \o((,~)jk =(jk /(1 

and hence the correlations between the errors. Specifying a prior on (j, ( and the unrestricted error covariance matrix means that the prior on the identified parameters is induced rather than explicit. Nobile (1998) proposes an extra Metropolis step for the c parameter that improves convergence under the unrestricted ( approach. Problems may occur with informative priors on the unidentified parameters, so McCulloch and Rossi (2000, p 164) suggest proper but fairly diffuse priors on the unidentified parameters. They mention that the likelihood depends only on identified parameters and so there is a choice between (a) marginalizing the prior and analyzing an identified parameter model and (b) marginalizing on the posterior of an unidentified parameter model.  

Schemes with a fully identified covariance prior may involve the partitioned matrix 

           ( =
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where the J-2 dimensional parameter ( defines the covariance between (i1 and the remaining errors (i=((i2,(i3,..(i,J-1). Then for sampled (i1, the (i are NJ-2 with covariance ( and means ((/(11)(i1. Taking (11=1 leaves J-2 unknowns in ( and (J-2)(J-1)/2 in (.  

Another method proposed by Chib et al (1998) also sets (11=1, but uses a Choleski decomposition to represent free elements in (. Thus let 

              ( = HH’

where H is a (J-1)((J-1) lower triangular matrix with h11=1. For example, with J=3, H would be a 2x2 matrix with 1st row [1 0], and with second row [h21,h22], so that (11=1, (12=(21=h21, and (22=h221+h222. Letting ( =(h21,logh22,h31,h32,logh33,….,hJ-1,1,….loghJ-1,J-1) priors may be in the form of unrestricted normal densities on (jk. Another approach to modelling the covariance matrix applicable to multinomial probit models is suggested by Barnard et al (2000).

Example 7.2 MNP Model for Car Ownership

The data of Example 7.1 are now analyzed using the MNP model and the Chib et al (1998) method for constrained (, with predictors again standardised. N(0,1) priors are assumed on the five unknowns (jk involving parameters (h21,logh22,h31,h32,logh33), and also on regression parameters apart from the intercept, where a N(0,100) prior is used. Predictions of overall concordance and the cross-classification matrix are based on sampling new Wij values (and assigning the resulting yi,new according to the maximum) but without the constraints imposed by the observed dij. 

Estimated regression effects show a similar pattern (Table 7.3) to those from the MNL model, though the income effect is now highest for new cars. Overall concordance is also similar at around 39% as is the cross-classification of actual by predicted category (Table 7.4). The correlations rjk=(jk/sqrt((jj(kk), j(k show that owners of used cars have errors that are negatively correlated with those of new car owners. This reflects inter alia the contrasting effects of the two predictors for these two groups: income outweighs household size for new car owners, but the reverse is true for used car owners.  

As for binary models introducing an augmented response means that residual analysis in multinomial models is facilitated (Albert and Chib, 1995). This involves standardising by the terms (jj. Poorly fitting cases are again 259 and 122 with high positive residuals (propensity lower than expected for 2 car owners) while case 224 has a high negative residual on the 4th category (this household owns no car despite having high income and household size).

Table 7.3 Car Ownership MNP Model (n=282) Parameter Summary



Mean
St devn
2.5%
97.5%


Predictive Match Rate
0.39
0.03
0.34
0.45

1 Used Car
Intercept
-0.28
0.09
-0.46
-0.10


Log Income
0.19
0.10
0.00
0.39


Log Hhld Size
0.40
0.09
0.21
0.58

1 New Car
Intercept
-1.53
0.29
-2.15
-1.02


Log Income
1.16
0.23
0.75
1.67


Log Hhld Size
0.67
0.20
0.28
1.07

2 or More Cars
Intercept
-2.70
0.31
-3.37
-2.18


Log Income
1.00
0.21
0.59
1.41


Log Hhld Size
1.67
0.24
1.23
2.17

Correlations
r12
-0.35
0.13
-0.60
-0.09


r13
-0.05
0.22
-0.45
0.34


r23
-0.02
0.19
-0.41
0.37

Table 7.4 Classification Matrix, Subject Totals by Actual & Predicted Category


Predicted




Actual
1
2
3
4
Total

1
57.4
33.4
20.1
3.2
114

2
33.6
33.1
20.9
4.5
92

3
19.7
21.1
17.9
3.3
62

4
2.1
5.3
4.2
2.4
14

Total
112.7
92.9
63.0
13.4
282

7.4 Mixed Multinomial Logit Models

As mentioned above, in observed choice behaviour there may be both (a) heterogeneity in intercepts or predictor effects and (b) interdependence between choices. Discrete or continuous mixture models may be applied to model such effects. The mixed multinomial logit model is an extension of the MNL model that includes heterogeneity between subjects, which is interpretable substantively as variations in tastes or choice behaviour, after accounting for known attributes of choosers or choices (Train, 2003; Glasgow, 2001). Mixed MNL models are arguably more general model than the MNP since fewer restrictions on the unobserved portions of utility are made (the MNP is limited to ( being multivariate normal). 

Heterogeneity may be defined in terms of random regression coefficients and intercepts. One may also group the options into subsets (e.g. a more expensive subset of goods vs. other brands) and assume a common random effect for  subjects in that subset (McCulloch & Rossi, 2000, p 167). Assuming several sources of random variation between is likely to strain identifiability, and usually heterogeneity is confined to a small subset of predictors that may include the intercept. 

Consider the multinomial logit, with  

              (di1,di2,..diJ) ~ Mult(1,[(i1,(i2,..(iJ])                                                        

              (ij=exp((j+Xi(j+Aij()/{1+ eq \O((,k=1,J-1)exp((k+Xi(k +Aij()}   j =1, ..J-1     

              (iJ= 1 / {1+ eq \O((,k=1,J-1) exp((k+Xi(k+Aij()}           

Suppose now that random variability is introduced in one or more coefficients. For example, this might be in the coefficient ( for a predictor Aij, such that for subjects i

             Zij= (j + Xij(j + Aij(i 
                 

where the heterogeneity model itself may includes regression on known subject attributes Hi, for example.

             (i=  (+(Hi+ui .                                                                                  
While normal priors for varying regression effects (i are possible, other options include triangular densities that are zero beyond end points [(-a,(+a] and descend linearly to a peak at ( (Glasgow, 2001). If additionally there is heterogeneity in the intercepts this implies (with j=J as reference) that

             Wij = (ij + Xi(j+Aij( = ( + Xi(j + Aij(i+eij              j=1,..J-1

where (ei2,ei2,..ei,J-1) might be taken as multivariate normal with mean zero and covariance matrix (, similar to the MNP. Other options are more general densities for eij (e.g. allowing for skewed errors) or common factor models

            Zij = (j+ Xi(j + Wij(i + (jei                  j=1,..J-1

where ei has a set scale (e.g. ui ~ N(0,1) and (j, j=1,..,J-1 are unknown loadings.

Example 7.3 Commuting Route Choice

A route choice survey of 151 Pennsylvania commuters illustrates mixed MNL estimation. Commuters started from a residential complex in State College, Pennsylvania, and commute to downtown State College. The J=3 possible routes are a four-lane arterial (with 60 km/h speed limit), a two-lane highway (speed limit = 60 km/h, 1 lane each direction) and a limited access four-lane freeway (speed limit = 90 km/h, 2 lanes each direction). Predictors used in the analysis are either commuter specific (age of vehicle in years, and income group with four categories), or specific to both commuter & route (number of stop signals and distance). Both increased number of signals and distance might be expected to reduce choice of a route. Of the 151 commuters only 15 chose the freeway; see Table 7.5 including income group details. Of interest in the data are features such as lower average vehicle age among higher income groups (Table 7.6). In fact freeway commuters have the highest average vehicle age, namely 5.9 years, with the three low income commuters choosing the freeway having an average 9.3 vehicle age. Arterial route commuters have the lowest vehicle age. 

Table 7.5 Mode Choice Totals


                    Commuter income band


1
2
3
4
All

Arterial
9
12
7
5
33

Two Lane     
43
32
19
9
103

Freeway
3
8
2
2
15

Table 7.6 Average vehicle age (yrs) by mode and income band

                         Commuter income band

Mode 
    1
  2
 3
4
 All

Arterial
   2.4
 4.0
3.0
1.8
3.0

Two Lane       5.3
 2.8
3.9
4.3
4.2

Freeway
   9.3
 5.8
4.0
3.0
5.9

All
             5.0
 3.6
3.7
3.4
4.1

A fixed effects MLN model (model 1) is here contrasted with a model with random intercepts. The third category (freeway) is the reference, though the regression includes effects for signals, Sigij, and distance, Disij, for this category, since these predictors have constant coefficients over the categories, as in (7.3). Effects of income Hi and vehicle age VAi are mode specific; additionally since income is categorical, sets of parameters (jk by response j=1,..J-1 and income band k=1,4 are needed with corner constraint  (j1=0. So the MLN model is

                (ij=exp((ij)/ eq \O((,k=1,J)exp((ik) 

where

                (ij = (j - (Disij + (Sigij + (jVAi+(j,Hi            j=1,..,J-1

                (iJ =      -(Disij + (Sigij 

The distance effect ( is constrained to be positive (so that -( is negative) with 

                 ( ~ N(0,1) I(0,)

so that longer commuting distances under a particular route deter choice of that route. 

The second half of a two chain run of 10000 iterations gives a deviance on model 1 of 244.1. There is a significantly negative signals effect, namely ( = -0.30 and 95% interval (-0.49,-0.13), with the distance parameter ( estimated as 0.09 (0.005, 0.23). In line with the data in Table 7.6, increased vehicle age lowers the chance of choosing arterial or two lane, with posterior means on (1 and (2 of –0.21 and –0.11.

The random effects model is bivariate normal in the intercepts so that

         (ij=exp((ij+eij)/ eq \O((,k=1,J)exp((ik+eik) 

where (ei1,ei2) ~ N2(0,(-1), ei3=0, and ( ~ Wish(I,2) where I is the identity matrix. Greene (2000, p 874) interprets the eij as representing coefficient heterogeneity (intercept heterogeneity) whereas the ( in (7.4.1) represent stochastic error. The second half of a two chain run of 10000 iterations gives a DIC of 228.3 with de=66. The negative signals effect is enhanced namely ( = -0.46 (-0.77,-0.22), with the distance parameter ( now estimated as 0.15 (0.01, 0.38). The mean correlation (and 95% credible interval) between ei1 and ei2 is –0.62 (-0.91,-0.31), so utilities for arterial and two lane are negatively correlated.

7.5 Individual Level Ordinal Regression

Many of the above considered questions transfer over to ordinal responses, though the nature of the response means that latent variables are no longer category specific. Let yi be an ordinal response variable for individuals i=1,…n and with levels 1,2,..J (though the same scheme applies for I(J contingency tables with ordered columns). Thus 

                   yi  ~ Categorical((i) 

where (i=((i1,(i2,..(iJ) is the vector of model probabilities that subject i will choose option j or be otherwise located at level j. As discussed above, a cumulative odds model usually refers to an underlying metric response Wi with unknown cutpoints (1,…(J-1 ((0=-(, (J=() and 

                (ij =Pr((j-1 (  W i < (j) 

(Best et al, 1996; Anderson & Phillips, 1981; McCullagh, 1980). This model specifies cumulative probabilities 

ij = Prob(Wi ( (j) = Prob(yi ( j)

                (i1=(i1
                (ij=ij-i,j-1
                (iJ=1-(i,J-1.

Given predictors Xi (which exclude a constant term) the cumulative probability is specified in terms of the cumulative distribution function F of the latent residual (i=Wi-Xi( namely

            Pr(yi ( j|Xi) = Pr(Wi ( (j|Xi)=Pr(Wi-Xi( < (j - Xi() =F((j - Xi()

(McCullagh and Nelder, 1989, p 154). Note that if a constant term is included in Xi and ( includes an intercept, then there are only J-2 unknown cutpoints, with (1=0 (e.g. see the example in Johnson & Albert, 1999, pp 139-143); this option is often less complex for numeric stability in sampling.

Typical forms of F include the cumulative standard normal F=(, or the logistic cdf

             F(u)=exp(()/(1+exp(()

whereby a cumulative odds logit model specifies 

             logit(Pr(yi ( j|Xi) = logit((ij)= (j - Xi(j 

Another option is the complementary log-log, with

             log[ - log(1-(ij)] = (j - Xi(j.

This link for (ij is in fact equivalent to assuming the alternative continuation ratio model (Armstrong & Sloan, 1989), framed in terms of the probability of being in category j conditional on being in category j or above

(ij=(ij /(1-(i,j-1)

              logit((ij)=(j - Xi(j.

A complementary log-log link corresponds to a left or right skew distribution for the latent variable; the Wi then follow a standard extreme value density with variance (2/6. Lang (1999) suggests a procedure for averaging over link functions in ordinal regression, specifically mixing over the left skewed extreme value (LSEV), the logistic and the right skewed extreme value (RSEV). 

A simplifying assumption (the proportional odds assumption) is that the effect of predictors is constant across ordered categories, (j =(. If F is logistic and the predictors are respondent characteristics only, then under this assumption, the difference in cumulative logits between subjects i and k with responses both in the jth category is Cij-Ckj where                 Cij=logit(ij). Then Cij-CkjXi Xk)( is independent of j. Liu and Agresti (2005) mention that predictor effects under the proportional odds model are invariant to the scale assumed for the cutpoints (including setting them to known values). If it is not assumed that all the (j are equal (e.g. only some covariates have differing regression coefficients according to j) then a partial proportional odds model is obtained (e.g. Peterson and Harrell, 1990). 

An extension of the cumulative odds model introduces a dispersion parameter for the subject i, or contingency table row i as in McCullagh (1980, section 6.1). This  has the form (Cox, 1995)

                 F-1((ij) = ((j-Xi()/(i
where (1=1 for identification. In terms of a regression (Agresti, 2002, p 285)

                 F-1((ij) = ((j-Xi()/exp(Xi()

e.g. 

                 logit((ij) = ((j-Xi()/exp(Xi()

where Xi excludes a constant term. This model may be used to assess the proportional odds model against alternatives where the odds ratio increases with j. Thus when X is a categorical treatment indicator then 
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This odds ratio is increasing in j if exp((k-1) is less than exp((k). 

Following Albert and Chib (1993), Koop (2003, p 218) and Johnson and Albert (1999), one may estimate the cumulative odds logit or probit model by constrained sampling of Wi according to each individual’s observed category, with scale mixing for greater robustness. Thus if F=(,

              Weq \O(i,(t)) |yi,(,(,( ~ N(Xi(,1/(i) I((yi-1,(yi)

where (i ~ Ga(0.5(,0.5(), and ( may be unknown - allowing an implicit mixing over links. This includes an approximation to the logistic for (=8 (Albert and Chib, 1993). For F logistic, direct sampling is also possible since Wi follow a standard logistic density. 

The cut points are sampled in a way that takes account of the sampled W as well as the other cut points. Thus, assuming a normal fixed effects prior 

                   (j ~ N(0,V() I(aj,bj)        j=1,…J-1

where V( is preset large (e.g. V( =10 or =100), aj=max((j-1,Lj), bj=min((j+1,Uj), and Lj= eq \O(max,i)(Weq \O(i,(t))|yi=j), Uj= eq \O(min,i)(Weq \O(i,(t)),yi=j+1). 

Augmented data sampling may be extended to multivariate ordinal data. Thus for K=2 variables with J1 and J2 response levels respectively 

           Wi1=Xi1(1+(i1
           Wi2=Xi2(2+(i2
where ((i1, (i2) ~ N(0,() under a bivariate ordinal probit model, and ( is unrestricted. However only the ratio (eq \O(2,2)/(eq \O(2,1) is identified. Full Gibbs sampling conditionals for this model are given by Biswas and Das (2002).

Example 7.4 Mental Health Status

This example considers the Lang (1999) model for mixing over links using data on mental health status from Agresti (2002). Health status y has levels 1=well, 2=mild impairment, 3= moderate impairment and 4=impaired. It is related to a x1=SES (a binary measure of low socio-economic status) and x2=LIFE (an adverse life events total including factors such as divorce, bereavement, etc). The overall link is averaged over three options for the cumulative density, Fk, k=1,2,3. F1 is for the LSEV distribution, namely

                  F1(t) = 1 - exp(-exp(()) 

while F3 for the RSEV (or Gumbel) distribution is

                  F3(t)=  exp(-exp(-())                                  

with F2 being the logistic

                  F2(t)=exp(t)/(1+exp(()).                                 

The link mixture is

                   F((t) = (1(()F1(t) + (2(()F2(t) + (3(()F3(t)        

where probabilities on F1 and F3 depend on a parameter ( ~ N(0,Vsuch that

                  (1(() = exp[-exp(   3.5 + 2)]                     (7.6)

                  (3(() = exp[-exp( - 3.5 + 2)]

                  (2(()=1-(1(()-(3(().

A negative  means the LSEV link form is preferred, and positive ( mean RSEV is preferred, while (0 means w1(() and w3(() are both near zero and leads to selection of the logit link. A Dirichlet prior is another possibility for ((1,(2,(3). Then the model averaged predictions  are     

           (ij(xi)=  eq \O((,k) (k(() ( eq \O((k),ij)(xi).

where the cumulative probabilities ( eq \O((k),ij) in

                   F eq \O(k,-1)[( eq \O((k),ij)] = (j + Xi(
are obtained according to link k=1,..3 and response category j=1,..,J-1. 

An extension of the Lang model is to make the cutpoints and/or regression effects specific to the link (though still proportional within each link), so that

          F eq \O(k,-1)[( eq \O((k),ij)]= (ijk = (jk + (kxi.

or take the parameter (=3.5( to differ between link probabilities so that

         (1((1) = exp(-exp( (+ 2))

         (3((2) = exp(-exp(-(2+ 2))

A further alternative model considered here averages over four possible links, namely the three considered by Lang plus the probit. A Dirichlet mixture is used

         ((1,(2,(3,(4) ~ Dirch((1,(2,(3,(4)

where (=(1,1,1,1). Hence the averaged link is

          F(t) = (1F1(t) + (2F2(t) + (3F3(t) + (4F4(t)        

with

          F1(t) = 1 - exp(-exp(()) 

          F2(t)=  exp(t)/(1+exp(())                                 

          F3(t)=  ((t)

          F4(t)=  exp(-exp(-())                                  

In model A, the mixture probabilities are as in (7.6), with a prior ( ~ N(0,5), and, as in Lang (1999), common cutpoints and regression effects for the links are assumed. Initial runs suggested that the interaction in LIFE and SES was not an important predictor. Results from the 2nd half of a two chain run of 20000 iterations show a credible interval for ( straddling zero, namely (-3.7,4.6). The posterior mean on (2(() of 0.49, compared to 0.30 for (1(() and 0.21 for (3((), confirms that the simple logit link is preferred, though there is clearly averaging over the three links. Both life events and low status are associated negatively with the lowest response category (being well), and so positively with impairment. The effect of life events is better defined (with 95% interval entirely negative, namely –0.48 to –0.07), while the effect of SES straddles zero. The DIC is 115.1 and predictive concordance (the proportion of subjects correctly classified into one of the four grades when new data is sampled from the model) averages 0.315.

In a second model (model B), the cutpoints are allowed to differ between links, though the regression effects remain common, with

             F eq \O(k,-1)[( eq \O((k),ij)]= (ijk = (jk + Xi(.

Priors for the cutpoints (jk are based on the posterior means and standard deviations of (j from model A, with a 10-fold downweighting of precision. Results from a 20,000 iteration run suggest the logit cut-points to differ from those of the skewed links, namely (2=(0.5,2.2,3.6) compared to (1=(-0.1,1.9,3.9) and (3=(-0.2,2,4). One feature of model B is a more precise effect for SES, with posterior mean –1.1 and a 95% interval (-2.3,-0.1) confined to negative values. The DIC deteriorates under this model (to 118), but the concordancy index is 0.317.

In model C, the Dirichlet mixture on four links is considered (with common link cutpoints as in model A). This shows the preference for the logit with (2=0.32 but shows the probit has a weight comparable to the asymmetric options ((3=0.21 as against (1=0.26 and (4=0.21).  The DIC and concordancy index are similar to model A, namely 114.9 and 0.316.

Example 7.5 Augmented Data Model for Attitudes to Working Mothers

Long (1997) presents maximum likelihood ordinal probit and ordinal logit analysis of data from two US General Social Surveys (1977 and 1989). The response relates to the question “A working mother can establish just as warm and secure a relationship with her children as a mother who does not work”, with responses yi ( (1,..4), namely, 1=strongly disagree, 2=disagree, 3=agree, and 4=strongly agree. Predictors are yr89 (=1 for later survey), gender (1=male), ethnicity (1=white, 0 =other), age, years of education and occupational prestige. 

Here an ordinal probit model using data augmentation is applied with a constant included in the regression and so only two free cutpoints. Priors on the latter are appropriately constrained to reflect sampled Wi values. The input data are ordered by values of y so that the constraints can be easily expressed. N(0,10) priors are assumed on the intercept and binary predictor coefficients, but N(0,1) priors taken on the coefficients of the continuous predictors (which are centred) to avoid numerical problems. 

The 2nd half of a two chain 5000 iteration run produces similar estimates to those reported by Long (1997, p 127), except that there seems to be a only a small gap between the first two cutpoints.  The negative intercept is equivalent to (1 and has posterior mean –0.66 (-0.86,-0.46), while (2 has mean –0.64 (-0.83, -0.45), and (3 has mean 2 (0.1,4.0). Less favourable attitudes to mothers working occur among men and older people, while favourable attitudes increase with education and prestige. A significant effect for prestige of 0.0057 (0.0015, 0.01) contrasts with the marginally significant effect reported by Long (1997), while the effect of white ethnicity is not quite significant whereas Long (1997) finds it to be a significantly negative predictor of favourable attitude.

7.6 Scores for Ordered Factors in Contingency Tables

For aggregate data in contingency tables involving one or more ordinal factors, a generalisation of the log-linear models of Chapter 4 involves replacing the usual interaction term in the log-linear model with a particular multiplicative structure. Scores are attached to rows, columns or both, leading to ‘row effect’ models, ‘column effect’ models, and ‘row and column effect’ models respectively (Agresti et al, 1987; Chuang and Agresti, 1986; Goodman, 1979; Evans et al, 1993; Liu & Agresti, 2005). Suppose yij denote contingency table totals where the index i is not necessarily ordinal but the column index j is ordinal. Let (ij denote the multinomial probabilities of a response j=1,..J in each of the I subpopulations (row categories), with

                   eq \O(,j=1,J)(ij =1 

for all i, though many analyses condition on the total sample size so that  eq \O(,i=1,I)

eq \O(,j=1,J)(ij =1. For example, the response might be socio-economic status and the row variable might be ethnic-gender combinations. The usual saturated log-linear model specifies

                  log((ij) =  + i + j + ij
with the identifiability constraints on the parameters specified in Chapter 4. If rows are not ordered but columns are, one might reparameterise the interactions (more economically) as

ij=  ji







with (i being unknown parameters which are subject to an identifying constraint i=0. This is a row effects model, treating the column (ordinal response) as an equally spaced numerical scale with fixed scores, namely 1,2..J. 

A generalisation of this model is to assign monotone and variable scores (j to category j, i.e.

                log((ij) =  + i + j +  i j 

                                               

The scaling of j is arbitrary as discussed above. For example, the scale might be implicitly specified by setting minimum and maximum scores 1 and J, or by normalising the scores by centering and ensuring standard deviation of 1 (Ritov and Gilula, 1993).  

If the column scores are constrained to increase with their ordering then there is a stochastic order in the column response. Thus for a pair of rows a and b, the log odds of adjacent column (response) categories j and j+1 is

                log(pajpb,j+1/ pa,j+1pbj) = (b -a)(j+1-j )

So if b > a, these log odds ratios are non-negative for j=1,2,..J-1 and hence (Chuang and Agresti, 1986)

eq \O(,j=1,h)(bj  ( eq \O(,j=1,h)(aj
for h=1,..,J-1. Furthermore, if b > a then the mean scores for row b are greater than those for row a, eq \O(,j=1,J)(j(bj  ( eq \O(,j=1,J)(j (aj. 

Hence if increases in the column variable represent better health or treatment outcome and rows represent different drugs or treatments one may compare the mean scores to assess differential effectiveness. Alternatively for population studies, the rows might be social groups and the columns be health status (Wagstaff & van Doorslaer, 1994). Nandram (1997, 1998) considers different ratings of meal entrees and assigns scores to the best product. Letting 

                       Si= eq \O(,j=1,J)(j(ij 

then Nandram (1997) considers scores Si for i=1,..,11 entrees (the row category) based on the case (j=j when the interactions are modelled asij=  ji.

In fact in the original RC model the scores j are variable but not necessarily monotone, while some studies have considered the case where both j and i are monotone (Agresti et al, 1987; Ritov and Gilula, 1991). One may introduce an overall association measure  

ij = j i
                    
                               
restricted to non-negative values. The row and column variables are independent if and only if =0. So if the 95% credible interval for  is entirely positive then there is strong support for dependence between row and column variables. 

Example 7.5 Disturbed Dreams

Agresti et al (1987) and Ritov and Gilula (1993) consider data on severity of disturbed dreams in boys by age (Table 7.7). Agresti et al (1987) assume known values for (i defined by mid age values (i.e. 6,8.5,10.5,12.5,14.5) and estimate monotonic (j parameters in terms of decreasing severity with category 1 (not severe) having the highest score so that (1 ( (2..( (4, and subject to a sum to zero constraint, giving (=(0.189, -0.034,-0.034, -0.120), with G2=14.6 in a maximum likelihood analysis.  They report work by Anderson (1984) with (j scores not constrained to be ordered that found a reversal in the mid ranks with (2<(3; Anderson reports estimates (0.189, -0.061,  -0.008, -0.120). 

Here we take (j to be ordered in terms of increasing severity with (4 ( (3..( (1. Also the (i scores are taken to be unknown, and subject to a sum to zero constraint. The (j are monotonic and subject to a normalization constraint. From the 2nd half of a two chain run of 10000 iterations, the average value of G2 under this model is 12.6 with minimum 4.4, this being approximately equivalent to the maximum likelihood G2 (Best et al, 1996). Ritov and Gilula (1993, p 1384) report G2=4.67 under a monotonic constraint for (j. 

The fitted values obtained here are shown in Table 7.7. The estimated ( scores are -1.36 (-1.5,-1.0), 0.05 (-0.44,0.42), 0.38 (-0.02, 0.70) and 0.93 (0.58, 1.32). The estimated (i scores suggest the age group 8-9 has the most dream disturbance. The posterior probabilities Pr(Si=Smax|y) confirm a 0.75 probability of highest disturbance score is for this group, compared to 0.25 for 5-7 year olds and virtually zero for the other age bands.    

Table 7.7 Disturbed Dreams by Age Band (Observed and Estimated)


Not Severe


Very Severe

Age
1
2
3
4

5-7
7
4
3
7


6.5
4.4
4.7
5.3

8-9
10
15
11
13


11.8
10.7
12.1
14.4

10-11
23
9
11
7


23.2
9.6
9.1
8.1

12-13
28
9
12
10


27.5
11.3
10.8
9.5

14-15
32
5
4
3


31
5.7
4.4
2.9

7.7 Exercises

7.1 In Example 7.3 (commuter routes) try a random intercepts model combined with scale mixing using a Ga(2,2) density; this is equivalent to multivariate Student t with 4 d.f. Identify commuters with low weights and assess the impact of this model on the correlation between the first two modes.

7.2 Fit the data in Example 7.3 using a multinomial probit and compare  the correlations obtained with those resulting from a mixed MLN model.

7.3 In Example 7.5 (attitudes to working mothers) compare inferences from the residuals Wi-Xi( with those based on Monte Carlo estimates of the conditional predictive ordinates (harmonic means of the sampled normal likelihoods for each subject). 

7.4 In Example 7.5 apply an ordered logistic model by data augmentation by direct sampling from a logistic and by sampling from a normal using scale mixing with an appropriate degrees of freedom.

7.5 In Example 7.6 apply the known age scores model (using a centred version of the values 6,8.5,..14.5) and compare the fitted values and mean G2 with that of the full row-column effects model as estimated in the text. Sample new data from each model and apply a posterior predictive check (Gelman et al, 1986) using a chi square or G2 criterion to assess whether  the models are consistent with the data. Next use the Chuang and Agresti (1986) parameterisation of the row and column effects model with (1 and (4 preset and with (3 ( (2; there is no need to apply any normalisation to the column scores in this case though the sum to zero constraint on the age scores still applies. Does this reduced parameterisation improve the fit. Finally re-estimate the row and column effects model with all (j unknown (so a normalisation constraint is needed again) but without a monotonicity constraint, and assess whether there is a reversal in the rankings.
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