Chapter 10 Nonlinear and Nonparametric Regression

10.1 Approaches to Modelling Non-Linearity

The normal linear model 

          yi = (0+(1xi1+(2xi2…+(pxip  + (i                   (10.1)            

assumes additive and linear predictor effects. If one or more of the predictors, say xij, has a non-linear impact on y of known form (e.g. involving exponential transformations of x) then identifiability and MCMC sampling typically become more  complex. Suitable non-linear functions with a known form (‘parametric models’) may sometimes be based on subject matter knowledge; see Wakefield (2004) for examples in pharmacokinetics and Rogers (1986) for examples in demography. 

However, there is often little knowledge concerning an appropriate non-linear function. One may instead simply assume the regression surface for xij is smooth but try to estimate a function that adapts to the underlying true form. This is known as nonparametric regression in the sense that the functional form is unknown. In Bayesian applications, there are many commonalities with normal linear regression in the basic set up (e.g. see Denison et al, 2002, p 15), and in model selection techniques, such as choosing knots (Smith & Kohn, 1996), which are similar to those for predictor selection in linear regression. Hierarchical random effect models (e.g. chapters 5 and 8) are also relevant.

Methods for modelling yi nonparametrically as a non-linear function of one or more predictors typically assume linear combinations of basis functions B(xj) of predictors (section 10.5) or adopt a general additive model approach (section 10.6). Examples of basis functions are truncated polynomial or spline functions (Friedman and Silverman, 1989) or more recent types of model discussed by Dennison et al (2002), such as multivariate linear splines, wavelets, and multivariate adaptive regression splines. If such functions are used for all predictors one obtains

                     yi= (0 + eq \O((,j=1,p) B(xij) + (i

(10.2)

where ( is typically parametric, though a fully robust model might consider discrete mixing on ( to complement nonlinear regression via basis function. The plot of B(xj) against x becomes the nonparametric analogue of the usual linear regression plot. Another option is varying coefficient models (Biller and Fahrmeier, 2001) whereby the impacts of predictors x are estimated nonparametrically using effect modifiers r. Thus 

                 yi= (0 + eq \O((,j=1,p) xij B(rij) + (i.

Conventional polynomial terms may be included, as in spline models. These are either of the same degree as in the spline function (Ruppert et al, 2003), or reduce to a linear term in x when B(xi) = eq \O((,j=1,p) B(xij) is appropriately specified (Shively et al, 1999). 

Generalized additive models approximate the underlying nonlinear effect by using dynamic random effects in the predictor space. For a metric outcome y1,..yn assume corresponding values of a single predictor x1,... xn ordered such that

              x1 < x2  < ....< xn
and let st=s(xt) be a smooth function representing the locally changing impact of x on y as it varies over its range. A convenient prior to model st might then be provided by Normal or Student random walks in the first, second or higher differences of st (Fahrmeir and Lang, 2001). Variances have to be adjusted for unequal spacing between successive predictor values. 

Nonparametric regression models for metric outcomes may be extended to basis function or GAM models for discrete outcomes, such as binary or count dependent variables. Suppose yi is a discrete response and (i=E(yi|xi); then

                       g((i) = (0 + eq \O((,j=1,p) B(xij) + ui.

where g is the chosen link function, and ui (if present) may model particular features such as excess dispersion. For binary or ordinal data, nonparametric regression may be supplemented by data augmentation (e.g. Wood & Kohn, 1998). This leads to a form analogous to metric response nonparametric regression as in (10.2), for example

                     yeq \O(*,i)= (0 + eq \O((,j=1,p) B(xij) + (i

where yeq \O(*,i) is the latent response underlying an observed binary or ordinal outcome and the scale of ( is set for identifiability (for binary y). 

One may allow for adaptive smooth functions (allowing smoothness to vary across the predictor space) by discrete mixture approaches (Wood et al, 2002a). Alternatively under a spline basis approach adaptivity is gained by introducing an extra level of spline function (Ruppert and Carroll, 2000). In this way heteroscedasticity may be modelled (Ruppert et al, 2003; Yau & Kohn, 2003) as well as autocorrelation in the regression errors (Smith et al, 1998).

10.2 Non-Linear Metric Data Models with known functional form

The linearity or non-linearity of a model is determined by the way a change in the value of a predictor operates via the regression parameter to alter the value of the response. In a normal linear model, with mean such as (i=(0+(1xi, a unit change in the coefficient (1 leads to the same change in ( whatever the original value of the parameters (0 and (1. Thus if ((=(0+((1+1)x, then ((-( = x regardless of the original value of the parameters. However, consider the model for the mean response defined by

             (=(+(e-(x      


(10.3)

Suppose ( in (10.3) increases by one unit to give 

              ((=(+((+1)e-(x. 

Then ((-(=e-(x which depends on the value of (. The change in mean response is not then independent of the original values of the parameters.

Such features of nonlinear models tend to reduce precision of parameter estimation or lead to delayed convergence in MCMC applications.  Certain non-linear models may be linearized by transforming: an example the Cobb-Douglas production function y = (x1β1…xkβkexp(() where ( are normal. The same is not possible if the original model has additive errors, or for an intrinsically nonlinear model such as a constant elasticity of substitution (CES) production function
, namely

        logy = log(+[(1z1(+…+(kzk(]1/(+(.

where zi=log(xi), which reduces to the Cobb-Douglas function when (=1. As noted by McCullagh and Nelder (1989), estimates of non-linear parameters may be highly correlated with each other and with linear parameters., especially when the covariates themselves are correlated. An example is when the regression term includes sums of exponentials. For example, if  yi ~ N((i,(2) with

                          (i= (0+(1e(1x1i + (2e(2x2i
then coefficients (1 and (1, and (2 and (2 may tend to be correlated. This ‘ill-conditioning’ is a common difficulty in estimating models in pharmacokinetics (chemical absorption and metabolism) where decay times are defined by mixtures of exponentials (Gelman et al, 1996). 

Ill-conditioning means the parameters are difficult to estimate simultaneously and stable identification may require (a) fixing some parameters at ‘indicative’ values obtained from subject matter knowledge, or (b) using informative priors, or (c) ensuring parameters have substantive meaning in relation to the process being modelled and can be assigned informative priors. or (d) some form of selection of the parameters in nonlinear models.

To illustrate the latter option, one may consider nonlinear models for age-specific migration schedules, as in Castro & Rogers (1981) and Rogers (1986) (see also Exercise 10.2). In their full form these models are the sum of a constant c, and of four exponential functions. These are (a) a negative exponential curve for pre-labor force migration, with descent parameter α1, (b) a left-skewed curve for labor force migration with mean µ2, ascent λ2 and descent α2, (c) a retirement migration curve with mean μ3, ascent λ3 and descent α3, and (d) a post-retirement exponential curve, with ascent (4. Thus with migrants yx by age x (x=0.5,1.5,…) and populations Nx and all parameters positive, an identity link may be used, so

    yx ~ Bin(Nx,px)
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Often either or both of the last two curves (retirement and post retirement) are not present in a particular migration flows (e.g. migration from less urban areas to cities is concentrated at younger ages and generally has no retirement peak). One form of regression selection in such circumstances involves not individual parameters but entire components, so one could include two binary indicators, Jk to model the necessity of the last two components in the above model. So 
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Various types of nonlinearity in time series models were considered in Chapter 8. A particular application of parametric nonlinear models is to growth curve analysis. For example, Migon et al (2005) consider the class of nonlinear growth models with means (t=[(+(exp((t)]1/( where (= -1 gives the logistic curve and ((0 gives the Gompertz. Guerrero &  Sinha (2004) provide a recent application to penetration in a mandatory privatized pension market (see Exercise 10.1).

Example 10.1 Onion Bulb Growth

This example considers nonlinear growth curve model comparison via cross validation and predictive criteria as well as joint space selection. Gelfand, Dey and Chang (1992) present data on the evolution through time of the dry weight of onion bulbs. For times xt=1,2,...15, the onion weights are y=(16.1,33.8,65.8,97.2,191.5,326.2,386.9,520.5,590,651.9,724.9,699.6,689.9,637.5,717.4). Alternative models considered for these data by Gelfand et al were a Gompertz (model J=1) and logistic (model J=2) with respective forms

       yt = 1 exp(-2[3xt]) + (1t
       yt = 1(1+23xt)-1 + (2t
with  (jt ~ N(0,1/j). 

Complete cross-validation is feasible for this small sample for models involving relatively few unknowns. It entails running n=15 submodels under a Gompertz assumption with the kth submodel excluding case k; 15 more submodels are run under a logistic assumption. A prediction ynew,k for the validation case yk is made by sampling from the kth submodel and is compared to the actual observation. The first validatory criterion is the absolute difference between yi and ynew,i, and the second is whether ynew,i overpredicts yi
            gi2=|yi-ynew,i|

            gi2=I(ynew,i-yi)

with the total discrepancies Dj (for j=1 Gompertz and j=2 logistic) being the average of gij. The third discrepancy is the CPO, the likelihood of yi for a model using y[i] only as the observation set. The total of log CPOs (D3) is one possible pseudo marginal likelihood. 

For the two possible regression assumptions, two chain runs of 10,000 iterations (running the 15 submodels) were made with early convergence obtained. The evidence supports the logistic model, with the Gompertz tending to overpredict. However, the pseudo Bayes factor in favour of the logistic is not decisive (Table 10.1). Individual CPO statistics show the largest discrepancies for cases 11 and 14 under the logistic.

Table 10.1 Onion Bulb Growth. Summary Fit Measures

                       Gompertz           Logistic

D1                     32.2                       24.3

D2                     0.645                     0.45

D3                    -82.85                  -81.95

Next consider the Chib and Carlin (1995) product search approach to selection between these two models. This entails initial separate model estimations to develop appropriate pseudo-priors. Following Gelfand, Dey and Chang, the parameter transforms 

                  A1=1,  A2 = log(2),    A3=logit(3)

                  B1=1,   B2 = log(2),    B3=logit(3)

are used. Then running the Gompertz model, with flat priors on the Aj provides posterior means (with standard deviations)

    A1=722(21.9), A2=2.57(0.29), A3=0.54(0.14), 1=0.00088 (0.00036)
with corresponding estimates for the logistic model parameters        

     B1=702(14.8),B2=4.5(0.37),B3=-0.008 (0.29), 2=0.0014 (0.00052).

Given the pilot estimates of the precisions 1  and 2, their pseudo-priors are set at Ga(6,6800) and Ga(7,5000). As to the regression coefficients, consider parameter A2. With the Gompertz as model 1 and the logistic as model 2, the pseudo prior of A2 under the logistic has mean 2.57 and precision 1/(0.292); the own model prior for A2 has mean 2.57 but downweighted precision G2/(0.292), with G << 1 (e.g. G=0.01). 

Taking (F,G)=(1,0.05), then (F,G)=(1,0.01) and finally (F,G)=(1,0.005) gives posterior probabilities Pr(J=2|y), over iterations 10001-20000 of two chain runs, favouring the logistic model, namely 0.958, 0.956, and 0.965. Trace plots on J show a regular movement between models for these G values, but lower values of G, such as in (F,G)=(1,0.001) show less mixing between chains. A final option is to set a prior on G; here a Ga(1,100) prior is adopted with a two chain run of 20000 iterations providing a posterior mean G=0.04. This is equivalent to a 600 fold downweighting (1/G2=625) of the estimates from the prior runs. Pr(J=2|y) in this case is 0.957.

10.3 Box-Cox Transformations and Fractional Polynomials

The Box-Cox and fractional polynomial (FP) transformations are common approaches to parametric non-linear models with non-linearity in responses, predictors, or both. The Box-Cox transformation is 

             zi= yi( = (yi-1)/((

zi= yi= logyi  ((=0). 

This is a general transformation scheme but most frequently adopted when the y are subject to skewness, when logarithmic or square root transforms are commonly made. Box-Cox transformations of skewed predictors may also be required in a regression to produce approximate normality in the error term; they may also be used in modelling volatility (e.g. Zhang & King, 2004). Bayesian regression selection to include predictor selection and choice among a discrete set of possible powers under the Box-Cox approach has been considered by Hoeting et al (2002). Priors for ( when it is continuous are discussed by Perrichi (1981), who also discusses procedures for assessing additivity, normality and linearity after the transformation is applied. Heavier tailed densities may be required for outlying data points which otherwise affect estimates of ( for the response or predictors (Aitkin et al, 2005, p 153; Cook & Wang, 1983).

The likelihood
 for the Box-Cox model with normal errors and only y subject to transformation can be written

            f(yi|,,) = ((()-0.5exp[-0.5(zi-xi)2/(] yi-1
where the last term comes from the Jacobian of the transformation, which has derivative y(-1 for all (. For (=0

            f(yi|,,) = ((()-0.5exp[-0.5(logyi-xi)2/(] yi-1.

Note that if an optimal transformation of y is required when there are no predictors the likelihood can be written

              f(yi|,) = (()0.5yi-1exp[-0.5(zi- eq \O(z,_))2].

As for any non-linear model precise estimation and identification is an issue, with correlation likely between the exponent  on the one hand, and the intercept and the other regression parameters on the other. 

Fractional polynomial models are used especially for modelling nonlinear impacts of (positive valued) predictors and have considerable flexibility - see Faes et al (2003) on use of such models in toxicity studies. Instead of a conventional polynomial in a predictor x,

       P(x)=(1x+(2x2+(3x3+..

a fractional polynomial in degree m has the form

       FP(x,m)= eq \O((,j=1,m)(j xpj
where (p1,…,pm) are taken from a set (-2,-1,-0.5,0,0.5,1,2,…,max(3,m)), with repetition allowed. For m=2, the possible powers would be subsets of two values from (-2,-1,-0.5,0,0.5,1,2,…,2) such as (-2,0), (0,0) or (0,0.5). For m=2, the repetition (pj,pj) of a power generates xpjlogx; so the pair (2,2) generates x2log(x), the pair (1,1) generates xlog(x), etc. Regression selection might be applied to the different possible power pairings under a fractional polynomial approach, with 
[image: image3.wmf]ú

û

ù

ê

ë

é

2

8

+8 possible models when m=2.

Non-linear regression methods for discrete data that use power transform families have also been suggested. For binomial outcomes, Prentice (1976) suggested a generalised logit model with an extra power parameter. Thus with yi ~ Bin(ni,(i) and (i=Xi(,

              log((i) =m[(i -log(1+e(i)]

or equivalently,

              (i = [e(i /(1+e(i)]m


       
where m=1 gives the logit link. Breslow and Storer (1985) propose a general relative risk function in the logistic regression model

            logit((i)  = (i
where R(X)=exp((i) expresses the total relative risk associated with exposure variables x. A general relative risk function is obtained as

       logR(X) = [(1+ (i)(-1]/(                           for ((0


       logR(X) =log(1+(i)  

                    for (=0
where ( describes the shape of the relative risk function; (=1 corresponds to the usual multiplicative model, while (=0 gives an additive model with R(X)=1+(i. For identifiability, the term Xi( should exceed –1 for all values of (. Therefore the exposure factor level with the lowest risk should be selected as the baseline (i.e. with relative risk, R(X), equal to 1). A Bayesian approach allows substantively based priors constrained to ensure increased occurrence rates of the outcome as exposure to risk increases. 

Czado (1997) and Czado & Raftery (2005) discuss also generalized  link families for normal and discrete data, involving a shape parameter ( in addition to the linear predictor (=X(. Possible families of densities include

              h((,()= (1 + (()1/(                                               

              h((,()= log(1 + (() /(                                          

              h((,()= [exp((()-1]/ (                                          

              h((,()= [(1+()( -1]/ (.                                           

Czado (1994) uses the last of these in single parameter link functions which are appropriate to left and right tails of the link F.  For instance, taking F[h((,()]=([h((,()] where ( is the standard normal cdf, the option

             h((,() = 
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is used the modify the left tail and 

             h((,() = 
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allows for modification of the right tail, with (=1 corresponding to the usual probit link. The canonical logit link for binomial or binary data would generalise to

          F((,()=exp{h((,()}/[1+ exp{h((,()}].

while the canonical log link for Poisson data, with mean (=exp(() generalises to (=exp[h((,()]. Czado and Raftery (2001) consider choice between tail modified models using the Bayes factor methods of Raftery (1996).

Example 10.2 Pediatric Coping Response

Weiss (1994) considers data on response times by children to a pain exposure (hand immersion in cold water), and the impact on response times in seconds of the child’s coping mechanism for pain (binary), and a treatment variable with 3 levels. Response times yi are considered in relation to a six level factor combining coping type and treatment, and to baseline response time Bi obtained prior to the treatment being delivered. The coping types are attenders (A), corresponding to children who pay attention to the pain, and distracters (D), for children who tend to think of other things during the exposure. The treatments were a control (i.e. no treatment, N), counselling to attend (A) and counselling to distract (D). The six coping style-treatment groups, denoted Gi ( 1,..,6 for child i, are here arranged as AA, AD, AN, DA, DD and DN. 

Consider a Box-Cox transform for both yi and Bi, with the same power λ applied to both. So for i=1,..61 the mean is 

            (i = α + βGi + γBi(()
where β1=0 and β2,..β6 are fixed effects measuring coping style-treatment impacts. The likelihood is as discussed above, namely

           P(yi|θ(t)) = ((()-0.5exp[-0.5(zi-(i)2/(] yi-1
where (=((,(,(,(,(2). 

( is assigned a N(0,1) prior though more diffuse priors might be tried. From the last 7500 iterations from a two chain run of 10000 (following convergence of (), the posterior mean for λ is obtained as 0.059 (95% CI from -0.17 to 0.30). Weiss investigates conditional predictive ordinates to assess outliers, here estimated as posterior harmonic mean  likelihoods:

             CPOi-1 = T-1  eq \O((,t=1,T) [ P(yi|θ(t))]-1
Child 15 appears a possible outlier (subject 41 in the data input order), with an unusually high response time in relation to a less extreme baseline time. This subject has a CPO of 0.000028 as compared to the maximum CPO of 0.074.
Weiss also considers 18 predictive densities of response times for new cases defined by each of the six possible coping-treatment combination and by three ‘new’ baseline times of 6, 24 and 120 seconds. These predictive densities are here obtained in the transformed y scale (for z=y(() rather than y); predictions in the original scale are obtained by reverse transformation. The latter show that only a distracter coping style enhanced by a distracter treatment (as in the DD group) consistently increases response times over the baseline (Table 10.2).

Table 10.2 Predicted response times under new data
Coping Style/Treatment Combination(Baseline Response Times)
y

(Response times)
y(
SD(y()

AA(6)
13.3
2.65
0.99

AA(24)
31.2
3.72
1.17

AA(120)
91.1
5.23
1.80

AD(6)
12.3
2.55
0.98

AD(24)
29.5
3.64
1.16

AD(120)
84.3
5.11
1.73

AN(6)
11.6
2.47
0.97

AN(24)
27.5
3.56
1.14

AN(120)
79.5
5.04
1.73

DA(6)
10.7
2.36
0.96

DA(24)
25.6
3.46
1.11

DA(120)
74.6
4.94
1.69

DD(6)
24.1
3.45
1.29

DD(24)
54.4
4.54
1.53

DD(120)
154.6
6.04
2.20

DN(6)
8.2
2.04
0.93

DN(24)
19.6
3.13
1.07

DN(120)
57.3
4.61
1.60

Example 10.3 Case-control Study of Endometrial Cancer

Breslow and Storer (1985) illustrate a generalised relative risk approach with a case control study data for endometrial cancer in relation to replacement estrogens. The risk factors are a woman’s weight, WT, with three categories based on grouped weights (under 57kg, 57-75kg, and over 75kg) and estrogen use, EST, arranged as no/yes. This ordering of categories (with 1 as baseline) provides the lower risk as baseline. Let EST(2) denote the yes response to estrogen use, and WT(2) and WT(3) the two higher weight bands. As Breslow and Storer note, the log-likelihood is distinctly non-normal. 

Hence the regression function is


R(X) = (1EST(2) + (2WT(2) + (3WT(3)

where the are (j normally distributed with variance 1000 but constrained to positive values. A uniform prior U(-2,2) is adopted for the exponent (. 

A two chain run of 10000 iterations is applied with inferences based on the last 9000. The posterior mean for ( is –0.52, and the ( coefficients shows a greater risk attaching to estrogen use (especially at lower weights) as compared to the results from a multiplicative model with (=1. See Table 10.3 for posterior summaries; positive skew is present in the densities for the ( coefficients. There are two degrees of freedom and the mean (2 shows a close fit. A posterior predictive check comparing the true data (2 with replicate data (2 confirms a satisfactory model.

Table 10.3 Endometrial Cancer. Posterior Parameters

Parameters






       Mean
   Std Devn
     2.5%
   97.5%


31.1
18.1
6.2
74.5


1.7
1.4
0.1
5.3


27.5
16.9
5.3
68.7


-0.52
0.17
-0.90
-0.22

(
3.3
2.5
0.4
10.1

Weight
  Estrogen Use
       Total
  Cases Observed
  Fitted
St devn
  Relative 

     Risk
  St devn

<57
       N
195
12
11.8
3.1
1
 


       Y
81
20
19.2
2.0
5.22
1.76

57-75
       N
423
45
47.5
6.6
2.13
0.74


       Y
150
37
36.0
3.6
5.34
1.88

> 75
       N
182
42
42.1
4.5
5.07
1.71


       Y
32
9
8.3
0.9
6.05
2.40

10.5 Non linear regression through Spline and Radial Basis Functions 

Chapters 4 and 6 considered issues of regression robustness in terms of heavy tailed or non-normal error assumptions. Questions of robustness also occur in the face of nonlinear impacts of unknown form, applicable to some or all of predictors. A wide class of nonparametric methods for modelling yi as a general non-linear function of predictors assume linear combinations of basis functions B(xik) of predictor main effect and predictor interactions (Dennison et al, 2002).  Assume a single predictor with positive ((0) and ordered values 

             x1 ( x2  ( .... ( xn
and let the mean ((x) of y be represented as an intercept plus the function of x, with a random error representing residual effects

            yi = (0 +B(xi) + (i                                            

If one or more predictors wi1,wi2,…wim have a conventional linear effect then a semi-parametric model is obtained. For example, a linear term in a single w predictor and an adaptive regression in a single x gives 

            yi = (0 +(1wi+B(xi) + (i                                                                  

Spline forms for B(xi) refer to low degree (linear, quadratic, cubic) piecewise polynomials that interpolate ((x) at K selected knot points t1,t2,..tK within the range of the variable x,  such that  min(xi) < t1  < t2 <…tK < max(xi). Radial basis functions (RBFs) are also used for interpolation and smoothing in unidimenional and multidimensional space (Powell, 1987). A radial basis functions incorporates a distance criterion with respect to a centre. RBFs include a variety of forms with cubic and thin plate functions often used. As well as regression and interpolation and smoothing of ragged curves, another application of nonparametric regression involves recovering a true function or ‘signal’ from observations subject to large random errors (e.g. Smith and Kohn, 1996). 

A cubic regression spline for metric y and with homoscedastic normal errors has typical form

         yi ~ N((i,(2)

         (i= (0 + P(xi)+B(xi)



(10.4)

        P(xi) = (1xi + (2xi2+(3xi3
        B(xi)=  eq \O((,k=1,K) I(xi-tk) (k(xi - tk )3


where I(xi-tk) is 1 if xi exceeds the kth knot tk, and zero otherwise. An alternative notation with the same meaning is

        B(xi)=  eq \O((,k=1,K) (k(xi-tk)eq \O(3,+)

               (10.5)

where (xi-tk)eq \O(,+)=max(0,xi-tk). Denison  et al (2002, p. 54) also suggest a model without the baseline standard polynomial as in

         yi =(0 +  eq \O((,k=1,K)  (k(xi - tk )eq \O(q,+) + (i
where q is typically a low integer. Denison et al (2002, p 74) also mention a two sided cubic spline model

        B(xi)=   eq \O((,k=1,K) (k(xi-tk)eq \O(3,+)  + eq \O((,k=K+1,2K) (k(tk-xi)eq \O(3,+)

The generalisation of the two sided model to multivariate  splines (section 10.5.2) is discussed by Sakamoto (2005a). Another approach is based on ‘smoothing splines’ whereby there is a knot, or potential knot, at each distinct value of xi so that the number of knots may equal the sample size. This method has been applied in demographic graduation, for example of mortality data (Benjamin and Pollard, 1980).

A further option (see Example 10.4) is to let the power in spline or polynomial functions be an unknown. For example a model with a term in x with unknown power and a spline function  with unknown power would be

         yi ~ N((i,(2)

         (i= (0 + (1xeq \O((,i) + eq \O((,k=1,K) (k(xi-tk)eq \O((,+)
where ( and ( could be assigned priors favouring values between -3 and +3, or -2 to +3 in line with the fractional polynomial approach.

A radial basis regression for metric data with a single predictor takes the form

            yi ~ N((i,(2)

            (i= (0 + (1xi + eq \O((,k=1,K) (kh(||xi-tk||)

where ||.|| is a distance function, h is known as the profile function, and the tk are known as locations or centres. Options for the profile function include

            h(u)=u               (one dimensional thin plate)

            h(u)=u2            (quadratic)

            h(u)=ulog(u)    (quasi-logarithmic)

            h(u)=exp(-u2)   (Gaussian)

The Euclidean and absolute distance functions are most common - see Wood et al (2002b) for a Euclidean distance application. 

There is no certainty in such models on how many knots or centres to include or where to locate them. More knots are needed in regions where B(x) is changing rapidly (Eubank, 1988). Knots may be based on selecting among the existing x values (e.g. Friedman and Silverman, 1989), might be equally spaced within the range [min(x),max(x)], or be taken as unknowns. For example, Ruppert et al (2003) suggest a  maximum of K=35 or 40, with knots located at every k/(1+K)th percentile, k=1,..K. 

Using too few knots or poorly sited knots means the approximation to the true curve B(x) will be degraded. By contrast, a spline using too many knots or basis functions can result in over-fitting (Kohn et al, 2001); therefore selection among potential knots and/or basis functions is more likely to lead to a precisely identified model while simultaneously allowing for model uncertainty. Biller (2000) and Denison et al (1998a) use RJMCMC to switch between models with different numbers and sitings of free knots. Denison et al (1998a) make the simplification of calculating ( and ( coefficients by standard least squares formulae rather than the full Bayesian prior/posterior updating procedure. 

Starting with a relatively large number of candidate knot locations, regression selection by the methods of Chapter 4 may also be used to select significant knot points (Smith and Kohn, 1996; Smith et al, 2001). Thus Bernoulli indicator variables (1k (k=1,..,q) for (1,..,(q in the polynomial function, and (2k (for the k=1,…,K spline coefficients (k) are introduced such that if, at a particular iteration, the indicator variables are zero (one) then the corresponding predictor is excluded (included). This implies averaging over a large number of possible smoothing models. 

A more formal basis for model averaging in nonparametric regression is provided by Shively et al (1999), who employ an integrated Weiner process prior (section 10.6.1) partly as it permits simple tests of linearity as against non-linearity. They suggest a two stage procedure: the first uses diffuse priors on the parameters in P(x) and B(x), the second model averaging stage employs data based priors based on the posterior means and covariances of parameters from the 1st stage. This procedure avoids the possibility of variable and variance component selection methods leading to underfitting (Wood et al, 2002b, p 123).

10.5.1 Shrinkage Models for Spline Coefficients

Berry et al (2002) and Ruppert et al (2003) avoid regression selection among fixed effects (k by applying a penalized likelihood approach. This involves treating the collection of (k coefficients as random effects, with the variance (( of the (k possibly linked to var(()=(2 to induce varying degrees of constraint on the (k. Under this approach a linear spline is often appropriate except for highly non-linear regression effects, though it may involve increasing the number of knots K till a satisfactory fit is obtained. Let M be the number of distinct x values.  Ruppert et al (2003, page 126) recommend K=min(35,M/4), though values such as K=80 may occasionally be needed, for n sufficiently large. Then a spline of degree q is 

      yi = (0+(1xi + .. +(qxeq \O(i,q) + eq \O((,k=1,K)(k(xi - tk) eq \O(+,q)+(i

             (10.6)

where (k~N(0,(() and q=1 gives a linear spline. With priors 1/((~Ga(a1,b1), 1/(eq \O(2,)~Ga(a2,b2) the full conditionals on the precisions are

   1/(( ~ Ga(a1+0.5K,b1+0.5eq \O((,k=1,K)(eq \O(k,2))

   1/(eq \O(2,) ~ Ga(a2+0.5n,b2+0.5eq \O((,i=1,n)(eq \O(i,2))

This approach may be extended to modelling heteroscedasticity (Yau & Kohn, 2003; Ruppert et al, 2003) and so provide a spatially adaptive nonlinear smooth. Thus let (i ~ N(0,(eq \O(2,i)) then where the logs (i=log((eq \O(2,i)) of the non constant variances are based on an additional spline model, with M knots {s1,..sM},

             (i=(0+(1xi ..+(qxeq \O(i,q) +.. eq \O((,m=1,M) (k(xi-sm)eq \O(q,+)
with M  typically much less than K, and with the constraint s1=t1,sM=tK  (see Ruppert & Carroll, 2000; Baladandayuthapani, et al 2005).  

Wood et al (2002a) suggest a discrete mixture of splines model for spatial adaptive nonparametric regression. For y metric and M mixture components this takes the form

           p(yi|xi) ~ eq \O((,m=1,M)(m(xi)N(Sm(xi),(2)

where the weights (m(xi) depend on the predictors and eq \O((,m=1,M)(m(xi)=1. Each of the smoothing spline functions Sm(x) has its own smoothing parameter (m. For consistent labelling one may specify (1<…(M. 

10.5.2 Modelling Interaction Effects

Let Ci ( 1,..,R be a categorical predictor and xi a single continuous predictor. Then a discrete by continuous interaction potentially implies a separate smooth SCi(xi) for each level of the categorical variable as well as separate polynomial functions PCi(xi) (Ruppert et al, 2003, chapter 12). Let dir=1 if Ci=r for the ith subject. Then for y metric, a quadratric spline model might be

     yi ~ N((i,(2)

     (i= eq \O((,r=1,R)[(0r+(1rxi +(1r xeq \O(i,2)+eq \O((,k=1,K) (kr(xi-tk) eq \O(+,2) ]

A more parsimonious model might introduce a latent discrete grouping such that the polynomial and smoothing functions are equated over subcategories of C. 

For modelling interactions between p continuous variables (multivariate smoothing), one combines main effect and interaction terms in the polynomial part P(X1,..Xp) of the smoothing function with multivariate basis terms which together constitute S(X1,..Xp). For example, bivariate smoothing using a spline of degree (q1,q2) would first involve a polynomial function P(X1,X2) with q1 terms in powers of X1, q2 terms in powers of X2, and terms in crossed powers Xeq \O(r,1)Xeq \O(s,2)  where r+s ranges from 2 to q1+q2-1. The second feature would be  bivariate spline S(X1,X2), with K1 and K2 knots, involving main effects in (xi1-tk1) and (xi2-tk2) separately, interaction terms between polynomial and spline terms, and full spline interactions 

          B(xi1,xi2) =  eq \O((,k1=1,K1) eq \O((,k2=1,K2)(xi1-tk1)eq \O(q1,+)(xi2-tk2)eq \O(q2,+)
for knots {tk1,k1=1,..,K1} and { tk2,k2=1,..,K2} So for q1=q2=1, and yi ~ N((i,(2), 

     (i=(0+(1xi1 + (2xi2+(3xi1xi2+ eq \O((,k1=1,K1)(1k(xi1-tk1)+ +eq \O((,k2=1,K2)(2k(xi2-tk2)+
          + eq \O((,k1=1,K1) (1kxi2(xi1-tk1)+ +eq \O((,k2=1,K2) (2kxi1 (xi2-tk2)+
         +   eq \O((,k1=1,K1) eq \O((,k2=1,K2) (k1k2(xi1-tk1)+(xi2-tk2)+
A linear form (q1=q2=1) is commonly used in the Bayesian MARS approach (Denison et al, 1998b; Denison et al, 2002). 

Yau et al (2003) consider thin plate basis functions for multivariate predictors xi=(xi1,..xip) for subjects i, using K centres (h1,..hK) where each centre hk=(h1k,…hpk) is of dimension p. These centres may be obtained from a preliminary cluster analysis, or be taken as extra unknowns. Different basis terms are used for main effects and interactions. Thus, following Wahba ( 1990, p 31),

      Bk(xi) = ||xi-hk||(2m-d)log(||xi-hk||)     for k=1,…K , 2m-d even

      Bk(xi) = ||xi-hk||(2m-d)                                  for k=1,…K , 2m-d odd

where ||u|| is a distance metric (e.g. absolute or Euclidean distance), m is a preset constant, and d is the dimension of the effect (d=1 for main effects, d=2 for first order interactions between predictors, etc). For m=2, main effects in a predictor Xj would involve a linear term in xij and K cubic distance terms {xij, ||xij-hj1||3,…,||xij-hjK||3} while first order interactions between Xj and Xm are modelled via K terms 

           ||(xij,xim)-(hjk,hmk)||2log(||(xij,xim)-(hjk,hmk)||). Regression selection may be applied to the functional components, which number np = p+
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 first order interactions. The regression coefficients (jk in each component are subject to a shrinkage prior with variance (j, j=1,..,np, as in section 10.5.1. Yau et al (2003) recommend a data based prior for (j to avoid selection of underfitted models. 

Thus for p=3 and m=2, there would be three main effects and three interactions (np = 6 components) and selection can be at component level using binary indicators Jj. Thus for yi binary, one might have

         logit((i)=(0+(1xi1+(2xi2+(3xi3
        +J1 eq \O((,k=1,K)(1k|xi1-h1k|3 +J2 eq \O((,k=1,K)(2k |xi2-h2k|3+J3eq \O((,k=1,K)(3k |xi3-h3k|3
       + J4 eq \O((,k=1,K)(4k|(xi1,xi2)-(h1k,h2k)|2log{|(xi1,xi2)-(h1k,h2k)|}

       + J5 eq \O((,k=1,K)(5k|(xi1,xi3)-(h1k,h3k)|2log{|(xi1,xi3)-(h1k,h3k)|}

       + J6 eq \O((,k=1,K)(6k|(xi2,xi3)-(h2k,h3k)|2log{|(xi2,xi3)-(h2k,h3k)|}

Example 10.4 Toxoplasmosis Data 

Nonlinearity in the well known toxoplasmosis data has been noted by Hinkley et al (1991) among others. Specifically a plot of the crude rates of a positive result (Figure 10.1) suggests a declining probability at first as rainfall x increases from its minimum observed level of 1620mm per annum.  The rainfall figures are divided by 1000 to avoid numerical overflow in the logit transform when powers of large rainfall totals are taken.

Here a cubic regression spline is applied, as in (10.4) and (10.5), with 9 knots based on the rainfall deciles (these are also divided by 1000). To illustrate variable selection in spline regression, one may specify dummy indicators (2j equal to 1 if the term associated with the jth knot is selected for the regression; i.e. (j(xi - tj) eq \O(3,+) is included in the regression if (2j=1. Bernoulli selection indicators (1k (k=1,..,3) apply for (1,..,(3 in the polynomial function. It is assumed that all terms are likely to be needed and so the prior favours inclusion: 

                    (2j  ~ Bernoulli((j)

                    (j ~ Beta(19,1)

One may then consider the posterior probabilities that (k is included against these prior odds. The resulting analysis (based on the last 10000 iterations of a two chain run of 15000) has a DIC of 166. The fitted probabilities (Figure 10.1) are located between 0.46 and 0.57, and some rates are considerably smoothed despite being based on large numbers (e.g. 53/75 at 1834mm). All the posterior means of the probabilities (j exceed 0.9.

A second analysis with these data uses a spline with an unknown power, namely

       yi ~ Bin(Ni,(i)       

       logit((i)= (i= (0 + (1xeq \O((,i) + eq \O((,k=1,K) (k(xi-tk)eq \O((,+)
A two chain run of 5000 iterations (using the 2nd half for inferences) gives mean (95% CI) for ( and ( of 0.98 (0.69, 1.61) and  -1.95 (-2.96,0.91) with a DIC of 153.3 (eq \O(D,_)=146.8,de=6.5). The plot of fitted probabilities for this model (Figure 10.2) is more jagged but more closely resembles features of the raw data in Figure 10.1, and does not smooth the observation at 1834mm so drastically.

Example 10.5 Toenail Infection

The penalized likelihood model of Ruppert et al (2003) is illustrated by data relating to progress in reducing toenail infection according to treatment (see Molenberghs and Verbeker, 2005, Chapter 2, for a description of the study). The data are arranged by visit within patient but here the binary outcome by month of observation and treatment is the sole focus. Infection is coded as 0 (not severe) or 1 (severe) and the substantive question is whether a greater reduction in infection rates occurs under one or other treatment (treatment A=0, treatment B=1). The impact of month on the probability of infection is modelled by treatment specific linear splines in  x=month of observation (ranging from 0 to 18.5 months, though observations at over 12 months are sparse). 

Thus with Gi=1 for treatment A and Gi=2 for treatment B,

    yi ~ Bern((iGi)

    logit((iGi) = (0Gi+(1Gixi + eq \O((,k=1,K)(kGi(xi - tk)+

              
where 

    (kr~N(0,(r), r=1,2, k=1,..K 

and gamma priors on 1/(r are assumed. K=14 knots are used, based on the first four deciles and spaced at every 5th percentile thereafter (45th percentile, 50th, 55th, etc). The reason for this spacing is that there are repeated values between the 5th and 10th, 15th and 20th, 25th and 30th and 35th and 40th percentiles. 

Plots of the crude infection rates (by treatment) over months or half months show irregularities but suggest treatment B to be more effective. They also suggest a nonlinear effect with faster declines in infection in the first six months.  This is confirmed by the above linear spline smooth. Figure 10.3 shows the curve estimated from the 2nd half of a two chain run of 2500 iterations. Thus still shows irregular features for treatment B. The (2 coefficients show greater variability, so as to accommodate the more pronounced fluctuations in the treatment B curve by month.  

10.6 Application of State-Space Priors in General Additive Nonparametric Regression

The main alternative to spline and radial basis functions are general additive models based on state space priors. For a metric response yi with normal errors

yi ~ N(μi,σ2)

μi = (0+S1(xi1)+S2(xi2)+..Sp(xip)

where S(xj) (j=1,,,p) are smoothly changing functions of their arguments. Following Wood and Kohn (1998) and Wecker and Ansley (1983) one seeks a prior for the smooth functions Sj (j=1,..p) that is flexible in the face of widely varying nonlinear regression relationships. Typically it is necessary to center each of the Sj=(S1j,…Snj) during MCMC updating to ensure identifiability (Sakamoto, 2005b). If there is a single smooth function, one might also omit the intercept and allow the basis function to model the level of the data.

10.6.1 Continuous predictor space prior

One form of prior for the model generating such data assumes an underlying continuous process in time or more generally in predictor space (Wahba, 1978; Wood & Kohn, 1998; Biller & Fahrmeir, 1997; Shively et al, 1999; Carter & Kohn, 1994). For metric y and univariate regressor xi (i=1,..n) with cases arranged in ascending x values

                        x1 <..  < xn  

this prior assumes the observations are generated by a signal plus noise model

                       yi= (0 + S(xi)+ei










where the ei ~ N(0,σ2) are white noise. The signal S(x) is generated by the stochastic differential equation

                        dmS(x)/dxm = τdW(x)/dx                      

where W(x) denotes a Weiner process, namely an accumulation of independently distributed stochastic increments, with starting value W(0)=0 and variance var[W(x)]=x. τ governs the degree of smoothing: large values mean the smooth is very close to reproducing the actual data, while τ=0 corresponds to complete smoothing (i.e. the posterior mean is linear). The initial condition at x1 is assumed to be a diffuse fixed effect, with

      [S(x1),….S(m-1)(x1)] ~ N(0,V1) 

where V1 is large. Denoting φ=τ2/σ2 as the signal to noise ratio, Wahba (1978) shows that the posterior mean E[S(xi)|y,(,V1)] is the mth order spline smoothing estimator for S. Let (i=xi-xi-1 (i=2,3,..), then the state space model is

      yi=b'fi +ei
      fi=Fifi-1 + ui                         i  2

where b=(1,0,..,0)', fi=[S(xi),….S(m-1)(xi)] , and the m(m matrix Fi has (j,k)th element (eq \O(i,k-j)/(k-j)! when k(j and zero otherwise. The ui are normal with mean 0 and variance (2Ui where Ui has (j,k)th element (eq \O(i,2m-j-k+1)/(m-j)!(m-k)!(2m-j-k+1)!

Consider the case m=2, such that for a metric normal outcome λ=1/φ corresponds to the smoothing parameter in a cubic smoothing spline S(x) with knots at each distinct value of x.  So the posterior mean of S is cubic in the sub-intervals (xi-1,xi), and linear for x  x1, and x  xn. Then 

                 S(x)=(0+(1x + τeq \O((,  0,   x)W(u)du                       

Letting the non-linear part of S(x) be f(x) = (eq \O((,  0,   x) W(u) du, the state-space evolution is based on f and its first derivative, namely {f(xi),f ((xi)}, i=2,..n. Denote this pair by fi={fi1,fi2}, and as above define δi=xi-xi-1. The initial terms, f11 and f12, are treated as unknown fixed effects. Successive terms for increasing values of x are defined by

  fi=Fifi-1 + ui                         i  2

where 

  Fi  =
[image: image8.wmf]ú

ú

û

ù

ê

ê

ë

é

1

0

1

d

i

,

           ei ~ N(0, (2Ui),                                                               

  Ui  = 
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Carter and Kohn (1996) compare MCMC sampling strategies for this model. Carter and Kohn (1994, pp 545-546) provide the conditional density for sampling τ2.

Shively et al (1999) suggest model averaging under this structure using a two stage procedure. Suppose there are smooths in two variables, as in

     yi=(0+(1x1i +(2x2i +τ1eq \O(( ,  0,    x1i)W1(u)du+τ2eq \O(( ,  0,    x2i)W2(u)du 

At the second stage Shively et al use binary selection indicators J(j and Jfj for the (j regression coefficients and the nonlinear components fj = τjeq \O(( ,  0,    xji)Wj(u)du. The first stage uses diffuse priors on the parameters ( and ( parameters, and the second model averaging stage employs data based priors based on the posterior means and covariances of these parameters from the 1st stage. This procedure avoids the tendency to select the simplest model as would happen if diffuse priors were combined with selection of coefficients & components. Note that its application is not limited to this form of nonparametric regression.

A spectral (Fourier series) prior in continuous x is discussed by Lenk (1999) and Kitagawa and Kersch (1996). Thus for the model

                yi=(0+S(xi)+ei
with ei~ N(0,(2) and x defined on the interval [a,b], the non-parametric component is represented by the series

                S(x) =   eq \O((,k=1,() (k (k(x)                                                         

where  

               (k(x) =
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Since a smooth S will not have high frequency components, the (k are subject to decay as k increases. A geometric smoother prior is

                (k ~ N(0,(2exp[-(k])                            

where (>0 determines the rate of decay of the Fourier coefficients, and thus the smoothness of S, has an appropriate prior for a positive parameter (e.g. an exponential density). An algebraic smoother is 

                (k ~ N(0,(2exp[-(logk])                            

with (>1. In practice the Fourier Series is truncated above at L < n, so S(x) =   eq \O((,k=1,L) (k (k(x).

10.6.2 Discrete predictor space priors

Random walk and autoregressive priors which for additive non-parametric regression effectively discretize x are discussed by Kitagawa and Gersch (1996). These amount to an extension of state space time series methods and unifying perspectives (including spatial data applications) are provided by Fahrmeir & Lang (2001) and Fahrmeir & Osuna (2003). Let t=1,..,n be the data points, arranged in ascending x order. The simplest formulation of the state space model

                  yt=(0+S(xt)+et





et ~ N(0,(2)

has equally spaced design points (e.g. when the x series denotes successive years). RW1 and RW2 priors in St=S(xt) are most frequently applied. For example, a second order random walk then specifies

                  St = 2St-1 - St-2 + ut                                

with ut ~ N(0,(2), though scale mixing is possible for greater robustness (Knorr-Held, 1999). Providing et and ut are normal, the posterior means of St are equivalent to the estimated posterior modes of St derived by minimising

                eq \O((,t=1,n)  [yt-St]2 + 
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For yt observed on ordered values of a single covariate, x1<…<xN, with unequal spaces between successive x values, the variance of the random walk prior must be modified to take account of the step sizes (t=xt-xt-1. Thus a first order random walk prior would have the form

            St =St-1+ut
            ut  ~ N(0,(t(2). 

For greater robustness to sudden shifts in the function or discrepant points one may adopt scale mixing (Knorr-Held, 1999), so that to provide the equivalent of a Student t RW1 prior with ( degrees of freedom, one has

           St  ~ N(St-1,(t(2/(t)

with (t ~ Ga(0.5(,0.5(). A normal second order random walk with unequally spaced x values would be

             St ~ N(t,t(2)                                         

where t = St-1(1 +t/t-1) – St-2(t/t-1) (Fahrmeir and Lang, 2001). 

Often values of x are grouped: the numbers of the distinct values M1,..Mp on X1,X2,..Xp in a sample of n subjects may be less than n. If smooths on two or more covariates are needed, one needs to define grouping indices Gik {k=1,..p; i=1,..n} for each predictor. So if n=50 but there are only M1=15 distinct values on X1, then Gi1 for i=1,.., 50 would range between 1 and 15, and the state space prior on S1t would involve 15 points, e.g. an RW1 prior would be

              S1t ~ N(S1,t-1,( eq \O(1,2) )                    t=2,15.

The specification of the mean for case i would then refer to the relevant grouping index 

             (i=(0+S1(Gi1)+S2(Gi2)…+Sp(Gip).

For identifiability it is typically necessary to centre each of the sampled Skm, k=1,..p, m=1,..Mk at each iteration in an MCMC chain. Otherwise each smooth will be confounded with the intercept.  Alternatively one may combine all the smooths

             Wi=S1(Gi1)+S2(Gi2)…+Sp(Gip)

and centre the Wi at each iteration. Other options are a) to set the initial conditions in each smooth to zero or b) to centre the x values around their mean, develop the smooth in the centred x values,  and define Sk(0)=0.

Example 10.6 Canadian Prestige

Fox (2000) presents data relating the prestige of 102 Canadian occupations to the average income and educational levels of people in those occupations. He compares linear regression with models including general additive functions in income or education or both, and finds strongest evidence of non-linearity in the prestige-income association. Here two methods are considered: the first uses a discrete space RW1 prior (section 10.6.2) allowing for differential spacing between successive income and education values; the second uses a quadratic spline model with a shrinkage prior (section 10.5.1), and with 19 knots on both predictors placed at the 5th, 10th… 95th percentiles.  

For the first method, one finds that there are M1=96 distinct values of education (X1) and M2=100 distinct values of income (X2), and so the input data consists of a) differences between successive distinct values on these predictors, and b) group indicators {Gi1,Gi2} for each observation that fall into one of 96 categories on X1 and 100 categories on X2. Gamma Ga(0.5,0.5) priors are assumed on the random walk precisions 1/(eq \O(1,2) and 1/(eq \O(2,2). A 5000 two chain run with centering on the total smooth S1+S2 converges from 2500 iterations. Figures 10.4.1 and 10.4.2 suggests greater nonlinearity in the income effect but there is also some suggestion of a nonlinear education impact, with the steepest effect between 10 and 13 years of education. The DIC is 704 with complexity 22.

The quadratic shrinkage prior takes

           yi = (0+B1(X1)+B2(X2)+(i
with 

            Bj(Xj)=(1jxji + .. +(pjxeq \O(ji,q) + eq \O((,k=1,Kj) (kj(xji - tjk)eq \O(+,q)

              
where q=2, K1=K2=19. The (kj are random with (kj~N(0,(j) and 1/(j ~ Ga(0.5,0.5). Identification is improved by centering the (kj at each iteration. The resulting smooths (Figures 10.5.1 and 10.5.2) also suggest some non-linearity in the education  effect. The DIC is lower at 693.5 and complexity 8.

Example 10.7 Prosecution Success

The data in Exercise 4.8 on prosecution success provide an example of non-parametric regression for a binary outcome. The predictors used are X1=coherence of evidence (higher for less coherent evidence), X2=delay between witnessing the incident and recounting it, and X3=quality of evidence. An initial analysis assumes shrinkage priors (e.g  Ruppert et al, 2003) and quadratic splines in the three predictors. All predictors are divided by 10 and a standard logit regression assumed. Knots are placed at deciles (so K=9 for all three predictors) The impacts of cohort and quality appear linear (with negative and positive slopes respectively), but delay seems to have a curvilinear effect.  

The next analysis applies a continuous time prior equivalent to a cubic smoothing spline.  As in Wood and Kohn (1998) an augmented data approach is used whereby an unknown continuous variable y* underlies the observed binary response yi. Only the impact of delay is modelled nonparametrically. Let the latent variables be related to three predictors as follows

                y*i =  (0 +  (1x1i + (2x2i+S(x2i) + (3x3i +ei
with ei ~ N(0,1) and  y*i >0 if yi=1.

It is necessary to allow for grouping of the values on the delay predictor: there are n=70 observations but only M2=50 distinct delay values. Because a constant is present, centering of the sampled S2i=S(x2i) that actually predict y* is necessary for identifiability. Also the scaling of the predictors applies in defining (2i. So with D denoting delay in its original scale

          δ2i=(Di-Di-1)/10,     i=1,..50.

The second half of a two chain run of 50000 iterations shows a slightly more complex effect than simple curvilinearity: the smooth has a plateau at delays between 20 and 60 days (Figure 10.6). The same is true of the success probability since (2 is not significantly different from zero. The wide intervals around the median smooth may reflect the binary nature of yi and the relatively small sample will add to uncertainty. The fact that the y* are latent as well as S2 may also reduce precision.

Example 10.8 Michigan Road Accidents

Lenk (1999) analyses monthly data (t=1,..108) on road accidents in Michigan from the start of 1979 to the end of 1987. The monthly accident counts are large so that their logs are taken to be approximately normal. One influence on such accidents may be economic prosperity, as proxied by the (log of the) unemployment rate. Seasonal effects are also present in the data, together with a linear upward trend. 

The aim is then to assess non-linearity in the total month effect (0 + (1t + S(t), after allowing for seasonal effects and unemployment rate as summarised in the systematic regression term Xt(. So

                 yt = (0 + (1t + Xt( + S(t)+ei
where ei ~ N(0,(2) and the linear growth over time in months is measured by (1. Lenk considers the smooths (a) adjusting for seasonal effects only and (b) adjusting for both seasonal effects and unemployment. 

A Fourier Series approach with geometric smoothing is applied so that  S(x) =   eq \O((,k=1,L) (k (k(x), where  L=10 and     

                 (k ~ N(0,(2exp[-(k]).                            

An E(1) prior is assumed on (  and Ga(0.5,0.5) priors on 1/(2 and 1/(2. Summaries are based on the last 7500 iterations from two chain runs of 10000 iterations. It is confirmed that model (a) without log(unemployment) as a covariate shows a clear non-linearity over time (Figure 10.7). Including unemployment eliminates the non-linearity in the smooth on month. The regression coefficients ( in the full model are as in Table 10.4 and show significant summer and unemployment effects. The density of (2 is highly skew.

Table 10.4 Road Accidents Parameter Summary, Model (b)

Parameter
Mean
2.5%
Median
97.5%

 (2
0.035
0.027
0.035
0.046

 (2
24.78
0.16
0.99
34.82

(
2.17
0.62
2.00
4.63

Month (Linear)
0.0014
-0.0028
0.0014
0.0047

Spring
-0.055
-0.117
-0.055
0.003

Summer
-0.096
-0.158
-0.096
-0.034

Autumn
0.021
-0.042
0.021
0.084

Unemployment
-0.450
-0.678
-0.453
-0.245

10.7 Exercises

10.1 Apply the generalised logistic model of Guerrero and Sinha (2004) to the all companies series of Mexican pension fund investments under the Administradoras de Fondos para el Retiro (AFORE) scheme – see Exercise10.1.odc for the data. Their model specifies 

               (t = a/[1 + (α + βt)−1/λ]       if λ > 0

                   = a/[1 + exp(−α − βt)]     if λ = 0

                   = a/[1 + (-α - βt)−1/λ]      if ( < 0

Here consider a model 

                 (t = a1+a2/[1 + (α + βt)−1/λ]     

with all parameters positive. A suitable starting value for a2 and ( are 20000 and 1 respectively. Consider a suitable generalisation taking ( to vary over time.

10.2 Consider data from Johnson & Wichern (1998) on microwave radiation measurements:

0.15 
0.09 
0.18 
0.10 
0.05 
0.12 
0.08

0.05 
0.08 
0.10 
0.07 
0.02 
0.01 
0.10

0.10 
0.10 
0.02 
0.10 
0.01 
0.40 
0.10

0.05 
0.03 
0.05 
0.15 
0.10 
0.15 
0.09

0.08 
0.18 
0.10 
0.20 
0.11 
0.30 
0.02

0.20 
0.20 
0.30 
0.30 
0.40 
0.30 
0.05

Assuming a regression model with intercept only find the Box-Cox ( parameter for these data using the WINBUGS zero or ones trick to express the likelihood. 

10.3 Consider migration rates for single years of age (at mid ages 0.5,1.5,…84.5) from Rogers et al (2004)
.  The original rates yx/nx are scaled to sum to 1 and the data consist of the resulting scaled rates rx. An exponential prior for rx with mean 1/px is assumed here, with full model being
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though other options are possible; for example, one might take the log or logit of rx to be normal. Castro & Rogers (1981) report that the parameters defining the model for px tend to fall within predictable ranges: for the labor force component, typical values are


0.05 < a2 < 0.10
17 < μ2 < 22


0.10 < α2 < 0.20
0.25 < λ2 < 0.60
Data are listed in Example 10_2.odc and a coding including the first two components in the above model for px has the form 

 model { for ( i in 1:85) {r[x] ~ dexp(invp[x]) 

                invp[x] <- 1/p[x]

                p[x] <- C1[x]+C2[x]+a0

                C1[x] <- a[1]*exp(-alph[1]*(x-0.5))

                C2[x] <- a[2]*exp(-alph[2]*d[x]-exp(shift[x]))

                d[x] <-   (x-0.5)-mu2

                shift[x] <- exp(-lam2*d[x])}

# priors based on Rogers & Castro (1981)

a[1] ~ dgamma(0.05,1) I(0.001,); 

a[2] ~ dgamma(0.075,1) I(0.001,)

mu2 ~ dgamma(20,1); lam2 ~ dgamma(0.425,1) I(0.1,)

alph[1] ~ dgamma(0.1,1); alph[2] ~ dgamma(0.1,1)

a0 ~ dgamma(0.001,1) I(0.0001,)}

Consider a model which allows for a retirement component, namely
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where J ~ Bern((J) is binary, and (J ~ Be(1,1), a3 ~ Ga(0.05,1) I(0.001,), (3 ~ Ga(0.1,1), (3 ~ Ga(60,1) I(55,70), (3 ~ Ga(0.1,1) I(0.1,). Does the data favour inclusion of a retirement component?

10.4 Generate 100 points from the mixture

               f(x)=((x|0.15,0.05)/4+((x|0.6,0.2)/4

where ((x|(,() is the normal density with mean ( and standard deviation ( and add a normal random error with mean 0 and variance 1 to give a noisy version yi=f(xi)+(i of the true function f(x). The true curve peaks at f(0.175)(2, and tails off rapidly being flat at f(x)(0.3 after x=0.25. 

Select K=19 knots placed at the 5th, 10th..95th percentiles of the observed (i.e. sampled) x. With a cubic spline model, first apply a regression selection to the coefficients at each knot, with 

          yi ~ N((i,(2)

           (i= (0+(1xi+ (2xi2 + (3xi3  +  eq \O((,k=1,K) gk(k(xi - tk)eq \O(+,3) 
          gk ~ Bernoulli (0.5)

where (k as fixed effects. Second, apply the penalized random effects method for (k (section 10.5.1) without coefficient selection. Which method better reproduces the underlying true series f(x) and which is more complex?

10.5 Apply a RW1 prior in a general additive model (section 10.6.2) for the binomial taxoplasmosis data. For identifiability in a model including the intercept the smooth must be centred. The code is then


model { for (i in 1:n) { y[i] ~ dbin(p[i],N[i])

                                         logit(p[i]) <- gam0 + S[i]-mean(S[])

                                         S[i] <- f[O[i]]}

# prior on smooth

for (t in 2:G) {f[t] ~ dnorm(f[t-1],P[t])

                         P[t] <- Pr/delta[t]}

# initial value of smooth

                       f[1] ~ dnorm(0,0.01)

# smooth precision

                      Pr ~ dgamma(a,b)

# intercept

                     gam0 ~ dnorm(0,0.001)}

Obtain the number of distinct values (G) from the dataset and also the categories O[i] (( 1,..,G) for each observation. How does the coding need to change in the line for logit(p[i]) if the intercept is omitted? For the gamma parameters (a,b) in the prior on the precision try a=b=0.5 and a=2,b=0.5. How do the smooths obtained under either case compare to the cubic spline in Figure 10.1 in terms of fit and precision (complexity)? Finally repeat the analysis using an RW2 prior for f[t].

10.6 Analyse the prosecution success data in relation to reporting delay (Example 10.7) but without using the augmented data approach. A logit link may be less prone to numeric overflow. Assess the precision of the smooths under this method as compared to those obtained when the latent y* is also sampled. 

10.7 Apply the Fourier series prior (section 10.6.1) to the Canadian prestige data using both geometric and algebraic smoothers. A possible code for the smooths S1 and S2 in education and income (with M1=96, M2=100 and assuming equal L for both series, e.g. L=10) is
for (i in 1:G1) { S1[i] <- sum(g1[i,])

for (k in 1:L){

  g1[i,k] <- th1[k] * sqrt(2/range[1])*cos(3.1416*k*del1[i]/range[1])}}

for (i in 1:G2) {S2[i] <- sum(g2[i,])

for (k in 1:L){

  g2[i,k] <- th2[k] * sqrt(2/range[2])*cos(3.1416*k*del2[i]/range[2])}}

for (k in 1:L) {  

th1[k] ~ dnorm(0,tau1[k]);            tau1[k]  <- tau[1]*exp(gam[1]*k)

th2[k] ~ dnorm(0,tau2[k]);            tau2[k]  <- tau[2]*exp(gam[2]*k)}

where del1 and del2 are differences (compared to the minimum education and income values) for ascending distinct values on each variable.
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� Kmenta (1967) presents a linear approximation to the two-input CES function, employing


a Taylor approximation and Hoff (2004) considering a linear approximation with K>2 inputs.





� The chosen likelihood form can be implemented in WINBUGS as a non-standard sampling density using the device of creating dummy data values Ci=1 for all i, with likelihood probabilities


                  Ci ~ Beta(pi)


where for example pi=(2)0.5 || y-1exp[-0.5(yi-bxi)2]. The zeroes trick can also be used. 





� Data kindly provided by Andrei Rogers.
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