Chapter 15 Measurement Error, Seemingly Unrelated Regressions, and Simultaneous Equations

15.1 Introduction

Linear and general linear models generally assume predictor variables to be measured without error, and not correlated with the regression error. In practice measurement error in predictors is frequently present, and can attenuate effects and change the shapes of polynomial & nonparametric regression (for reviews see Zeger et al, 2000; Chesher, 2000 and Schennach, 2004). Measurement error in categoric variables through misclassification is important in medical applications, in diagnosis and screening for disease (Savoca, 2004; Gustafson, 2003). Measurement error may be incorporated in techniques discussed in earlier chapters, for example in multi-level regression as well as more standard regression problems (Browne et al, 2001; Fox & Glas, 2002). 

In equation systems there may be stochastic dependence between several responses. Endogeneity in recursive models, as in endogenous switching models for count data (Kozumi, 2002), or in recursive systems for normal metric data (Zellner, 1971), may require relatively minor modifications to standard regression assumptions. Allowing for full simultaneity raises more complex issues regarding identification and specification of priors for error terms correlated over equations and with endogenous predictors (Rothenberg, 1973). In all such models a Bayesian analysis allows identifiabity constraints in the form of stochastic prior information, rather than exact (deterministic) constraints (Zellner, 1971, p. 117; Dreze and Richard, 1983). 

15.2 Measurement Error in Both Predictors and Response in Normal Linear Regression

Measurement error regression techniques apply when one or more of the true predictors, denoted X1,..Xp, are measured with error. There are also likely to be exogneous predictors Z1,..Zq that are accurately measured. Consider a linear model with a single true predictor Xi1=Xi and a true response Y,

                  Yi= β0+β1Xi    

             (15.1.1).

The true values are assumed to be related to the observed values {yi, xi} with additive zero-mean errors:

                    yi=Yi+εi
                    xi= Xi+δi                                    (15.1.2)

where εi ~ N(0, ( eq \O(2,()),  δi ~ N(0,( eq \O(2,()) are uncorrelated with each other. Since the predictor X is measured with error, a model for the true X values is also specified. The ‘structural approach’ assumes a parametric model for the X, e.g. 

                   Xi =(X+(i 

with (i ~ N(0, ( eq \O(2,()), and with Xi independent of εi and δi. Then cov(X,()=0 and

                 Var(x) = Var(X)+var(()=( eq \O(2,() + ( eq \O(2,()
The true regression (15.1.1) can be rewritten in terms of observable data as

                yi = (0 + β1xi + (i -β1(i 

                    = β0+ (1xi+wi
where wi= (i-β1(i. This relation cannot be estimated by a regression of y on x, because x and w are correlated, with

        cov(x,w)=cov(X+(,(-β1()=cov(X+(,-β1()= -β1( eq \O(2,(). 

Let Z be exogenous, with a regression of y on x and Z having mean eq \O((,~)0+eq \O((,~)1xi+eq \O((,~)2Zi. Gustafson (2003, p 62) provides the posterior densities P(y|x,Z) and P(x|Z) for a ‘collapsed model’ with X integrated out. Thus  

           y|x,Z  ~ N(eq \O((,~)0+eq \O((,~)1xi+eq \O((,~)2Zi, eq \O((,~)2)

where eq \O((,~)1=(1/[1+( eq \O(2,()/( eq \O(2,()] illustrates attenuation of the true regression effect β1 in a model using inaccurate x rather than true X.

The above measurement model is non-differential in the sense that Y and y are conditionally independent of x given the true predictor X. If the observations include predictors measured without error, nondifferential measurement error requires P(Y|X,x,Z) = P(Y|X,Z) (Buzas et al, 2004). Hence 

     P(Y,X,x,Z) =P(Y|X,x,Z)P(X,x,Z)=P(Y|X,Z)P(x|X,Z)P(X|Z) 

since Z is known. These independence assumptions are typical also of measurement error general linear models for discrete outcomes (Aitkin and Rocci, 2002).

The specification in (15.1.2) is known as the classical measurement model. Alternatively, a Berkson measurement error model (Wang, 2004) has

                           yi=Yi+εi
                           Xi= xi+δi
where the x are known with certainty and the X fluctuate around known x - see Stephens & Dellaportas (1992) who outline Gibbs sampling under Berkson errors. The Berkson model may be appropriate in experiments with preset levels of a dose or treatment input. Administered quantities of an injected drug, say, are at levels x=1,2,3..cm3 but actual concentrations X in a patient will depend on the patient’s physiology. Thus x is no longer random and a more appropriate model for the latent variable X is that its values are centred on the fixed series of experimental values of x.

A slightly different specification to (15.1.1) is the ‘errors in equation’ model where the relation between the true variables is subject to error                        

                          Yi= β0+β1Xi + ui                                                   
with zero-mean random effects ui independent of Xi with xi= Xi+δi and yi=Yi+(i as above. For example, under Friedman’s model relating permanent income Yi and permanent consumption Xi, the true regression is one of simple proportionality:

              Yi = β0+β1Xi + ui





where the errors ui are mutually uncorrelated, and uncorrelated with X. However, observed totals of consumption and income xi and yi include randomly distributed or ‘transitory’ components,  (i   and  (i  respectively. 

15.2.1 Prior Information on X or Its Density

Information on the distribution of Xi may consist of knowledge about parameters (e.g. about the typical level mX of X) or the form of its density, as in a normal model Xi ~ N((X, ( eq \O(2,()), (X~N(mX,VX). Information on X may also include relationships to ancillary causal influences Z measured without error. Then a modified version of (15.1) has three components, namely a (non-differential) measurement error model

                     xi = Xi + (i



(15.2.1)

a response model

                     yi= β0+β1Xi +β2Zi + (i

(15.2.2)

and a model interrelating X or x to accurately measured predictors, such as 

                     Xi=(0+(1Zi+(i
 

(15.2.3).

This can be reframed (Aitkin and Rocci, 2002; Rabe-Hesketh et al, 2003) as a model involving a regression of x on Z. 

In epidemiological applications, the relationship P[Xi|Zi,(E] between accurately measured risk factors or demographic attributes Zi, and latent risk variables Xi, is known as the exposure model (Richardson, 1996; Gustafson, 2003). The exposure model might model X by regression on Z or by stratifying on Z. The measurement model describes the relationship P[xi|Xi,(M] between observed xi and true Xi , while the response model specifies the impact of Xi, or both Xi and Zi, on probabilities of the disease, P[yi|Xi,Zi,(R]. In econometric applications regressing x and/or y on Z produces an instrument for X (Judge et al, 1988, 585-591). For example, in an income-consumption model, latent ‘permanent consumption’ X may be related to accurately known investment and government expenditure totals Z1 and Z2. 

Let (=((M,(R,(E) so that the totality of unknowns is ((,X). Posterior updating, including the density assumed for X, takes the form (Dellaport as and Stevens, 1995; Gustafson, 2003):

           P((,X|y,x) ( P(y|X,(R,x)P(x|X,(M) P(X|(E)P((R, (M, (E)

where the form of (15.1.1) implies

           P(y|X,(R,x)= P(y|X,(R)

If accurate predictors Z are included in the model, the posterior has the form

    P((,X|y,x,Z) ( P(y|X,Z,(R)P(x|X,(M) P(X|Z,(E)P((R, (M, (E).

It may be noted that identifiability of X is affected by the form (e.g. normal or non-normal) assumed for the density of X, and in fact identification may be improved if X is non-normal (Reiersøl, 1950; Roy & Banerjee, 2006). Aitkin and Rocci (2003) present an example from Fuller (1987) where x (and hence X) is best modelled as a discrete mixture and is clearly non-normal. Rabe-Hesketh et al (2003) adopt nonparametric mixture modelling of X as a general strategy, and Gustafson (2003, p 81) describes a discrete grid mixture approach. Zellner (1971, p 133) suggests a conditional analysis for the normal linear measurement error model, whereby Xi set to its estimated mean, for λ=( eq \O(2,()/( eq \O(2,() given, under a maximum likelihood model, namely 

                  Xi | λ = [(xi+(1(yi-(0)]/[(+( eq \O(1,2)].

Identifiability may also be improved by including nonlinear impacts of X in the true regression model, i.e. 

                   y= β0+β1X+β2X2 + (                                                   
since then var(y|x) is no longer constant, but a quadratic in x (Huang & Huwang, 2001; Gustafson, 2005).

Consider the linear measurement model for metric variables (15.1) and let (=((0,(1, (X, (eq \O(2,(),(eq \O(2,(),(eq \O(2,()). There are six unknowns but five parameters which are identified by the data (Zellner, 1971, p 128; Gustafson, 2005; Aitkin & Rocci, 2002). Whereas classical analysis typically involves deterministic identifying restrictions, in a Bayesian analysis identification may be based on stochastic restrictions or prior information. Informative prior assumptions that provide identifiability include the cases when

(a) (eq \O(2,() or (eq \O(2,() is known or has a known density;

(b) the variance ratio λ=(eq \O(2,()/(eq \O(2,() is known or follows an informative density (Zellner, 1971);

(c) β0, the intercept, is known (Zellner, 1971, p 128);

(d) the ratio var(x|X)/var(X)= (eq \O(2,()/(eq \O(2,() is assumed to be known or to be under 1, and possibly follow a beta density (Gustafson, 2005, p 124);

(e) the ‘reliability coefficient’ 

       κ=(eq \O(2,()/[(eq \O(2,()+(eq \O(2,()]=[var(x)-(eq \O(2,()]/var(x) 

is known or follows an informative prior. 

Note that when the analysis includes an exogenous variable Z, 1-( = (eq \O(2,()/var(x) has an upper limit 1-r2 where r=corr(x, Z). Maddala (2001) gives an example with y imports, x gross domestic product (measured with error) and Z consumption (accurately measured), with r(x,Z)2=0.99789. So the variance of the measurement error in x cannot exceed 0.211% of the variance of x.

Sometimes there may be repeated observations xit, t=1,..T that improve the estimate of X, provided X is assumed constant, for example

           xit = Xi+δit               (it ~ N(0, (eq \O(2,())

In some circumstances the relationship between x and X may be estimable from a calibration or validation sub-sample in which both measures (the ‘true’ measure and its proxy) are obtained.  Alternatively information on X may be improved by pooling information over several manifest variables all assumed to reflect the same underlying X (Richardson, 1996), as in structural equation models (Chapter 12). An illustration of this approach to predictor measurement error for multi-level models is provided by Fox and Glas (2003), with the multiple surrogates x being binary test items but X being continuous ability. For their level 1 model they assume

       yij= (0j+(1jZ1ij+(2jZ2ij+…+(qjZqij+(1jX1ij+(2jX2ij+…+(pjXpij

with the measurement model for Xk involving m=1,..,Kk observed level 1 binary items in a data augmented binary regression 

       Pr(xijm=1)=Pr(x*ijm>0)

        x*ijm= (0mk+(1mkXkij +uijm
with u normal corresponding to a probit link. They propose a similar measurement error model at level 2 involving predictors Wj measured with error and proxied by a set of level 2 binary items.

15.2.2 Measurement Error in GLMs

In general linear models with count or binomial data, measurement error results in overdispersion and adopting standard remedies to overdispersion (e.g. negative binomial rather than Poisson regression for count data) may result in mis-specification (Guo and Li, 2002). In multi-level or panel generalized linear mixed models, the model relating true X to accurate predictors Z may involve random cluster intercepts or slopes. For panel data suppose yit ~ Poi((it), i=1,..n, t=1,..T, with Xit being unobserved true values on a predictor, imperfectly measured by xit, and Zit a covariate measured without error, then the “heterogeneous case” of Wang et al (1997) is 

       log((it)=(+(xXit+(ZZit+bi+(it
        xit=Xit+(it
        Xit=(X+(i+(Zit+(it
where bi and (i are random cluster effects and (it represents remaining overdispersion.

For spatial health data, extra information on an ecological risk factor X is provided by spatial correlation in risk and in the disease itself rather than repetition over time. Thus in Bernardinelli et al (1997), the interest is in the relation of IDDM incidence counts y in 366 Sicilian communes (over 1989-92) to X, population resistance to IDDM based on historic exposure to malaria. Resistance cannot be measured directly but is related to an accurately measured variable, Zi, namely geographic patterns of malaria cases in a year prior to the 2nd world war (1938), when malaria was last widespread. The exposure part of the model assumes historic case counts Zi are binomial in terms of known populations Ni and incidence rates θi
   Zi ~ Bin(θi,Ni)

and that logits of the malaria incidence rates are centred at the unknown resistances Xi as follows,

           logit(θi) ~ N(Xi,ρ). 

Bernardinelli et al (1997) justify informative choices of the variance (, as the data supplies no information on this parameter. The underlying true risks Xi are assumed spatially correlated according to an ICAR prior (Chapter 9). The disease model is Poisson with expected counts Ei based on known age/sex structures of populations in 1989-92. Thus

Yi ~ Poi(Eiφi)

         log(φi) = β0i + β1Xi + si 

where variation in IDDM incidence, si, beyond that due to historic resistance X,  also follows an ICAR prior. 

Example 15.1 Single Predictor Regression with asymmetric true X 

Cheng and van Ness (1998, p 123) present n=36 points for a univariate regression in which the true predictor X is generated as a chi-square with 4 degrees of freedom (i.e. with E(X)=4 and Var(X)=8). The observed predictors are generated according to xi=Xi+δi, δi ~ N(0, (eq \O(2,()). The observed responses are generated according to yi=Yi+εi where εi~N(0,(eq \O(2,()) and the true regression model is Yi=β0+β1Xi. The underlying parameters are (eq \O(2,()=(eq \O(2,()=1, β0=0, β1=1. The observations, presented by Cheng and van Ness, are then {y, x} with X being among the unknowns. 

Here we seek to estimate the regression of y on X knowing only these observations but not the generating mechanism. The assumed exposure model for the true X assumes X positive and allows for uncertainty about Var(X). Thus X ~ Ga((Xb,b) where (X ~ Ga(1,0.001) and b ~ Ga(1,0.001). Similarly, although it is known that λ=(eq \O(2,()/(eq \O(2,()=1, one can allow for uncertainty in this ratio in a gamma prior, ( ~ Ga(1,1). This provides relatively little information on the relationship between error variances except to centre ( at 1. Diffuse proper priors are assumed for {β0,β1} and 1/(eq \O(2,().  

The 2nd half of a two chain run of 20000 iterations suggests the six unknowns to be at least weakly identified, partly in line with X being taken to follow a known (albeit non-normal) density and ( taken to be mildly informative (Table 15.1). 

Table 15.1 Chi-squared true X. Posterior Summary

Parameter
Mean
St devn
2.5%
97.5%


0.31
0.38
-0.39
1.12


0.99
0.08
0.83
1.16


0.39
0.70
0.00
2.54

(eq \O(,X)
4.16
0.65
3.03
5.59

Var(X)
13.55
7.34
5.79
30.32

(eq \O(2,()
0.36
0.45
0.00
1.51

(eq \O(2,()
1.73
0.65
0.50
3.08

The analysis reproduces the regression parameter (1 with mean 0.99, though (0 is overestimated with mean 0.33. By contrast,  standard normal regression of y on x estimates (1 as 0.85 and (0 as 0.87. As one would expect E(X)=( is estimated well with mean 4.1 but var(X) is overestimated with mean 13.3 and median 12. The posterior profile on ( puts more weight on the lower values than the prior mean of 1. The posterior means (medians) of (eq \O(2,() and (eq \O(2,() are 0.36(0.14) and  1.7(1.7). A more informative Ga(1,1) prior on (eq \O(2,() leads to posterior estimates of {(,(eq \O(2,(),(eq \O(2,()} closer to the true values but the posterior mean of 0.93 for (1 is less close to the true mean. 

Example 15.2 Zellner Sample  and shifted Gamma prior for X

As another instance of non-normal modelling of the underlying X consider data generated by Zellner (1971, p.137). Zellner generates data for i=1,..20 points assuming

                    yi = (0 + (1Xi+ (i
                    xi = Xi+(i
with (0=2, (1=1, (i ~N(0,1), Xi ~ N(5,16), and (i ~ N(0,4) (so (=0.25). The resulting x and y vectors are 

x=(1.42,6.27,8.85,8.53,-5.4,13.78,5.28,6.3,9.87,11.36,1.96,

1.41,0,3.21,9.04,1.47,8.53,7.35,6.69,5.8) 

and 

y=(3.7,6.93,8.92,14.04,-0.84,16.61,4.41,9.82,12.61,10.17,4.99,

6.65,2.87,4.02,10.2,1.95,10.67,9.16,8.55,10.25). 

Informative priors (weakly based on the observed x) are used to establish a non-normal prior for X, namely

                Xeq \O(*,i) ~ Ga(a1,a2)

                Xi= Xeq \O(*,i) - a3
where a1,a2,a3 are positive unknowns. This model takes account of the observed negative x values and so allows negative X values. An alternative would be to add a known constant to the observed x values to ensure they are clearly positive. 

We take a1 ~ Ga(10,1), a2 ~ Ga(1,1) and  a3~Ga(10,1). A two chain run of 20000 iterations (convergent from 5000) gives estimates as in Table 15.2 and reproduces the generating mechanism reasonably effectively, with the difference between a1/a2 and a3 close to the mean of X.  ( is assigned a Ga(1,1) prior and has a posterior mean of 0.17.

Table 15.2 Shifted Gamma Model for true X

Parameter
Mean
2.5%
97.5%

a1
10.62
5.75
16.63

a2
0.73
0.42
1.13

a3
8.95
5.93
13.16

0
1.83
0.27
3.21

1
1.06
0.87
1.29

Example 15.3 CHD and Fibre in Diet

To illustrate an application of a three component exposure/measurement/response model consider a dietary disease link with binary response; dietary data are well known to contain measurement errors (Michels et al, 2004). Morris et al (1977) investigate the relationship between Y (a binary indicator of CHD) and X, dietary fibre, with positive observations xi subject to error; see also Skrondal & Rabe-Hesketh (2003). The 333 respondents are a mixture of office workers and transport staff (drivers, conductors), with Z1=1 for transport staff and Z2=age (centred), both predictors being measured without error. Moreover for a subsample of 76 respondents, there are two records xit, t=1,2, so that replication improves the estimate of X for some subjects. 

As described above, the exposure component of a measurement error model may relate X to risk factors or attributes measured without error. Here X is modelled as a function of Z1, Z2 and an interaction Z1Z2 while the disease model uses the same predictors and the latent X also. So 

                 Yi ~ Bern((i)

                 logit((i)= (0+ (1Z1+(2Z2 +(3Z1Z2+(4Xi
                 Xi ~ N((i,(eq \O(2,())

                 (i=(0+ (1Z1+(2Z2 +(3Z1Z2
The measurement model, including a MAR assumption for missing xi2, is

                  xit ~ N(mit, (eq \O(2,()), t=1,2

                  mit=(0+(1I(t=2)+Xi
where (1 measures drift in the fibre records. This model effectively makes X into centred measures of true fibre intake. 

Diffuse priors are assumed for all coefficients except (4, with the prior on xit specifying non-negative values. For (4 a N(0,1) prior is specified for numeric stability given that the x measures average 17. The 2nd half of a two chain run of 5000 iterations shows a negative effect of X on the chance of CHD, with 95% interval (-0.25,-0.04); Table 15.3 gives a posterior summary for the main parameters.

Table 15.3 CHD and dietary fibre

Parameter
Mean
St devn
2.5%
97.5%

(eq \O(2,()
7.22
1.13
5.35
9.73

(eq \O(2,()
23.54
2.51
18.85
28.78


-1.27
0.48
-2.15
-0.28


0.04
0.06
-0.07
0.16


-0.32
0.32
-0.96
0.30


-0.03
0.07
-0.16
0.10


-0.14
0.05
-0.25
-0.04


4.72
2.78
-1.40
9.34


-0.21
0.10
-0.41
-0.02


-1.80
0.62
-3.01
-0.60


0.17
0.11
-0.04
0.39


13.35
2.76
8.94
19.65


0.18
0.41
-0.64
0.98

15.3 Misclassification of Categorical Variables

If categorisation of binary or multinomial outcomes is subject to error, then one obtains misclassification models (e.g. see Copas, 1988 from a classical perspective, and Rekaya et al, 2001, Winkler and Gaba, 1990, Paulino et al, 2003, Swartz et al, 2004, and Evans et al, 1996, from a Bayesian perspective). For binary data, the misclassification probabilities relate to the chances that a) the observed response y=1, given that the true response Y=1 (a ‘true’ positive), and (b) the observation is y=0, when the true classification is also Y=0 (a true negative). This scheme might be relevant if y is based on fallible judgement (e.g. y=1 for positive diagnosis under a screening tool with low sensitivity), or for survey responses that relate to questionable behaviours (Winkler and Gaba, 1990). Count data can also be subject to misclassification with false negatives resulting in counts that are understated and false positives resulting in exaggerated counts (Stamey et al, 2004). 

For binary data, let Yi be the true status and (i be the probability that Yi=1 (or true prevalence rate), which might be modelled in a logit or probit regression on predictors (Paulino et al, 2003).  Also let (1 be the probability that a Y=1 is misrecorded as y=0 (false negative) and (0 the probability that Y=0 is misrecorded as y=1 (false positive). Then the probabilities of the actually observed yi are

         Pr(yi=1) = Pr(yi=1|Yi=1) Pr(Yi=1)+Pr(yi=1|Yi=0)Pr(Yi=0)

                      = (1-(1) (i + (0(1-(i)



(15.3.1)

and similarly

         Pr(yi=0) = Pr(yi=0|Yi=1)Pr(Yi=1)+Pr(yi=0|Yi=0)Pr(Yi=0)

                       = (1(i  + (1-(0)(1-(i)  



(15.3.2)

The likelihood cannot identify (i separately from {(0,(1} because various combinations of true prevalence and misclassification rates are compatible with the observed success rates. However, a Bayesian analysis allows identification using informative priors on the (j; for example, misclassification rates are typically small in practice and there may be substantive reason to expect one error to be smaller than the other. 

Consider the simplification (1=(0=( in (15.3), so that

       Pr(yi=1) = (1-() (i + ((1-(i)




       Pr(yi=0) = ((i  + (1-()(1-(i)  




and let Mi be an unknown subject level index equalling 1 when there is misclassification. Then with prior Mi ~ Bern((), the full conditional is

        Mi |(,(i ~ Bern(qi)

where (Rekaya et al (2001),

        qi=[((eq \O(i,1)-yi (1-(i)yi]/ [((eq \O(i,1)-yi (1-(i)yi+(1-()(eq \O(i,yi) (1-(i)1-yi].

For Poisson data, let yi be the observed counts and consider the true unobserved counts Yi. With exposures Ei (e.g. times, populations) suppose Yi ~ Po(Ei() so that false negatives Feq \O(N,i) are a subset of Yi. Specifically

           Feq \O(N,i) ~ Bin(Yi,().

Also false positives Feq \O(P,i) are included in the actual counts yi at a rate (. The observed counts yi=Yi - Feq \O(N,i)+ Feq \O(P,i) are subject to exaggeration through false positives and depletion though false negatives, with

            yi ~ Po(Ei ()

            ( =((1-()+(.

The misclassification approach can be applied to multivariate data (i.e. a form of latent class analysis). Much work has been done on plural binary indicators (yij, j=1,P} of a binary ;true status Yi, especially on binary diagnostic tests (or results on the same test but from different assessors) in the absence of a gold standard. Let Sj=Pr(yij=1|Yi=1) be the sensitivity of the jth test, i,e, the probability it gives a positive result when a patient in fact has the disease; also let Cj=Pr(yij=0|Yi=0) be the specificity of the jth test. Fully identified classical estimation of these parameters and the prevalence (=Pr(Yi=1) depends on having at least four diagnostic items yij (Dendukuri and Joseph, 2001). Identifiability may also be improved by introducing risk factors Z with known role in causing excess risk, so that informative priors can be used on the link between Y and Z (Paulino et al, 2003; Gustafson, 2005). 

In a Bayesian analysis identifiability may be gained even for the case of two tests by using prior information on Sj and Cj (Joseph et al, 1995). Gustafson (2005) demonstrates the importance of informative priors on these classification probabilities for a partially nonidentified model (such as that for two tests only). For two tests, arrange the observed disease classifications, y1 and y2, according to a two way table. Thus n11 denotes the number of patients classified as positive (i.e. as having the disease) under both tests (i.e. y1=y2=1); n10 is the number classified positive under test 1 but negative under test 2, and n01 as the number positive under test 2 but negative under test 1. Finally n00 is the number classed negative under both tests. Among the n11 patients positive under both tests, a certain number r11 will be true positives and the remainder will be disease free. Assuming the two tests are conditionally independent given true disease status (as in LCA), the total probability can be written

  Pr(y1=1,y2=1|Y)=Pr(Y=1)Pr(y1=1|Y=1)Pr(y2=1|Y=1)

                                        +Pr(Y=0)Pr(y1=1|Y=0)Pr(y2=1|Y=0)

                            = (S1S2 + (1-()(1-C1)(1-C2)

Hence the true positive total T1 will be Binomial from n11 with probability

                    (S1S2 / [(S1S2 + (1-()(1-C1)(1-C2)]

Under conditional independence of tests given disease status, the total probability of being classified as positive under test 1 but negative by test 2 is

Pr(y1=1,y2=0|Y)=Pr(Y=1)Pr(y1=1,y2=0|Y=1)

                                   +Pr(Y=0)Pr(y1=1,y2=0|Y=0)

                          = ( S1(1-S2) + (1-() (1-C1)C2
Hence true positives T2 among the set of n10 patients are binomial with probability

           ( S1 (1-S2) /[( S1 (1-S2) + (1-() (1-C1)C2]

Similarly true positives T3 and T4 among the n01 and n00 subtotals are binomial with probabilities  

          ( (1-S1)S2 /[( (1-S1 )S2 + (1-() C1(1-C2)]

and

          ( (1-S1)(1-S2)/[( (1-S1)(1-S2)+ (1-() C1C2]

The beta conditionals for (, S1, S2, C1 and C2 are updated using relevant Tj. For example if the prior for S1 is Beta(aS1,bS1) then the full conditional is

          Beta(T1+T2+aS1,T3+T4+bS1)  

Gustafson (2004) considers the possible gain in identifiability by stratifying on a single binary risk factor Z, with possibly different prevalences according to the level of Z, (1=Pr(Y=1|Z=1) and (0=Pr(Y=1|Z=0). Then for c=0,1

   Pr(y1=a,y2=b|Y,Z=c)

            =(cPr(y1=a|Y=1)Pr(y2=b|Y=1)

                   +(1-(c)Pr(y1=a|Y=0)Pr(y2=b|Y=0)

         = (cS eq \O(1,a)(1-S1)1-aS2S eq \O(2,b) (1-S2)1-b

                   +(1-(c) C11-a (1-C1)A C21-b (1-C2)b
Dendukuri and Joseph (2001) consider the case where tests are not independent given status (see Chapter 12 on local dependence), since y1 and y2 are likely to be positively correlated: borderline subjects susceptible to misclassification by one test are likely to be similarly susceptible under other tests.  Let (D be the correlation among diseased subjects and (U among the undiseased. Then the preceding scheme is modified to produce

  Pr(y1=1,y2=1|Y=1) = S1S2+(D
  Pr(y1=1,y2=0|Y=1) = S1(1-S2)-(D

  Pr(y1=0,y2=1|Y=1) = (1-S1)S2-(D

  Pr(y1=0,y2=0|Y=1) = (1-S1)(1-S2)+(D

  Pr(y1=1,y2=1|Y=0) = (1-C1)(1-C2)+(U
  Pr(y1=1,y2=0|Y=0) = (1-C1)C2-(U

  Pr(y1=0,y2=1|Y=0) = C1(1-C2)-(U
  Pr(y1=0,y2=0|Y=0) = C1C2+(U
With three tests or readers {y1,y2,y3}, there are eight possible diagnosis combinations n000, n001, n010, n011, n100, n101, n110 and n111. Assuming conditional independence given true disease status Y, the true positives are binomial among the nabc with probabilities

               Pr(Y=1)Pr(y1=a,y2=b,y3=c|Y=1)/

[Pr(Y=1)Pr(y1=a,y2=b,y3=c|Y=1)+Pr(Y=0)Pr(y1=a,y2=b,y3=c|Y=0)]    (15.4)
In terms of the model parameters these probabilities are given by

=((S eq \O(1,a) (1-S1)1-aS2 S eq \O(2,b) (1-S2)1-b S eq \O(3,c) (1-S3)1-c)/

[(S eq \O(1,a) (1-S1)1-aS2 S eq \O(2,b)(1-S2)1-bS eq \O(3,c) (1-S3)1-c+ (1-()C11-a(1-C1)A C21-b (1-C2)bC31-c(1-C3)c]

Example 15.4 HPV Infection

Paulino et al (2003) consider a single, possibly misclassified, binary diagnostic measures yi of human papillomavirus infection (HPV) among i=1,..,104 women attending family planning clinics. They gain identifiability by using informative prior information on the false negative and false positive rates of this test, together with information on the links between HPV and three accurately measured binary risk factors. These are Z1= history of vulvar warts, Z2=whether new sexual partner in the last two months at baseline, and Z3=history of herpes simplex. They use the method of Bedrick et al (1996) to assign informative priors to each of four vector combinations Zk=(Z1k,Z2k,Z3k) of predictor values, namely Z1=(1,1,1),Z2=c(1,0,0), Z2=c(0,1,0), and Z3=c(0,0,1). Here a logit link is used with

        (i=exp((0+(1Z1i+(2Z2i+(3Z3i)/

                      [(1+exp((0+(1Z1i+(2Z2i+(3Z3i)]

with prior information on predictor effects expressed as odds relative to a median of 0.25 for the baseline risk of (B=exp((0)/[(1+exp((0)], when Z1=Z2=Z3=0. 

Thus (0 ~ N(-1.1,1), while each risk factor has a prior (k ~ N(0.3,1), implying a prior median relative risk of 1.2 (the ratio of ((Zk=1,Zj=0,(j(k) to (B) for each risk factor Zk. This is broadly consistent with the excess risk pattern under different covariate combinations specified in Paulino et al (2003, Table 2). Informative beta priors on (0 and (1 (false positive and false negative rates) follow those used by Paulino et al. 

Iterations 1000-5000 of a two chain run replicate Paulino et al in showing only Z2 (new sexual partner) as a significant risk factor, but show a higher false negative rate (mean 0.075) than false positive rate (mean 0.05) whereas Paulino et al report them as approximately equal at around 0.057-0.059.

Example 15.5  Pleural Thickening

Walter and Irwig (1988) present binary assessments of pleural thickening for 1692 males obtained from three independent radiologists.  The totals n000, n001, n010, n011, n100, n101, n110 and n111 are given by 1513, 21, 59, 11, 23, 19, 12 and 34. Identification of the classification probabilities and prevalence with three items is less problematic than for the two item case described above, and Beta(1,1) priors are assumed on the sensitivities and specificities Sj and Cj of the three radiologists. Conditionals for the true positives (with which the conditionals for Sj,Cj and ( are then updated) are as in section 15.3. 

A two chain run of 20,000 iterations (with 1000 burn-in) shows similar specificities for the three radiologists but different sensitivities (Table 15.4).

Table 15.4 Classification Rates & Prevalence

Parameter
Mean
St devn
2.5%
97.5%

C1
0.989
0.004
0.981
0.996

C2
0.964
0.005
0.954
0.974

C3
0.990
0.004
0.983
0.997

S1
0.748
0.066
0.609
0.868

S2
0.630
0.066
0.499
0.754

S3
0.733
0.067
0.595
0.854


0.057
0.008
0.043
0.074

15.4 Simultaneous Equations and Instruments for Endogenous Variables 

The standard assumption of regression is that predictors are independent of the error term. One situation in which this assumption is violated is when there are measurement errors in the predictors, as described above. Another is in a multiple equation system with reciprocal dependence between two or more endogenous variables. Predetermined predictors independent of these feedbacks are known as exogenous and are independent of the error terms. 

Endogeneity between two or more responses causes no major issues in recursive systems in which the coefficients of the endogenous variables form a triangular pattern and the errors in different equations are independently distributed (Maddala, 2001, p 373; Zellner, 1971, p 250). More problematic is the case where the errors are correlated, where for a single predictor x

    yi= (+(xi+ei1                                                (15.5.1)

    xi= (+(zi+ei2                                                 (15.5.2)

where (e1,e2) are bivariate normal with non-zero covariance so that x is not independent of e1. In this situation, z functions as an instrument, related to x but independent of e1 (Bound et al, 1995). 

An example involves the income return to education (Lancaster, 2004). It is likely that education x is endogenous in the equation for wages y since it is correlated with unmeasured factors (e.g. ambition, ability) that also affect wages. The same situation occurs for binary data {yi1,yi2} analysed using latent metric {yeq \O(*,i1), yeq \O(*,i2)} (Li, 1998; Li & Poirier, 2003). Thus one might specify (for several x predictors) 

      yeq \O(*,i1)=a1+byi2+Xi(1+ei1                                                

      yeq \O(*,i2)=a2+Xi(2+ei2                                                      

where 
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.  There is simultaneity between the endogenous responses {yi1,yi2} when (12 (0, but a simple recursive system when (12=0.

One way to estimate the parameters in the structural model (15.5) is via the reduced form that substitutes (15.5.2) in (15.5.1); see van Dijk (2002) and Lancaster (2004). Thus 

    yi= ((+(zi+vi1                                             (15.6.1)

    xi= (+(zi+vi2                                               (15.6.2)

where (=((, ((=((+((), vi2=ei2, and vi1=ei1+(ei2. Estimating (, ( and ( from (15.6) involves a nonlinear multivariate regression, with v1 and v2 taken as correlated. 

Lancaster (2004, p 317) assumes a bivariate normal prior for vi1 and vi2, independent of the prior on the ( coefficients. Rossi et al (2005, p 189) instead analyze (15.5) directly and provide the necessary full conditionals. They apply a bivariate normal prior on (ei1,ei2) which reflects the dependence between {vi1,vi2} and (, namely
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There are potential problems with posterior inferences in the reduced form model when z is a weak instrument’ for x, since ( is obtained by dividing ((=(() by (. This would occur if z explained relatively little variation in x, so that the credible interval for ( included zero (Lancaster, 2004; Rossi et al, 2005).

An example of a fully simultaneous system involves supply and demand for a product as determined by price. In market equilibrium, the quantity demanded qd equals quantity produced qs. Suppose, however, there were an increase in demand so that qd > qs. This disequilibrium causes an increase in price which may curtail demand and encourage greater production until equilibrium is restored. A demand function might also include exogenous factors (e.g. income Yt) and a supply equation might include factor costs (e.g. wages Ft). If prices and quantities are observed over times t=1,..T, this system is represented by two structural equations

             qt = a1 + b1pt + c1Yt + et1                                 (15.7.1)

             qt = a2 + b2pt + c2Ft  + et2                                 (15.7.2)

Because of the simultaneous determination of qt and pt, the errors et1 and et2 are correlated. Note that in this form, both equations are normalized with respect to q (i.e. the coefficient of qt is unity). The instrumental variable approach to this problem would be to define Z=(1,Y,F) and to regress q on PZX where X in the first equation is (1,p,Y) and in the second is (1,p,F). Another possible approach (for small exactly identified systems) involves estimating coefficients the reduced form. Solving equations (15.7) leads to restricted reduced form equations (omitting time subscripts)

         q=(a1b2-a2b1)/(b2-b1)+c1b2Y/(b2-b1) - c2b1F/(b2-b1) +  v1         
         p=(a1-a2)/(b2-b1)+c1Y/(b2-b1) -c2F/(b2-b1) + v2
with reduced form coefficients  π1=(a1b2-a2b1)/(b2-b1), π2=c1b2/(b2-b1),...,π6=c2/(b2-b1). While the reduced form coefficients ( are always identifiable, the structural parameters (a1,b1,c1,a2,b2 and c2 in this example) may not necessarily be uniquely obtainable from them.

A simultaneous equation system may be more generally specified via the structural equations, 

                      YB+XΓ=e

where Y is an nxM matrix of values on endogenous variables, and X is an nxK matrix of all the exogenous variables in the system. B and Γ are parameter vectors (likely to include identically zero cells) summarising the feedbacks in the system, and e is an nxM matrix of errors. Solving for Y gives the reduced form 

                      Y=XΠ+η

where Π=-ΓΒ-1. Whereas Π contains MK parameters, B and Γ may contain up to M2+MK parameters. Identifying restrictions must therefore be imposed where normalization constitutes one form of restriction. The simplest rule for identifiability is the order condition on variables of all types (endogenous or exogenous) missing from an equation as compared to M-1. Thus in (15.7.1), Ft is missing and in (15.7.2), Yt is missing, so both equations are just identified. Over-identification occurs if there are more parameters in the reduced form of an equation than in its original structural form. A necessary and sufficient identification rule is based on the rank condition (Maddala, 2001, Chapter 9). 

Stochastic constraints on parameters, as expressed in priors on them, may ensure identifiability and in a Bayesian analysis can substitute for exact a priori constraints (Dreze and Richard, 1983). Another advantage of a Bayesian approach is greater robustness in small sample size examples where there are potentially asymmetric posterior parameter densities (e.g. see the simulated analysis in Zellner, 1971). The review by Zellner (1998) confirms the advantages of Bayesian estimates of simultaneous equations in small sample data sets.

An instrumental variable estimation technique involves a two stage estimation which starts by regressing each endogenous variable on all the exogenous variables. The predictions  eq \O(y,^)j obtained from this stage constitute estimated instruments (since they are unrelated to error terms in the structural model). These predictions replace the original endogenous variables y1,..yM when they appear on the right hand side of a structural equation. In the supply-demand model instruments  eq \O(p,^) and  eq \O(q,^) would be estimated by regressing p and q on both income Y and factor costs F. Then at the second stage, the structural equations are estimated using unrelated regressions involving the estimated instruments 

                        p= f1(Y,  eq \O(q,^))+u1.

                        q= f2(F,  eq \O(p,^))+u2
where u1 and u2 are independent. This is known as a limited information approach. By contrast, three stage methods are full information methods as they allow correlated errors in the redefined structural equations, as in seemingly unrelated regression (SUR). 

Bayesian likelihood approaches, whether full or limited information (e.g. Chao & Phillips, 1998; Dreze and Richard, 1983; Dreze, 1976; Radchenko & Tsurumi, 2005) are computationally complex, involving sampling from matric-variate normal and  t densities. Zellner (1998) proposed a Bayesian method of moments estimator for simultaneous equation models. This method, along with the approaches of Chao and Phillips (1998) and Kleibergen and van Dijk (1998) are compared for simulated data in the ‘weak instrument’ case by Gao and Lahiri (2003). Kleinbergen and Zivot (2003) develop a Bayesian two-stage approach constructed to mimic two stage least squares.

Example 15.6 Kleins Model for a National Economy

This example uses separate MCMC runs to estimate instruments and then estimates the parameters of a structural model for economic fluctuations in the US in 1921-41. Specifically (a) instruments  eq \O(y,^)1,  eq \O(y,^)2,..  eq \O(y,^)M are estimated as posterior means from regression on all exogenous variables, and (b) in a subsequent analysis, these estimated instruments are used in a system regression that corresponds to the structural model. The structural model involves as endogenous variables: consumption Ct, investment It, private sector wages Wt, public sector wages Weq \O(t,(), income net of taxes Yt, profits Pt, and capital stock Kt. Also endogenous are total wages W+W(, and .the total X=Y+T-W( because one of its constituents Y is endogenous. Exogenous variables are government spending Gt, taxes Tt, time t itself and lagged values of endogenous variables. The time subscript is omitted in the following three structural equations (with the subscript -1 then denoting t-1) and three identities:

              C = β1+ β2P + β3(W+W()+β4P-1  + u1
              I  = (5+β6P+β7P-1+β8K-1+ u2
             W = (9+β10X + β11X-1+β12t + u3
              Y+T=C+I+G

              Y=W+W(+P

              K=K-1+I

Instruments are needed for the endogenous variables in the form they appear on the right hand side in the three structural equations, namely E1=P, E2=W+W( and E3=X. These are obtained in a first stage regression of E1-E3 on the exogenous variables {P-1, K-1, X-1, t, T, G}. 

The subsequent model includes the posterior means Eeq \O(p,j) for the instruments and assumes trivariate normal errors v in the model

             C = β1+ β2 Eeq \O(p,1) + β3 Eeq \O(p,2)+β4P-1  + v1
             I = (5+β6 Eeq \O(p,1)+β7P-1+β8K-1 + v2
             W = (9+β10 Eeq \O(p,3) + β11X-1+β12t + v3
A Wishart prior for the inverse variance-covariance matrix of v is assumed, with diagonal scale matrix and 3 degrees of freedom. The second half of a two chain run of 100,000 iterations of the second stage model yields the parameter estimates in Table 15.5.

Table 15.5 Klein Model I Structural Parameter Estimates
Parameter
 Mean
St devn
2.5%
97.5%

1
15.90
2.03
11.92
19.85

2
-0.11
0.19
-0.49
0.26

3
0.81
0.05
0.71
0.90

4
0.39
0.18
0.06
0.74

5
24.75
5.18
15.76
34.94

6
-0.06
0.09
-0.24
0.13

7
0.87
0.10
0.65
1.05

8
-0.18
0.03
-0.23
-0.14

9
-2.18
1.95
-6.16
1.56

10
0.40
0.06
0.28
0.51

11
0.24
0.06
0.12
0.35

12
0.09
0.04
0.01
0.18

These are similar to those cited by Maddala (2001) from a 2 stage least squares estimation, except that Maddala’s coefficients on P-1 in the consumption equation and on X-1 in the private wage equation are smaller. Maddala’s 2SLS results are

               C= 16.45 + 0.02P +  0.81 (W+W() +0.21P-1
                     (1.46)    (0.13)    (0.04)               (0.12)

               I= 20.28 +  0.15P +  0.62P-1 - 0.16K-1
                    (8.36)    (0.19)    (0.18)      (0.04)

               W= 0.06   +0.44X + 0.15X-1 + 0.13t

                     (1.89)   (0.06)     (0.07)       (0.05)

Example 15.8 Consumption Function

This system consists of a) a stochastic structural equation 

             Ct = α + βYt + et                                       

linking consumption expenditure C to disposable personal income Y, with a coefficient β, the marginal propensity to consume and b) an identity, Yt=Ct+It, where It stands for investment and government expenditure. In this model, investment is assumed exogenous. Data on C, Y and I for the US for 1955-86 is presented by Griffiths et al (1993, p 592), and are in billion dollars (divided by 1000 for numerical convenience). 

Here we regress Ct on PZtXt where PZt=Zt(Zt(Zt)-1Zt( is the projection matrix for Zt=(1,It), and Xt=(1,Yt) (Bound et al, 1995). The analysis seeks to estimate the investment multiplier (=1/(1-() as well as the coefficients themselves. A beta prior is used for ( reflecting economic expectations. Using the last 9000 of a two chains of 10000 iterations, the posterior mean and median for ( (namely 0.876 and 0.882) are similar to those cited by Griffiths et al. A point estimate of ( could use either the mean or median of (, giving multipliers of around 8.3. However, allowing for the uncertainty in ( (especially in its upper range) implies a highly skewed density for (, with mean of 28.7 as against a median of 8.44.

15.5 Endogenous Regression Involving Discrete Variables

For simultaneous and recursive models involving discrete variables those that have received most attention, including Bayesian treatments, are simultaneous probit and tobit models (e.g. Li, 1998; Li & Poirier, 2003; Smith et al, 2004). Bayesian estimation improves on two stage procedures for estimating the simultaneous probit (e.g. Alvarez & Garrett, 1999; Keshk, 2003) or FIML methods (Stratmann, 1992). Both Li (1998) and Smith et al (2004) focus on a triangular two equation system, which for both y1 and y2 binary is

                 yeq \o(*,i1)=(yi2+Xi1(1+ui1
                yeq \o(*,i2)=Xi2(2+ui2
with y1i=1 if y eq \o(*,i1)>0, and yi1=0 otherwise, and similarly for y eq \o(*,i2). Li (1998) considers the tobit-probit case where  yi1=y eq \o(*,i1) if y eq \o(*,i1)> 0, and yi1 =0 otherwise. With augmentation in this way, the system is equivalent to the metric data triangular recursive system of Zellner (1971, p 252). The bivariate normal for (ui1,ui2) has dispersion matrix

                (=
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Li decomposes the joint density as (ui1|ui2)(ui2), so that

                yeq \o(*,i1)=(yi2+Xi1(1+(12 (yeq \o(*,i2)-Xi2(2)+ei
                yeq \o(*,i2)=Xi2(2+u2i
where ui2 is N(0,1), and ei ~ N(0,(11-(eq \O(2,12)). Simultaneous logit and simultaneous multinomial models have also been proposed (Schmidt and Strauss, 1975), while Berkhout and Plug (2004) consider a recursive model for Poisson data.

A specific type of recursive model occurs in what are termed endogenous treatment models. These involve assessing the causal effect of a categorical treatment or exposure variable (usually binary) on a metric or discrete response such as a health behaviour which it is sought to modify. The treatment variable is non-randomly assigned but subject to selection bias, and is therefore endogenous with the response. This is typically the case in observational situations (rather than experimental trials) where treatment is to some degree self-selected, and may be correlated with unobserved patient factors (e.g. compliance, susceptibility to health messages) that also affect the main response. Although called endogenous treatment models, one may include a variety of analogous applications, examples being wage returns to union membership (the “treatment”) as in Chib & Hamilton (2002), and health utilisation according to whether privately insured (Munkin & Trivedi, 2003).

As an example, let yi be a count of adverse health behaviours (number of alcoholic drinks in previous week), let Ti=1 (or 0) for participation (non-participation) in a treatment, where “treatment” might include medical advice to change behaviours, and let Xi and Wi be observed influences on the health behaviour itself and on the allocation to treatment. Then Yi ~ Poi((i),     

      log((i)=Xi(+(Ti + ui1                                   (15.8.1)

where ui1 represents unobserved influences on the health response. For the treatment allocation, an augmented data model is assumed, based on the equivalence Pr(Ti=1)=Pr(Ti*>0), namely

      Ti* = Wi( + ui2                                              (15.8.2)

where ui2 represents unobserved influences on treatment allocation. The correlation between treatment and response is modelled via a bivariate normal or some other bivariate model for ui=(ui1,ui2). Kozumi (2002) considers bivariate Student t models for ui involving normal scale mixing with gamma distributed scaling factors, (i ~ Ga((/2,(/2), while Jochmann (2003) and Chib & Hamilton (2002) sample the (i semiparametrically using a Dirichlet process prior.   With a multivariate normal errors,

       (ui1,ui2) ~ N(0,(u)


                       (15.9.1)

where 

         (u = 
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with the variance of ui2 set to 1 for identifiability. This model may also be expressed with (15.8.1) as 

        log((i)=Xi(+(Ti + (ui1
with  (ui1,ui2)~ N(0,Ru), where Ru is a correlation matrix.

A “common factor” model is also possible, and again assuming a count response with mean (i,

           log((i) = Xi(+(Ti + ((i 

           Ti*          = Wi( + (i + ui
where (i ~ N(0,() and ui ~ N(0,1), with ( a free parameter, and ( interpreted as a factor loading.

Jochmann (2003) and Chib & Hamilton (2002) demonstrate the switching regime version of the endogenous treatment model whereby each subject has a partially latent bivariate observation {yi0,yi1}, one observed, the other missing according to their observed Ti. If Ti is 1 then  yi1=yi and yi0 is missing while if Ti is 0, then yi0=yi and yi1 is missing. Then for yi metric and normality assumed

      yi0 = Xi(0 +ui0
      yi1 = Xi(1+ui1

      Ti*  = Wi( + ui2
where

      (ui0,ui1,ui2)  ~ N((,
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The difference yi1-yi0 is taken as a measure of the impact of the treatment.

Rossi et al (2005) and Manchanda et al (2004) consider a shared factor model for two related longitudinal count responses, with a direct effect of one response on the other also present. The responses are sales yit of prescription drugs to physician i at period t,  and “detailing” totals Dit (i.e. numbers of sales calls) made to the same physicians. Physicians vary in their overall prescribing rates and in responsiveness to sales promotion, so with Yit ~Po((it), one may specify

                  log((it)=(i1+(i2Dit +(i3log(yi,t-1+d),

where d=1, (i1 denotes variation in prescribing regardless of detailing levels, (i2 measures physician responsiveness to sales promotion, and (i3 denote varying lag effects. The random physician effects are possibly related to observed physician attributes Wi (e.g. type of physician), so

                ((i1,(i2,(i3) ~ N2(Wi(,(().

Moreover, detailing efforts (e.g. allocations of sales staff or other marketing promotion directed to different physicians) are related to latent physician effects, via a model such as Dit~Po((i) where

               log((i)=(0+(1(i1+(2(i2 .

For example, (2<0 would mean that less responsive physicians are detailed at higher levels.

Example 15.8 Drinking and Physician Advice

Kenkel and Terza (2001) consider observational data for 2467 hypertensive subjects relating to a count yi of alcoholic beverages consumed in past fortnight, and physician advice on the medical risks of excess alcohol use (T, binary). The model is as in (15.8)-(15.9), 

          log((i)=Xi(+(Ti + ui1                                

         Ti* = Wi( + ui2                                            

          (ui1,ui2) ~ N(0,(u)


                    

           (u = 
[image: image9.wmf]ú

û

ù

ê

ë

é

rs

rs

s

2

1

,

with additional predictors in the Poisson regression X1 (binary, 1=education over 12 years, 0=12 years or less) and X2 (binary, 1 for black ethnicity, 0 =nonblack). In the treatment regression  W1=X1,W2=X2, W3 (binary, 1= has health insurance, 0 uninsured), W4 (binary, 1= receiving registered medical care), and W5 (binary,1=heart condition).  

A Ga(1,0.001) prior is assumed for the unknown variance in ( and an N(0,1) prior for the covariance ((, and N(0,100) priors for the treatment and other fixed effects. The second half of a two chain run of 20000 iterations shows a clear treatment effect that reduces alcohol use (Table 15.6). Alcohol use also falls with longer education, and this variable also reduces the chance of receiving the treatment. The negative treatment effect does not occur under a standard univariate Poisson for y.

Table 15.6 Endogenous Treatment Model, Posterior Summary


Mean
2.5%
97.5%


4.45
3.89
5.08


1.65
1.40
1.92


-2.04
-2.47
-1.62


2.24
2.06
2.43


-0.25
-0.43
-0.07


0.05
-0.21
0.32


-0.59
-0.72
-0.43


-0.22
-0.33
-0.11


0.32
0.17
0.47


-0.21
-0.32
-0.09


0.22
0.12
0.32


0.28
0.16
0.40

15.6 Exercises

1. Consider the normal measurement error model for (y,X,x|Z) with

             yi |Xi,Zi ~ N((+(Xi+(Zi, σ2(), 

             xi |Xi ~ N(Xi, σ2δ), 

             Xi |Zi ~ N((X+(Zi, σ2(), 

     where Z is error free. Show how with transformed X and (   

     this model can be converted to a specification for (y,X,x) 

     involving a regression of x on Z, namely

             yi |X*i,Zi ~ N((+(X*i+(*Zi, σ2(), 

             xi |X*i ~ N(X*i + (Zi σ2δ), 

             Xi ~ N((X, σ2().

     Obtain the  joint marginal density of the observations y and x 

     given the  parameters {(,(,(*, X*i , (, (X, σ2(, σ2δ, σ2(}.

2. Data on corn yield y and nitrogen x are analyzed by Fuller (1987, p 18) who applies the identifiability restriction σ2δ = 57 in a normal linear measurement error model 

                yi= β0+β1Xi+ (i
         

                Xi=(X+(i
                xi= Xi+δi

                        εi ~ N(0,σ2ε),   δi ~ N(0,σ2δ),   (i ~ N(0,σ2().

Instead consider modelling the apparent clustering in x (and hence X) values by adopting a discrete mixture model for X. Consider the change in fit (e.g. DIC) by using one, two and three groups. A two group model with one possible informative prior on 1/σ2δ, namely 1/σ2δ ~ Ga(10,513) may be coded as follows,

       model { for (i in 1:11) {y[i] ~ dnorm(mu[i],tau)

                                              mu[i] <- beta[1]+beta[2]*X[i]

                                              x[i] ~ dnorm(X[i],tau.delta)

         # discrete mixture for X 

                                              X[i] ~ dnorm(muX[G[i]],tauX)

                                              G[i] ~ dcat(pi[1:2])}

                                              pi[1:2] ~ ddirch(alpha[1:2])

         # measurement error variance

                  tau.delta ~ dgamma(10,513)

                  tau ~ dgamma(1,0.001); VarY <- 1/tau

                  tauX ~ dgamma(1,0.001); VarX <- 1/tauX

         # regression parameters 

               beta[1] ~ dnorm(60,0.0001); beta[2] ~ dnorm(0,0.001)

          # cluster means of X

                muX[1]~dnorm(60,0.00001) ; muX[2] <- nu[1]+del[1]

                del[1] ~ dnorm(0,0.00001) I(0,)}
The data are 

 list(x=c(50,51,53,64,64,69,70,70,94,95,97),                      

     y=c(99,96,90,86,91,104,86,96,99,110,115),alpha=c(1,1)).

3. Generate data following the scheme used by Zellner (1971, page 137) for i=1,..20 points, namely

                    yi=( + (Xi+ (i

                    Xi ~ N((X, σ2()

                    xi=Xi+(i
with (=2, (=1, (X=5, σ2(=16, and {(, (} have zero means with σ2ε =1, σ2( =4 (i.e. (= σ2ε / σ2( =0.25).  Using the {x,y} series so generated, try the conditional likelihood approach of Zellner (1971) whereby

            Xi = [(xi+(1(yi-(0)]/[(+( eq \O(1,2)]

     so that it is not necessary to set a prior density for X. Compare inferences about (1 under three priors on (, namely (a) (=0.25 (b) ( ~ Ga(2.5,10) (very similar to the informative prior given by Zellner (1971, p 139)  and (c) (~Ga(0.25,1). Note that (=((/(( when ((=1/σ2ε and ((=1/σ2( are precisions. Also consider inferences on (1 in the case when ((( which occurs when there is assumed to be no measurement error.

4. Consider the normal linear non-differential measurement error model for i=1,..,n

        xi ~ N(Xi,1/(()

        yi ~ N((0+(1Xi+(2zi,1/(()

        Xi ~ N((0+(1Zi,1/(()

Assume flat priors for {(0,(1, (0,(1,(2}, namely P((0) ( 1, etc. Also assume Ga(1,1) priors on  ((, ((, and ((. The posterior density of these parameters and the unknown X is proportional to 

((((((()n/2 exp[-0.5(( eq \O((,i)(xi-Xi)2] exp[-0.5(( eq \O((,i)(yi-(0-(1Xi-(2zi)2]

exp[-0.5((eq \O((,i)(Xi-(0-(1Zi)2] exp(-((-((-(().

Obtain the full conditional densities for the regression and precision parameters and the true X values. Also derive these densities for informative priors on {(0,(1, (0,(1,(2}, e.g. Normal priors (0~N(A0,Va0), and general gamma priors on the precisions, e.g. (( ~ Ga(0.5((,0.5S().

5. Suppose a binary response has true prevalence Pr(Y=1)=( but that observed responses are subject to misclassification with probabilities (0=Pr(y=1|Y=0), (1=Pr(y=0|Y=1). Assuming (0= (1 = (, state the total probability P(yi=1) in terms of the true prevalence probabilities P(Y=1) and P(Y=0) and the conditional probabilities P(y=1|Y=1) and p(y=1|Y=0). Winkler and Gaba (1990, p 307) note that high values of ( are unlikely and provide observed data on a juvenile survey question “have you beaten up on someone”, with r=21, n=104. They assume (~Beta(2,8) and ( ~ Beta(2,18) consistent with a prior misclassification rate of 10%. Find the posterior mean for ( and ( by using the formula for the total probability P(yi=1).

6. Following Kozumi (2002) simulate data under an endogenous switching model with

                yi ~ Po(xi+Ti+ui1)   

                T*i =  1+2zi + ui2
                xi ~ N(0,1); zi ~ N(0,1); ui,1:2 ~ N(0,(u)

with (see eqn 15.9) (2=0.3, and (=0.75. Using the simulated data, estimate the treatment effect (with true value unity) via a standard Poisson regression (without the endogenous treatment feature, that is with (=0) and via the full model allowing correlated errors.
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