Chapter 5 Hierarchical Priors for Pooling Strength and Overdispersed Regression Modelling

5.1 Hierarchical Priors for Pooling Strength and in General Linear Model Regression
Bayesian hierarchical random effects models facilitate the simultaneous estimation of several parameters (i over similar units (schools, areas, medical trials), in order to improve the precision of the estimated effects for each unit and enable inferences associated with an ensemble perspective on the collection of units. Such procedures may be distinguished from complete pooling or homogeneity, with units assumed identical, as in classical meta-analysis, and lack of any pooling (units assumed unrelated, as in fixed effects analysis of area mortality, e.g. Mollie, 1996). Random effects models imply an intermediate strategy in which the estimate for unit i is some form of weighted average combining the original data point with a pooled mean. Among goals may be the assessment of a global treatment effect, the mean of the (i (Hedges, 1997); comparisons between units, either pairwise, such as Pr((2 >(1|y, or comparing (i to all other effects (Deely and Smith, 1998; Morris and Normand, 1992, p 324-325); and institutional or performance rankings, since the posterior distribution of the ranks of the (i may be obtained as part of the MCMC output (Goldstein and Spiegelhalter, 1996; Deely and Smith, 1998). In such applications the prior on the random effects variance is important, and inferences may be sensitive to alternative priors, especially when the number of studies is small (Lambert et al, 2005). Sometimes the analysis would be for multivariate outcomes in which case the pooling strength exploits both similarities between units and correlations between variables (van Houwelingen et al, 2002).

Pooling strength (or shrinkage) over a set of units towards a global mean depends on an exchangeability assumption between such units, with inference invariant to permutation of suffixes (Leonard, 1972; Draper et al, 1993). The notion of exchangeability also has relevance to prediction beyond the sample, i.e. to generalisation of the results to broader settings; for example, Deely and Smith (1998) consider the predictive distribution of a health index in the coming year. Partial exchangeability applies when the data can be divided into subsets within which pooling strength occurs (Albert and Chib, 1997). Other types of shrinkage are also based on hierarchical priors but imply structured smoothing towards a mean of adjacent points (under time series and spatially dependent priors, as in chapters 8 and 9). 

Allowing for random effect variation between units may also be important for regression models for exponential family responses (e.g. Poisson, binomial). In fitting generalised linear models, data sets may show greater residual variability than expected under the exponential family (Albert and Pepple, 1989). Allowing for variability between units, for example by taking prior and sampling density which are a conjugate mixture of exponential family distributions (e.g. gamma-Poisson), is one approach to overdispersion or extra-variation of this kind. Nonconjugate mixing is also often applied, for example using normally distributed errors in the log link (count data) or logit link (binomial data); for example, Chib and Winkelmann (2001) consider this option for correlated count data. Without such procedures to model or correct for excess variation, inferences on fixed effects will be distorted. It may be noted that a regression with constant only is equivalent to exchangeable pooling as discussed above.

In both types of application (exchangeable smoothing and overdispersed regression) inferences may be distorted if heterogeneity is not allowed for (as in complete pooling), or there is no pooling of strength with units assumed unrelated. For example, in epidemiological comparisons between areas, tests involving fixed effects estimates of mortality ratios based on varying populations at risk may be misleading and simply identify areas with larger populations (Molli eq \O(e,(), 1996). At the other extreme, classical meta-analysis based on complete homogeneity may overstate the significance of the global treatment effect. On the other hand shrinkage towards the overall average under a random effects model allowing heterogeneity between units may introduce some bias, and pooling methods may be ‘robustified’ to allow for outliers, or modified to allow partial exchangeability within two or more groups of the original units, with shrinking towards a central value for each group (Albert and Chib, 1997). In regression analysis with observation level random effects, similar robust modelling may require Student t errors or discrete mixture approaches to errors (see also Chapter 6).

5.2 Hierarchical Priors: Conjugate and NonConjugate Mixing

The general situation is as follows: the sequence of data points and underlying true values (yi,θi),i=1,..,n are identically distributed. The density of the observations yi, given θi, is P(yi|θi). At the second stage, the density governing the θi may specify a common mean (under exchangeability) or may involve differing means defined by a regression on predictors Xi (Albert, 1999). The second stage mixture density is governed by hyperparameters (=(λ1,λ2,...(L), the density of which is specified at the third stage. More formally, a three stage hierarchical model has the following components:

1. Conditionally on {θ1,..θn), the data yi are independent, with densities P(yi|θi) which are independent of θj for j(i and of (.

2. Conditionally on ( the true values θi are drawn from the same density g(θ|()

3. The hyperparameters ( have their own density h((). 

For example, the data may be counts yi with Poisson means θi, which under conjugacy are distributed as Gamma((,(/() under exchangeability, or as Gamma((,(/(i), where log((i)=Xi( defines a regression. Similarly binomial data have probabilities θi which are themselves Beta(((,((1-()) under exchangeability or Beta(((i,((1-(i)) under a regression model where typically logit((i)=Xi( (Albert, 1988; Kahn and Raftery, 1996). For normal data the conjugate prior is also normal, with yi ~ N((i,(2) and (i ~ N((,(2) (Gelman et al, 2004, chapter 5).  For categorical data (e.g. voting for different parties) the conjugate density g is the Dirichlet, the multivariate version of the beta density (Bolduc & Bonin, 1998). Parameterisation of the hyperparameters in terms of prior means/probabilities and prior precisions or prior sample size may facilitate the use of prior knowledge in framing informative priors; for instance, the ( parameters in the Poisson-gamma and binomial-beta examples just cited are precisions.

The advent of MCMC and other sampling techniques has, however, facilitated non-conjugate analysis. A frequent example is in the analysis of proportions yi/ni where the data are assumed Binomial, yi ~Bin(θi,ni) and then the proportions are transformed to the real line via ηi=logit(θi) as in Leonard (1972) or via an arcsin transformation as in Efron and Morris (1975). The ηi are then assumed to follow a Normal or Student density. Albert (1996) outlines a general MCMC sampling strategy using Metropolis sampling for first and second stage parameters, {(1,…(n} and {(1,..(L} under both conjugate and non-conjugate prior structures.

MCMC methods also facilitate model fit and checking procedures. For conjugate mixtures (Poisson-gamma, binomial-beta), model assessment may be based on the marginal likelihoods (negative binomial and beta-binomial) when the gamma or beta random effects are integrated out (Albert, 1999). However, it is often of interest to obtain estimates of these random effects (Fahrmeier & Osuna, 2004) and so retain a Poisson or binomial likelihood while explicitly modelling the random effects. One may then assess probabilities that individual cases have significant random effects. For a simple example, suppose yi ~ Po((i) and log((i)= (+ui with ui ~ N(0,(2). One may assess (via repeated sampling) whether the posterior probabilities Pr(ui|y)  indicate clearly positive or negative values, with Pr(ui|y) > 0.95, and Pr(ui|y) < 0.05 respectively (Knorr-Held and Rainer, 2001). Another possibility (Albert and Chib, 1997) is a discrete prior on possible values of the random effects variance ((2 in the preceding example), but including a point in the discrete prior where random variability is non-existent ((2=0). In the latter case, a single Poisson mean or binomial probability is applicable across all units. Posterior predictive checks for hierarchical models are discussed by Berkhof et al (2000).

5.3 Hierarchical Priors for Normal Data with applications in Meta-Analysis
Meta-analysis refers to methods for combining the results from independent studies of medical treatments or pharmacological interventions, with randomised trials the preferred design; the technique is also used in epidemiology, education and psychology. For normal responses, and without any adjustment for casemix (risk profile) of the units, meta-analysis is the Bayesian analogue of one way analysis of variance. Different effect measures may represent study or trial results, and with suitable transformation can be often be regarded as approximately normal even if the original trial data are binary, counts or survival times. For example, if deaths ai and bi are observed among sample numbers ri and ti under new and old treatments, then the odds ratio is 

               {ai/(ri-ai)}/{bi/(ti-bi)}


      (5.1). 

The log of this ratio may (for moderate sample sizes) be taken as approximately normal with variance given by

                s eq \O(i,2)=  1/ai + 1/(ri-ai) + 1/bi + 1/(ti-bi)             (5.2)

Normal approximations for hazard ratios and rate ratios are discussed by Spiegelhalter et al (2004). 

In contrast to the classical fixed effects model for meta analysis, which amounts to treating the studies as identical replicates of each other, the Bayesian random effects approach recognises two sources of random variation: within study sampling error and between study effects (Hedges, 1997). The rationale for random effects approaches is that at least some of the variability in effects between studies is due to differences in study design, different measurement of exposures, or differences in the quality of the study (e.g. rates of attrition). These mean that the observed effects, or smoothed versions of them are randomly distributed around an underlying population mean.

Suppose (approximately) normal effect measures yi are available for a set of n studies, together with estimated within sample standard errors si of the effect measure, and variances Vi= s eq \O(i,2). Under a fixed effects model, data of this form may be modelled as

                yi ~ N((,Vi)                              i=1,..,n      

  

where ( might be estimated by a weighted average of the yi and the inverses of the Vi used as weights (since they are approximate precisions). Under a random effects model by contrast, the results of different trials are often still taken as approximately normal, but the underlying effects differ between trials, so that

                yi ~ N((i, Vi)                                      


where (i=(+(i and the deviations (i from the overall mean (,  representing random variability between studies, have their own density. For example, if the yi are empirical log odds then ( is the underlying population log odds and the deviations around it might have prior density

              (i ~ N(0,(2)

Alternative models (Morris and Normand, 1992) may involve an unknown first stage variance, as in 

               yi ~ N((i,(2Vi)                              i=1,..,n      

  

               (i ~ N((,(2).

Of particular importance is the posterior probability of a significant overall effect size, namely Pr((>0|y). The fixed effects model assumes (2=0 and so may neglect an important source of uncertainty regarding the mean effect size ( (e.g. Morris and Normand, 1992, p 330). Also of potential interest are contrasts between studies (e.g. Pr((2>(1|y), the maximum possible effect max((i), and the likely effect in a hypothetical future trial (e.g. Gelman et al, 2004, p 149). 

5.3.1 Prior for Second Stage Variance

Deriving an appropriate prior for the smoothing variance 2 may be problematic as flat priors may oversmooth - that is the true means i are smoothed towards the global average to such an extent that the model approximates the fixed effects model. While not truly Bayesian, there are arguments to consider the actual variability in study effects as the basis for a sensible prior. DuMouchel (1996, p 109) proposes a Pareto or log-logistic density

              ((() = s0 / (s0+()2                               
(5.3.1)

where s eq \O(0,2) = n/ eq \O((,i)(1/Vi) is the harmonic mean of the empirical estimates of variance in the n studies. This prior is proper but highly dispersed since though the median of the density is s0, its mean is infinity. The (1,25,75,99) percentiles of  are s0/99,s0/3,3s0, and 99s0. If the Pareto for a variable T is parameterised as 

          T ~ cT-(+1)



         (5.3.2)

then obtaining a draw of ( under this prior involves setting =1, c=s0, drawing T, and then setting =T-s0. 

Other options focus on the shrinkage ratio (Cohen et al, 1998) 

            B=(2/((2+ s eq \O(0,2)) 

with a uniform prior on B being one possibility. This is equivalently a uniform prior on 

            1-B = s eq \O(0,2)/((2+ s eq \O(0,2))

The smaller is (2 (and hence B) the closer the model approximates complete shrinkage to a common effect as in the classical fixed effects model. (This is obtained when (2=0). Larger values of B (e.g. 0.8 or 0.9) might correspond to ‘sceptical priors’ in situations where exchangeability between studies, and hence the rationale for pooling under a meta-analysis, is in doubt. Dumouchel and Normand (2000) mention a uniform prior on

                              B=s0/((2+ s0)

and a beta prior can also be set on the collection of study specific ratios Vi/((2+ Vi). 

Gustafson et al (2005) consider the model

            yi ~ N((i,(2)

             (i ~ N((,(2)                                    

  

with (2 unknown, and propose a truncated inverse gamma for Z where (2=Z-(2, namely 

             Z ~ IG(a,b) I((2,).

While (a=1,b=0) gives a uniform shrinkage prior, they suggest larger values of a (e.g. a=5) that discriminate against large values for (2. 

One might also set a prior directly on (2 directly without reference to the observed s eq \O(i,2). Gelman et al (2004) opt for a uniform prior on (, or one may take the prior (-2 ~ (2(()/(, with the degrees of freedom parameter at values (=1, 2 or 3 being typical choices. Smith et al (1995, page 2689) describe how a particular view of likely variation in an outcome, say odds ratios, might translate into a prior for (2. If a ten fold variation in odds ratios between studies is plausible then the ratio of the 97.5th and 2.5th percentile of the odds ratios is 10, and the gap between the 97.5th and 2.5th percentiles for (i (underlying log odds) is then loge(10)=2.3. The prior mean for (2 is then 0.34, namely (0.5(2.3/1.96)2, so the prior mean for 1/(2 is about 3. If a 20 fold variation in odds ratios is viewed as the upper possible variation in study results, then this is taken to define the 97.5th percentile of (2 itself, namely 0.58=(0.5(3/1.96)2. From this the expected variability in (2 or 1/(2 is obtained: the upper percentile of (2 defines a 2.5th percentile for 1/(2 of 1/0.58=1.72. A G(15,5) prior for 1/(2 has 2.5th percentile of 1.68 and mean 3 and might be taken as a prior for 1/(2. If a hundredfold variation in odds ratios is viewed as the upper possible variation in study outcomes, a G(3,1) prior is obtained similarly.

Example 5.1 Survival after CABG

Yusuf et al (1994) compare coronary artery bypass graft (CABG) and conventional medical therapy in terms of follow-up mortality within 5 years. Patients are classified not only by study but by a three-fold risk classification (low, middle, high). Verdinelli et al (1996) present odds ratios of mortality and their confidence intervals for low risk patients in four studies (where one is an aggregate of separate studies), namely

   2.92 (1.01,8.45), 0.56 (0.21,1.50), 1.64 (0.52,5.14) and 0.54 (0.04,7.09)

The empirical log odds yi and their associated si are obtained by transforming the above data on odds ratios and associated confidence limits.  The model is then

                     yi ~ N((i,s eq \O(i,2))                                      


                     (i ~ N((,(2)

The overall effect may be assessed via Pr((>0|y) or Pr(exp(()>1|y), where exp(() is the pooled odds ratio.

With a random effects model, a flat prior on the parameter (2 may lead to over-smoothing. To establish an appropriate level of smoothing towards the overall effect (, an initial model adopts the data based prior (5.3) of DuMouchel (1996), with ( ~ N(0,10). A three chain run for the low risk patient data shows early convergence. From iterations 5,000-100,000 the estimated of the overall odds ratio in fact shows no clear benefit from CABG among the low risk patients (Table 5.1). The chance that the overall true effect is beneficial (i.e. that the pooled odds ratio e exceeds 1) is 0.699. The deviance information criterion for this model, which partly measures the appropriateness of the prior assumptions, is 11.35.

Table 5.1 CABG Effects in Lowest Risk Patient Group

Study
Mean
St devn
2.5%
Median
97.5%

1. VA
1.98
1.16
0.75
1.67
5.07

2.EU
0.99
0.45
0.32
0.92
2.05

3. CASS
1.53
0.77
0.59
1.36
3.50

4. OTHERS
1.34
1.06
0.23
1.15
3.70

Meta Analysis (Overall Effect)
1.41
1.23
0.45
1.25
3.20

A second analysis adopts a uniform prior on (2/((2+ s eq \O(0,2)). This leads to a posterior mean for the overall odds ratio of 1.40 with 95% credible interval {0.25, 3.24}. The DIC is slightly improved to 10.9. Finally, as in DuMouchel (1990) the prior 1/(2 ~ (2(()/( is taken with (=3. This amounts to a 95% chance that (2 is between 0.32 and 13.3. This yields a lower probability that the overall odds ratio exceeds 1, namely 0.6, but the posterior mean for the overall effect is slightly higher at 1.52, with 95% interval {0.29,4.74}. The DIC is again 10.9. The posterior median of (2 is 0.73.  

Note that a just proper prior such as 1/(2 ~ G(0.001,0.001) or  1/(2 ~ G(1,0.001) leads to an overall odds ratio estimate with very large variance and essentially no pooling of strength. Under the latter, the posterior 95% intervals for the study odds ratios, namely {0.9,7.57}, {0.23, 1.65}, {0.52,4.77} and {0.07,6.06}, are very similar to the original data. The DIC under this option worsens to 11.6.
5.4 Pooling Strength under Exchangeable Models for Poisson Outcomes

Consider a Poisson outcome yi defined by event totals in a small area or institution i (e.g. incident cancer cases or surgical mortality) and with oi denoting a known offset. In health applications the offset is often a total of expected events Ei calculated by demographic techniques, such as indirect standardisation (Newell, 1988) and in the case of internal standardisation one has  eq \O((,i)Ei= eq \O((,i)yi. Then the model for this outcome is Poisson with means (iEi
                                   yi((i  ~ Po((iEi)                    (5.4)

where the (i represent relative risks which would average 1 if the sum of observed and expected events were the same. Many applications involve means of (i other than 1, for example where the exposures are times or populations at risk. An example where the offsets are times at risk include the well known data on pumps (Gaver and O’Muircheartaigh, 1987) where the offsets oi are total pump operation times, ti, with

                              yi((i  ~ Po((iti)                          (5.5)

In epidemiological applications, a population rate model may be used, especially if the analysis is for particular demographic groups g, so that standardisation is not an issue. So for deaths by area i and group g (e.g. age-sex category), one might have, 

                              yig ~ Po((igPig) 

            (5.6)

where the offsets Pig are populations at risk and (ig are death rates. Binomial sampling is an alternative here with 

                              yig ~ Bin(Pig,(ig).

Comparison of binomial and Poisson sampling for the a health outcome with population denominator is considered by Schabenberger & Gotway (2005, p 370 et seq).

In fixed effects models, the estimates for each group or area are based on the events and offset total for that case, without reference to other cases. Pooling information and enhanced precision of estimates rely instead on using a hierarchical model with the unknown latent rates (i drawn from a population of rates with the same parametric density. 

5.4.1 Hierarchical Prior Choices

The conjugate prior for Poisson counts is a gamma population density with shape ( and scale (, mean (=(/(, and variance (/(2. As well as ensuring conjugacy, this density has benefit in representing skewness in underlying rates that might be a source of overdispersion in the observed counts. If the (i have mean 1 (as would be appropriate when  eq \O((,i)oi= eq \O((,i)yi), a gamma prior with precision ( is used, (i ~ Ga((,(). 

The three stages in the likelihood-prior specification are as follows: at stage (1) conditional on (i, the yi are independent and yi((i ~ Poisson((ioi); at stage (2), conditional on the hyperparameters ( and (, the (i are independently gamma, (i(,( ~ Ga((,(); and at stage (3), the hyperparameters ((,() of the gamma may themselves be given priors, h((,(). For example, George et al (1993) use an exponential E(1) prior on (, and a Ga(b,c) prior on ( where b and c are known (e.g. b=c=0.01), while Cohen et al (1998) place a uniform prior on (=(/(1+() and a flat prior on log((). In multiply classified data, as in (5.6), one might take the hyperparameters to apply to all groups, or as a form of partial exchangeability, take them specific to one or more of the classifications, e.g. gamma hyperparameters (g and (g specific to group g, to allow for varying group means and variances. 

As well as estimating relativities in the current data, inferences beyond the sample may be made. Deely and Smith consider a model similar to (5.5), with yi being Poisson distributed conception counts for girls under 16, with means (iPi where Pi are populations of 13-15 year old girls in area i. They are particularly interested in comparisons between areas; for example, the probability of a low rate in a particular area, measured by the probability Pr((i ( b(j |y) (all j(i) where b is under 1. They also mention  predictive comparisons relevant to future performance, based on sampling replicate data for each area.

A reparameterised version of the gamma may be used (Albert, 1999), namely (i ~ Ga((,(/() where the prior mean and variance of (i are ( and (2/(, so ( ( ( leads to the Poisson. For exchangeable data, this prior may be expressed in a log-linear regression involving a constant only, namely

              (i ~ Ga((,(/(i)

              log((i)=(1
where ( governs the shrinkage. Another option is a uniform prior on the amount of shrinkage (Cohen et al, 1998), similar to that proposed for normal data meta-analysis. For an application where the offsets represent expected hospital deaths Ei, with  eq \O((,i)Ei= eq \O((,i)yi, and Bi=(/((+Ei(i), where 0( Bi (1  is the shrinkage ratio, the posterior mean for (i is

            Bi(i+(1-Bi)(yi/Ei)

namely a weighted average of the fixed effect estimate and the prior mean. Larger values of ( and/or smaller Ei lead to greater shrinkage towards the prior structure.

Christiansen and Morris (1995) propose a uniform prior on B = (/((+z0), where z0=e0m0, m0 is mean of the {yi/Ei} and e0=min(Ei). This transforms to a prior on ( 

             h(() = z0/(z0+()2
that may be used to prevent overshrinkage. Another option is to set z0 to an expected number of deaths (usually small) where there is ambivalence concerning the prior weight to be attached to the observed rate yi/Ei and the prior on (i. Their analysis also illustrates how an important assumption underlying exchangeability may be violated, namely the assumption that the ratio of y to E is not systematically related to y. If instead, one has (for example) higher ratios y/E for lower values of y, then the proportionality assumption implicit in (5.4) and (5.5) is not valid.

A common non-conjugate mixture model for counts yi and underlying means (i specifies a normal density N((,(2) for the logged means (i=log((i), with one possible hyperprior taking normal priors on ( and log((2).  For robustness to outliers a student t density T((,(2,() for (i may be adopted, either in its direct form or attained via scale mixing, so that

                       (i ~ N((,(2 /(i)

where ( i are gamma, (i ~ Ga((/2,(/2). Other robust alternatives are achieved by discrete mixtures of normal densities (chapter 6). 

5.4.2 Parameter Sampling

Having observed the outcomes y, possibly over several strata, inferences about (i are based on the marginal posterior P((i(yi), obtained by integrating the product  

                 P((i(yi,(,() P((,((yi) 

over the full range of the bivariate density of ((,(). The first term in the product is the posterior density of (i given (,(, and y, while the second is the posterior density of the hyperparameters given the data. Before the advent of MCMC, empirical Bayes approximations to the marginal posterior were often made, namely

     
       eq  \O((,P) ((i(yi) = P[(i (yi,eq  \O((,a) ,eq  \O((,b) ]

with  eq  \O((,a)  and eq  \O((,b)  being maximum likelihood estimates. However, for small sample sizes this approach to estimating the prior may understate the impact of the uncertainty about the hyperparameters ( and (. 

For the conjugate prior case, with with (i ~ Ga((,() and hyperpriors ( ~ E(a),   ( ~ G(b,c),  Gibbs sampling is based on full conditional densities of standard form for ( and (i. Thus the posterior density of  ((1,..(n,(,() given y is proportional  to

    e-a( (b-1 e-c(   eq \O((,i=1,n)  exp(-(i) (i yi  {  eq \O((,i=1,n) (i(-1 exp(-((i) }[((/((()]n 

and the conditional densities of (i and ( are Ga(yi+(, (+1) and Ga(b+n(, c + ((i) respectively. The full conditional density of (, namely,

            f((|y,(, eq \O((,~)) ( e-a( [((/((()]n ( eq \O((,i=1,n)(i)(-1
is non-standard but log-concave and can be sampled using adaptive rejection sampling (Gilks and Wild, 1992).
An alternative MCMC sampling strategy to sample from the joint posterior of {(,(,(} in the conjugate case involves log transforms of both means (i=log((i) and (1=log((), (2=log(() of hyperparameters. So f(y|()=exp(E(y-Ee()/y!. Let {(eq \O(i,(0)),(eq \O(1,(0)),(eq \O(2,(0))} be initial parameter values, and {(eq \O(i,(t)),(eq \O(1,(t)),(eq \O(2,(t))} be current values. For each (i, a candidate value (eq \O(i,*) generated as (eq \O(i,*)=(eq \O(i,(t))+ciZ where Z is N(0,1) and ci is a known constant calibrated to achieve a desired acceptance rate. Let U be a draw from uniform density on (0,1). Then calculate (i=f(yi|(i)g((i| (eq \O(1,(t)),(eq \O(2,(t))) at both values of (i, namely (eq \O(i,(t)) and (eq \O(i,*), giving (eq \O(i,(t)) and (eq \O(i,*). If U < (eq \O(i,*)/(eq \O(i,(t)) then (eq \O(i,*) is the next value of (i but otherwise  (eq \O(i,(t+1))= (eq \O(i,(t)). Similarly for (1 consider a candidate value (eq \O(1,*) generated as (eq \O(1,*)=(eq \O(1,(t))+d1Z where Z is N(0,1) and d1 is a known constant. Then calculate (1=h((1) eq \O((,i)g((eq \O(i,(t))| (1,(eq \O(2,(t))) at both values of (1, giving (eq \O(1,(t)) and (eq \O(1,*). If U < (eq \O(1,*)/(eq \O(1,(t)) then (eq \O(1,*) is the next value of (1 but otherwise  (eq \O(1,(t+1))= (eq \O(1,(t)). The same applies to the update for (2. Taking log transforms of the Poisson means and gamma parameters means that Metropolis sampling by a symmetric normal proposal density can be used.  

Example 5.2 Smoothing of Child Cancer Rates 

An example of Bayesian hierarchical estimation for count data sampled according to a population rate structure (see 5.1.3) with more than one classification stratum is provided by a case study of childhood leukaemia deaths in two English counties in the 1950s (Knox, 1964). Death rates are classified by cancer type, child age and by type of residence (Table 5.2). The paper by Knox (1964) demonstrated, using a fixed effects model, that overall mortality was higher in urban areas and that the age distributions of urban and rural lymphoblastic leukaemia mortality rates are different. Rural rates fall more at later ages. 

Table 5.2 Deaths from Childhood Cancers 1951-60 (Northumberland and Durham)







Max Lkd
Max Lkd

Cytology
Age (yrs)
Place
Observed
Expected
Mid Period Population
Rate per million Child Years
Standard Mortality Ratio

Lymphoblastic
0-5
Rural
38
24.1
103857
36.6
158


6-14

13
36.1
155786
8.3
36


0-5
Urban
51
31.5
135943
37.5
162


6-14

37
47.3
203914
18.1
78

Myeloblastic
0-5
Rural
5
8
103857
4.8
63


6-14

8
12
155786
5.1
67


0-5
Urban
13
10.4
135943
9.6
125


6-14

20
15.6
203914
9.8
128

Here the fixed effects analysis is reproduced using diffuse but proper priors on the death rates (i, similar to fixed effects maximum likelihood. The fixed effects model specifies yi((i ~ Poisson((ioi) where oi is an exposed to risk total, namely child years (ten times the mid year population). In fact it is convenient to scale the denominator to obtain death rates per million child years. Each (i is assigned a vague Gamma prior, specifically (i ~ Ga(1,0.001). Note that this model is effectively equivalent to a log-linear fixed effects model including all interactions. The code for the fixed effect analysis (with N=8) is

{ for (i in 1:N) { y[i] ~ dpois(mu[i])

    th[Cancer[i],Place[i],Age[i]] ~ dgamma(1, 0.001);

    mu[i] <- th[Cancer[i],Place[i],Age[i]] * Pop[i]/100000}}
Summarising over the 2nd half of a two chain run of 10,000 iterations gives the estimates of mortality rates by cancer type (L,M), place (R,U), and child age (Young, Old) shown in Table 5.3. This model has a DIC of 53.4 with de=7.5. Sampling new data shows that the model checks satisfactorily against the observed data.

Table 5.3 Fixed vs Random Effects, Summary for Rates per Million 


Fixed Effects
Random Effects


Mean
    St devn
  2.5%
    97.5%
Mean
    St devn
    2.5%
    97.5%

((L,R,Y) 
37.5
6.0
26.6
50.0
34.8
5.7
24.9
46.9

((L,R,O)
9.0
2.4
5.0
14.3
8.8
2.3
4.8
13.8

((L,U,Y)
38.3
5.3
28.5
49.2
36.0
5.1
26.9
46.7

((L,U,O)
18.6
3.0
13.3
24.9
18.1
3.0
12.7
24.3

((M,R,Y)
5.8
2.4
2.2
11.4
5.8
2.3
2.1
11.1

((M,R,O)
5.8
1.9
2.6
10.0
5.8
1.9
2.7
10.1

((M,U,Y)
10.3
2.8
5.5
16.3
10.0
2.6
5.5
15.9

((M,U,O)
10.3
2.3
6.4
15.1
10.1
2.2
6.3
14.8

The Poisson-gamma hierarchical model assumes priors ( ~ E(1) and ( ~ G(0.1,0.1) on the gamma hyperparameters, with code

model for (i in 1:N) { y[i] ~ dpois(mu[i])
th[Cancer[i],Place[i],Age[i]] ~ dgamma(alpha, beta);


    mu[i] <- th[Cancer[i],Place[i],Age[i]] * Pop[i]/100000}


   alpha ~ dexp(1); beta ~ dgamma(0.1, 0.1)

This model produces a smoothing of posterior mean rates towards the overall average, especially for the two highest mortality rates. The posterior means of ( and ( are 1.64 and 0.1 respectively. Neither model is conclusively better: the DIC is very similar to the fixed effects model. Replications from the hierarchical model are consistent with the observations; specifically, 95% intervals for replicate data ynew contain all eight observations (Gelfand, 1996). 

Other prior structures are possible, for example making the hyperparameters {(,(} specific to place or cancer type, with coding:

    th[Cancer[i],Place[i],Age[i]] ~ dgamma(alpha[Cancer[i]], beta[Cancer[i]]).

This amounts to a partially exchangeable model. 

5.4 Combining  Information for Binomial Outcomes

Assume binomial data yi in the form of aggregates resulting from a binary event, and with populations Ni at risk

                      P(yi(Ni,pi) ( piyi (1-pi)Ni-yi
While some datasets may conform to a single population rate, with pi = p, in many cases the data may support variability in the probabilities pi. In this case, the conjugate prior for the {pi} under full exchangeability is a beta density with parameters (1 and (2, namely 

                      g(pi((,() ( pi((1-pi)(
so that the posterior samples of (i are drawn from a beta density with parameters (1 + yi and (2 + Ni-yi. In framing a beta prior it may be useful to reparameterise as (1=(( and (2=((1-() (Albert, 1988; Stroud, 1994), where ( is the prior mean and ( is the precision attached to that mean. An advantage of the conjugate prior is that the marginal likelihood is available so that formal model fit by Bayes factors is possible. The marginal density of y is the betabinomial

               P(Y=y)= 
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. In terms of a regression for exchangeable observations (involving a constant only) the binomial-beta model may be expressed as 

                     yi ~ Bin(Ni,pi)

                     pi ~ Beta(((i,((1-(i))

                     logit((i)=(1
 with expectation Ni(i and variance 

                  var(yi|(1,()=Ni(i(1-(i)
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 means this mixture is overdispersed compared to a simple binomial model (obtained when (((), and so can be used to model heterogeneity due to clustering or excess zeroes. Albert & Gupta (1983) assume a Beta((,K-() prior on the pi where ( has an equal probability discrete prior on the values 1,2,..K-1 and the size of K determines the correlation among the pi. Kahn and Raftery (1996) present an example where the binomial-beta model adequately represents excess zeroes than a zero inflated binomial (ZIB) model involving a point mass at zero. Albert (1988, p 1041) presents an approximation to the joint posterior of (=(1/(1+(1) and ( for this model, while Kahn and Raftery consider a Laplace approximation using a normal prior for (1 and taking h(() ( 1/(. Lindsey (1999) sets (=exp(() enabling normal priors on both hyperparameters. 

Stroud (1994) shows how a beta-binomial mixture may be used to smooth survey proportions where the data is stratified or post-stratified by two or more classifier variables (e.g. religion, social class, area type). Consider two stratifiers indexed by r and  c (r=1,..R; c=1,..C) and assume clusters j, j=1,..,mrc are exchangeable within the RC strata formed by cross-classifying (r,c). Then assume 

            yjrc ~ Bin(njrc, pjrc )

where njrc is the number of sampled units, and that the prior involves an unsaturated logit-linear model in stratum main effects as follows

            pjrc ~ Beta(((rc,(1-()(rc)

            logit((rc)=u0+u1r+u2c  

with the usual corner constraints (Chapter 4). The pjrc will then borrow strength from other estimates in row r and from other estimates in column c. A three way stratification would involve a logit-linear model with three main effects.  

A nonconjugate hierarchical model for exchangeable binomial observations is provided by assuming logit-normal random effects, namely

                               yi ~Bin(Ni,pi)

                               (i=logit(pi)

                               (i ~ N(μ,σ2)

where MCMC sampling may be based on normal and gamma full conditionals for ( and 1/(2 respectively. With priors ( ~ N((0,V0) and 1/(2 ~ Ga(c,d), these are 

           (|y,(,(2 ~ N([eq \O((,_)n/(2+(0/V0]/P(,1/P() 

           1/(2|y,(,( ~ Ga(c+n/2,d+ eq \O((,i)((i-()2)

where P(=n/(2+1/V0.

A logit-normal model is a frequently adopted choice when binomial sampling is assumed for meta-analysis. Thus Warn et al (2002) mention that normal approximations often used for effect sizes in meta-analysis (implying a normal-normal hierarchical structure) may not be sensible when trials are small. They consider alternative comparison measures in 2(2 tables involving trial and control groups, with 

        yeq \O(i,T) ~ Bin(Neq \O(i,T),peq \O(i,T))                 yeq \O(i,C) ~ Bin(Neq \O(i,C), peq \O(i,C)) 

The prior on the control group probabilities peq \O(i,C), whether untransformed or transformed using logs or logits, may use either a fixed or random effects model - see also Parmigiani (2002, p 133), Gelfand et al (1995, p 413; Liao, 1999; Carlin, 1992). Consider the identity link case (eq \O(i,C)= peq \O(i,C). Warn et al (2002) set out the constrained sampling procedures needed to model the differences (i=(eq \O(i,T)- (eq \O(i,C) between trial and control group response rates as normal random variables (this is an absolute risk difference). If  instead ( eq \O(i,C)= log(p eq \O(i,C)), and ( eq \O(i,T)= log(p eq \O(i,T)), then (i measures log relative risks which are often more clinically useful than log odds ratios, obtained using a logit transform of p to (.

Example 5.3 Stomach Cancer Death Rates

An example of a non-conjugate analysis for binomial data is provided by an analysis of stomach cancer deaths yi in 84 Missouri cities with widley differing populations Ni. Albert and Chib (1997) assume the above nonconjugate logistic-normal random effects model with 

                               yi ~Bin(Ni,pi)

                               (i=logit(pi)

                               (i ~ N(μ,σ2)

though they include the single rate option pi=p (equal death rate for all areas) corresponding to σ2=0. They stipulate a discrete prior on a grid of eight values with equally spacing in terms of log(σ2). These eight values are assumed equal prior weight of 0.0625, while the value σ2=0 is assigned a prior weight of 0.5. They find the option σ2=0 to be selected in 6.9% of the iterations in a run of 100000 iterations and so a Bayes factor is obtainable by comparing posterior probabilities for the eight nonzero values of (2 against that for the zero value. Here thirteen possible values are considered, for (2 are considered corresponding to log(σ2)=-9.6, -8.8, -8,…-0.8, as well as log((2)=0 (Table 5.4). The precision corresponding to log((2)=-9.6 is 14765, and a precision of 100,000 is taken as effectively equivalent to (2=0; this point (the probability that k(=1) has prior mass of 0.5. A N(0,1000) prior is assumed for (.

Table 5.4 Priors on Precision & Variance



log(2)

Prior weight
k



-11.5

0.5
1

0.0082
0.00007
-9.6
14765
0.03846
2

0.012
0.0002
-8.8
6634
0.03846
3

0.018
0.0003
-8
2981
0.03846
4

0.027
0.0007
-7.2
1339
0.03846
5

0.041
0.0017
-6.4
602
0.03846
6

0.061
0.0037
-5.6
270
0.03846
7

0.091
0.0082
-4.8
121.5
0.03846
8

0.135
0.02
-4
54.6
0.03846
9

0.202
0.04
-3.2
24.5
0.03846
10

0.301
0.09
-2.4
11.0
0.03846
11

0.449
0.20
-1.6
4.95
0.03846
12

0.67
0.45
-0.8
2.23
0.03846
13

1
1
0
1
0.03846
14

A two chain run of 20,000 iterations (with inferences based on iterations 5001-20000) shows the posterior density for k( concentrated away from points corresponding to very low. The lowest value selected is (=0.041, for 30 of 30,000 iterations. 91% of the posterior density of k( corresponds to ( between 0.135 and 0.449. The posterior mean and median for ( are respectively 0.248 and 0.202. 

An alternative model prior for pooling over the areas assumes

                               yi ~Bin(Ni,pi)

                               logit(pi)=(+(i
                               (i ~ N(0,σ2)

with a gamma Ga(1,0.001) prior for 1/(2 . Iterations 5001-20000 of a two chain run give posterior mean and median for ( of 0.114 and 0.093 respectively. It may be noted that assessing the need for random effects, under this model, in terms of individual effects having Pr((i>0|Y) exceeding 0.95, or being under 0.05, produces extremes of 0.92 and 0.24. This assessment does not support the notion of variability being necessary (Knorr-Held and Rainer, 2001). 

Finally an area level binary indicator (Gi=1 or 2)  is introduced as follows 

                               yi ~Bin(Ni,p[i,Gi])

                               logit(pi1)=(
                               logit(pi2)=(+(i
(i ~ N(0,σ2)

with prior probabilities Pr(Gi=2)=1-Pr(Gi=1)=( and ( ~ Beta(1,1).  Iterations 5001-20000 of a two chain run give a posterior mean for ( of 0.6, slightly favouring the random effects model. The posterior mean and median for ( of 0.16 and 0.11 respectively. The posterior probabilities Pr(Gi=1|Y) are concentrated between 0.38 and 0.44 though for area 3, this probability falls to 0.16. This area has the third largest population (46 thousand) and a death rate of  1.72 per 1000 compared to the global death rate of 1.16 per 1000, and so is at odds with a homogenous rate model. 

5.6 Random Effects Regression for Overdispersed Count and Binomial Data

Outcome data in count form assumed to be generated from a Poisson model or proportions assumed to be binomial often show a residual variance larger than expected under these models, even after allowing for important predictors of the outcome. This will be evident for example, in scaled deviance statistics larger than expected under Poisson or binomial sampling (McCullagh & Nelder, 1989). This overdispersion may arise from omitted covariates, or some form of clustering in the original units (e.g. the data are for individuals but exhibit clustered effects because individuals are grouped by household). Another generic source of over-dispersion in behavioural and medical contexts arises from inter-subject variability in proneness or frailty. It is preferable to use a model accounting for such over-dispersion, especially if interest focuses on the significance of regression parameters. As Cox and Snell (1989) point out, standard errors in general linear regression models which do not account for overdispersion are likely to be too small and may result in misleading inferences. In log-linear models, tests of interaction that do not allow for overdispersion will be misleading (Paul and Bannerjee, 1998).

In a regression setting overdispersion may be remedied by the inclusion of additional covariates, or special terms for modelling outliers (Baxter, 1985). One may also generalise the exponential family to include extra parameters (Dey et al, 1997). Another possibility, especially if overdispersion is attributable to variations in proneness between individuals or to unknown predictors, is to combine a regression with conjugate or non-conjugate mixing for the residual variation. Consider observations yi|Xi which are counts where Xi are predictors. To account for individual level effects beyond those represented by Xi, one may assume multiplicative random effects (i, so that

                      yi | Xi,(i ~ Po((i(i)

                       (i=exp(Xi()

with conditional mean equalling conditional variance

  E(yi |Xi, (i)=Var(yi |Xi, (i)= (i(i . 

When Xi includes an intercept, the Poisson-gamma model assumes a mean unity gamma mixture

                       (i ~ Ga((,()

                       g((i |()=[((/((()]( eq \O(i,(-1)exp(-((i)

Integrating out the (i parameters from P(yi|Xi,(i) leads to a negative binomial marginal density. Thus

                       P(yi| Xi,() = E(i[P(yi|Xi,(i)]= ( eq \O(0,() P(yi|Xi,(i)g((i|()d(i
is equivalent to the negative binomial

                       yi|(i,( ~ NB((i,()

This density has form

                     P(yi| (i,()=((yi+()/[((yi+1)((()]
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with

                    E(yi|(i,()=(i
                    Var(yi|(i,()=(i+(eq \O(i,2)/(.

The negative binomial can also be expressed in terms of probability parameters pi=[(/((i+()], as in the form

                    P(yi|pi,()=
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Fahrmeier and Osuna (2003) consider Bayesian estimation of the negative binomial via MCMC, assuming ( ~ Ga(a,b) where a=1, and b ~ Ga(c,d). The full conditional for ( is non-standard, with

                     P((|(,b,y) ( [image: image8.wmf]ï

þ

ï

ý

ü

ï

î

ï

í

ì

a

+

m

a

+

G

+

a

i

y

i

i

)

(

)

y

(

[((()]n(n(+a-1exp(-b()

though the full conditional for b is simply a Gamma with shape c+a and scale d+(.

Alternatively, an overdispersed regression might be achieved by normal mixing in a transformed mean.  Thus for count data with offsets oi
               yi ~ Po((ioi),

               log((i)=(i 

               (i ~ N(Xi(,(2) 

or equivalently

               log((i)= Xi(+ui,

               ui ~ N(0,(2).

For example, Draper (1996) uses additional information on the group Gi (( 1,2) of the well known pumps data of Gaver and O’Muircheartaigh (1987), corresponding to either continuous or intermittent operation. The data are as in Table 5.5. Additionally instead of counts proportional to ti, namely taking ti as an offset as in (5.5), its impact is specifically modelled, so that

      yi ~ Po((i)






      log((i)=(Gi+(Gi(logti -  eq \O(logt,__))+ui



(5.7)

      ui ~ N(0,(2)

Table 5.5 Pumps Data

y
t
Group

5
94.5
1

1
15.7
2

5
62.9
1

14
126
1

3
5.24
2

19
31.4
1

1
1.05
2

1
1.05
2

4
2.1
2

22
10.5
2

For multivariate count data, one may model the correlation between errors (and also represent overdispersion) in the log link (Chib and Winkelmann, 2001). Thus counts yij over i=1,..,n cases and j=1,..,J responses,  are taken to be conditionally independent given a J dimensional random error ui=(ui1,ui2,..uiJ):

               yij|ui,(j ~ Po(oij(ij)




               log((ij)=Xij(j+uij
               (ui1,ui2,..uiJ) ~ N(0,()                              (5.8)

where ( is an unrestricted covariance matrix, from which the correlations rij =(ij/sqrt((ii(jj) may be monitored via MCMC sampling. If Xij contains only the intercept then these are correlations between responses, otherwise they represent correlations between residuals. Let vij=exp(uij), then vi=(vi1,vi2,..viJ) is a J-variate log-normal with mean vector (=exp[0.5diag(()] and covariance matrix (= {diag(()[exp(()-11(]diag(()} where 1 is a vector of ones. Defining (ij=exp(Xij(j), the multivariate response are can also be represented as a variant of the Poisson-lognornal models of Aitchison and Ho (1989) with

                 yij| vij,(ij  ~ Po(oij(ijvij)

Binomial regression with excess variation occurs in toxicological studies (e.g. when the unit is a litter of animals and litters differ in terms of unknown genetic factors) and in models for consumer purchasing (Williams, 1982; Kahn and Raftery, 1997). As for Poisson data, nonconjugate mixing is often adopted, with normal or t errors in the regression link (whether logit, probit, or complementary log-log). An error term may also be introduced to facilitate regression variable selection using an analogue to the g-prior; thus Gerlach et al (2002) propose

                      yi ~ Bin(ni,pi)

                      logit(pi)=Xi(+ei
                      ei ~ N(0,(2)

                      ( ~ N(0,(2g(X(X)-1).

The conjugate mixture beta-binomial approach, as set out by Kahn and Raftery (1997) assumes 

                     yi ~ Bin(ni,pi), 

                     pi ~ beta(((i,(1-(i)()

                     logit((i) = Xi(
where possible priors on the precision parameter ( include P(() ( 1/( and (Albert, 1988)

                    P(()=1/(1+()2. 

The variance of yi given {Xi,(,(} is then ni(i (1-(i) ((+ni)/((+1) whereas under the binomial logit model (obtained as ((() it is nipi (1-pi) where pi=[1+exp(-Xi()]-1. An alternative beta-binomial parameterisation, likely to be better identified when there are repetitions yij, i=1,..nj at predictor value Xj (e.g. a common dosage in toxicity studies), is suggested by Slaton et al (2000), with yij ~ Bin(nij,pij)

        pij ~ Beta((j,(j)

        (j=exp(Xj(()

       (j=exp(Xj(()

whereby pij=[1+exp([((-(()Xj]-1.

Example 5.4 Reverse Mutagenicity Assay

Albert and Pepple (1989) present an analysis of overdispersed count data, based on an Ames Salmonella reverse-mutagenicity assay. The data is also analysed by Breslow (1984). The response yi is the number of revertant colonies observed on a plate, while the predictor is a measure xi of dose level. Consider the standard log-linear model:

                    yi ~ Poi((i)

      

log((i) = (1 + (2xi/1000 + (3log(xi+10)

Fitting this via a standard Poison regression with N(0,1000) priors on the regression parameters involves a two chain run of 10000 iterations (with inferences based on the 2nd half) gives a deviance averaging 46.7, indicating overdispersion for the data set of n=18 counts. A standard Poisson-gamma mixture can be performed via the parameterisation 

                        yi | xi,(i ~ Po((i(i)

                        (i ~ Ga((,()



   log((i) = (1 + (2xi/1000 + (3log(xi+10)

A Ga(0.1,1) prior on ( is assumed (cf George et al, 1993). A two chain run of 10,000 (2nd half for inferences) reduces the mean deviance to a level in line with the available degrees of freedom (Table 5.6). The posterior standard deviations on the ( coefficients are increased and the significance of the linear effect thrown into doubt. To exemplify monitoring ranks, the median rank for observation 16 is found to be 18 (and corresponding posterior mean for (16=1.67) while the median rank for observation 6 is only three. A formal coding of the equivalent negative binomial regression with the (i integrated out yields very similar results, with posterior mean on ( of 4.44.

To demonstrate the necessity of random effects by formal criteria,  Albert and Pepple consider a slightly different parameterisation, namely

                       yi | xi,( ~ Po((i)

                        (i ~ Ga(((i,()

whereby log( = ( is equivalent to the standard Poisson regression. They assume discrete prior on alternative values of log( including the Poisson regression case. Here 21 alternative values are considered, from log(=-5 through to  log(=5 at intervals of 0.5. If there is essentially zero probability for larger values of log( this indicates a Poisson regression to be inappropriate. Taking the second half of a run of 10000 iterations gives posterior probabilities as in Table 5.6 on the alternative values of log(, together with the Bayes factors (ratios of posterior to prior probabilities, which are all 1/21). Values of ( between 0.22 and 1.6 have greater posterior than prior support, while large values of ( have negligible posterior support.

Table 5.6 Revertant Colony Count Analysis

(A) Poisson Regression

Parameter
Mean
St devn
2.5%
97.5%


2.18
0.21
1.80
2.62


-1.01
0.24
-1.46
-0.51


0.32
0.06
0.20
0.42

Deviance
46.7
2.5
44.0
53.1

(B) Gamma Mixture 

Parameter
Mean
St devn
2.5%
97.5%


2.22
0.51
1.27
3.19


-1.04
0.68
-2.37
0.15


0.32
0.14
0.05
0.59

(
4.52
1.65
1.97
8.32

Deviance
16.7
5.5
7.8
29.2

(C) Discrete Mixture On Precision Parameter

Relative Frequencies of Different Values of Precision Parameter

log(
(
Frequency
Posterior Probability
Bayes Factor

-5
0.007
0
0
0

-4.5
0.011
0
0
0

-4
0.018
0
0
0

-3.5
0.030
0
0
        0

-3
0.050
2
0.0002
0.0042

-2.5
0.08
9
0.0009
0.0189

-2
0.14
144
0.0144
0.3024

-1.5
0.22
988
0.0988
2.0748

-1
0.37
2741
0.2741
5.7561

-0.5
0.61
3344
0.3344
7.0224

0
1.0
1808
0.1808
3.7968

0.5
1.6
605
0.0605
1.2705

1
2.7
160
0.0160
0.3360

1.5
4.5
54
0.0054
0.1134

2
7.4
42
0.0042
0.0882

2.5
12.2
34
0.0034
0.0714

3
20.1
43
0.0043
0.0903

3.5
33.1
20
0.0020
0.0420

4
54.6
5
0.0005
0.0105

4.5
90.0
0
0.0000
0.0000

5
148.4
1
0.0001
0.0021

       Other     

    Parameters
Mean
St devn
2.5%
97.5%


2.17
0.46
1.22
3.00


-1.01
0.51
-1.99
-0.02


0.32
0.12
0.09
0.56

5.7 Overdispersed Normal Regression. The scale-mixture Student t Model

Linear regression based on the normal distribution is often the default option in regression with metric outcomes, or in overdispersed Poisson and binomial models including random effects in log or logit linked regressions. Instead of adopting normality and then seeking possible outlier observations inconsistent with normality, an alternative is model expansion involving an extra parameter (or parameters) that afford resistance or robustness to non-normality, but where normality can be obtained as a limiting case. Under the Student t density, resistance to outliers is accommodated by varying the degrees of freedom parameter (e.g. Paddock et al, 2004). As considered in Chapter 3, introducing this extra parameter is equivalent to retaining normal sampling but with a variable weight that adjusts the scale for each observation. This weight may be used to indicate outlier status in relation to the regression model. 

Suppose the data consists of univariate metric outcomes yi, i=1,..,n and an n(p matrix of predictors Xi. Then consider a Student t regression model for the means (i=Xi( with variance (2 and known degrees of freedom (. Assuming the reference prior (Gelman et al., 2004

              (((,(2) ( (-1
the posterior density is proportional to

             (-(n+1) eq \O((,i=1,n ) [ 1 + (yi - (i)2/ ( (2] –((+1)/2.

Similarly if the outcome y is multivariate Student t of dimension q with q(q dispersion matrix (, and (((,() ( |(|-1 , the posterior is proportional to 

                   |(| -(n+1) eq \O((,i=1,n ) [ 1 +  eq \O(1,_,() (yi - (i) ( -1(yi-(i)] –((+q)/2. 

The equivalent scale mixture specification in either case involves unknown positive weight parameters (i that scale the overall variance or dispersion matrix. For a univariate outcome, the Student t( model may be obtained by assuming gamma distributed weights, namely

           yi = (xi + ei
           ei ~ N(0,(2/(i)














           (i  ~ G((/2,(/2).

Ideally the degrees of freedom is an unknown also (Geweke, 1993) though for small samples it may be effective to use a preset value such as (=4 (Lange et al, 1989). If (=1/( is a free parameter then one may assign an exponential prior to ( with mean taken to be uniform between limits such as 0.02 and 0.5 (corresponding to a lower value (=2 to (=50 for effectively Normal errors). An alternative is to take (=1/( and set a beta prior is set on ( to ensure that ( exceeds 30 or 50 (effective normality) with a low probability. Lower values of (i (especially those considerably under 1) indicate either outliers or bimodality. The bimodal interpretation would only be feasible if a large proportion of weights (e.g. over 20% of all weights) were small (West, 1984).

The multivariate version of this takes again (i as G((/2,(/2), and takes the ith vector observation yi to be sampled from a multivariate Normal with dispersion matrix 

               (i =(/(i. 

Suspect observations (i.e. potential outliers) with small weights (i and hence large Mahalanobis distances (yi - Xi()(eq \O(i,-1)(yi - Xi() are down-weighted, with the degree of down-weighting being enhanced for smaller values of ( (Lange et al, 1989). Compared to the contaminated normal model for outliers (which requires two extra parameters) the Student t requires only one. Little (1988) in a missing data application reports that Student t regression is as effective as the contaminated mixture model in downweighting outliers.

The scale mixture model also applies to augmented data sampling (ADS) for multivariate binary regression. For the multivariate probit, identifiability via ADS is achieved by assuming the latent data to be multivariate normal with covariance matrix that is a correlation matrix. For K joint binary responses and observations augmented by latent variables Wi={Wi1,Wi2,…WiK}, Wi is truncated multivariate normal with mean (i={(i1, (i2,…,(iK}, where (ik=Xi(k, and with sampling of Wik is confined to values above zero when yik=1 and to values below zero when yik=0. One may generalise the multivariate probit models to multivariate t or other models by scale mixing, which amounts to dividing the correlation matrix R by a weighting factor (i so that

               Wi ~ TNK((i,R/(i)                                                    

               (i ~ Ga((/2,(/2).

Rather than non-normality described by approximately symmetric heavier tailed errors, modifications of the normal to accommodate skewness can be modelled by using an extra random effect (i, with known scale as for a latent trait in factor analysis (Sahu et al , 2003). This extra effect is constrained to be positive in the skewed normal model 

            yi= Xi( + ((i+(i                i=1,…,n                         
where (i~N(0,(2),

           (i~N(0,1) I(0,) 

and ( is a loading that is positive when there is right skew in the data and negative when there is left skew; see Sahu & Chai (2006) for a multivariate extension. Other positive densities (e.g. gamma) might be used also for (i. Taking (i ~ N(0,(2/(i) in this model with (i ~ Ga((/2,(/2) provides for both skewness and heavier tails than in the normal. Normality of errors then corresponds to ((( and ( straddling zero. 

Fernandez and Steel (1998) also propose a method for skewness and fat tails together. They adopt a method involving differential scaling of a baseline variance according to whether the regression error term i=yi-i  is negative or positive. For positive errors the precision is scaled by a positive factor 1/2, with =1 corresponding to a symmetric density, and values of  exceeding (less than) 1 corresponding to positive (negative) skewness. For negative error terms the scaling is by a factor 2. So for positively skewed errors , values of >1 are selected since they reduce the precision (i.e. increase variance) for positive  and increase it for negative . This model for skewness is combined with a Student t density for yi allowing both skewness and fat tails.

Other methods for obtaining approximately normal errors may involve transformations of the response(s) and predictors, leading to nonlinear regression (chapter 10) unless a known transformation (e.g. logarithmic) is applied to response and or selected predictors.  

Example 5.5 Troy Voting

Consider again the Troy educational choice and voting data from Chib and Greenberg (1998) and augmented data sampling. Untypical responses (in one or both binary responses), or heavier tailed errors than under the normal, may invalidate the standard bivariate probit in which augmented data are obtained by truncated multivariate normal sampling. To allow for heavier tailed errors one may retain truncated multivariate normal but introduce gamma scale mixing where the degrees of freedom ( is an additional unknown. Thus ( = 1/( where ( ~ E(() and ( ~ U(0.02,0.5). The sets the prior mean for ( between 2 and 50. Other priors are as in example 4.12. 

The second half of a two chain run of 20000 iterations (run to allow convergence of () shows posterior medians for (i under 0.5 for 10 subjects with the posterior median for ( of 3.1. So some departure from bivariate normality seems apparent. The correlation between the two variables has 95% interval (-0.18,0.60), so is biased towards a positive association.

5.8 The Normal Meta-Analysis Model  Allowing for  Heterogeneity in Study Design or Patient Risk

In this section we consider the normal-normal hierarchical model including regressors in the context of clinical meta-analysis. For example, apparent treatment effects may occur because trials are not exchangeable in terms of the study design used or the risk level of patients in different studies. Other study level characteristics may be relevant to explaining heterogeneity between studies, e.g. an index of patient case-mix in the study of hospital mortality by Morris and Christansen (1996). This leads to what are sometimes called meta-regression models, with typical form

                     yi ~ N((i, s eq \O(i,2))                                      


                     (i ~ N(Xi(,(2)

where Xi might be a mix of continuous and categorical predictors (van Houwelingen et al, 2002). The first or second stage prior may be framed as a Student t regression to reduce the impact of untypical studies.

Alternatively, different study designs may be modelled using a partially exchangeable model whereby the overall treatment effects and/or the variances around them are specific to the design used. For example, if some of the studies were case control studies (gi=1) and some were cohort studies (gi=2) then one might assume both means and variances specific to case control as against cohort studies: 

                     yi ~ N((i,s eq \O(i,2))                                      


                     (i ~ N(([gi],(2[gi])

Rather than independent priors on the design specific means (j, one might additionally set an informative prior on the likely gap, (=(2-(1. 

If trials differ in their patient risk level, then treatment benefits may differ not only because of treatment effects, but according to whether patients in a particular study are relatively low or high risk. Suppose outcomes of trials are summarised by a mortality log odds (zi) for the control group in each trial and by a similar log odds (yi) for the treatment group. A measure such as yi-zi is typically used (assuming normal sampling) to assess whether the treatment was beneficial.  Sometimes the death rate mi in the control group of a trial, or some transformation of it, is taken as a measure of the overall patient risk in that trial, and the benefits are regressed on mi in order to control for heterogeneity in risk. Thompson et al (1997) show that such procedures induce biases due to inbuilt dependencies between yi-zi and mi. 

Suppose instead the underlying patient risk in trial i is denoted (i, and the treatment benefits as (i, where these effects are independent. Assume also that the sampling errors s eq \O(i,2) are equal across studies and across treatment and control arms of trials, so that var(zi)=var(yi)=( eq \O(,2). Then assuming normal errors one may specify the model

         yi = (i + (i + u1i
         zi = (i +  u2i
where u1i and u2i are independent of one another and of i and (i.  

The risks (i may be taken as random with mean R and variance ( eq \O((,2). Alternatively Thompson et al (1997) take  eq \O((,2) as known (e.g. ( eq \O((,2)=10 in their analysis of sclerotherapy trials), so that the (i are fixed effects. The (i may be taken as normally distributed around an average treatment effect (, with variance (2.  Another approach attempts to model interdependence between risk and treatment benefits. For example, a linear dependence might involve

              (i ~ N((i, (2)

              (i=  + ((i-R) 

which is equivalent to assuming the (i and (i are bivariate normal.

Example 5.6 AMI and Magnesium Trials

A meta-analysis adjusted for differences in patient risk is illustrated by trial data from McIntosh (1996) into the use of magnesium for treating acute myocardial infarction. For the nine trials considered, numbers of patients in the trial and control arms Neq \O(i,T) and Neq \O(i,C) vary considerably, with one trial containing a combined sample  (Ni= Neq \O(i,T)+ Neq \O(i,C)) exceeding 50000, another containing under 50 (Table 5.7). 

Table 5.7 Trial Data Summary: Patients under Magnesium Treatment or Control


Magnesium
Control
Control group death rate (y2) and log mortality ratio (y1)
Var(y2)
Var(y1)
Slope (see text)


Deaths
Sample Size Neq \O(i,T)
Deaths
Sample Size Neq \O(i,C)
y2
y1




Morton
1
40
2
36
0.056 
-0.83
1.56
0.00146
-19.06

Abraham
1
48
1
46
0.022 
-0.043
2.04
0.00046
-47.02

Feldsted
10
50
8
48
0.167 
0.223
0.24
0.00035
-19.56

Rasmussen
9
35
23
135
0.170 
-1.056
0.17
0.00105
-7.07

Ceremuzynski
1
25
3
23
0.130 
-1.281
1.43
0.00493
-8.82

Schechter I
1
59
9
56
0.161 
-2.408
1.15
0.00241
-7.41

LIMIT2
90
1150
118
1150
0.103 
-0.298
0.021
0.00008
-10.86

ISIS 4
1997
27413
1897
27411
0.069 
0.055
0.0011
2.35E-06
-15.52

Schechter II
4
92
17
98
0.173 
-1.53
0.33
0.00146
-6.97

It is necessary to allow for this wide variation in sampling precision for outcomes based on deaths deq \O(i,T) and deq \O(i,C) in each arm of each trial. McIntosh (1996) seeks to explain heterogeneity in treatment effects after taking account of variation in control group mortality rates, yi2= meq \O(i,C)= deq \O(i,C)/ Neq \O(i,C). Treatment effects themselves are represented by the log mortality ratio

                      yi1 = log(meq \O(i,T)/ meq \O(i,C)).

To reflect sampling variation, McIntosh adopts a lower stage model with y1 and y2 taken as bivariate normal with unknown means i,1:2 but known dispersion matrices i. The term 11i in i for the variance of yi1 is provided by the estimate

                    1/{Neq \O(i,T) meq \O(i,T) (1- meq \O(i,T))} + 1/{ Neq \O(i,C) meq \O(i,C) (1- meq \O(i,C))}

while the variance for yi2 is just the usual binomial variance. The covariance 12i is approximated as -1/ Neq \O(i,C), and hence the ‘slope’ relating yi1 to yi2 in trial i is estimated as 12i/22i. Thus

                      yi,1:2 ~ N2(i,1:2, i)

where the (i1=(i represent treatment benefits (i, and the (i2=(i represent control group mortality rates. These are modelled as

                   (i ~ N((i, (2)

(i = ( + ((i-R)

                   (i ~ N(R, ( eq \O((,2)).

If  is negative this means that treatment effectiveness declines as risk in the control group increases. The average underlying odds ratio ( for the treatment effect (controlling for the effect of risk) is obtained by exponentiating (; a positive treatment effect would be demonstrated by a 95% credible interval for ( entirely under 1.

With G(1,0.001) priors on 1/(2 and 1/( eq \O((,2), a two chain run showed convergence at around 10,000 iterations and summaries are based on iterations 10,000-20,000. The probability that  is positive is 2% so the treatment effect seems to be associated with risk in the control group. The treatment odds ratio has a mean of 0.75 {0.46,1.09}. 

An alternative analysis follows Thompson et al (1997) in taking the observed deq \O(i,T) and deq \O(i,C) as binomial with rates ti and ci in relation to trial populations Neq \O(i,T) and Neq \O(i,C). Thus

                         deq \O(i,T) ~ Bin(ti, Neq \O(i,T))

                         deq \O(i,C) ~ Bin(ci, Neq \O(i,C))

with logit transforms yi=logit(ti) and zi=logit(ci) related via

                       yi = i+(i
                       zi = i.

The average trial risks (i are random N(R,2() with 1/2( ~ G(1,0.001), and treatment benefits are normal with 

                     (i ~ N((i,2)

                     (i =+((i-R). 

With 1/2~ G(1,0.001, there is a 26% chance that ( > 0 (from the 2nd half of two chain runs of 20000 iterations), So the first stage model seems to affect inferences. The overall treatment odds ratio ( again has a 95% interval straddling 1.
5.8 Hierarchical Priors for Multinomial Data

Consider aggregate categorical or choice for cases i =1,..n, and J alternatives, and subject to the total ni=(jyij. For example, Nelson (1984) considers crime victims yij grouped by US city and subject to four possible types of personal crime (robbery, aggravated assault, simple assault, and larceny with contact). The cities differ both in their overall crime rate and the distribution of crimes among the four types and the heterogeneity may exceed that postulated by the standard multinomial. Similar issues occur in modelling recreation choices (Shonkwiler & Hanley, 2003).

One option for modelling this heterogeneity is to adopt a Dirichlet prior for the conditional probabilities with uncertainty beyond the second stage; this has the advantage of conjugacy when there is a multinomial likelihood and yields the Dirichlet-multinomial model (Nandram, 1998; Leonard, 1977). Thus (yi1,yi2,..yiJ) are multinomial with respective choice probabilities (ij, where (j(ij=1, which are Dirichlet with parameters ((j where ( and (j are additional unknowns. The (j themselves follow a Dirichlet with known prior weights (e.g. cj=1, all j). For instance assume a gamma prior on (, then 

               (yi1,yi2,..yiJ) ~ Mult(ni,[(i1,(i2,..(iJ])

               ((i1,(i2,..(iJ) ~ Dir(((1, ((2,.. ,((J)

               ( ~ Ga(a,b)

               ((1, (2,.. ,(J) ~ Dir(c1,...,cJ).

where the cj are known (e.g. cj=1). The quantity (i=(ni+()/(1+() is an overdispersion factor that increases with heterogeneity relative to the multinomial. Overdispersion increases as ( ( 0, while as (((, the (i tend to 1 and the density converges to a multinomial.

One may assume instead the independent Poisson representation of the multinomial within subject or case i, with conditional probabilities obtained from



(ij = exp((ij)/(kexp((ik)                  (5.9).

Suppose the parameters of the different multinomial distributions are exchangeable between subjects i, and that given ( and covariance C the vectors (i=((i1,(i2,…(iJ) are independently multivariate normal with common mean ( and covariance C. For identifiability it is necessary either that (j(j=0, or that one mean is set to zero, as in

                       (i1=(1+ui1




(5.10)

...

                       (i,J-1=(J-1+ui,J-1
                       (iJ=uiJ
                       (ui1,ui2,....uiJ) ~ NJ(0,C)               

This specification arguably has more generality than the Dirichlet (Leonard and Hsu, 1994). A multivariate t may be used instead for greater robustness, with scale mixing at subject level.

Example 5.7 Grades in high schools

Leonard and Hsu (1994) present mathematics test results on student totals yij by school i=1,..40 and grade j, with six grades. The ‘subjects’ here are schools. The data are assumed to be drawn from 40 multinomial distributions, each with 6 outcomes. In the first model, it is assumed that the (ij are multivariate normal with mean (=((1,..(6), where (j(j=0, and with precision P=C-1. A Wishart prior for P with 6 degrees of freedom and identity scale matrix is assumed.

A two chain run of 10000 iterations (inferences from 2nd half) gives a posterior mean for 

      (=exp[(1],exp[(2],…exp[(6])/(jexp[(j],

of (0.088,0.225,0.259,0.261,0.060,0.107). The DIC is 781.5 with de=95.4. The smoothed population proportions are similar to the estimates of Leonard and Hsu. The highest absolute correlation between grades is –0.66 between grades 1 and 6. The correlation matrix has positive correlations for adjacent grades and negative correlations for widely separated grades.

A second model adopts a Dirichlet-multinomial mixture, with priors

               ( ~ Ga(1,1)

               ((1, (2,.. ,(J) ~ Dir(1,...,1).

A two chain run of 10000 iterations (inferences from 2nd half) shows a worse DIC than the multivariate logit-MVN model, namely 805.4 (with de=113.4), though the deviance at the mean parameters is slightly lower. The smoothed population proportions under this model are (0.100,0.216,0.241,0.243,0.075,0.124) and are more smoothed towards equality.

5.5.1 Histogram Smoothing

Suppose values of an originally continuous variable y be arranged in J histogram intervals of equal width, {Ij-1,Ij}, j=1,..J (e.g. income bands or weight intervals), with frequencies fj in the jth interval. Often the observed histogram of frequencies is irregular because of sampling variations when a priori more smoothness is expected. Leonard (1973) and Leonard and Hsu (1999) propose a method to smooth an observed histogram in line with an underlying density q(y). Suppose (j  denotes the underlying probability of an observation lying in interval j

                  (j =  eq \O(Ij-1,Ij) q(u)du

The observed frequencies y1,..yJ are then multinomial with probability vector ((1,..(J) and index n=Σjfj. As above the probabilities the parameters may be expressed via a multiple logit as

                   (j=exp((j)/Σk exp((k)

where ((1,...(J) are multivariate normal with mean g1,..gJ and JxJ precision matrix P. A neutral prior on the (j would assign them prior mass 1/J, and this translates into the means gj having values -log(J). For the covariance matrix V=P-1 assume a smoothness structure

                   Vij= σ2ρ|i-j|
as in a time series autoregressive process of order 1 (Lee and Nelder, 2001). This prior expresses a prior belief that adjacent points in the histogram will have similar frequencies. Let 

                  τ=σ-2(1-ρ2)-1.




The precision matrix then has the form (see Box and Jenkins, 1970)

                   P11= PJJ=τ

                   Pjj = τ(1+ρ2)   j=2,...J-1

                   Pj,j+1=Pj+1,j= - ρτ   j=1,...J-1

                   Pij=Pji=0 for i=1,..J-2;j=2+i,J

Typically ρ is expected to be positive though Leonard (1973) assigns it a normal prior N(a,A) with sampled values constrained to be between -1 and +1. Leonard assigns a gamma prior to τ ~ G(b,bc) where the prior value of 1/τ is c, and b is the strength of belief in this prior estimate. For example, if  σ2 were expected to be 0.3, and ρ to be 0.7, then the prior expectation of τ-1 is approximately 0.15 leading to a prior such as τ ~ G(1,0.15) or τ~G(0.5,0.075). 

Example 5.8 Pigs Weight Gain Data

Histogram smoothing is demonstrated using data on weight gains in weight among 522 pigs as presented in Leonard and Hsu (1999) and first analysed by Snedecor and Cochran (1989). The observed frequencies are cumulated into 21 intervals with weight gains (in lbs) 19,20,21,...38,39. The modal frequency is at 30 lbs, with f12=72, but the data show irregularities in the tails: for example, the data show equal frequencies at weight gains 25 and 26 lbs, and more pigs at gain 35 lbs than at 34lbs. 

Discrete priors are adopted on ρ and τ, both with 20 bins. For ( the possible values are 0.05,0.1,0.15,....0.9,0.95,0.99 and for τ they are 0.5,1,1.5,...9.5,10. These bin values were based on pilot analyses with broader ranges. The resulting estimates of the smoothed frequencies (Table 5.10) show less ‘smoothing upwards’ in the tails than the results of Leonard and Hsu. The posterior mean for ( exceeds 0.9, as compared to a value of 0.7 assumed known by Leonard and Hsu. The implied variance (2 is around  6.9.

Table 5.10 Pig Weight Gains

         



       Smoothed      

        Frequency

Weight Gains (lbs)
Original       Frequency
     Mean
     St Dev

19
1
1.6
0.9

20
1
1.6
0.9

21
0
1.9
0.9

22
7
5.0
1.7

23
5
6.1
1.9

24
10
10.9
2.7

25
30
27.8
4.8

26
30
30.5
4.7

27
41
40.7
5.8

28
48
48.4
6.2

29
66
65.2
7.1

30
72
70.8
7.4

31
56
56.1
6.8

32
46
46.1
6.3

33
45
43.4
6.0

34
22
23.5
4.3

35
24
22.2
4.0

36
12
11.4
2.9

37
5
4.9
1.6

38
0
2.0
1.0

39
1
1.8
1.0

5.9 Exercises

1. Consider data from Morris & Normand (1992) and earlier analysed by Laird and Louis (1989) relating to 12 studies into chemical carcinogenicity. 

Chemical No
Slope (yi)
Within sample SE (si)

13
0.291
0.205

5
1.12
0.243

22
1.62
0.253

24
-0.2
0.268

10
0.039
0.279

20
-0.73
0.285

14
-1.431
0.352

15
-0.437
0.355

3
0.098
0.362

7
-0.109
0.381

21
0.637
0.409

18
0.03
0.568

The effect measure is a slope y expressing tumour response as a function of dose. Laird and Louis construct posterior intervals for the true slopes (i in order to classify the chemicals as carcinogenetic ((i>0) or  protective ((i<0). Morris and Normand contrast fixed and random effects models to demonstrate that inferences on the overall effect ( may be affected. Letting Wi=1/ s eq \O(i,2), a simple chi square test using the criterion  eq \O((,i)Wi(yi- eq \O(y,_))2 (with 11 degrees of freedom) suggests substantial heterogeneity. Obtain ( under a fixed effects model with prior ( ~ N(0,1000) and under a random effects model, again with (~N(0,1000), but with second stage random SD, ( ~ U(0,10). Note that if the analysis is undertaken in the WINBUGS package then the normal density for (i involves the precision 1/(2. Are there any changes in the ranking of the chemicals after the random effects analysis as compared with the raw data rankings. What are the posterior carcinogenicity probabilities Pr((i>0|y)? Is any difference made if a uniform prior on B=(2/((2+ s eq \O(0,2)) is used instead of the uniform prior on (?

2. Consider data from a meta-analysis of 11 studies by the US Environmental Protection Agency into lung cancer risk from environmental tobacco smoke (Table 11.1 in Hedges, 1997). The studies were a mixture of cohort and case control studies, with  effect sizes being log odds ratios and log risk ratios respectively. The observed effect sizes are y=(0.405,-0.386, 0.698, 0.637, 0.247, 0.239, 0.148, 0.693, -0.236, -0.315, 0.278) with corresponding within study standard deviations s=(0.695, 0.451, 0.730, 0.481, 0.134, 0.206, 0.163, 0.544, 0.246, 0.591, 0.487). The USEPA analysis assumed (2=0 in a classical fixed effects meta-analysis and estimate ( as 0.17 with 95% CI from 0.01 to 0.33 (just significant at the 95% level in classical terms). Apply an analysis parallel to that in Example 5.1 to assess the validity of the fixed effects assumption regarding (2. Also apply the Albert-Chib (1997) discrete prior methodology including the option where (2 is effectively zero as one of the points (with prior mass 0.5). The third and seventh studies of the 11 were cohort studies, while the other nine used case-control designs.  Apply a  partially exchangeable meta-analysis with

                       yi ~ N((i,s eq \O(i,2))                                      


                     (i ~ N(([gi],(2[gi])

where gi=1 for case-control studies and gi=2 for cohort studies. Assume (1 ~N(0,10), but consider an informative N(0,0.1) prior on the likely gap, (=(2-(1. What are the posterior probabilities for Pr((1 > 0|y) and Pr((2>0|y)?

3. In Example 5.2 apply a Poisson-gamma relative risk model using the expected deaths Ecpa included in Table 5.2, so that Ycpa ~ Po(Ecpa (cpa) and (cpa ~ Ga((,(), where c=cancer type, p=place and a=age group. Also apply a fixed effects model with diffuse priors, e.g. (cpa ~ Ga(0.001,0.001), and compare inferences on relative risks over the eight cells. Assess sensitivity to alternative priors on (, e.g. ( ~ E(1) vs ( ~ LN(0,1), where LN denotes log-normal. 

4. Consider data from 14 trials into breast cancer recurrence under tamoxifen, with y denoting numbers with recurrence after a year’s treatment (EBCTCG, 1998):


Trial

Control


Study
y
N
y
N

1
55
97
67
101

2
137
282
187
306

3
505
927
590
915

4
62
123
74
140

5
99
239
118
236

6
50
130
49
107

7
185
311
200
319

8
186
303
187
307

9
148
325
178
325

10
25
79
38
86

11
223
344
224
350

12
183
937
185
936

13
2
12
0
8

14
129
434
159
449

Compare inferences about the drug effect under a log odds ratio comparison using a normal-normal model and using a binomial sampling model. Under the normal approximation the empirical log odds ratio may be obtained as 

      ri=log
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with variances 

      seq \O(i,2) =1/(yiT+0.5)+ 1/(yiC+0.5)+1/(NiC-yiC+0.5)+1/(NiT-yiT+0.5)

5. Estimate the Poisson-lognormal regression model (5.7) for the data in Table 5.5, using a gamma prior on 1/(2 and taking the group intercept and time effects as fixed effects (see Draper, 1996).

6. Exercise5_6.odc contains a 10% sample (n=441) of the 4406 observations on J=6 count responses relating to health care use; these data are considered by Chib and Winkelmann (2001). The responses are y1=visits to physician in an office setting, y2=visits to a nonphysician in office setting, y3=visits to physician in hospital outpatient setting, y4=visits to nonphysician in hospital outpatient setting, y5=visits to an emergency room, y6=number of hospital stays. Correlations between the uij as in the model set out in (5.7) might in this instance represent substitution effects between different forms of health demand. One possibility for the prior on the precision matrix is (-1 ~ Wishart(J,Jeq \O((,^)) where eq \O((,^) is a prior estimate of (; Chib and Winkelmann (2001) assume (-1 ~ Wishart(6,I). Compare the model in (5.8) with one that assumes scale mixing and may better accommodate outlier subjects; thus

                yij|ui,(j ~ Po(oij(ij)





               log((ij)=xij(j+uij
               (ui1,ui2,..uiJ) ~ N(0,(/(i)

               (i ~ Ga(0.5(,0.5()

is equivalent to assuming ui follows a multivariate Student t with ( degrees of freedom. In particular, compare inferences under the two models on the correlations r56, and r26; the latter may be taken as representing the association between serious and less serious morbidity. 

7. Set out the full conditionals for regression effects ( and precisions (=1/(2 in a hierarchical regression model where yi are binomial or Poisson with means (i,  with logit((i)=(i and log((i)=(i respectively and (i ~ N(Xi(,(2). Assume a normal prior for (, namely ( ~ N(b0,P0-1) and gamma prior for (, namely ( ~ Ga(a,b).

8. Consider the data in Example5_8.odc on religious affiliation for 133 small area populations in North East London (2001 UK Census). These are Christian,

Buddhist, Hindu, Jewish, Muslim, Sikh, Other religion, No religion, Religion not stated. Compare the fit of the fixed effects multinomial, namely

               (yi1,yi2,..yiJ) ~ Mult(ni,[(i1,(i2,..(iJ])

               ((i1,(i2,..(iJ) ~ Dir(c1,...,cJ)                            

(with cj=1 all j) to that of the Dirichlet-multinomial and the multivariate logit-MVN model of (5.9)-(5.10) for multinomial smoothing. Consider both the DIC and posterior predictive checks.

9. Apply the normal approximation (5.1)-(5.2) to Aspirin trial data (deaths di among myocardial infarction patients ni) from Morris and Normand (1992, p 334):


Aspirin
Placebo

Study 
di
ni
di
ni

UK-1
49
615
67
624

CDPA
44
758
64
771

GAMS
27
317
32
309

UK-2
102
832
126
850

PARIS
85
810
52
406

AMIS
246
2267
219
2257

Compare the standard normal-normal model

               yi ~ N((i,(2Vi)                              i=1,..,n      

  

               (i ~ N((,(2)

with a robust alternative, namely

               yi ~ N((i,(2Vi)                              i=1,..,n      

  

               (i ~ t((,(2,(),

with (=4, and using the scale mixture approach of  section 5.7. Are any outlier trials apparent?

10. Apply Student t regression (section 5.7) to the stack loss data in Example 4.4, with degrees of freedom ( an unknown. Lange et al (1989) consider these data under normal linear regression and Student regression and show support for the latter. In fact they report an estimate (=1.1. 
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