Chapter 14 Missing Data Models

14.1 Introduction: Types of Missingness

A frequent characteristic of many surveys and longitudinal studies is nonresponse among a subset of subjects, or nonresponse after a certain stage in the study due to attrition (Rubin, 2004; Diggle & Kenward, 1994; Engels & Diehr, 2003; Hogan et al, 2004; Twisk & de Vente, 2002). In cross-sectional data sets this may be either unit nonresponse, meaning a failure to obtain any responses from certain subjects, or item nonresponse, with answers missing to certain questions in a battery of such questions. Common techniques to deal with missing data are to exclude subjects with totally or partial missing data, leading to ‘complete case analysis’. However, this may lead to bias in estimating population parameters, if there is differential non-response in sub-populations (e.g. low response among low income minorities) (von Hippel, 2004). By contrast, missing data models seek to model the mechanism producing the missingness and to generate plausible values for the missing data themselves; in a Bayesian approach the missing data become extra parameters. Common approaches to missing data are multiple imputation methods, and full likelihood modelling methods (Little & Rubin, 2002, Chs 6 et seq) that consider a joint density f(Y,R) between the response Y and the drop-out mechanism represented usually by a categorical (usually binary) variable R. Depending on how R is related to observed and possibly missing components of Y, drop-out may be termed informative or otherwise. 

A frequently used division is between missingness completely at random (MCAR), missingness at random (MAR) and missingness not at random (MNAR). In the first category, the probability of a missing response is not related to other data in the study, observed or missing; only in this case is complete case analysis valid (Allison, 2000). In the second category, missingness may be related to observed variables only (e.g. some occupation groups are less likely to provide income details and occupation is measured). If missingness is random, then a valid analysis is provided by a likelihood model for Y that ignores the dropout mechanism R, provided the parameters describing the likelihood are independent of the parameters describing the dropout process - the ignorability condition (Little and Rubin, 2002). In the third category, missingness on an item may depend on the unobserved missing value, as in case control studies where the probability that exposure is missing depends on whether a person is exposed (Lyles & Allen, 2002), or when early exit in a clinical trial is due to adverse consequences of the treatment (Diggle & Kenward, 1994).

Particular patterns of missing data may be relevant to forming a model. In longitudinal studies, permanent withdrawal results in monotonic missingness: if yit is observed then yi,t-1, yi,t-2, .. are necessarily also observed while if yit is missing then subsequent data points yi,t+1, yi,t+2, .. are necessarily also missing. For cross-sectional survey data, models for non-response may simplify when non-response is monotonic: if Y1 is observed for all units but Y2 is not observed for everyone, one can factor the joint distribution as P(Y1,Y2)=P(Y1)P(Y2|Y1) with inferences on the marginal density of Y1 based on all the data (Little and Rubin, 2002, ch. 6). Even for unit nonresponse some information may be relevant to modelling missingness, as survey design variables may be available. Stasny (1991) considers data on crime victimisation (Y=1 or 0) and missingess status (R=1 or 0) from the US National Crime Survey. The subjects are classified by survey domain (urban vs rural, poverty level, type of incorporation), so allowing an informative missingess model for estimating the proportion of non-respondents for each domain who are victims. 

Another type of missing data pattern occurs when marginal totals in contingency tables are known but none of the cells. When confined to a single table, the technique of iterative proportional fitting is often applied (Willekens, 1999), and can be expressed in terms of a likelihood on the observed marginal sums. The missing cells scenario extends to multiply observed tables, possibly containing partial information from different sources. For example, one may know, from electoral data, the proportions of the electorate voting for different political parties in a set of constituencies, and from census data, the proportions of the voting age populations in different ethnic groups. Ecological inference methods seek to model the missing information on party voting patterns according to ethnic group (King et al, 2004).

The following sections considers different types of missingness and ways of defining the joint density of Y and R. This includes survey data, panel data and multivariate panel data, and considers when missingness may be modelled by shared random effects (e.g. by a form of common factor). Subsequent sections consider multiple imputation and applications involving possibly nonrandom missingness in survey tabulations. The final two sections consider missingess for mixtures of categorical and continuous outcomes and in partially observed contingency tables.

14.2 Selection and Pattern Mixture Models for the Joint Data-Missingness Density 

Full likelihood methods introduce binary indicators for response present (Rij=1) or missing (Rij=0) for subjects i=1,..,N and items j=1,..,J, in a cross-sectional survey. Similarly for univariate panel data, the response mechanism is usually represented by binary indicators Rit=1 for response present at time t, and Rit=0 for response missing. So if a subject drops out permanently at time Ti (so yiTi and subsequent responses are missing) they contribute to the likelihood at that point with the indicator value RiTi=0 but not subsequently. For multivariate panel data, indicators R={Rijt} are defined according to whether response was made (Rijt=1) or missing (Rijt=0) for subjects i=1,..N, at times t=1,..Ti, and for variables j=1,..,J. The missing data indicators are regarded as additional observations to the full set Y={Yobs,Ymis} of outcome data, observed and missing. Sometimes other random variables summarising missingness are used. An example in panel studies is the total Si=eq \O((,t=1,Ti)Rit of complete (non-missing) observations (e.g. Alfo and Aitkin, 2000). Alternatively missingness might be represented by a categorical variable, as for longitudinal studies when Rit=2,1,or 0 according as the response is present, intermittently missing or a permanent drop out (Albert et al, 2002). 

Suppose {X, W} denotes covariates not subject to missing values or measurement error for all respondents, including stratifying variables in a survey. Under a selection model for missing data, the joint distribution of the response indicators R and outcomes Y is

            P(R,Y|(,(,X,W) = P(R|Y,W,() P(Y|X,)                     (14.1)

where assuming R is binary, P(R|Y,W,() is a Bernoulli density. Under MCAR, none of the data collected or missing is relevant to explaining the chance of missingness, and P(R|Y,W,()=(0, a parameter fixed over all Y and W values. The response mechanism will be missing at random if

             P(R|Y,W,()= P(R|Yobs,Ymis,W, () = P(R|Yobs,W, ().

So in a cross-sectional survey, the probability of nonresponse on an item can depend on known responses to other items, but not on the possibly missing value itself. For panel data subject to attrition (permanent dropout), MAR missingness would mean Pr(Rit=1) could depend on values preceding and observed Y values (yi,t-1, yi,t-2, etc), but not on the values of possibly missing variables such as yit itself. If the MAR assumption holds, and the parameters ( and ( are distinct, with their joint prior factoring into independent marginal priors (Schafer, 1997, Ch 2), there is no need to explicitly model the response mechanism when making inferences about (.

If, however, missingness on an item depends on the missing value of that outcome, namely P(R|Yobs,Ymis,W, () cannot be simplified to P(R|Yobs,W, (), then non-response is said to be nonrandom (MNAR). For example, a question on recent sexual activity may be less likely to be answered for those who were inactive (Raab and Donnelly, 1999), or overweight people may be less likely to provide details on their weight. Similarly, Carpenter et al (2002) argue that a selection model is often the most natural for modelling nonrandom drop-out in clinical trials, since drop-out may be explained by a steady decline in a patient’s condition to a level at which they do not wish to participate any more. If non-response is incorrectly assumed to be random (with respect to the unobserved outcomes) then the procedures used to adjust for non-response may produce biased estimates of the distribution of the outcome across the full set of survey cases. 

For missingness not at random, a missing data model is required for valid inferences, typically involving logit or probit links for (ij=Pr(Rij=1|Wij,yij) in cross sectional data, or (it=Pr(Rit=1|Wit,Wi,t-1,..,yit,yi,t-1,..) for panel data. For example, possible predictors for logit((it) in a panel data setting under a selection approach, would include yit itself (to model possible nonrandom missingness), and lagged responses yi,t-s (s=1,2..). For intermittent non-response (Ibrahim et al, 2001), lagged missingness indicators Ri,t-s or total number of previous nonresponses become relevant. With intermittent non-response the joint distribution of the missingness indicators may be considered (instead of taking them independent by default) and Ibrahim et al (2001, p 557) suggest a one-dimensional conditioning sequence Pr(Ri1=1|Wi1,yi1), Pr(Ri2=1|Ri1,Wi2,Wi1,yi2,yi1), Pr(Ri3=1|Ri1,Ri2,Wi3,Wi2,Wi1,yi3,yi2,yi1), etc.

It is sometimes advised to include a wide range of observed predictors in the model for Pr(R=1|W,Y) in order to model out dependence on possibly missing Y. Scharfstein & Irizarry (2003) consider nonparametric regression impacts of W on logit[Pr(Ri=1)] in a cross-sectional situation, and rather than estimate a free parameter ( on possibly missing Y values, they conduct sensitivity analysis over alternative fixed values. Thus with Y a metric measure of morbidity, they assume logit[Pr(Ri=1)]=(0+S1(wi1)..+Sp(wip)+(log(yi), where S(w) denotes a smooth function, and ( is the log-odds ratio of response for subjects differing by one unit on log(Y); ( <0 if sicker subjects are more likely to be nonrespondents. 

An alternative conditioning sequence for the probability of missingness occurs under pattern mixture models (Little, 1993; Daniels & Hogan, 2000). Instead of a model involving the marginal density of Y and the conditional density of R given Y, the joint density of Y and R is factored as the marginal density of R and the conditional density of Y given R, namely

          P(R,Y|(,() = P(Y|R,() P(R|()                                (14.2.1)

Suppose predictors X and W are fully observed, then a pattern mixture model might take the form 

         P(Y,R|(,() = P(Y|R,X,(P(R|W,(

where the regression model for Y involves the missingness indicators R, and the substantive influences X which are the focus of interest, and possibly interactions X*R between them. Pattern mixture modelling typically involve simplifying identifiability constraints (Molenberghs et al, 2002; Hedeker and Gibbons, 1997) such as defining a small number of nonresponse patterns. For example, for T=3 observation points in a panel data problem, the possible sequences are OOO (all three values of Y observed), OOM, OMO, MOO, OMM, MOM, MMO, and MMM. While it is possible to include subjects with the complete nonresponse pattern MMM given information on some predictors, they are often excluded. Hence the regression model for Y|R,X,( involves a categoric predictor for missingness status (with six associated parameters if the model has an intercept). The model for R itself might be a multinomial logit model (with six free categories in the example just quoted) with a regression on predictors W that may partially overlap with X.

In the pattern mixture method, parameters for level or variance (e.g. means and variances for normal data, or variance/dispersion matrices for permanent subject effects in GLMM models) can also be distinguished by subject response category. Such parameterisations are more likely to be empirically identifiable if non-response patterns are considerably simplified, e.g. a trichotomy distinguishing full response from monotone missingness (OOM and OMM), and from intermittent nonmonotone missingness (MOM, MOO, OMO and MMO).  For a normal response and no predictors, one might then assume (Little and Rubin, 2002, Chapter 1)

               yi|Ri ~ N(([Ri],([Ri])

where Ri here denotes type of missingness (possibly multinomial with several categories). The data are MCAR if all ( and ( parameters are equal (Little and Rubin, 2002, p 327). If (i is modelled in terms of predictors X as well as R, a simplified missingess pattern facilitates inclusion in the regression model of interactions X*R between substantive factors (e.g. treatment status) and missingess (Hedeker and Gibbons, 1997).  Michiels et al (2002, p 1034) show how to incorporate the missingess type into general linear mixed models for Y. 

Example 14.1 Psychotic Drug Trial 

In this example we demonstrate the pattern mixture approach to longitudinal data. The data yit comes from a panel study of 437 psychiatric patients allocated either to a placebo or an anti-psychotic drug (Hedeker and Gibbons, 1997). The responses are derived using the seven point Inpatient Multidimensional Psychiatric Scale (IMPS) and here treated as metric; higher values indicate greater illness severity. Most observations were taken at weeks 0, 1, 3, and 6, but there is considerable dropout (and some intermittent response also). 

Defining completion as being measured at week 6, completion rates stand at 65% (70/108) and 81% (265/329) among placebo and drug groups respectively. The data frame is complicated by the small numbers of observations at weeks 2,4 and 5 leading to an unbalanced analysis even without dropout (note also that a few of the 437 patients have their initial observation at week 1 rather than week 0). 

Table 14.1 Response Levels by Week

 
Week






Total

in Study

Treatment
0
1
2
3
4
5
6


Placebo
107
105
5
87
2
2
70
108

Drug
327
321
9
287
9
7
265
329

All
434
426
14
374
11
9
335
437

Hedeker and Gibbons note from graphical analysis that that the improvement rate of drug as compared to placebo is greater among subjects who dropped out, relative to the completers. This may be because for placebo subjects, dropouts were those experiencing the least gain from their “treatment”, while for the drug group the dropouts had an earlier and more pronounced gain from treatment. They suggest a model for yit with main effects in drug, time (in weeks), and dropout status (=1 for persons not present at week 6). The model also includes three two way interactions (drug*time), (drug*dropout) and (dropout*time), and a three way interaction (drug*time*dropout), as well as random subject intercepts and time effects. 

The model of form (14.2.2) is then

= β0+ β1+ β2+ β3(× )

             +β4+ β5(× )

             +β6(× ) + β7(× × )

              +ui1+ u+ ε
Note that the missingness model P(R|W,(reduces to the subdivision between completers and non-completers. A two chain run of 5000 iterations is made with inferences from the last 4000. One can estimate the initial IMPS effect (intercept) and time effect (improvement rate) for each of the four groups defined by treatment and completion status according to sums of relevant coefficients. For example, for drug completers the relevant coefficients are ((0+(2) for the intercept and ((1+(3) for the time effect. The improvement rate is greatest (posterior mean of –0.75) for dropouts receiving drug treatment, and least for dropouts in the placebo treatment. The fact that there is a significant improvement effect for placebo completers (-0.149 with standard deviation 0.032) suggests a genuine “placebo effect”.

14.3 Shared Random Effect and Common Factor Models

Models for missingness that are consistent with either selection or pattern mixture approaches may account for informative non-response by using random effects shared between outcome and missingness models (e.g. Follmann and Wu, 1995; Albert et al, 2002; Roy and Lin, 2002). Consider a general linear mixed model for panel responses with subject specific random effects bi=(bi1,..,biq)( applied to predictors Zit=(Zit1,…Zitq). For example, with a univariate normal outcome

              yit ~ N((it,(2)

              (it=Xit( + Zitbi,

where bi might be multivariate normal. Missingness models may exclude dependence on bi, as in Ibrahim et al (2001, p 558), so that (under a selection scheme), Pr(Rit=1|yit,Xit,Zit,bi,()=Pr(Rit=1|yit,Xit,Zit,(). Alternatively the random effect may be shared, and used to model both possibly missing Y and to predict R, so that the distribution of Rit depends on bi but not on yit. For example, if q=1, Zit1=1, and (it=Pr(Rit=1), then

             yit ~ N((it,(2)

             (it=Xit( + (1bi 

             logit((it)= Wit(1 + (2bi
where setting (1=1 means the variance of bi is unknown, and Wit are predictors relevant to explaining missingness. An alternative is a pattern mixture sequence involving a shared factor, with P(Y,R|b,X,Z,()=P(Y|R,Z,b,X,()P(R|b,Z,W,(), and some or all bi are included in the model for Rit. 

One may also take Sit=eq \O((,u=1,t)Riu (i.e. number of non-missing observations) as the dependent variable in the missingness model (Follman & Wu, 1995, p 154); under monotone attrition with dropout at Ti, Si = eq \O((,u=1,Ti)Riu contains the same information as the sequence of binary indicators Rit (Alfo & Aitkin, 2000). Then for q=1, a pattern mixture model for E(yit|Sit,bi) might take the form

             (it= Xit( + bi+ ([h(Sit)]

where h might be an identity or log function (Follmann and Wu, 1995). The model for the mean of Sit involves the shared random effect bi, and could take a form such as

             E(Sit|bi)= Wit(1+ (2bi.

so Sit (i.e. the missingness variable) is conditionally independent of yit given bi. Alfo & Aitkin (2000, p 282) consider a model including lags in  yit, with conditioning sequence 

         P(yit|yi,t-1,Xit,Sit,bi)P(Sit|Wit,bi)P(bi|yi1). 

One possible model for the response mean might be

           (it= Xit( + (yi,t-1+ Zitbi+(1yi1+(2Sit+(3Sityi1.

Albert et al (2002) propose a more heavily parameterised shared effects model for panel data (subject to both dropout and intermittent missingness) with time varying autocorrelated random effects bit. They consider binary responses yit ~ Bern((it), and use a multinomial logit model for trichotomous missingness indicators Rit (=2 for observed, 1 for intermittent, 0 for dropout) conditional on bit and Ri,t-1(0. Assume instead binary missingness, with R=1 for observed Y, and R=0 for intermittent missing data. Then with q=1, an example of this form of model is

            logit((it)= Xit( + bit                 

            logit((it)= Wit(1+(2bit

            cov(bit,bis)=(2exp(-(|t-s|),    ((0

which reduces to bit=bi when (=0.

For multivariate panel observations {yitm, m=1,..,M}, one might propose latent traits or discrete latent classes, both to model the correlation between the observations yitm, and to include in a less heavily parameterised missingness model – that would otherwise involve own lags and cross lags in yitm and yitk, k(m (Roy and Lin, 2002; Lin et al, 2004). Consider metric or discrete outcomes yitm following an exponential family density, with link gY to means (itm, and with a single time varying latent trrait Fit. Then one might set

               gY((itm) = (m+(mFit + uim                                    

               Ritm ~ Bern((itm)

               gR((itm)=(m1+(m2Fit                                                                   
where uim are random subject-outcome effects. The factor scores Fit are defined in terms of time specific fixed effects applied to a 1(p covariate vector Xit and random subject effects bi applied to 1(q covariate vector  Zit. For example,

              Fit=Xit(t + Zitbi +vit                                          

with vit ~ N(0,1), where to ensure identifiability, Xit and Zit exclude a constant since there are already constants (m in gY((itm). The Fit model cross-correlation between outcomes at each time t, while the uim and bi model within outcome correlations through time. The missingness model is non-ignorable due to dependence on Fit, which is in turn modelling possibly missing yitm (Roy & Lin, 2002, p 43). 
For multivariate cross-sectional data yij involving J outcomes or items, the corresponding technique involves a common factor shared between the likelihood for Y and the missing data model. A common factor approach may be advantageous even when a missing data model is not included, since for data assumed to be MAR and with J large, it may assist in multiple imputation (Song and Belin, 2004). A model allowing for MNAR missingess shares K < J factors between response and missingness models.  Thus for continuous outcomes

            yij ~ N((ij,(j), j=1,..J, 

let

           (ij= (j+ Fi(j
where Fi=(Fi1,…FiK) is a vector of factor scores, and (j is a (K(1) vector of factor loadings. In matrix form

           Yi = ( + Fi(Y + ui 

where Yi is 1(J and (Y is K(J, and ui ~ NJ(0,() where ( is diagonal. The model for missing data indicators also involves the factors, as in Rij ~ Bern((ij), 

          logit((ij)= Wi(j+ Fi(j
where (j is K(1. Song & Belin (2004) also consider cross-variable non-ignorable missingness, as (for J=3) when (i1 is related to Y2 and Y3, and (i2 is related to Y1 and Y3.

Holman and Glas (2005) consider models with two shared random effects ( and (, with a limiting case when (=(. They consider multivariate polytomous responses yij ( (0,..mj) with ordered categories, and use a generalised partial credit model

      Pr(yij=k)=exp(k(j(i-(jk)/ [eq \O((,k=0,mj)exp(k(j(i-(jk)]

with (j0=0. The latent factor (i might be considered as ability or attitude depending on the application. The missingness model is 

      Pr(Rij=1) = (j(i-(j
where ( is a latent factor governing tendency to respond.  Holman and Glas (2005, p 4) consider pattern mixture models such as

      P(yij|Rij,(i,(,()P(Rij|(i,(,()P((i,(i|().

Non-ignorable models are obtained in several ways. For example, the joint prior P((i,(i|() could allow  ( and ( to be correlated, or they might be assumed independent a priori, but the likelihood for the observations might involve ( as well as (, namely P(yij|Rij,(i, (i,(,().

14.4 Missing Predictor Data

Consider cross-sectional data with p covariates X=(Xmis,Xobs), some of which Xmis are subject to missingness. If Y is also possibly missing, the joint density under a selection model could be

   P(Y,X,RY,RX|(,(,() = P(RX,RY|Y,X,() P(Y|X,() P(Xmis|(,Xobs).

One might model joint missingness Pr(RX=1,RY=1) by a sequence Pr(RY=1|RX)Pr(RX=1). Instead of direct dependence of RX and RY on Y and X, one might use a shared factor model as discussed in the previous section.  With multiple items Yi (1(J), and predictors Xi (1(p), both subject to missingness, and with Fi=(Fi1,…FiK) for K < max(J,p), one might specify

           P(Yi, Xi|Fi) = P(Yi|Xi,Fi)P(Xobs,i,Xmis,iFi).
where the Fi model interdependence between all the predictors, including those fully observed. The models for missingness could also involve a common factor Gi 

           RYij ~ Bern((ij)

           logit((ij)= (1j +Gi(1j

           RXim ~ Bern((im),          

           logit((im)= (2m+Gi(2m
If Fi and Gi are of the same dimension they might be taken as correlated and non-ignorability assessed as in Holman and Glas (2005).

Assume for simplicity that only the predictors Xi are subject to missing values, so R=RX; specifically that values on q out of p predictors are possibly missing. Then a selection model proposed by Ibrahim et al, 1999 (p 175) has the form,

    p(Y,X,R|(,(,() = p(R|Y,X,() p(Y|X,() p(Xmis|(,Xobs).

The fully observed covariates are Xi,obs={Xi,q+1,..Xip}. The incompletely observed covariates Xi,mis=(Xi1,…Xiq) may be categorical {Xi1,..Xiq1} and continuous (Xi,q1+1,..Xiq}. Allowing for MNAR missingness involves specifying both the joint distribution of Xi,mis={Xi1,..Xiq} and the joint density of the covariate missingness indicators Ri={Ri1,…Riq}. 

Ibrahim et al (1999) suggest a sequence of one-dimensional conditional distributions to model P(Xmis|(), such as

   p(Xi1,..Xim|(} = 

         p(Xim|Xi,m-1,…Xi1,(m}…p(Xi2|Xi1,(2)p(Xi1|(1)                

(14.3).

Alternative conditioning sequences may be tried as part of a sensitivity analysis. Possible approaches for modelling the Ri={Ri1,…Riq} include a joint log-linear model for p(Ri|Yi, Xi,() with Xi=(Xi,mis, Xi,obs) as predictors, or equivalently a multinomial model with all possible classifications of nonresponse as categories (Schafer, 1997, chapter 9). For example, if Xmis contains two variables, there are four possible combinations of R1 and R2. However, the joint density for {Ri1,…Riq} can also (Ibrahim et al, 1999) be specified as a series of conditional distributions

  p(Ri1,..Riq|(,Xi,Yi} = 

     p(Riq|Ri,q-1,…Ri1,(q,Xi,Yi)…p(Ri2|Ri1,(2,Xi,Yi)p(Ri1|(1,Xi,Yi)      (14.4)

What (14.3) and (14.4) mean in practice may be illustrated with the case of two incompletely observed continuous variables {Xi1,Xi2}, Xi3 fully observed (continuous or binary), and two incompletely observed binary variables Xi4,Xi5. Suppose also that Y is fully observed. The conditioning sequence might start with the joint density for the continuous variables X1 and X2 (Ibrahim et al, 1999, p 180), namely

           p(Xi2|Xi1,(2)P(Xi1|(1).

Conditional on imputed values {Xi1,Xi2} and the fully observed Xi3, a binary regression may be used for (4i=Pr(Xi4=1|Xi1,Xi2,Xi3,(4) with 

           logit((4i)=(40+(41Xi1+(42Xi2+(43Xi3
Note that it is not necessary to model the distribution of Xi3, since it is always observed and hence can be conditioned on. Finally, a regression for pr(Xi5=1,Xi1,Xi2,Xi3,Xi4,(5) would be of the form

           logit((5i)=(50+(51Xi1+(52Xi2+(53Xi3+(54Xi4
Note that other orders of conditioning are possible: one might also start with p(Xi4|(1), then model p(Xi5|(2,Xi4) then p(Xi1|Xi5,Xi4,(3) more in line with a general location model (see section 14.6). A sensitivity analysis would assess the impact of alternative sequences on the ( parameters in the regression of Y on X. 

For non-ignorable nonresponse, one allows the probability of missingness, such as Pr(Ri5=1), to depend on missing values of the same variable (Xi5), the response and fully observed covariates, other variables subject to missingness (Xi1,Xi2,Xi4), as well as earlier Rik in the conditional sequence. In practice the missingness model may show many such effects to be nonsignificant.  So a full model for the missingness of Xi1 might be  

   logit(Pr[Ri1=1])=

        (11+ (12Xi1+(13Xi2+(14Xi3+(15Xi4+(16Xi5+(17Yi           (14.5)

and the model for Ri2 given Ri1, p(Ri2|Ri1,(2), is then

   logit(Pr[Ri2=1])=

        (21+ (22Xi1+(23Xi2+(24Xi3+(25Xi4+(26Xi5+(27Yi+(28R1i

and so on for Pr(Ri4=1) conditional on Ri1 and Ri2, and Pr(Ri5=1) conditional on Ri1 Ri2, and Ri4. Note though that such models may be poorly identified and that parsimonious models (and/or informative priors) may be needed for identifiability in practice (Fitzmaurice et al, 1996; Ibrahim et al, 2001a, p 558). The usual predictor selection methods may be used to obtain parsimonious missingness models, with missingness judged to be random or non-ignorable depending on which predictors are included. 

Example 14.2 MultiLevel Educational Attainment

This example applies a common factor model for a multilevel dataset from the WinMICE package http://web.inter.nl.net/users/S.van.Buuren/mi/hmtl/ winmice.htm. This package applies Gibbs sampling to generate multiple imputations. In the dataset considered, there are 600 pupils nested in 30 classes, one class level predictor (teacher skills, X1), and two child level predictors (child gender, X2, and teacher relation, X3), with final grade as the response, Y. Both teacher relation and final grade are subject to extensive missingness (averaging 35 and 44% respectively), with the rate of missingness varying widely between classes, while X1 and X2 are fully observed. Correlated class level factors (Fj1,Fj2), with unknown dispersion matrix, are taken to underlie final grade xij3, yij, and the probabilities of missingness on yij and xij3.

Let i denote pupil and j denote class then we assume

           yij = (Y+(11Fj1 + Xij(+uij1
where Xij=(teacher skill, gender, teacher relation). Also

           xij3 = (X + (21Fj1+uij2
while the missingness models are

           RYij ~ Bern((ij)

           logit((ij)= (Y +(12Fj2
           RXij ~ Bern((ij),          

           logit((ij)= (X+(22Fj2
To ensure the dispersion matrix of F is identified, (11=(12=1. 

Iterations 1000-5000 of a two chain run show an effectively zero correlation (mean –0.12 with 95% interval from –0.53 to 0.33) between the two sets of factors. The WINMICE package adopts a multiple imputation approach and the lack of correlation between the two factors detected here suggests MAR imputation is justified. In fact, estimated impacts of X1 to X3 on final grade are similar to those reported by Jacobusse (2005, p 18) using a multiple imputation approach based on MAR missingness (see section 14.5). With a N(1,1) prior, the posterior coefficient (21 is not conclusively positive, with a 95% credible interval from –0.12 to 0.49, but suggests common class level influences underlying the omitted responses . 

14.5 Multiple Imputation

The full likelihood modelling approach may become computationally prohibitive in datsets with missingness in both response(s) and covariates, or with multiple outcomes (Lavori et al, 1995). A selection approach would need a model for Y and for the response mechanism Pr(RY=1), while each partially observed covariate Xj would need a separate likelihood model, and possibly a model for the missing data mechanism Pr(RXj=1). Pattern mixture models might be applied with simplified missingness patterns (e.g. Ri=3 for both Y and all X present, Ri=2 for Y present and some X missing, Ri=1 for X all present and Y missing, and Ri=0 for Y missing and some X also missing). Alternatively in situations with missingness extending over several variables, multiple imputation provides an adaptable strategy (with several computer implementations available on the web).  

Multiple imputation involves sampling the missing values in a dataset to create an imputed complete dataset. This is done several times over to create K complete data sets, usually under a missing at random assumption. The complete datasets are then analyzed by any sort of likelihood model P(Y|(), and the resulting different parameter estimates (1,..,(K are pooled over the K separate analyses to form a combined estimate. Sometimes the imputation may use a hierarchical model (e.g. imputations for the same questions over subjects in different surveys) (Gelman et al, 1999). The number K of imputed samples needed is typically under K=10 because Monte Carlo error is small compared to the overall uncertainty about Ymis (Schafer, 1997, Ch 4). However, K will need to be larger when there is a higher percent of missing data. 

Let Y generically represent a mix of predictors and response variables. Then MCMC sampling can be used to generate K samples of the missing data {Ymis,k, k=1,..K} from the predictive distribution P(Ymis|Yobs) (Fridley et al, 2003). In the case of data missing at random the predictive density of Ymis is

              P(Ymis|Yobs) = p(Ymis|Yobs, ()p((|Yobs)d(
(Schafer, 1997, p 105-6). As for other instances of data augmentation this involves alternating draws ((t) from  p((|Yobs) and Y(t)mis from p(Ymis|Yobs,((t)) (Sinharay et al, 2001). 
Models based on assuming Y to be multivariate normal, and subject to arbitrary missingness patterns (e.g. nonmonotone and in both response and predictors) have been presented by Schafer (1997). MCMC sampling is used either to generate all missing values or enough missing values to make the imputed data have a monotone missing pattern. Such an approach applies even when Y includes discrete data (e.g. binary, ordinal) (King et al, 2001). This might involve rounding off a continuous MVN sample to the nearest integer (for an ordinal response), or using an extra sampling step (e.g. Bernoulli) with mean equal to the continuous imputation; though see Horton et al (2003) for a cautionary discussion on such procedures. In certain MI applications more complicated sampling models may be needed to reproduce certain features of the data (e.g. correlations over time or space, or seasonal effects) (Hopke et al, 2001). 

Another MI technique involves the Bayesian bootstrap, assuming missingness at random (Parzen et al, 2005; Rubin & Schenker, 1986). Suppose the sample size is n where r values are observed, and n-r are missing. Then r potential values (for filling in the missing data) are selected at random and with replacement from y1,..yr. At the next stage imputed values yeq \O(*,r+1),..,yeq \O(*,n) are drawn with replacement from the r potential values. 

Once the K datasets are assembled, K separate analyses (of any kind) are carried out. Suppose the analysis is a linear regression with a single predictor with coefficient (. Denote the posterior variances of (1,..,(K from K separate MCMC estimations as V1,..,VK respectively. Then the within imputation variance of the (k is estimated as 

                       W(=eq \O((,k=1,K)Vk/K,                            

the between imputation variance as 

                       B(=eq \O((,k=1,K) ((k-eq \O((,_))2/(K-1),               

and the total variance of the combined estimate eq \O((,_) as

                      T(=B((1+1/K) + W(.

Then  eq \O((,_)/T eq \O((,0.5)  ~ t(, where (=(K-1)[1+WB-1(1+1/K)-1]. If the imputations carry no information about the unknown ( then the separate estimates (k would be equal and T( would be equal to W(. Therefore the ratio r=(1+1/K)B(/W( measures the increase in variance associated with the missing data, and (=r/(1+r) is the estimated proportion of missing information. The relative efficiency of K imputations compared to an infinite number is 

                         (1+(/K)-1
which falls off rapidly with K for even large proportions of missing data (e.g. (=0.5, equivalent to 50% missingness) (Sinharay et al, 2001).

A stratification based form of multiple imputation uses a propensity score approach (Lavori et al, 1995). This involves estimating propensities (i=Pr(Ri=1) using a logistic regression on fully observed variables (or already imputed variables), whether responses Y or predictors X. Suppose Ri=1 for a subject with X2 present, and Ri=0 with X2 missing; also suppose X1 and Y are fully observed and assist in predicting Pr(Ri=1), e.g. in a logistic regression for (i=Pr(Ri=1|X1,Y). Then one would make multiple imputations of X2 within strata formed using the scores (i. Suppose the sample were split into g=1,..,G groups according to the deciles of (i, and within group g there were sg respondents on X2 and ng-sg nonrespondents. Using the Bayesian bootstrap procedure (Rubin, 1987) one randomly selects sg potential values of X2 (with replacement) from among the sg subjects with X2 observed. Then values for the ng–sg nonrespondents are drawn with replacement from this sample of potential values. This process would be repeated K times.

Example 14.3 Bivariate Normal Simulated Data, Missing at Random 

100 bivariate normal observations {Yi1,Yi2} were generated with mean (=((1,(2)=(0,0), variances (21=(22=1 and correlation 0.9. Y1 is completely observed but Y2 subject to around 50% non-response. Missing values in Y2 are generated via a missing data mechanism

                     Ri ~ Bernoulli((i)

                     Probit((i)=(0+(1Yi1

where (0=0, (1=1. The MAR assumption is reflected in the dependence of (i on fully observed Y1 but not on Y2, which is subject to missingness. Applying this mechanism here yields a dataset with Ri=0 (response missing on Y2) for 49 of the 100 cases. 

In the imputation stage, the input data are the Yi1 just generated, and complete Yi2 for 51 cases, but Yi2 are (treated as) unknown when Ri=0. Since the Yi2 are in fact known one can use this sort of approach to validate different kinds of missingess models. The multiple imputation strategy adopted here involves simple linear regression to generate K=5 sets of the missing Y2 values (equivalent to bivariate normal imputation). Missingness at random is assumed. Alternatives might include using the approximate Bayesian bootstrap. 

Thus five sets of Y2 are generated from the model

                  Yi2 ~ N((Mi,i,1/(MI)                 i=1,..,100

where (Mi,i=(MI+(MIYi1. N(0,100) priors are adopted on the fixed effects and a Ga(1,0.001) prior on (MI. Including a model for the missing data mechanism at the imputation stage involves a simple extension, with non-ignorable imputation if Yi2 rather than Yi1, or in addition to Yi1, is used in the mean (Mi,i for the imputation model. The imputations are made from a single chain run at successive iterations 2001, 2002,..,2005.

In the third pooled inference stage the K complete datasets {Yi1,Yi2}, i=1,100, are used to undertake K separate linear regressions, with parameters {(k,(k, (k}, namely 

                 Yi2[k] ~ N((k+ (kYi1, 1/(k),          i=1,100,     k=1,K

From the 2nd half of a two chain run of 15000 iterations we obtain posterior mean estimates (k varying from -0.062 to 0.036, and of (k varying from 0.845 to 0.953, with means  eq \O((,_) = - 0.032 and  eq \O((,_) =0.891. Denote the between imputation variances of  eq \O((,_) =(k(k/K and  eq \O((,_) =(k(k/K as B1 and  B2 respectively, and the within imputation variances as Wj=(kVjk/K  (j=1,2) where {V1k,V2k} are the posterior variances of (k and (k. The estimated total variances of eq \O((,_)  and  eq \O((,_) are then Tj=Wj+(1+1/K)Bj, giving T1=0.0107, and T2=0.0132.  So eq \O((,_)  and  eq \O((,_) have estimated standard errors 0.113 and 0.115, and 95% intervals including the true values of 0 and 0.9.

14.5 Categorical Response Data with Possibly Nonrandom Missingness: Hierarchical and Regression Models  

Several approaches are possible for missing values in datasets consisting entirely of discrete data. With appropriate modifications one may apply the methods of sections 14.2-14.4 to subject level data. However, it is often less computationally demanding to retain the data in aggregated tabular form. As in other settings, inferences may be strengthened by exploiting similarities between groups of subjects. Hierarchical models for non-response are appropriate for categorical data defined over survey domains or population sub-groups, both for the outcome of interest (e.g. respondent obese or not), and for the probabilities of response within the sub-groups.  These subgroups may be defined by known covariates (Park and Brown, 1994), or by variables used to determine a survey design, such as urban or rural stratum of residence (Stasny, 1991). Alternatively  regression (e.g. log-linear) models may be adopted to assess whether differential non-response is related to observed stratum variables or covariates, so that MAR missingness is a reasonable assumption, or whether a nonrandom missingness mechanism is necessary (Molenberghs et al, 1999). The latter would involve interactions between observed and missingness classifiers.

14.5.1 Hierarchical Models for Response and Non-Response by Strata

Under hierarchical models information from the entire sample or survey is used to improve estimates of the outcome and response probabilities in separate subgroups. In line with a selection approach, one may allow differential probability of response according to the outcome (Little and Gelman, 1999);  for example, a different chance of response regarding smoking habits between smokers and non-smokers. Suppose the outcome is binary and that a population has been subdivided into i=1,..I groups defined by variables expected to be associated with the probability of response. Within subgroup i all individuals are assumed to have the same prevalence pi of the binary outcome. Let Rij be a dummy variable defined as 1 if the jth individual in the ith group is a responder and 0 otherwise. Also set yij=1 or 0 according to whether the same individual has the behaviour, characteristic or attitude of interest.  

For example, consider the outcome (e.g. a survey question) on whether a subject is a smoker or otherwise. Let (i1 = Pr(Rij=1|yij=1) denote the conditional probability of response given that a subject j in stratum i is a smoker, and (i0=Pr(Rij=1|yij=0) denote the probability of response when a subject is a non-smoker. Then the total probability of a response under a selection model is the sum over the two possible combinations of outcome and non-response conditional on outcome:

   Pr(Rij=1) = Pr(Rij=1yij=0)Pr(yij=0) + Pr(Rij=1yij=1)Pr(yij=1)    (14.6.1)

                  = (i0(1-pi) + (i1pi.

Similarly the total probability of non-response under a selection model is

   Pr(Rij=0) = Pr(Rij=0yij=0)Pr(yij=0) + Pr(Rij=0yij=1)Pr(yij=1)    (14.6.2)

                  = (1-(i0)(1-pi) + (1-(i1)pi.

There may be prior information about the chance of response according to the outcome of interest, e.g. that nonresponse is more likely for smokers, implying (i1 > (i0. It is possible to include such constraints in hierarchical priors for (i0 and (i1, such as 

               (i0 ~ Beta(a0,b0), (i1 ~ Beta(a1,b1), 

via a mean-precision parameterisation, with a=m(, b=(1-m)(, rather than using default values such as a0=b0=a1=b1=1. Another piece of information that may strengthen inferences is when correlation between the (i0 and (i1 is judged likely (Little & Gelman, 1999). This might be modelled using logit transformation of the (ik and bivariate normal stratum effects. If the groups i are areas one might consider spatial priors as another way to pool strength (Oleson & He, 2004). For example a mixed ICAR model could be

                      logit((i0)=(0+ui0+vi0
                      logit((i1)=(1+ui1+vi1
where the two sets of unstructured errors uij have mean zero and could be independent of one another, or be correlated in a BVN prior. Similarly the vij could follow a multivariate ICAR model.

Suppose there are Ui non-respondents in the ith group, as well as Si respondents with the observation Y=1, and Ti respondents with observation Y=0. The likelihood contributions for the latter two groups under a selection model are respectively

      Pr(Rij=1Yij=1)Pr(Yij=1) = (i1pi 

 












  (14.7)

and 

      Pr(Rij=1Yij=0)Pr(Yij=0) = (i0(1-pi).







                (14.8)


The likelihood contribution for non-responders is the probability (14.6) above, so the total likelihood involves terms (14.6)-(14.8).

To continue with the smoking example, the Ui non-responders will be made up of two latent groups, Vi non-responders who smoke, and Ui-Vi non-responders who do not smoke. The probability that Vi of the Ui non-responders are smokers is binomial, Vi ~ Bin(Ui,(i), where

          (i=(1-(i1)pi / {(1-(i0)(1-pi) + (1-(i1)pi}.

With prior pi ~ Be(c1,c2), the conditional densities of the outcome prevalence (smoking rate) and the probabilities of response can be written

        pi  Vi,(i0,(i1 ~  Be(Si+Vi +c1,Ti+Ui-Vi+c2)

        (i1 pi,Vi       ~  Be(Si + a1,Vi+ b1)

        (i0pi,Vi       ~  Be(Ti + a0,Ui-Vi+ b0)

In an ignorable response model, the steps are the same, but with (i0=(i1=(i, and so a common beta prior for (i0 and (i1 would be adopted.

Suppose Y is multinomial (with K>2 categories) rather than binomial, and that the observations in group or domain i are (Si1,..,SiK,Ui). The subtotals of stratum specific nonrespondents Ui who are latent members of cells 1,2,..K are now updated according to

               (Vi1,..,ViK) ~ Mult(Ui,[(i1,..(iK]) 

where 

              (ik=  (1-(ik)pik /  eq \O((,j)(1-(ij)pij.
The response probabilities (ik =Pr(Rijk=1) to item k for subject j in group i are updated according to

               (ik   ~ Beta(Sik+ ak,Vik+ bk).

while cell probabilities for the outcome itself are updated via

               (pi1,..piK) ~ Dirch(Ai1,…AiK) 

where Aik=Vik+Sik+ck and ck are prior weights.

The multinomial hierarchical approach applies also to situations with joint categorical outcomes subject to missingness. For h=1,..,H original questions or items, with Lh levels, the complete data model is expressible as a single multinomial variable combining the original items, and containing K= eq \O((,h)Lh categories with probabilities (p1,..pK). There are K*= eq \O((,h)(Lh+1) possible observation patterns involving incomplete data on one or more of the H items. For example, if there were H=3 original binary items, the completely observed data can be modelled as a multinomial with K=8 cells, but there will be K*=27 possible observation patterns involving missingness on more or more of the H items. Allocation of subjects with missing responses to one or more of the H items will involve all possible cells among that set of K that the subject could belong to. Under non-ignorable missingness, and with I strata, the response probabilities (ik = Pr(Rijk =1) for subject j in stratum i would therefore be specific to categories of the K dimensional multinomial outcome. 
For example if the completely classified cells with Y=(Y1,Y2,Y3) binary are (111,211,121,112,221,212,122,222) then a subject with responses (Y1=1,Y2=1,Y3 missing) can be allocated to either 111 or 112.  If the allocation allows for non-ignorable response, and there were U11M subjects with response (11M), then allocation to 111 would be binomial with

               V111 ~ Bin(U11M,(111)

               (111=  p( p( p( 

where (1 and (4 are the probabilities of response for sequences (1,1,1) and (1,1,2) respectively. For example, suppose answers on age, drug taking and frequency were: young/old, yes/no, and every day/every week/less frequently. Then there may be a different response probabilities for young daily drug takers as opposed to young weekly drug takers, or older non drug takers. 

Little and Gelman (1999) consider a re-parameterisation of the differential non-response model where the outcome is binary. For strata i=1,..,I they consider the ratios

                Qi=(i1/((i1+(i0)                     



(14.9)

and the overall non-response rate by stratum

               (i=((i0+(i1)/2                          



(14.10)

So the parameter set {(i1,(i0,pi} is replaced by the set {(i,Qi,pi}. This reparameterisation is useful when only the totals Si and Ti are known, but the number of nonresponders Ui is unknown, as in telephone surveys (Brady & Orren, 1992). Despite this lack of information, allowance for non-ignorable response is required for valid inferences on pi. Let Mi=Si+Ti, then 

                  Si ~ Bin(Mi,(i)

where

                  (i  = pi(i1/[(1- pi)(i0+ pi(i1]

                      = piQi/[(1- pi)(1-Qi)+ piQi].

Choice of a preset common value for all i such as Qi=0.5 corresponds to a missing completely at random assumption, while a prior on the Qi, such as a beta with mean 0.5, amounts to a non-ignorable response model. Following Kadane (1993), inferences about pi are sensitive to assumptions on the Qi. In fact a diffuse prior on Qi, such as the default Be(1,1), leads to over-smoothing of the pi. Little and Gelman argue that in most surveys the Qi should vary less than the pi on the basis that relative non-response probabilities are unlikely to vary more than the average prevalence of the outcome. They assume pi ~ Be(a1,b1) where a1 and b1 are updated by the data, and Qi ~ Be(a2,b2) where (a2,b2) are set a priori or based on historical data.

Another reparameterisation of the hierarchical binary model (Nandram & Choi, 2002) is obtained by setting 

              (i1=(i(i and (i0=(i.

Since (i=1 for an ignorable model, letting (i be free parameters centred at 1 amounts to a continuous model expansion (Draper, 1995) that allows for nonignorable missingness. Nandram and Choi propose a truncated gamma prior for (i with mean 1 and upper limit 1/(i. They also suggest using the posterior probabilities Pr((i<1|Y) to assess ignorability.

14.5.2 Regression Frameworks

More explicit regression models can be used to represent the interrelation between categorical responses and predictors (including survey strata) and the missingness mechanism. Let Y1 be a fully observed categorical variable with levels i=1,..I and possibly combining several original variables, and Y2 be subject to incomplete response with levels j=1,..J (e.g. Park and Brown, 1994). The observations can be represented by an incompletely observed contingency table nijk where levels of k represent response (k=1) or non-response (k=2) on Y2. The fully observed data are the I(J sub-table nij1 (when Y2 is observed and k=1), and a vector ni+2 of length I contains data subject to non-response on Y2. The distribution of the nijk among the total population of size N=eq \O((,i)

eq \O((,j)

eq \O((,k)nijk subjects is governed by multinomial sampling with probabilities

                 (ijk =(ijk /eq \O((,i)

eq \O((,j)

eq \O((,k)(ijk
where the (ijk are positive. Under missingess at random, (ijk may be estimated by a log-linear model

                 log((ijk)=M+(i+(j+(k+(ij+(ik


    

 (14.12)

which includes no parameters subscripted by k and j jointly, namely interrelating response and the variable Y2 subject to missingness. However, there are parameters (ik linking missingness to the fully observed variable Y1. Omitting (ik leads to a MCAR model. The main effect and interaction parameters in (14.12) are subject to the usual identifying restrictions (e.g. (1=(1=(1=0) if they are treated as fixed effects. To include non-ignorable missingness (j,k) interactions may be added, either as standard effects (jk, subject to the usual corner constraints, or as product interactions, e.g.

                log((ijk)=M+(i+(j+(k+(ij+(ik +(j(k
  

where for identifiability eq \O((,j)(j=1 and eq \O((,k)(k=0. Since there is often little information in the data regarding the parameters one might apply constraints on the ( and ( parameters and assess any changes in fit or inferences. So for Y2 binary with Y2=2 for smoking and Y2=1 for non-smoking, one might assume (2  > (1 and (2 > (1 so that non-response is more likely among smokers. Even if a double constraint is not applied, one or other of the parameter sets will need to be constrained to ensure identification, in the sense of unique labelling; e.g. either (j+1 > (j for any j<J, or  (2  > (1. A further possibility is an extended product interaction, as in

           log((ijk)=M+(i+(j+(k+(ij+(ij(k
                  (14.13)

with eq \O((,i)

eq \O((,j)(j=1 and eq \O((,k)(k=0.

Another regression scheme (Molenberghs et al, 1999; Jansen et al, 2003) more clearly produces an explicit selection model. Still assuming only one variable (Y2) subject to missingness, consider the multinomial probabilities (ijk of belonging to a particular category of the unobserved full data, with denominator N=eq \O((,i)

eq \O((,j)

eq \O((,k)nijk. Then set

             (ijk = q k|ij (ij 




        (14.14.1)

where eq \O((,i)

eq \O((,j)

eq \O((,k)(ijk =1. The model for the joint response {Y1,Y2} is multinomial with probabilities

              (ij=(ij/eq \O((,i)

eq \O((,j)(ij
with (IJ=1 for identification, while the probabilities

                 qk|ij =exp[(ijI(k=2)]/ [1+exp((ij)]                                (14.14.2)
specify the chance of missingness given Y1=i and Y2=j. 

Suppose Y1 (binary) is fully observed, and Y2 (binary) is possibly missing. The observations would consist of a 2(2 cross tabulation nij1 and of two counts ni+2. The multinomial probabilities of the six observed counts (n111,n121,n211,n221, n1+2, n2+2), are given by {(111, (121, (211, (221, (112+(122, (212+(222}. As another example, the obesity data in Park and Brown (1994, Table 1) has Y1 multinomial rather than binary (with categories young male, young female, older male, older female), so the nij1 subtable is of dimension 4(2 and the ni+2 vector is of length 4.

Parameterisation of (ij reflects different missingness assumptions: setting the (ij equal to each other ((ij=() corresponding to missingess completely at random, while setting them equal for all i ((ij=(i) corresponds to missingness at random (i.e. depending on the observed Y1 variable). This is equivalent to (14.12) above. If (ij is not simplified and I is reasonably large, a pooling random effects model, such as (ij ~ N(((,1/((), is one possibility (similar to the hierarchical strategy in 14.5.1), since the parameters are not well identified as fixed effects.  Another less heavily parameterised option is a product interaction model (ij=(1i(2j.

Suppose now that survey variables Y1 and Y2 are both subject to non-response with k=1,2 according as Y1 is observed or missing, and m=1,2 according as Y2 is observed or missing. Then the partially observed data nijkm consists of a fully observed contingency table nij11 when both Y1 and Y2 are observed, n+j21 when Y1 is missing, ni+12 when Y2 is missing, and a single count n++22 when both responses are missing. Following the scheme (14.14), the multinomial probabilities for allocating the total N=(i(j(k(mnijkm to the relevant cells are (Molenberghs et al, 1999, p 111)

            (ijkm = q km|ij (ij                                            (14.15)

where the missing data model is

                q km|ij =exp[(ij I(k=2)+(ij I(m=2) +( I(k=2,m=2)]/               

                         [1+exp((ij)+exp((ij)+exp((ij +(ij +()].
In the absence of relevant predictors of the survey variable cell membership probabilities (ij, one may assume

         ((11, (12,.. (1J, (21, (22,… (2J,.. (I1, (I2,… (IJ) ~

                          Dir(c11,c12,..c1J,c21,c22,…c2J,..cI1,cI2,…cIJ)

where the cij are known constants (e.g. cij=1 all i and j). If there are predictors one has a multiple logit model (see Chapter 7 and Jansen et al, 2003, p 412). As to the missing data model, the parameterisations {(ij=(,(ij=(i} and {(ij=(j,(ij=(} both mean missingness on one variable is ignorable, but that missingness on the other variable depends on the outcome of the former. The parameterisations (ij =(, (ij =(j and (ij =(i, (ij =( mean missingness on one variable is ignorable, but that missingness on the other variable depends on its own outcome (i.e. missingness is nonrandom). 

The data presented by Molenberghs et al (1999, p 110) are for two binary variables (I=J=2) both subject to nonresponse. They can be seen either as a cross classification of two survey variables, e.g. smoking (yes/no) by income (high/low), or as observations on the same binary variable at times 1 and 2. The observed data consists of an I(J subtable nij11 for subjects fully observed at both times, namely 
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a 1(J subtable (n+121, n+221)=(30,60) of subjects observed at time 2 only (as Y1 is missing), an I(1 subtable of subjects observed at time 1 only, namely 
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 as Y2 is missing, and a count of individuals observed neither at time 1 nor time 2, this count being zero in the case of the data presented by Molenberghs et al. So N=478 and the nine counts (100,50,75,75,30,60,28,60,0) have multinomial probabilities ((111, (121, (211, (221, (1121+(2121, (1221+(2221, (1112+(1212, (2112+(2212, (1122+(1222+(2122+(2222). 

The scheme represented by models (14.14) and (14.15) includes other models in the literature for missing data. Thus let Rs1=1 or 0 for subject s according as Y1 is present or missing, and Rs2=1 or 0 according as Y2 is present or missing. Then the conditional missingness sequence of Fay (1986) for the joint density of Rs1 and Rs2 can be expressed as

                  p1(i,j)=Pr(Rs1=1|Ys1=i,Ys2=j), 

                  p21(i,j)=Pr(Rs2=1|Rs1=1,Ys1=i,Ys2=j)

                  p20(i,j)=Pr(Rs2=1|Rs1=0, Ys1=i,Ys2=j),

and in terms of (14.15)

                 q 11|ij = p1(i,j)p21(i,j)

                 q 12|ij = p1(i,j) (1-p21(i,j))

                 q 21|ij = (1-p1(i,j)) p20(i,j)

                 q 22|ij = (1-p1(i,j)) (1-p20(i,j)).

Molenberghs et al (1999, p 112) consider various parameterisations for the logits of p1(i,j), p21(i,j) and p20(i,j). Similarly, the model of Baker et al (1992, p 645) can be expressed as 

                     (ij11 = (ij

                     (ij21 = (ij(ij
                     (ij12 = (ij(ij

                     (ij22 = (ij(ij(ij(
Identifiable models are obtained by constraining the (ij and (ij parameters. For example (ij=(, (ij=(j means missingness on Y1 is constant, while missingness on Y2 depends on its own value (i.e. a MNAR scheme). The scheme (ij =(, (ij =(i means missingness on Y2 depends on the value of Y1. 

Example 14.4 Obesity in Children

Park and Brown (1994) consider data from a coronary risk factor study on obesity in children (yes, no or unknown) in relation to their age group and gender; see also Woolson & Clarke (1984). Age and gender are completely observed (obtained from administrative sources) but the obesity measure depended on children’s participation in the study. There are I=4 groups for the fully observed variable Y1 defined by combining sex and age group (Table 14.2). However the binary variable Y2 (Y2=1 for nonobese, Y2=2 for obese) is subject to missingness. It is not known a priori whether missingness is random or not, but it is possible that overweight children are less likely to participate in a study including a measure of weight status; it is also apparent that younger children are less willing or interested to participate (i.e. that missingness is related to the fully observed variable Y1).

Table 14.2 Numbers of children by age, sex and obesity



                   Obese


    Age
   Sex
     N
      Y
     DK
      %  Missing

   Young
    M
463
82
470
46


    F
435
81
418
45

   Old
    M
900
247
324
22


    F
861
272
303
21

Here we first apply a MAR log-linear regression as in (14.12), assuming N(0,100) priors on the unknowns. The last 15000 iterations of a two chain run of 20000 iterations shows posterior mean percents obese among young males and females of 15.2 and 15.7% respectively. At older ages, the corresponding percents are 21.5 and 24%, compared to the 27.7% for boys and girls combined that is reported (for an ignorable model) by Park and Brown (1994, p 47). The mean numbers of non-respondents who are obese are (71.2,65.5,69.7,72.7) for (YM,YF,OM,OF). Under a MAR model, the expected proportions of the DK group who are obese are the same as for the response observed group; thus the ratio of 71.2 to 470 is similar to the ratio of 82 to (82+463).   

An explicitly non-ignorable model is here applied using model (14.14) and with a random effects prior on the (ij, namely (ij ~ N(((,1/((), with ((~N(0,1), and (( ~ Ga(1,1). Basing inferences on last 90,000 iterations of a 2 chain run of 100,000 iterations, the estimated numbers of non-respondents who are obese are not precisely estimated (and have skew posteriors); the averages (medians) for young children are 76 (46) for males, and 86 (50) for females, while for older children they are 114 (100) and 105 (94). The mean percents obese over the age-gender groups are generally higher as compared to the MAR model except for younger boys, namely (15.6,17.9,24.5,26.2) for (YM,YF,OM,OF). The posterior CI for (( is (0.27,3.45) with median 1.35, while the mean for (( is -0.76 (with 95% interval from -1.51 to 0.02). The ( coefficients suggest that at older ages obese children are more likely not to participate than nonobese children, whereas at younger ages the reverse applies. The posterior means for {(11,(12, (21,(22, (31,(32, (41,(42} are (-0.2,-0.6,-0.36,-0.5,-1.5,-1,-1.55, -1.2).

Finally, a log-linear model with an extended product interaction between age and obesity (i,j) and missingness (k=1,2) is applied, 

         log((ijk)=M+(i+(j+(k+(ij+(ij(k
                           

as in (14.13), with the constraint (2>(1. So higher values of (i2 than (i1 for a given age-sex group i would imply that obese children within that age-sex group are more likely not to participate. Iterations 12500-25000 of a two chain run give lower percents obese at younger ages, namely (11.5,11.7,22.0,24.5) for (YM,YF,OM,OF), than other models. However, as in the preceding model, the ( coefficients suggest that at older ages, obese children are more likely not to participate (k=2), with the reverse true for younger children. With i=1,..4 for YM, YF, OM, and OF respectively, the posterior means for {(11,(12,(21,(22,(31,(32,(41,(42} are (0.325,0.110,0.313,0.069,0.041,0.060,0.031,0.052).
 

Example 14.5 Telephone Survey of Voting Intentions

Here telephone opinion poll data from Little and Gelman (1999) with Ui unknown are analyzed using the reparameterisation of the differential non-response model in (14.9)-(14.10) above. The response is binary (intend to vote for Bush in the 1988 presidential election). For strata i=1,..,I (48 US states excl Hawaii, Alaska, and DC) consider the ratios

              Qi=(i1/((i1+ (i0)

and use only the expectation that var(Qi) < var(pi) to specify priors. The logits of Qi and pi  are defined by

             logit(Qi) = ui1
             logit(pi)=  (0 + ui2
where (0 is the average level for the binary voting intention outcome, and the Qi have prior mean 0.5 when the ui1 have prior mean 0. It is assumed that 

              ui1 ~ N(0,V1) 

where V1 is known, and that 

              ui2 ~ N(0,V2) 

where V2 > V1. Equivalently (2 < (1 where (j=1/Vj are precisions. Specifically two alternative preset values for V1 (namely V1=0.05 and V1=1) are considered, corresponding approximately to Be(2.7,2.7) and Be(41,41) priors on the Qi themselves, and then

                 (2=(1/(1+ ()

where ( ~ G(1,1) so that the precision of the ui2 is less than that of the Qi. Under this approach the smoothed posterior means of pi are relatively robust to changing values of V1, but as V1 is increased the posterior pi become correspondingly less precisely estimated. The crude rates pi of Bush support range from 80% in Utah (49 out of 61 surveyed) to 27% in Rhode Island (18 from 67 surveyed). The smoothed rates with V1=0.05 range from 0.67 (with standard deviation 0.05) to 0.44 (0.06), again for these two States. Under the option V1=1 they vary from 0.68 (0.15) in Indiana to 0.41 (0.16) in Rhode Island.

Example 14.6 Survey on Voting Intentions in Slovenian Plebiscite

Rubin et al (1995) present results from a 1990 survey of 2074 Slovenians regarding their views on Slovenian independence, to be assessed via a full plebiscite later on in the same year. The potential voters were asked (a) whether they were in favour of independence from Yugoslavia, (b) whether they were they in favour of succession, and (c) whether they would attend the Plebiscite (abbreviated to I, S and A). There is no pattern of monotonic non-response to simplify the analysis. The goal is to make inferences about the Yes to Independence vote in the full plebiscite.

Following Rubin et al (1995), one may assume the non-response on H=3 questions is MAR. The 2074 subjects can be allocated to one of K*=27 cells according to their patterns of response and nonresponse to the questions. K=8 of the 27 cells are for completely observed data, with answers yes or no on all three questions. There are eighteen types of partially observed cell: with at least one question answered yes or no, but one or both of the remaining questions not answered (denoted M). There is one cell (with 96 cases in it) with response missing on all three questions.

Suppose answers to the questions are arranged in the order ISA, and Y denotes Yes, and N denotes no. The fully observed cells are YYY, YYN, YNY, YNN, NYY, NYN, NNY and NNN with totals (1191,8,158,7,8,0,68,14). Their distribution among the eight cells is governed by a multinomial parameter vector (pp.,p8). The respondents in the eighteen partially classified cells need to be allocated to one of the completely classified cells to make inferences about the Yes to Independence vote in the full plebiscite. (The completely unclassified cell adds nothing to inference on this parameter). 

A different procedure applies according to whether one question or two questions are not answered (M for short). There are 12 cells with one M. The first of these (containing 107 people) is Yes to Independence and Secession, but with Attendance missing, (Y,Y,M). Persons in this cell fall in one of the first two completely classified cells, either YYY or YYN. Since (by assumption) the probability of response is not related to the outcome, the choice involves the ratio ppp. Then the latent total of V1 persons in the YYY cell is binomial with probability 

p p p

from a population of U1=107 cases. If response were related to outcome then the binomial probability would be of the form 

                   p( p( p( 

where (1 and (2 are the response rates for the outcomes YYY and YYN. The last of the 12 partially classified cells with only one M contains 3 people with the pattern (M,N,N). These can be allocated either to cell 4 (i.e. YNN) or cell 8 (i.e. NNN). So the latent member total V12 is a binomial with total U12=3, and probability of success ppp

The first of the six cells with two M’s consists of 19 people with the pattern (Y,M,M). These are allocated to one of the first four completely classified cells (namely YYY, YYN, YNY, YNN) using a multinomial model and augmented variables V13,1,V13,2, V13,3 and V13,4. These variables have probabilities 

 ppppp ppppp

and so on. The last of the six cells with two M’s consists of 25 people with the pattern (M,M,N). These can be allocated to any one of the four completely classified cells 2, 4, 6 or 8. The multinomial choice probabilities are defined correspondingly.

Iterations 1000-5000 of a two chain run show a symmetric posterior density of the parameter of interest, namely p+p, with mean 0.882 and 95% credible interval (0.867,0.897). The actual plebiscite vote had 88.5% of the population attending and favouring independence.

14.6 Missingness with Mixtures of Continuous and Categorical Data

Suppose the observations contain a mixture of C continuous and D discrete variables, combined in vectors Xi and Yi respectively for cases i=1,..n, and with some or all variables containing missing values for some subjects. This type of data structure occurs frequently in certain methodological contexts (e.g. analysis of variance and discriminant analysis), and sample survey data often contains a mixture of the two types of data. Then a general location model for the joint distribution {Xi,Yi} often forms a basis for modelling both the data and the missingness (Peng et al, 2004; Belin et al, 1999; Schafer & Ripley, 2003). This model specifies the marginal distribution of the categorical variables Yi, and the conditional distribution of the continuous variables Xi given Yi. Specifically, suppose the categorical variables have levels L1,...LD respectively and we form the multinomial variable W with K=eq \O(,d)Ld cells. Thus for D=2 binary variables Y1 and Y2, W would have cells {1,1},{1,2},{2,1} and {2,2} formed by crossing Y1 and Y2. Allocation of subjects with missing values on one or more Y variables to one of the cells of W could proceed as in section 14.5.

Given the classification of case i in one of the K cells of W, the density of Xi is multivariate normal or Student t. Under a fairly common model, the mean but not the dispersion of X is determined by the cell of Wi (Schafer, 1997, p 335). Thus

            Pr(Wi=j} = pj              j=1,...K 

with jpj=1, and either

           Xi|Wi ~ NC(Wi,)

or  possibly    

           Xi|Wi ~ TC(Wi,,()     

where  is a vector of dimension K by C, and ( is a degrees of freedom parameter. This model was applied to missing data problems by Little and Schluchter (1985) and its use in this context is considered further by Little and Rubin (2002, chapter 14) and Schafer (1997). As noted by (Schafer, 1997, p 342) the model is expressible as a multivariate regression of X=(X1,..XC) on Y1,..YD allowing for main effects and interactions between all the Y variables, and so is equivalent to a multivariate analysis of variance. 

Given the wide range of possible regression models for typically extensive sets of variables, and the additional complications if there is missing data (e.g. whether to assume missingness at random or otherwise), inferences from modelling and imputation may be strongly dependent on prior assumptions. A simplification of the dependence of the means of the Xc on the Yd is likely to be better identified than the full main effects and interactions model. For example, one may just allow for main effects of Y1,..YD in modelling the means of X1,…XC (Schafer, 1997, p 344; Little & Rubin, 2002, p 300), when n is not large in relation to K.

Example 14.7 St Louis Study of Psychological Symptoms in Children

Both Little and Schluchter (1985) and Little and Rubin (2002, p 295) consider data on psychological disorders in children in i=1,..69 families. Thus the discrete variables are two binary psychological symptom indicators, namely Y1i=1 and Y2i=1 if a disorder was present in the 1st and 2nd child in family i respectively, and a trinomial variable, family risk of disorder Y3i(1,2,3 (namely low, medium and high). The metric response is Xi={X1i,X2i,X3i,X4i}, where X1=reading score of child 1, X2=comprehension score of child 1, X3=reading score of child 2, and X4=comprehension score of child 2. The data are subject to extensive missingness (with only risk group Y3i being recorded for all 69 children). 

From a substantive point of view the interest is likely to be in ability scores given psychological symptoms, or the impact of family risk on child symptoms. The data can be modelled in several ways, for example including or excluding intra-family correlations, and allowing or not for non-ignorable missingness. Thus the chance that Y1 and/or Y2 are missing may differ according to whether one or both children shows symptoms of disorder (i.e. missingness depends on outcome). Here a model allowing for non-ignorable missingness of Y1 and Y2 is considered, with Xi multivariate normal given Yi=(Y1i ,Y2i , Y3i).

A multinomial variable Wi (1,.., 4 categories is based on crossing Y1 and Y2. Consider its binary equivalent Zij=1 if Wi=j, such that

          Zi1=1 if Y1i=1, Y2i=1     giving  a vector  Z=(1,0,0,0)

          Zi2=1 if Y1i=1, Y2i=0                    “ “       Z=(0,1,0,0)

 Zi3=1 if Y1i=0, Y2i=1                    “ “       Z=(0,0,1,0)

          Zi4=1 if Y1i=0, Y2i=0                    “ “
   Z= (0,0,0,1).

The means of Xk, k=1,..4 are then specific for combinations of risk group Y3i and Zij. 

There are 29 children with both disorder indicators  (Y1,Y2) observed and for this group, Z is sampled as

              (Zi1,Zi2,Zi3,Zi4) ~ Mult(1, [pi1,pi2,pi3,pi4]).

where pij=pj and (p1,..p4) follows a Dirichlet prior. The next four types of pattern are partially observed responses on Y1 and Y2. Let (k denote the probability of response according to the four possible Z outcomes. To illustrate sampling for such children, consider the 5 children with Yi1=1 but Yi2 not known, so that the child may belong to cells 1 or 2 of W. The total probability of non-response for these children is

             (1-(i1)pi1+(1-(i2)pi2
and the probability of the outcome (Y1i=1,Y2i=1), conditional on non-response, is

           (i1 = (1-(i1)pi1 / [(1-(i1)pi1+(1-(i2)pi2].         
For complete non-response on symptoms (Yi1,Yi2) the total probability of non-response is

       (1-(i1)pi1+(1-(i2)pi2+(1-(i3)pi3+(1-(i4)pi4

and the multinomial outcome can be modelled as

        (Zi1,Zi2,Zi3,Zi4) ~ Mult(1, [(i1, (i2, (i3, (i4]).

where

  (ij =  (1-(ij)pij / {(1-(i1) pi1+(1-(i2)pi2+(1-(i3)pi3+(1-(i4)pi4}    j=1,…,4.

The means of the four continuous ability variables Xic are then taken to be regression functions of family risk category Y3i ( (1,2,3) and of the own child problem indicator (namely Yi1 for variables Xi1 and Xi2, and Yi2 for Xi3 and Xi4). One might also include interactions between symptom and risk category, or a problem total (2 if both children record Y=1, 1 if only one does, and 0 otherwise). A common 4x4 dispersion matrix for the X variables is assumed across all 12 cells formed by crossing the three discrete variables. N(0,1000) priors are taken on regression effects except for the intercepts that have N(100,100000) priors; a Wishart prior with identity scale matrix is assumed for the precision matrix of the Xi.

Iterations 1000-5000 of a two chain run show the ability scores to be significantly lower in medium and high risk families, a pattern also detected by Little and Rubin (2002). The highest correlations among the metric variables are between X1 and X2 (mean 0.79) and between X3 and X4 (mean 0.77) Little and Rubin found the highest correlation to be between the two comprehension scores X2 and X4 (here having a mean of 0.72). Regression coefficients on the problem indicator are more notably negative for comprehension than reading scores but even then straddle zero.

The probabilities of nonresponse (1-(j) according to the four cells of Z show the highest non-response (a mean probability of 0.71) to occur for the intermediate outcome {Yi1=1,Yi2=0}. The mean frequencies in the four cells of Z (aggregating over risk groups Y3i) are estimated as (21.4,12.3,20.2,15.1), compared to model B estimates from Little and Rubin (2002) of  (24.7,9.5,22.5,12.3).

14.7 Missing Cells in Contingency Tables

The classic imputation situation in R(C or higher dimensional tables is when the marginal totals are known but not the table cells. Classical methods include the iterative proportional fitting (IPF) algorithm of Deming and Stephan (1940) and its E-M equivalents (Dempster et al, 1977). A log-linear regression approach to such a situation involves a likelihood for the marginal observations but a model defined for cells. So for a two way table totals ni+ and n+j are observed while the log-linear model would be defined for cell parameters (ij defined in terms of main row and column effects. Thus  ni+ ~ Po(eq \O((,j) (ij) and n+j ~ Po(eq \O((,i) (ij) while

        log((ij)=M+(i+(j
where (1=(1=0 is one possible identifying constraint. In the case of historically recurring tables (e.g. interregional migration tables observed at successive censuses) improved estimates may be obtained by the power prior method (Ibrahim & Chen, 2000), or using historic data as offsets (Willekens, 1999). This is a method for combining the information from two or more sets of data (Bishop et al, 1975, p 97). So if nij2 denotes the later data and nij1 the earlier data then

        

ni+2 ~ Po(eq \O((,j) (ij2)

         n+j2 ~ Po(eq \O((,i) (ij2) 

        

log((ij2)=log(nij1)+M+(i+(j.

Similar regression techniques may also be applied to impute population wide totals using survey data from multi-way stratified designs, including the case of clusters within strata, even when certain cells formed by multi-way stratification contain no sampled data. Specifically, a non-saturated model in terms of fixed effects on the stratifying variables may be used. Fixed effects at the (interaction) level at which the cells are empty are not included, unless perhaps they are assigned informative priors. Random effects at this level may be used however. For a two-way stratification with categorical variables r with R categories and c with C categories, let Nrc be the total population, nrc be the number sampled from that population, and yrc the number showing a particular response. Sampling is such that for a subset of cells (r*,c*), there were no subjects sampled, namely nr*c*=0. 

Assuming yrc ~ Bin(nrc,prc), one may be interested in population level inferences on totals exhibiting the response, namely 

             
Yrc = yrc+Wrc 

where 

           
Wrc ~ Bin(Nrc-nrc,prc). 

A suitable logit-linear model in such circumstances might be

                   logit(prc) = M + (r + (c + εrc
A corner constraint on the fixed effects (r and (c is applied, so that (1= (1=0, while the (rc are typically normal random effects. Stroud (1994) outlines the same approach within a beta-binomial structure.

14.7.1 Ecological Inference

Rosen et al (2001) and King et al (1999) consider a situation that often occurs in political science, namely inference about the cell totals in a cross-tabulation (most typically two way) from information only on marginal totals. Since the cells within the cross-tabulations provide more information on individual behaviour than the marginal totals, they can be seen as relevant to ecological inference (EI), namely inferring individual behaviour from aggregate data. Consider observations for a set of i=1,..n electoral areas on voting and ethnicity: the total electorate Ni eligible to vote is the grand total in the table, broken down into numbers actually voting Si as against those not voting Ni-Si. From another source (e.g. Census) there are data on percents black xi, generally taken as known (non-stochastic). The probability of voting in area i, pi, can then be written

      Pr(vote) = Pr(vote|black)Pr(black) + Pr(vote|white)Pr(white)

or

       pi=(eq \o(b,i)xi+ (eq \o(w,i)(1-xi)  

where pi can be estimated from {Si,Ni}, but (eq \o(b,i) and (eq \o(w,i) are unknown probabilities from the underlying 2(2 cross-tabulation. (eq \o(b,i) and (eq \o(w,i) are moreover linearly dependent by virtue of

      (eq \o(w,i)=pi/(1-xi)+ (eq \o(b,i)xi/(1-xi).

There are identification issues with this model which typically involve informative priors (e.g. Haneuse & Wakefield, 2004) or introducing predictors (Rosen et al, 2001; King et al, 1999).  One might follow a hierarchical strategy as in Section 14.5 and assume beta priors on the unknown probabilities, (eq \o(b,i) ~  Be(ab, bb), (eq \o(w,i) ~ Be(aw,bw), where {ab,bb,aw,bw} may themselves be assigned priors. Thus King et al (1999, p. 72) use E(2) priors for these parameters. If predictors Zi are available one could specify (eq \o(b,i) ~ beta(abexp(Zi(b),bb), (eq \o(w,i) ~ beta(awexp(Zi(w),bw) where Zi excludes an intercept. Another option allows (eq \o(b,i) and (eq \o(w,i) to be correlated, via a truncated bivariate normal (TBVN), or by change of variable methods, via a TBVN prior on pi and (eq \o(b,i) (King, 1997, Lewis, 2004). 

Assuming beta priors with {ab,bb,aw,bw} known (e.g. set to default values), the observed data is Si ~ Bin(Ni,pi) while the posterior density of all parameters is proportional to

   eq \O((,i=1,n){[(eq \o(b,i)xi+ (eq \o(w,i)(1-xi)]Si[1-(eq \o(b,i)xi- (eq \o(w,i)(1-xi)] Ni –Si
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The full conditional densities of (eq \o(b,i) and (eq \o(w,i) are proportional to 

    [(eq \o(b,i)xi+ (eq \o(w,i)(1-xi)]Si[1-(eq \o(b,i)xi- (eq \o(w,i)(1-xi)] Ni –Si[(eq \o(b,i)]ab-1(1-(eq \o(b,i)) bb-1
and 

    [(eq \o(b,i)xi+ (eq \o(w,i)(1-xi)]Si[1-(eq \o(b,i)xi- (eq \o(w,i)(1-xi)] Ni –Si[(eq \o(w,i)]aw-1(1-(eq \o(w,i)) bw-1
respectively. These are nonstandard and require Metropolis or Metropolis-Hastings samples to update them (Rosen et al, 2001, p 139). 

Lewis (2004) considers a longitudinal version of the 2(2 EI model, geared to modelling turnout rates by ethnic group. The model ensures racial turnout rates are tied not only across precincts (i) within elections (t), but also across elections within precincts, with area-time voting probabilties expressed as

          pit=(eq \o(b,it)xit+ (eq \o(w, it)(1-xit).  

The {(eq \o(b,it),(eq \o(w, it)} are taken to be TBVN with means 

        (eq \o(w, it)=(eq \o(w, t)+ (eq \o(w, i) 

        (eq \o(b, it)=(eq \o(b, t)+ (eq \o(b, i) 

respectively, and with time (but not precinct) specific covariance matrices.

In more general cross-classifications, each marginal of the table can have more than two categories (Rosen et al, 2001). For example, for each of i=1,..,n electoral regions, the numbers Sic voting for parties c=1,..,C (C>2) are provided by electoral returns, while fractions xir of the voting age population who are in social classes or ethnic groups r=1,..,R (R>2) are from the Census. The interest is in unobserved quantities such as the proportions (irc of people in social class r and area i who vote for different parties c. Assume that predictors {Zij, j=1,..,p} are available for each region that are relevant to the voting choice (for example, local unemployment rates). Then the sampling model for the observed data is

                           Si,1:C ~ Mult(Ni,pi,1:C)

where Ni is the total of voters, and 

                           pic=eq \O((,r=1,R)( ircxir
with xir as known constants. A Dirichlet prior on the (irc is assumed with parameters that may involve a regression on relevant covariates. With one such covariate (p=1), the Dirichlet weights may be modelled via  

                         (ir1=drexp((r1+Zi(r1)

                         (ir2=drexp((r2+Zi(r2)

                          ..

                         (ir,C-1=drexp((r,C-1+Zi(r,C-1)

                         (irC     =dr
The parameters dr will typically be assigned gamma or exponential priors.

Missing data for sets of areas may also be explained in part by their spatial structure in terms of adjacency or area centroids. The work of Haneuse and Wakefield (2004) focuses on 2(2 tables for a set of constituencies and on the marginal totals, namely Democrat and Republican votes (columns) and black vs. white voters (rows). Another possibility is registrations by party as the columns. Only the marginal totals are known (and possibly taken from different sources). Letting xi be the percent black in area i, the probability pi of voting Republican (Rep) can be written

    Pr(vote Rep) = Pr(vote Rep|black)Pr(black) + Pr(vote Rep |white)Pr(white)

or

       pi=(eq \o(b,i)xi+ (eq \o(w,i)(1-xi)  

where, as above, (eq \o(w,i) and (eq \o(b,i) are unknown race-specific probabilities of voting Republican from the underlying 2(2 cross-tabulation. Haneuse and Wakefield follow King et al (1999) in taking the xi as known constants (not stochastic); this assists in identification of the unknown (i. They estimate {(eq \o(w,i),(eq \o(b,i)} using the spatial structure of the areas in a mixed model (see Chapter 9), which in its fullest form would imply

      logit((eq \o(w,i))=(w+uwi+swi 

      logit((eq \o(b,i))=(b+ubi+sbi 

where u are unstructured, and s are spatial errors, e.g. si~ICAR(1). In practice this structure may not be identifiable without simplification and/or informative priors.

Example 14.8 Missing Data in Migration Tables
Consider data on flows between nine US regional divisions in 1985-90 and 1995-2000 (Table 14.3). Flows within regions (comprising intra-divisional migrants and non-movers) are excluded; so diagonal cells are structural zeroes. Sometimes total migration inflows to regions, and total outflows from them, are known but not the actual interregional migration flows. However, flow data from previous censuses may be available. Let nij1 denote the earlier period flow data, and assume that for the latter period only marginal totals are known, but not the full set of flows nij2. One may rely on the regression equivalent of the IPF algorithm. However, considerably improved estimates may be obtained by using historic interaction data. 

Thus suppose that for 1995-2000 only the marginal row totals and column totals are known (namely 771277, etc and 695530, etc) but not the tabular cells. The earlier period flows are used as offsets in the model

        ni+2 ~ Po(eq \O((,j) (ij2)

        n+j2 ~ Po(eq \O((,i) (ij2) 

        log((ij2)=log(nij1)+M+(i+(j.

Without such offsets the data are obviously considerably overdispersed and a negative binomial likelihood preferable. However, much of the overdispersion is removed by the offsets and the deviance not at odds with a Poisson density.

Table 14.3 Inter-Divisional Migration Flows

1985-90


NE
MA
ENC
WNC
SA
ESC
WSC
MTN
CAC
Total

NE
0
178359
64722
21663
317515
19483
31315
43805
99994
776856

MA
271640
0
193751
49711
1079361
61446
94631
103620
221865
2076025

ENC
82176
177150
0
271250
773952
249486
209306
217795
312751
2293866

WNC
32060
52534
258316
0
192200
54274
193196
214729
201720
1199029

SA
154245
380036
379562
103556
0
325615
219538
133739
290276
1986567

ESC
19153
39911
175349
45801
406608
0
134350
36914
73286
931372

WSC
58328
108625
249031
226747
480341
216422
0
234176
353650
1927320

MTN
40706
69749
152572
153106
172669
42018
182512
0
574590
1387922

CAC
87971
141316
212301
140302
348536
78211
228823
524401
0
1761861

Total
746279
1147680
1685604
1012136
3771182
1046955
1293671
1509179
2128132


1995-2000


NE
MA
ENC
WNC
SA
ESC
WSC
MTN
CAC
Total

NE
0
166773
61260
22327
297686
22929
41077
59174
100051
771277

MA
245157
0
199045
53789
1083888
74148
105332
144995
190629
2096983

ENC
68127
161106
0
296592
674220
280181
223381
273176
240516
2217299

WNC
25259
47514
269726
0
185403
63207
205405
215214
144870
1156598

SA
167862
437298
413250
139496
0
392613
314486
214785
300561
2380351

ESC
17679
39562
185076
46887
378768
0
158747
53849
66622
947190

WSC
36504
75805
183749
188302
358459
178577
0
235104
225587
1482087

MTN
42747
71598
154221
165736
197258
52732
222262
0
472236
1378790

CAC
92195
150640
229926
179681
397163
100942
310144
766057
0
2226748

Total
695530
1150296
1696253
1092810
3572845
1165329
1580834
1962354
1741072


 NE=New England; MA=Mid Atlantic; ENC= East North Central; WNC= West North Central; SA=South Atlantic; ESC=East South Central; WSC=West South Central; MTN=Mountain; PAC=Pacific

Iterations 1000-5000 of a two chain run show most later period flows (65 out of 72) to have predicted means within 10% of the actual flows nij2. The most marked exception is WNC-MTN (n482) where the actual flow is 215,000 but the prediction is 255,200.

Example 14.9 Sexual Behaviour by Religion and Urban Stratum

Stroud (1994) presents survey data on frequency of sexual behaviour from a school based study into AIDS and Youth in Canada (Table 14.4). 13 schools were the PSUs and drawn from a two-way stratified design based on Catholic/Protestant denomination, and a Rural/Town/Small City division. In the Catholic/Small City stratum no schools were sampled (i.e, nr*c*=0 for r*=1 and c*=3). A logit-linear model 

                   logit(prs) = M+(r + (c + εrs
is assumed with N(0,100) priors on the fixed effects, and Ga(1,0.001) prior on the precision of the (rc. 

From iterations 1000-10000 of a two chain run, predicted population totals Yrc reporting frequent sexual intercourse on the basis of the sampled data are presented in the lower subtable of Table 14.4. 

Table 14.4 Youth & AIDS Study. Frequency of Sexual Intercourse



  Rural
  Town
  Small City

Catholic
"Often" in Sample y1c
7
8
0


Total Sample        n1c
140
104
0


Total Children       N1c
2523
937
2324

Protestant
"Often" in Sample   y2c
24
19
11


Total Sample          n2c
292
174
278


Total Children         N2c
4452
1391
1698

Predicted "Often" Yrc among Total Children



   Rural
   Town
  Small City

Catholic
Mean
133
69
61


2.5%
70
37
20


97.5%
214
111
131

Protestant
Mean
361
155
67


2.5%
245
103
37


97.5%
501
217
109

The population wide predictions are comparable to those of Stroud (1994), obtained via a beta-binomial model, though his mean for the missing cell is 68 (in a total group of size 2324). The precision of the prediction is less for this cell than the others. The posterior mean of the probability of frequent intercourse is also predicted to be lowest in the Small City-Catholic cell, namely 0.0265, compared to 0.112 among Town Protestant children.

Example 14.10 Voter Registration in Lousiana

Haneuse & Wakefield (2004) consider data voter registration rates pi for the Republican party, and percent black xi among the voting population in 64 parishes in Louisiana. Data for one parish (St Martins) aggregates over two subdivisions. Thus

     pi=(eq \o(b,i)xi+ (eq \o(w,i)(1-xi)  

where (eq \o(b,i) and (eq \o(w,i) are unknown race-specific probabilities of Republican registration. In fact data are available on the actual race specific registration rates, denoted req \o(w,i) and req \o(b,i), so that cross validation for different models can be undertaken. Due to identifiability problems, Haneuse & Wakefield were only able to estimate the full spatial model namely

        logit((eq \o(w,i))=(w+uwi+swi 

        logit((eq \o(b,i))=(b+ubi+sbi 

using a strongly informative prior. They found the best model (in terms of predicting the actual registration rates) was a restricted version of the above spatial model, namely

        logit((eq \o(w,i))=(w+uwi+swi 

        logit((eq \o(b,i))=(b+ubi.

Here we consider two model frameworks, one a beta-binomial model without spatial effects and the other a common spatial factor model. In the first model (eq \o(b,i) ~  Be(ab, bb), (eq \o(w,i) ~ Be(aw,bw), with the {ab,bb,aw,bw} initially assigned E(2) priors. A single chain of 100 thousand is used to provide informative data based priors, using the posterior means of {ab,bb,aw,bw}, namely ab ~ E(4), bb ~ E(0.5), aw ~ E (0.6), and bw ~ E(0.15). 

The second half of a two chain run with the revised priors then provides final posterior means for {ab,bb,aw,bw} of 0.23, 3.7, 4.7 and 16.1. Predictive accuracy is assessed using the total squared deviations TSD=eq \O((,i)((i-ri)2 (race subscripts omitted for simplicity) between posterior means of {(eq \o(b,i),(eq \o(w,i)} and actual rates {req \o(b,i), req \o(w,i)}. The total for black voters only is TSDb = 0.053. The largest discrepancy (actual rate 3.5% vs. predicted 15.5%) is in parish 9 (Caddo) with a high overall Republican registration rate of 27.2% (compared to an average of 14.6%) but due entirely to a high white Republican registration rate (38.6% vs average 19.6%).

A variant of the beta-binomial model uses the mean-precision parameterisation, namely (eq \o(b,i) ~  Be(mb(b,(1-mb)(b), (eq \o(w,i) ~  Be(mw(w,(1-mw)(w). This parameterisation simplifies setting constraints on the mean probabilities. Accordingly, Be(1,1) priors are assumed on the mean probabilities, with the subject matter based constraint mb<mw, while (b ~ Ga(1,0.001), and (w ~ Ga(1,0.001). Despite the constraint this model has a slightly worse fit (2nd half of two chain run of 25000 iterations) than the first, with TSDb=0.086.

The spatial common factor model includes a more informative assumption with regard to expected registration behaviour contrasts. With the unknown response probabilities modelled as

        logit((eq \o(b,i))=Ai
       logit((eq \o(w,i))=Bi
this model includes a parish level sampling constraint, namely

      Ai ~ N((b +(si,1/(A)    I(,Bi)

      Bi ~ N((w + si , 1/(B )  I(Ai,)

while the si follow an ICAR(1) prior with precision 1/(s. Thus the black Republican registration rate is assumed lower than the white Republican registration rate at parish level. The prior on the loading ( is N(1,1), while the means {(b, (w} are assigned N(0,1) priors, and the precisions of the random effects are assigned Ga(1,1) priors. This formulation improves identifiability since unstructured parish effects are not explicit. The second half of a two chain run of 20000 iterations gives TSDb=0.012. The largest discrepancy is for parish 28 (Lafayette) with an unusually high black Republican registration rate of 7.9% compared with a predicted mean rate (eq \o(b,28)=0.043.

14.9 Exercises

1. In Example 14.1 adapt the procedure suggested by Hedeker and Gibbons (1997) to obtain population wide estimates of the fixed effects (Intercept, Time, Drug, and Drug × Time), averaging over the dropout and completer groups. This involves weights based on the relative sizes of the totals completing (335) and  dropping out (102). Note that MCMC avoids the need for delta methods to obtain standard errors on these pooled effects.
2. In Example 14.1 consider the generalisation to taking the residual variance specific to dropout status and assess changes in inference regarding drug efficacy. 
3. In Example 14.2 try a trivariate factor model with 
          Yij = (Y+Fj1 + Xij(+uij
           Xij3 = (X + Fj2+eij
           RYij ~ Bern((ij)

           logit((ij)= (Y +Fj3
           RXij ~ Bern((ij),          

           logit((ij)= (X+(32Fj3
where (32 is unknown and the factors have an unknown covariance matrix. Does this modification affect model conclusions regarding correlations between the factors?

4. In Example 14.3 use the approximate Bayesian bootstrap to generate K=5 imputed datasets and compare inferences on the pooled slope (.

5. In Example 14.3 use a MNAR model to generate missing values in Y2, namely      

                     Ri ~ Bernoulli((i)

                     Probit((i)=(0+(1Yi2

     where (0=0, (1=1. At the imputation stage generate 5 complete datasets 

     in two ways, first with the MAR MI approach used in Example 14.3, and    

     second using a MNAR MI model

                  Yi2 ~ N((MI+(MIYi1,1/(MI)              

                   Probit[Pr(Ri=1)] = (0,MI+(1,MIYi2.

     How does using the alternative imputation datasets affect results from the final 

     pooled inference stage?

6.   In Example 14.4 consider the following variant on (14.13), namely

     log((ijk)=M+(i+(j+(k+(ij+((1i+(2j)(k
                           

     where (2>(1 for unique labelling and each set of ( parameters sum to 1.

7.  Consider 2001 Census data on religious adherence in the 33 London boroughs with K=5 categories (Christian, Hindu & Sikh, Muslim, Other religion, No religion). The totals Sik by borough i, and the total Ui with religion not stated, are in Table 14.5. The nonresponse rate averages around 9%. 

Table 14.5 Religion in the London Boroughs, 2001 Census









Christian
Hindu & Sikh
Muslim
Other Religion
No religion
Not stated
Total Population

City of London
3950
113
397
304
1767
617
7148

Barking & Dagenham
113111
3613
7159
1239
25075
13768
163965

Barnet
148844
22123
19361
53305
40321
30580
314534

Bexley
159234
4918
3088
1580
32147
17308
218275

Brent
125702
46996
32290
11956
26252
20316
263512

Bromley
212871
3977
4935
3000
48279
22580
295642

Camden
93259
3505
22906
14854
43609
19866
197999

Croydon
215124
18062
17653
4365
48615
26706
330525

Ealing
152716
49007
31035
5778
40438
21994
300968

Enfield
172836
10064
26296
8345
33777
22200
273518

Greenwich
131924
8912
9206
3073
41365
19883
214363

Hackney
94431
3354
27906
14215
38607
24315
202828

Hammersmith & Fulham
105169
2108
11306
3302
29148
14196
165229

Haringey
108404
5168
24358
9144
43249
26184
216507

Harrow
97799
42609
14910
18643
18674
14095
206730

Havering
170725
2641
1776
1936
29567
17552
224197

Hillingdon
155775
22226
11230
3971
32486
17330
243018

Hounslow
110657
34326
19384
3380
28576
16060
212383

Islington
95305
2350
14252
4396
41691
17796
175790

Kensington & Chelsea
98466
1945
13353
6342
24240
14627
158973

Kingston-upon-Thames
95110
6197
5776
2749
26506
10877
147215

Lambeth
156558
3797
14346
4721
57751
28957
266130

Lewisham
152460
4600
11498
4522
50780
25025
248885

Merton
119002
9252
10904
2898
31100
14755
187911

Newham
114247
23808
59293
2734
21978
21838
243898

Redbridge
121067
31675
28483
16906
22952
17561
238644

Richmond-upon-Thames
113444
3636
3877
3462
33667
14254
172340

Southwark
150781
3216
16770
4492
45325
24228
244812

Sutton
126663
3961
4107
1905
29971
13208
179815

Tower Hamlets
75783
2228
71398
4277
27823
14591
196100

Waltham Forest
124015
5226
32906
3230
33541
19402
218320

Wandsworth
160946
6549
13522
4404
52043
22823
260287

Westminster, City of
99797
3846
21351
11071
29300
15877
181242

Greater London
4176175
396008
607032
240499
1130620
621369
7171703

Consider the coding (for I=33,K=5)

model {  for (i in 1:I)  { M[i]  <-  sum(S[i,1:K])+U[i];

 # Latent members of cells 1:K  

                                     V[i,1:K] ~ dmulti(rho[i,],U[i]);

   for (k in 1:K) { rho[i,k] <-   p[i,k]*(1-pi[i,k])  / sum(Div[i,])

                            Div[i,k] <- p[i,k]*(1-pi[i,k])}}

# probs of response by borough and religion

for (k in 1:K) { for (i in 1:I) {   f.alpha[i,k] <- alpha[k] +S[i,k];

                                                 f.beta[i,k]  <-  beta[k] + V[i,k];

# update probs of response in different boroughs

                        pi[i,k] ~ dbeta(f.alpha[i,k],f.beta[i,k])}} 

# multinomial cell probs for outcome

# use set of gamma's instead of Dirichlet

for (i in 1:I) { for (k in 1:K) {  p[i,k] <- B[i,k]/sum(B[i,1:K])

                                                 B[i,k] ~ dgamma(gam.B[i,k],1)

                                                 gam.B[i,k] <- V[i,k]+S[i,k]+a[k]}}}

Elicit suitable values for the prior Dirichlet weights a[1:K], and prior beta weights alpha[1:K] and beta[1:K]. Provide suitable initial values to obtain posterior probabilities of response (ik specific to borough i and religion k. Is the fit improved by allowing response probabilities to be specific for religion only? How are inferences affected if the a[k] are allowed to be free parameters?

8. Modify the analysis in Example 14.6 to allow for nonignorable missingness – namely the probability of response varying over the eight complete cells.

9. In Example 14.10 apply a  model with two sets of spatial effects and a constraint on the overall means, namely (b < (w, rather than the individual parish values. Thus

            logit((eq \o(b,i))=Ai
           Ai ~ N((b+ si1,1/(A) 

           logit((eq \o(w,i))=Bi
           Bi ~ N( (w+si2, 1/(B ) 

     where si1 and si2 follow ICAR(1) priors and are centred at each iteration.
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