Chapter 6 Discrete Mixture Priors

6.1 Introduction: the Relevance and Applicability of Discrete Mixtures 

The above chapters have considered unimodal data densities, regression modelling with a single error component, and hierarchical models for pooling strength assuming a single underlying continuous random effects population model. In hierarchical random effects models, the units are supposed to belong to a single population, and the prior chosen for the population model has a specific parametric (e.g. conjugate) form. Often heterogeneity in regression effects or in model deviations (e.g. multimodality, overdispersion) is such that a discrete mixture of sub-populations may better reflect the density, regression effects or random mixture (Laird, 1982; West, 1992a; Marin et al, 2005; Bouguila et al, 2006; McLachlan and Basford, 1988; Leonard et al, 1994; Lavine and West, 1992). For example, in smoothing health outcomes over sets of small areas, especially when there may be different modes in subsets of areas, a non-parametric mixture may have advantages (Clayton and Kaldor, 1987). A non-parametric approach may be based on sub-populations following parametric densities (e.g. mixtures of a small number of normal densities) or more fully seek to avoid reference to parametric densities as in Dirichlet prior models.

New computing issues occur in such models. In MCMC applications discrete mixture modelling can be framed in a hierarchical manner by using data augmentation for latent group indicators; this ‘missing data’ approach facilitates estimation (Robert, 1997; Marin et al, 2005, p 462). The Bayesian formulation for a finite mixture model with known number of components and its MCMC implementation is set out by Diebolt and Robert (1994) and Robert (1996). Even for this relatively simple setup, identifiability issues occur in a repeated sampling framework due to label switching (Chung et al, 2004; Stephens, 2000), difficulties in determining the appropriate number of sub-groups, and in specifying priors that provide analytic and/or empirical identifiability (Wasserman, 2000; Viallefont et al, 2002). 

The most common analysis assumes a known number of classes a priori, and compares alternative possible categorisations via the AIC or BIC (Alston et al, 2004). Predictive criteria based on sampling new data are discussed by Mukhopadhyay and Gelfand (1997). The number of components C can be taken as unknown and methods such as the reversible jump Markov Chain Monte Carlo (Green 1995) used to estimate the number of components and to average over models with different numbers of components. An alternative broad methodology where the number of possible clusters is unknown a priori is provided by Dirichlet Process priors (section 6.7).

In all latent variable applications, subject matter knowledge may be important in guiding model choice, and in specifying priors that improve identifiability. The problems of identifiability of mixture models due to flat likelihoods is discussed by Böhning (1999) and is especially likely near or beyond a certain ceiling value of C. MCMC sampling also raises the question of unique labelling: whereas a maximum likelihood method such as E-M converges to single labelling, MCMC sampling is subject to label switching (Fr eq \O(¨,u)hwirth-Schnatter, 2001; Stephens, 2000). One may impose prior constraints that prevent label switching but these may alter the inferences regarding the best discrete partition (Marin et al, 2005). For example, prior constraints such as ordered means may increase the number of groups selected in a Bayesian analysis.

In regression analysis, a discrete mixture approach may be applied when there are believed to be sub-populations with different regression effects. Finite regression mixtures may provide additional insights about behavioural patterns as sources of heterogeneity, for example, different impact of marketing variables on sub-populations in mixed Poisson models of purchasing behaviour (Wedel et al, 1993). The same rationalisation is present when discrete latent variables are postulated to underlie observed associations between several categorical variables, for example in contingency tables. 

It should be noted, though, that discrete latent mixtures and single population random effects models are best seen as particular choices in a broader set of finite mixture random effects models that allow for heterogeneity within the discrete classes (Lenk and Desarbo, 2000). Suppose a discrete regression mixture with C groups but fixed regression effects within groups (i.e. not random over subjects) shows lack of fit. Then fit may be improved either by choosing more groups (with regression effects still constant within groups) or by allowing random heterogeneity in intercepts or regression effects within the C group partition. The drawbacks of simple discrete mixture (latent class) models in representing the shape of unknown heterogeneity have to be borne in mind even if the subpopulation inferences from regression means are improved (Elrod & Keane, 1995, p 4).

6.2 Discrete Mixtures of Parametric Densities

As noted by Dempster et al (1977) a discrete mixture model can be expressed in terms of the original data and missing data, with estimation of the latter amounting to a form of data augmentation. Let Hi denote the missing group indicator data, with a known number, C, of categories. The prior probabilities of the categories are (=((1,.., (C) where ( often has a Dirichlet prior ( ~ Dir((1,(2…,(C), though one can use regression modelling for class probabilities also. One common default under a Dirichlet prior sets equal prior masses on each sub-group, for example (1=(2=…(C=1 (equivalent to a prior sample of C). Alternatively if different values of C are being compared the prior sample size may be fixed at say s0 and then (1=(2=…(C=s0/C.  A multinomial logit prior may be used instead, and may make it easier to express differences in means and variances between subgroups or include predictors relevant to class membership. Thus (j=exp((j)/(j exp((j) when (j ~ N(mj,Vj) and (C=1. Then

                  Hi ~ Categorical((1:C)

and conditional on Hi=j  and (=((1,..(C),

                   yi ~ fj(yi|(Hi) 

where (j defines the parameters of component density j. For example, for a Poisson mixture with means ((1,..(C), and prior probabilities Pr(Hi=j)=(j
                 P(yi|(,Hi=j) = Po((j). 

Define binary indicators wij equalling one when Hi=j and zero otherwise. Then the ‘complete data’ likelihood for subject i is defined as (Dey et al, 1995)

                eq \O((,j)[(j fj(yi|(j)]wij
whereas the marginal or unconditional likelihood has the form

             f(yi) =  eq \O((,j,C) (j fj(yi|(j).

Note that some elements of (=((1,..(C) may have common values for all sub-populations. For example in a discrete normal mixture the means may vary, but variances taken the same over the C components. One may also have different densities for different sub-groups.

Suppose y is continuous but with a distribution subject to multimodality or skewness because of different sub-populations in the data, then a mixture model based on normal sub-populations might allow differing means (j, differing variances (j or both. Alternative models might then be

                  M1:   yi |Hi ~ N((Hi,()

                  M2:   yi |Hi ~ N((,(Hi)

                  M3:   yi |Hi ~ N((Hi, (Hi).

One may also have different discrete mixtures for each parameter, e.g. (j different for all j according to an indicator H1i, but some (j possibly equal between groups according to an indicator H2i. 

For count data, a discrete mixture may allow for clearly different subpopulations (e.g. high and low mortality groups) or be used to tackle overdispersion (e.g. Clayton and Kaldor, 1987; Viallefont et al, 2002; Congdon, 1996). A discrete Poisson mixture involves means yi ~ Po((Hi) and  (j={(j}, and 

                f(yiHi=j) = e-(j(jyi/yi! 

However, a discrete mixture of gamma-Poisson densities (see section 6.5) allows for different types of continuous heterogeneity between subpopulations. This would have (ij={(i((j,(j}, with

              f(yi(i ,Hi=j) = e-(i(iyi/yi! 

              g((i |Hi=j) ~ Ga((j,(j)

Full conditional updating is relatively simple in discrete mixture models. It involves alternating between updates on the augmented data (namely the categorical Hi, or equivalently the binary wij) and the parameters of each component, as in the E-M algorithm (Diebolt and Robert, 1994). Updating the categorisation wij involves sampling

                    wij ~ Bern((ij)

where

                    (ij = (j fj(yi(j)/  eq \O((,k) (k fk(yi(k) 



If Aj =  eq \O((,i) wij cases are allocated to group j and the prior mass on group j under a Dirichlet prior is (j then the sub-population proportions are updated according to a Dirichlet 

           ( ~ D(A1+(1,A2+(2,...AC+(C)                       

Suppose the density is from the exponential family (Marin et al, 2005, p 482), with

              p(y|()=h(y)exp(r(()t(y)-g(())

and conjugate prior

              p((|a,b) ( exp(ar(()-bg(()).

Let Bj =  eq \O((,i) wijt(yi) then the update involves an exponential density 

              p((j|(,(,H,y) ( exp(r((j)[a+Bj]-(b+Aj)g((j)).

Thus for the means (j in a Poisson mixture, with respective gamma priors Ga(aj,bj), and with Bj =  eq \O((,i) wijyi , updating would be according to 

        (1 ~ Ga(B1+ a1,A1 + b1)

        (2 ~ Ga(B2 + a2,A2 + b2)

..

        (C ~ Ga(Bc+ aC,AC + bC).

6.2.1 Model Choice

Choosing the best supported number C of component populations is a major issue in parametric discrete mixture analysis. Selecting C too large may mean that certain group means are very similar, or that one or more group proportions (j are very small (e.g. under 0.01); however, selecting C too small will mean the data structure is not fully represented. For given C, the number of parameters is known unless the discrete mixture is combined with random effects (section 6.5), and so one may apply AIC or BIC selection (Alston et al, 2004). For example, a normal mixture with C components and both mean and variance different over subpopulations has 2C+(C-1) parameters. Dey et al (1995) use a pseudo marginal likelihood estimate to compare different C values, as in (2.13).

Marginal likelihood estimation adjusted for the possibility of label switching has been outlined by Fr eq \O(¨,u)hwirth-Schnatter (2004), so enabling formal Bayes model choice. Composite model-parameter space search produces posterior probabilities on different possible values of C (but not marginal likelihoods), and involves RJMCMC (Richardson and Green, 1997) or the algorithm of Carlin and Chib (1995). 

Sahu and Cheng (2003) suggest comparing a C group mixture with a C-1 group mixture using two forms of Kullback-Leibler distance between the densities fC and fC-1 where fC =  eq \O((,j,C) (jfj(yi|(j). This may be done (without refitting the C-1 group model) by merging two of the groups in the C group solution since if this solution is overparameterised it will have redundant structure. There are C(C-1)/2 possible mergers and the extent to which a C-1 group solution improves over the C group solution is based on the merger providing the minimum distance at each iteration. For exponential densities, a weighted KL distance (wKL distance) is obtainable. If the distance between a C-1 and C group solution is small (e.g. under 0.1) then there is little gain in adopting the more complex model.
6.3 Identifiability Constraints

Mixture models pose problems of estimation not only in terms of selecting the appropriate number of categories, but in obtaining well identified solutions – though generally identification problems tend to increase as C does. A major question is that of changing labels for different groups during MCMC sampling within a single chain, and/or different chains having different labels so that it is impossible (for example) to diagnose convergence. In fact, some inferences are not affected by label switching, for example, the response means for individual subjects g((i)=Xi(Hi in a discrete mixture normal regression. 

To improve identification, substantive (subjective) information may be elicited for the prior masses (c or the priors on the sub-population parameters (j. Some studies (e.g. Sahu and Cheng, 2003) use data based priors, departing from the fully Bayes principle but on the pragmatic grounds of obtaining better identified solutions. Choice of starting values may be important and constraints for identifiability and consistent labelling may be imposed. Thus in a Poisson mixture (without any regression) an ordered means constraint

         (1 ~   G(a1,b1) I(,(2)                        (6.1)

         (2 ~   G(a2,b2) I((1,(3)

….

         (C-1 ~ G(aC-1,bC-1) I((C-2,(C)

         (C   ~  G(aC,bC) I((C-1,)

would ensure unique labelling (Richardson and Green, 1997). However, for some densities alternative constraints are possible: for a normal mixture the constraint may be on the means or variances but not both simultaneously (Frühwirth-Schnatter, 2001), and a preliminary analysis without constraint may be used to assess which constraint is most sensible for the dataset. Robert and Mengersen (1999) and Marin et al (2005, p 476) suggest a discrete normal mixture model based on location-scale reference parameters ((,() subject to perturbations, so that a two group mixture would be written as

           (1N((,()+(2N((+(0.5(,((2)                      (6.2.1)

where a uniform prior ( ~ U(0,1) leads to a variance constraint, while ( ~ N(0,V(). A C group mixture can be  expressed

          (1N((,()+(2{eq \O((,j=1,C-1)qjN((+(0.5(j,((eq \O(j,2))}        (6.2.2)

where  eq \O((,j=1,C-1)qj =1 and the identifiability constraint becomes 1((1((2(..((C-1.
An alternative to constrained priors involves re-analysis of the posterior MCMC sample, for example by random or constrained permutation sampling (Fruhwirth-Schnatter, 2001). Consider a single predictor mixture regression model 

         yi ~ (jN((ij,(j)

                
(6.3)

         (ij = (1j + (2jxi
In (6.3) possible prior constraints that produce identifiability are (11 > (12, or (21 > (22 or (1> (2 or (1>(2. However, suppose unconstrained priors in model (6.3) are adopted, and parameter values (eq \O(j,(t)) = {(eq \O(j,(t)), (eq \O(j,(t))} are sampled for the nominal group j at iteration t. One may investigate whether – after accounting for possible label switching - there are patterns in the parameter estimates which support the presence of sub-populations in the data. Fruhwirth-Schnatter proposes random permutations of the nominal groups in the posterior sample from an unconstrained prior to assess whether there are any suitable parameter restrictions.

From the output of an unconstrained prior run with C=2 groups, random permutation of the original sample labels at each iteration means that the parameters are relabelled with probability 0.5. Thus if relabelling occurs then parameters at iteration t originally labelled as 2 are relabelled as 1 and vice versa. Otherwise the original labelling holds. If C=3, nominal group samples ordered {1,2,3} keep the same label with probability 1/6, change to {1,3,2} with probability 1/6, etc. 

Let eq \O((,()jk denote the samples for parameters k=1,..,K that are relabelled as group j (with a suffix for iteration t understood). The parameters relabelled as 1 (or any other single label among the j=1,..C) provide a complete exploration of the unconstrained parameter space. Scatter plots involving eq \O((,()1k against eq \O((,()1m for all pairs k and m are made and if some or all the plots involving eq \O((,()1k show separated clusters then an identifying constraint may be based on that parameter. To assess whether this is an effective constraint, the permutation method is applied based not on random reassignment but on the basis of reassignment to ensure the constraint is satisfied at all iterations.

Celeux et al (2000) and others apply clustering procedures to the MCMC output from an unconstrained prior. For example, one may first select a short run of iterations (say T=100 iterations) where there is no label switching. The means (jk =  eq \O((,t)(jkt/T on parameters of type k in group j are then obtained from this sample. For a normal mixture there will be 3 types of parameters (j={(j,(j,(j} and for C groups there will be 3C parameters. The initial run of sampled parameter values provides a reference labelling (any one arbitrarily selected labelling among the C! possible), and 3C posterior means {(j,(j,(j|y} under all C! possible (reference and non-reference) labelling schemes. In a subsequent run of R iterations where label switching might occur, iteration r is assigned to that scheme closest to it in distance terms and a relabelling applied if there has been a switch away from the reference scheme. Additionally, the means under the schemes are recalculated at each iteration (see Celeux et al, 2000, p 965).

Example 6.1 Eye tracking data

Escobar and West (1998) present count data on eye tracking anomalies in 101 schizophrenic patients. The data are obviously highly overdispersed to be fit by a single Poisson, and solutions with C=2, 3 and 4 groups are estimated here with an ordered means constraint. 

Assuming a Dirichlet prior for the group probabilities, a prior sample size of s0=4 is allocated equally between the C groups so that the prior Dirichlet weights are (j=4/C, j=1,..,C. Priors on the means are expressed as (j=log((j) where the (j are normal with variance 1000 and subject to an ordering constraint. Iterations 1001-5000 of a two chain run show the two group solution has means (1=0.7 and (2=11.5 with respective sub-population proportions 0.73 and 0.27. The three groups solution has means 0.48, 6.7 and 19.2 with respective proportions 0.66, 0.24 and 0.10. 

The four groups solution identifies the 46 observations with no anomalies as being from a sub-population having mean of virtually zero (0.01) and a mass of 0.32. The remaining groups have means 1.3,8.4 and 21.7. Smoothing, even for the 46 zero anomaly cases, is apparent in the posterior means for cases 1-46 which are estimated as 0.32. Smoothing is also apparent for higher count patients: for example, cases 92 and 93 have 12 observed anomalies but have posterior means under the four group model of 10.1.

The ‘splitting’ prior of (6.2) is also applied for C=3, with likelihood and prior 

        yi ~ Po((Hi), 

        Hi ~ Cat((1,(2,..(C), 

        (1=(1,(2=q1(2,…(C=qC-1(2 

and with priors for the logged means (j
       (1 ~ N(0,()

       (j =(1+(0.5(j
where (~Ga(1,1) and (j ~ N(0,1) are additional unknowns. The last 4000 of a two chain 5000 iteration run give means 0.52, 6.8 and 19.0 with respective proportions 0.68, 0.22 and 0.10. The trace plots show no label switching.

There may be scope for higher numbers of groups, as a DPP non-parametric mixture analysis of these data suggests later.

Example 6.2 Simulated Gaussian Mixture

Raftery (1996) compares model selection approaches to normal density latent mixture problems with a simulated data example involving n=100 points yi from a normal mixture with two latent groups. The groups have respective means j (j=1,2) of 0 and 6, respective variances (j of 1 and 4, and equal prior masses (j of 0.5. Raftery compared a Laplace approximation to the marginal likelihood with the harmonic mean marginal likelihood estimator, and a BIC approximation. 

Here a constrained prior on the means is used to prevent label switching. Thus with (=((1,…(C)

            yi ~ N((Hi,(Hi), 

            Hi ~ Categoric(()

            (1 ~ N(0,100)

            (k= (k-1+(k               k=2,C 

            (k~ N(0,10) I(0,). 

The priors on the precisions follow the proper priors suggested by Raftery (1996). Two likelihoods can be obtained, the likelihood conditioning on all unknowns and the complete data likelihood which is obtained by considering the group indicators Heq \O(i,(t)) as known. The likelihood for case i at iteration t is 

               Li(((t))= (1(t) N(yi|1(t),(1(t)) + ..+(C(t) N(yi|C(t),(C(t)) 

while the complete likelihood is 

               Li(((t),Heq \O(i,(t)))(t)=N(yi|H eq \O(i,(t)),( H eq \O(i,(t)))

To compare the C=2 and C=3 models, a harmonic mean estimate of the marginal likelihood is obtained. 

The log of the likelihood L(()(t) is monitored in a 5000 iteration two chain run (convergent from 1000) followed by spreadsheet analysis to obtain likelihoods at each iteration by exponentiation, the inverse likelihood 1/[L(()(t)], the average of the inverse likelihoods over the 8000 sampled values, and then the reciprocal of this quantity. The BIC can also be calculated using the posterior mean of the likelihoods eq \O(L,_) for different C values, and the known parameter totals, with 

             BIC= eq \O(L,_) - 0.5d(log[n]). 

An approximate alternative for the BIC would use the maximum sampled likelihood in place of  eq \O(L,_) . The number of parameters d in the 2 and 3 group mixtures are d=5 and d=8, namely different group means and variances, and the free group probabilities. Predictive choice provides an additional perspective and is based on the EPD measure of Carlin and Louis (1996), with the discrepancy between yi,rep and yi being the total sum of squares. 

The harmonic mean estimate of the marginal likelihood and the gives a slight edge to the true 2 group model and the BIC clearly favours it (see Table 6.1; Example 6_2.xls contains the harmonic mean calculation when C=3). The EPD measure, by contrast, favours a three group solution.

Table 6.1 Gaussian Mixture Model Fits


No of Groups


    2
  3

Mean Likelihood
-246.5
   -246.8

Maximum L(() (8000

values)
-243.7
   -243.5



Mean Complete data

likelihood
-185.5
   -182.5

Harmonic Mean

estimate of

marginal likelihood
-249.7


-251.4

BIC()
-258.1 
-265.2

EPD(,H)
 602.8
 589.1

Parameters
   5
   8

The component merging approach of Sahu and Cheng (2003) was also applied and involves informative data based priors (as in their paper). The wKL distance measure comparing C=3 to C=2 has a median of 0.053 and a spike at zero, tending to show redundancy in the C=3 model. By comparison the wKL statistic comparing C=2 to C=1 has a median value of 0.83 with the density not including zero distance. 

6.4 Hurdle and Zero-Inflated Models for Discrete Data

Hurdle and zero-inflated models are special discrete mixture models used for count or binomial data with excess zeroes. In the hurdle model non-zero observations (counts of one, two or more) occur from crossing a threshold or hurdle (Mullahy, 1986). The probability of crossing this hurdle involves a binary sampling model, while the sampling of non-zero counts involves a truncated Poisson or binomial (sampling confined to values y above zero). 

Let f1 and f2 be probability densities appropriate to integer data. For count observations yi, f1 might be Bernoulli and f2 Poisson or negative binomial. Then the probability of the two stages is given by

    P(yi=0) = f1(0)

    Pr(yi=j|j>0) = {[1-f1(0)]/[1-f2[0]]} f2[j]                      j >0

                       = (f2[j]

where (=[1-f1(0)]/[1-f2[0]] (Cameron and Trivedi, 1998). The correction factor 1-f2[0] is needed to account for the truncated sampling at stage 2 (i.e. ensure the probabilities for density f2 sum to unity). If f1 were Bernoulli with f1(1)=(, f1(0)=(1-() and f2 Poisson with mean (, with f2[0]=exp(-(), the likelihood is defined by

     yi ~ Bern(()                                                           i=,1..n1          

    Pr(yi=j) = [(1-()/(1-e-()] e-( ( eq \O(i,y)i/yi!                       i=n1+1,..n   

The range 0<(<1 yields overdispersion with excess zeroes, while (>1 yields underdispersion (subject to the variance being defined) with zeroes less frequent than under the standard Poisson. 

Under zero inflated densities for count data, zero counts may result from two processes: they may be either true zeroes (e.g. when a manufacturing process is under control) or result from a stochastic mechanism (when the manufacturing process sometimes produces defective items but also sometimes yields zero defectives). Another terminology is structural vs. random zeroes (Martin et al, 2005). The random mechanism could be described by a Poisson or negative binomial density. Let di = 1 or 0 according to which regime is operating to produce the zero counts (true zeroes under the degenerate density when di=1, as against stochastic zeroes when di=0). The inflation to the zero counts occurs under the degenerate option. 

Then

        P(yi=0)        = Pr(di=1) + P(yi=0|di=0)Pr(di=0)

        P(yi=j|j > 0) = P(yi=j)Pr(di=0)                                

where P(yi) is a standard density for count data, such as a Poisson or negative binomial. Under a zero inflated Poisson (or ZIP) model for P(y|() with mean ( and Pr(wi=1)=(, one has

            P(yi=0) = (  + (1-() e-( 

            P(yi=j|j>0) = (1-() e-( ( eq \O(,y)i/yi!               j=1,2,..

The variance is then  

           V(yi|(,() = (1-()[( + ((2] > ((1-() = E(y|(,() 

so the modelling of excess zeroes implies overdispersion. The zero inflated approach is also applicable to binomial data with excess zeroes.  

Let Z=(yi: yi= 0, i=1,..n} denote the subset of observations with value zero and let n0=#(Z) be the total of zero observations. The likelihood under a ZIP model is then 

            L((,(|y)= [(  + (1-() e-(]n0 (1-()n-n0eq \O((,yi(Z)P(yi|()

The n0 zero observations belong to the degenerate density with probability

            Pr(wi=1|yi=0) = ( = ( / Pr(yi=0)

which for a ZIP model becomes

            Pr(wi=1|yi=0)= ( = (/[(+(1-()e-(]

Let t0 be the unknown subtotal of true zeroes among the n0 that are from the degenerate density and sampled according to 

            t0 ~ Bin(n0,().

The complete data likelihood based on d=(d1,…dn0) is then 

            L((,(|y,d)= L((,(|y) eq \O((,i=1,n0) (di (1-()1-di.

Example 6.3 Computer Disk Errors

Rodrigues (2006) considers statistical control process data from Xie et al (2001) relating to read-write errors discovered in a computer hard disk in a manufacturing process. 180 of the 208 observations are zero. With Ga(a1,a2) and Be(b1,b2) priors on ( and ( respectively (and b1=b2=a1=1, a2=0.001) the full conditionals in a ZIP model are

                           ( ~ Be(t0+b1,n-t0+b2)

                           ( ~ Ga( eq \O((,i=1,n)yi+a1, n-t0+a2)

The estimated parameters (using the last 9000 iterations from a two chain run of 10000) are (=0.862 and (=8.67, close to the classical estimates cited by Xie et al. In fact for these data ( ( 1 partly because the mean of the alternative Poisson density is inflated by two very large observations of 75. 

The data can be modelled with an additional mixture component or outlier mechanism to reflect these observations. Model B is coded for individual observations (with the zeroes as the first n0 observations) and introduces another discrete component and corresponding selection indicators (augmented data) Gi for i=n0,..,n. This gives the model

            Pr(wi=1|yi=0)=(/Pr(yi=0)

            Pr(yi=0) = (  + (1-()e-((1(1+(2(2) 

            Pr(yi=j|Gi=k) = (1-() e-(k ( eq \O(k,y)i/yi!               j>0

             Gi ~ Categoric((1,(2)

with ((1,(2) following a Dirichlet prior with equal prior masses 1. This model estimates (1 to be 0.9 with (1=3.6, while (2=75.5. A very similar result is obtained under the alternative  assumption

             Pr(yi=0) = (  + (1-()e-(1(1

though here (=0.997 does allow a small minority of zeroes to be generated stochastically.

6.5 Regression Mixtures for Heterogeneous Sub-populations 

To reflect heterogeneity in the impacts of regressors, discrete mixtures of regression sub-populations may be used, as illustrated by (6.3). Conditional on the augmented group indicator Hi=j, regression means are specific to both individuals and latent classes, g((ij)=Xi,(j. For example, for a mixture of Poison regressions one might have

            yi ~ eq \O((,j=1,C)(j Poi((ij)

            log((ij) = Xi(j 

while a mixture of normal regressions is

            yi ~ eq \O((,j=1,C)(j N(Xi(j, (j).

More specific mixture models may apply for count or binomial data with excess zeroes. Thus in a ZIP regression, let Hi = 1 or 2 according to which latent state or regime is operating. If the probability for subject i that Hi=1 is denoted (i then the overall density is

            Pr(yi=j)= (i(1-gi) + (1-(i)P(yi|(i) 

where gi=min(yi,1) and P(yi|(i) is Poisson with mean (i=exp(Xi(). A logit model with covariates Wi might also be used to model the (i. The probabilities of zero and non-zero counts are as follows:

            Pr(yi=0)      = (i  + (1-(i ) e-(i 

            Pr(yi=j|j>0) = (1-(i ) e-(i ( eq \O(i,y)i/yi!              

As mentioned in Chapter 4, discrete mixtures are also useful in modelling isolated or clumped outliers via the contaminated normal. An alternative for metric data if outliers are suspected is a discrete mixture of Student t regressions, possibly with different degrees of freedom in each subpopulation. Thus

        yi ~ eq \O((,j=1,C)(j t(Xi(j, (j,(j), 

or

        yi |Hi = j ~ N(Xi(j, (j /(i)

        (i ~ Ga(0.5(j,0.5(j)

Example 6.4 Regression mixture of small area cardiac mortality

This example involves a discrete mixture count regression where yi are deaths from in 758 London electoral wards (small administrative areas) over 1990-1992. An offset of expected deaths Ei is included in the analysis. So if xi denotes the covariate the model is

                            yi ~   eq \O((,j,C) (j Poi(Ei(ij)

                            log((ij)=(0j+(1jxi
Thus the relative risk (ij in area i and group j is modelled as a function of a deprivation score d, previously transformed according to x=log(10+Town), where Town is the Townsend deprivation score. Initially assume C=2 classes with identifiability obtained by constraining the group probabilities. Thus    

            (j=exp((j)/(jexp((j) 

            (1=0

            (2 ~ N(0,1) I(,0). 

A two group solution is based  on iterations 501-2500 of a two chain run with starting values based on an earlier single chain trail run. This shows the major sub-population of small areas ((1=0.84) with a clearly identified deprivation effect, namely (1=0.364 with 95% credible interval (0.29,0.44). This sub-population has higher cardiac mortality on average (higher intercept (01) than the other smaller sub-population. In the latter the deprivation effect is not well identified, though its upper 97.5 percentile in fact exceeds that in the major ward grouping of electoral wards. The mean deviance, which can be employed in a BIC or AIC type measure using the known parameter total of 5, is 32370. A three group solution is based on the constraint  

             (j=exp((j)/(jexp((j) 

              (1=0

              (2 ~ N(0,1) I(,0) 

              (3 ~ N(0,1) I(,(2) 

Using iterations 1000-2500 of a two chain run shows an average deviance of 30970, with respective group probabilities (0.56,0.33,0.11). The profile of intercepts (means and standard deviations of the (0 parameters) is 0.022(0.042), 0.055(0.074), and –0.36 (0.08) while the same profile for the covariate effects is 0.39 (0.09), 0.33 (0.14) and 0.12 (0.25).   So a reasonable interpretation is that in the higher mortality group 2, the deprivation effect is less well defined than that in the majority group 1 with average mortality.

Example 6.5 ZIP Regression: DMFT counts in children

To illustrate latent class regression when there are excess zeroes, consider two wave data from Böhning et al (1999) on dental problems in 797 Brazilian children, specifically numbers of teeth decayed, missing or filled (DMFT). The children were subject to a dental health prevention trial involving various treatment options. To model the overdispersion Böhning et al (1999) propose a zero inflated Poison (ZIP) model , namely 

            Pr(yi=0)      = ( + (1-() e-(i 

            Pr(yi=j|j>0) = (1-() e-(i ( eq \O(i,y)i/yi!              

with

             Pr(di=1)= (i = (/[(+ (1-() e-(i]

Predictors are sex, ethnicity and school (the latter being equivalent to a health prevention treatment variable, with random assignment to treatment or combined treatment. The variables are as follows:                                  

          1. dmftb - DMFT at beginning of the study 

          2. dmfte – DMFT at end of the study (2 years later)

          3. Sex (0 - female ; 1 - male )

          4. ethnic (ethnic group:  1 - dark ; 2 - white ;  3 - black )

          5. School (kind of prevention):

                         1 - oral health education ;  

                         2 - all four methods together 

                         3 - control school (no prevention measure) ; 

                         4 – enrichment of school diet with ricebran 

                         5 - mouthrinse with 0.2% NaF-solution ;   

                         6 - oral hygiene )

The response is dmfte and the impact of initial dental status modelled via a variable log(dmftb+0.5). A Be(1,1) prior is assumed on ( and N(0,1000) priors on the regression coefficients. 

Iterations 501-5000 of a two chain run show a mean probability ( of 0.05. Treatments 1, 2 and 5 have entirely negative 95% credible intervals (i.e. reduces tooth decay), namely –0.23 (-0.39,-0.05), -0.32 (-0.52,-0.12) and –0.23 (-0.39,-0.07). Böhning et al (1999, p 202) consider modelling the mixture weights for strata defined by school. Thus ( becomes a vector of six probabilities. 

6.6 Discrete Mixtures Combined with Parametric Random Effects

Discrete mixture models may identify sub-populations or outlying clusters of cases, whereas the random effects models of Chapter 5 often remove overdispersion. To fully model multimodality, isolated outliers, as well as over-dispersion, one may consider discrete mixtures of the conjugate normal-normal, poisson-gamma or beta-binomial models (Moore et al, 2001) or discrete mixtures of poisson-lognormal or binomial-logitnormal models. That is, a discrete mixture strategy is combined with parametric random effects, rather than replacing it. Lenk and Desarbo (2000) advocate such a strategy for nested data models involving repeated observations over time or within clusters; they argue that an excessive number of classes C will be used if allowance is not made for (parametric) heterogeneity within classes. 

For an illustration with binomial data, let  yi ~ Bin(ni, (i) where

          (i ~ eq \O((,j=1,C) (j Beta((ij,(ij)

A reparameterisation of the Beta in terms of (ij=(ij(j and (ij=(1-(ij)(j facilitates regression modelling (e.g. a logit regression for predicting the mean probabilities (ij using predictors Xi). It also permits simple identifiability constraints (e.g. (1>(2..>(C). When predictors are not used one has (j=(j(j, (j=(1-(j)(j. 

Such a mixture strategy also characterises a class of outlier detection models (e.g. Albert, 1999). Consider a conjugate Poisson-gamma mixture model, with yi ~ Po((i), and (i ~ Ga((,(/(i), where (i=exp(Xi(). The parameter ( is a precision parameter - as ( tends to infinity the Poisson is approached. For outlier resistance one may assume the discrete mixture

          (i ~ (Ga(K(,K(/(i) + (1-() Ga((,(/(i)

where ( is small (e.g. (=0.05) and  0 < K < 1 (e.g. K=0.25). The first component is ‘precision deflated’. In a nonconjugate Poisson-lognormal mixture model with yi ~ Poi((i) and log((i)= (Xi +ui, one might similarly take 

          ui ~ (N(0,K() + (1-() N(0,()

where K>1 (e.g. K=5 or K=10).

Example 6.6 Heart Transplant Mortality 

Albert (1999) considers variations in heart transplant mortality across 94 hospitals using Poisson-gamma mixture models, yi ~ Po(ei(i) where ei are expected deaths. A single component gamma mixing model with (i ~ Ga((,(/() is compared with a two component model allowing for possible outliers. Thus 

         (i ~ (Ga(K(,K(/() + (1-()Ga((,(/() 

with prior outlier probability Pr(Hi=1)=(=0.1, and with K=0.2. Iterations 1001-5000 of a two chain run show the highest outlier probabilities, Pr(Hi=1|y) are for hospitals 85 and 63, namely 0.144 and 0.129 compared to the prior probability of 0.10.  These hospitals have zero deaths, despite expected deaths of 5.8 and 3.8 respectively.

6.7 Nonparametric Mixture Modelling via Dirichlet Process Priors

In applications of hierarchical models, including parametric mixture models, there are questions of sensitivity of inferences to the assumed forms (e.g. normal, gamma) for the higher stage priors. The distributions of parameters, including higher stage hyperparameters for random effects, are often uncertain, and not acknowledging this uncertainty may unwarrantedly raise the precision attached to posterior inferences. Alternatively inferences may be distorted by outlying points or by multimodality in random effects or regression errors (i.e. by inconsistencies with the assumed higher level prior). Instead of assuming a known higher stage prior density for random effects (i (e.g. MVN or gamma), the DP approach lets the form of the higher stage density G itself be uncertain (West et al, 1994). 

The Dirichlet process prior involves a baseline density G0, the prior expectation of G, and a precision parameter ( governing the concentration of the prior for G about the mean G0. As ( becomes larger the concentration around the baseline prior increases, whereas small ( (e.g. under 5) tend to result in relatively large departures from the form assumed by G0.  The case ((( means the DP prior becomes equivalent to a parametric model with G0 known. For any partition B1,…,BM on the  support of G0 the vector of probabilities {G(B1),…,G(BM)} follows a Dirichlet distribution with parameter vector {(G0(B1),..,(GM(BM)}.
Let yi, i=1,..n be drawn from a distribution with unknown parameters (i,(i
             f(yi|(i,(i)

and suppose there is greater uncertainty about the prior for parameters θi than for parameters φi (Escobar and West, 1998). One may adopt a Dirichlet process prior for the θi, but a conventional parametric prior for φi. Under a Dirichlet process prior, a baseline prior G0 is assumed from which candidate values for θi are drawn. So instead of a prior (i ~ G((i|() with G a known density and ( a hyperparameter, the uncertainty about the form of the prior is represented by introducing an extra step in the hierarchical specification, 

          (i |G ~ G 

          G| (, ( ~ DP((,G0)

where G0 has hyperparameters (. 

There are several ways to implement a DP prior. Following Sethuraman (1994) one way to generate the DP prior is to regard the (i as iid with density function q() which is an infinite mixture of point masses or continuous densities (Ohlssen et al, 2006; Hirano, 1998). This is also known as the ‘constructive definition’ of the Dirichlet Process (Walker et al, 1999). If G0 consists of a continuous density f then the DP forms a mixture of continuous densities 

               q((i) =  eq \O((,j=1,()  pj f((i|().

This structure is known as a mixed Dirichlet process (Walker et al, 1999, p 489) and overcomes certain limitations of the original DPP prior of Ferguson (1973). For example, a DP mixture with normal base densities would be

                q((i) =  eq \O((,j=1,()  pj N((i|(j,(j).                        

Ishwaran and Zarepour (2000) and Ishwaran and James (2002) suggest this may be truncated at M components with 

                q((i) =  eq \O((,j=1,M)  pj N((i|(j, (j)                         

and  eq \O((,j=1,M) pj = 1. This leads to an approximate or truncated DP which may be denoted          

                (i |G~ G 

                G |M,(,( ~ TDP((,G0).

Ishwaran and James (2002, pp 5-6) detail the usually close accuracy of this approximation to the infinite DP for typical ( and M values. 

The most appropriate value (eq \O(*,m) for case i is then selected using a Dirichlet vector of length M with probabilities pm for each value determined by the precision parameter α. The mixture weights pj are constructed by ‘stick-breaking’ (Ishwaran & Zarepour, 2000, p 384). Thus set VM=1 and draw M-1 beta variables

                               Vj ~ Be(1,α)          j=1,..M

and set

                               p1=V1
                               p2=V2(1-V1)

                               p3=V3(1-V2)(1-V1)

                           ... pM=VM(1-VM-1)(1-VM-2)…(1-V1).

Alternative versions of the stick-breaking prior are discussed by Ishwaran and James (2001) and Ishwaran and Zarepour (2000). For example, one possible alternative (the Poisson-Dirichlet process) has two parameters and assumes 

                               Vj ~ Beta(1-a,b+ja)

where 0 ( a <1 and b> -a.

If the TDP approach is adopted, one may use the prior on the concentration parameter ( to decide the maximum number of potential clusters. Ohlssen et al (2006) present an approximation based on the size of the probability ( of the final mass point pM, (=E(pM). Then 

     M ( 1+log(()/log[(/(1+()]

and the choice of the prior on ( determines (or should be consistent with) the choice of M. For example, taking (=0.01 and ( ~ Unif(0.5,10) implies M between 5.2 and 49.3, so M might be taken as 50.  

A sensible M will also reflect the nature of the data. Suppose in a data smoothing context without predictors (e.g. ranking hospital death rates) that (i denote unknown means for each case i=1,..n. Then a degree of clustering is anticipated in these values, so that data for similar groups of cases suggests the same value of (i would be appropriate for them. In certain cases such as the eye-tracking anomaly data considered earlier, the maximum number of clusters is likely to be considerably less than the number of distinct observations. In that example, there were only 19 distinct values of the count of anomalies, even though there were 104 observations. In other cases heterogeneity in the data might be such that every single case might potentially be a cluster. Thus if every yi were distinct in value, or even though some yi were matched they had different predictors, then the maximum number of clusters could be n. 

In general one draws m=1,..M values potential values (eq \O(*,m)for (i from the baseline density G0, where M is the anticipated maximum possible number of clusters.  This maximum may be n or it may be considerably less if there are repeat observations, and no predictors are involved. In practice, only M*  M ( n distinct values of the M sampled will be allocated to one or more of the n cases.

Another option is based on the Polya Urn representation of the Dirichlet Process. Under this, (1 is necessarily drawn from G0, while (2 equals (1 with probability p1 and is from the base density with probability p0=1-p1. Then (3 equals (1 with probability p1, equals (2 with probability p2 and is drawn from the base density with probability p0=1-p1-p2, and so on.  Finally (N equals each preceding (i with probability pi and is drawn from the base density with probability p0=1-(p1+…pN-1). Conditional on ([i]={(j,j(i}, (i is drawn from the mixture

          p((i| ([i]) ( eq \O((,j(i)qj(((j) + (q0f(yi|(i)g((i|() 

where (((j) are discrete measures concentrated at (j, f is the sampling density of y, qj=f(yi|(j), q0=(f(yi|()g(()d(, and pj (j=0,..N-1) in the Polya urn scheme are obtained by normalizing the values q1,q2,..,(q0. The form of q0 may be obtained analytically when g, the density associated with G0, is conjugate with the likelihood P(y|()  (Kleinman and Ibrahim, 1998). For example, if G0 is N((,(2) then g() is ((|(,(2). Some problems with this prior are noted by Ishwaran and Zarepour (2000, p 373).

Often the goal is to use the clusters to achieve a non-parametric smoothing of the data or random effects. Predictive inferences about the underlying population may then be based on sampling new values which may be drawn from different clusters than the observed data (West, 1992b; Turner and West, 1993). As an example, for an overdispersed Poisson outcome, yi ~ Poi((i), i=1,..n, one option might be

                     log((i) = ( + (i
with (i ~ N(0,(). To insert a DP stage, N(0,() is taken the baseline prior G0 and M ( n candidate values (eq \O(*,m) sampled from it. The cases i=1,..n are allocated to one of these candidate values according to the probabilities determined by the Dirichlet process. This procedure is repeated at each iteration in an MCMC chain. So if case i is allocated to cluster j (i.e. if the configuration indicator Hi=j) with candidate value (eq \O(*,j), then (i=(eq \O(*,j) and yi~Poi((eq \O(*,j)), where 

            log((eq \O(*,j))=(+(eq \O(*,j). 

The posterior average error (i will be based on averaging over the candidate values assigned at each iteration in the chain. 

Alternatively DP mixing may be used in regression applications and mixing over errors in general linear models is one approach to modelling overdispersion in exponential regression models. These are defined by

           f(yi|(i) = c(yi)exp[(iyi-b((i)] 

           g((i)=(i=Xi(
with mean (=b((() and variance V(()=b((((), and where (1 is the intercept. Set X* equal to X excluding a constant xi1=1 and introduce errors (i
           g((i)=(1+X*i(+(i
then DP mixing over the errors is equivalent to modelling heterogeneity in intecepts (i=(1+(i. Mukhopadhyay and Gelfand (1997) refer to models that mix over the intercepts in this way as DP mixed GLMs, defined by the density

          f(y|X*,(,G0) = ( f(y|X*,(,() dG0(().

Note that the DPP prior procedure has some apparent resemblance to standard discrete mixture analysis. Differences are that the number of clusters is random, and that the average number of clusters M* emerging from a particular data set, and the chances that a new observation will be drawn from existing or new cluster, depends crucially on the value or prior assumed or (. For large values of α the allocation will be such that most candidate values will be selected and the actual density of ( will be close to the baseline. Selecting a large α leads to more clusters and may result in ‘overfitting’ or densities that seem implausibly smoothed in terms of prior beliefs about the appropriate number of sub-groups (Hirano, 1998). For small α, the allocation is likely to be concentrated on a small number of the candidate values. In this case the DP model comes to resemble a finite (parametric) mixture model. 

Appropriate priors, typically ( ~ Ga(a,b) or ( ~ Ga(k,k/c) where c is the prior mean for (, may be set on the precision parameter α. For example, West and Turner (1994) use the relatively informative prior ( ~ Ga(10,10/c). Ishwaran and James (2002) recommend ( ~ Ga(2,2), as it encourages both small and large values of (, and use the result that under the TDP approximation, ( may be updated via Gibbs sampling using the conditional 

      (|V ~ Ga(M+a-1,b-logpM).

Mukhopadhyay and Gelfand (1997) in their analysis of overdispersed binomial regression assume ( ~ Ga(1,1). A form of data augmentation may also be used to sample ( (see Escobar and West, 1998, p. 10). The prior on ( in turn induces a prior on the actual number of clusters M* present at any iteration (Antoniak, 1974), with M* expected to approximately equal (loge(1+n/(). It may be sufficient, however, to select a few trial values of α and assess the impact on the average number of actual clusters (Turner and West, 1993; Ibrahim and Kleinman, 1998). Some possible problems with the identifiability of this parameter are considered by Leonard (1996), especially in data without any ties in the outcome variable.

Example 6.7 Eye tracking data

Consider again the eye tracking data, and assume a Poisson-gamma mixture to model the heterogeneity. A standard approach to such overdispersed count data assumes Poisson sampling, with yi ~ Poi((i) and gamma priors on the Poisson means, (i ~Ga(a,b) where a and b are preset or themselves assigned priors. Following Escobar and West (1998), initially choose a baseline gamma prior for the (i with a and b having preset values, a=b=1. The insertion of a DPP stage means sampling M  n candidate values (eq \O(*,m) from the baseline Ga(a,b) density and then allocating each of the n=104 cases to one of these values. Because there are only 19 distinct count values in the sample, one may take M=19 as the maximum possible number of clusters. 

The data augmentation prior for (, as in Escobar and West (1998), is used in the code

 {
for( i in 1 : n) {
theta[i] <- theta.star[H[i]];     y[i] ~ dpois(theta[i])

H[i] ~ dcat(p[]);   for (j in 1:M) {SC[i,j] <- equals(j,H[i])}}

# Precision Parameter 

eta ~ dbeta(alphs,M); alphs <- alpha+1; 

a1 <- a+Mstar; b1 <- b - log(eta); a2 <- a+Mstar-1; b2 <- b1

logit(p.alph) <- log(a2)-log(M)-log(b-log(eta))

alph1 ~ dgamma(a1,b1); alph2 ~ dgamma(a2,b2); 

alpha <- p.alph*alph1+(1-p.alph)*alph2

# Constructive prior 

        p[1] <- V[1]; V[M] <- 1

       for (j in 2:M) {p[j] <- V[j]*(1-V[j-1])*p[j-1]/V[j-1]}

       for (k in 1:M-1){ V[k] ~ dbeta(1,alpha)}

# theta.star prior, hyperparameters

   
  A ~ dexp(0.1)     B ~dgamma(0.1,0.1)

      for (m in 1:M){ theta.star[m] ~ dgamma(A,B)}

# total clusters







Mstar <- sum(CL[]); 
for (j in 1:M) {CL[j] <- step(sum(SC[,j])-1)}} 

This example shows the ability of a non-parametric analysis to detect discrepancies between prior and data. A two chain run of 5000 iterations (500 burn in) produces bimodal posterior distributions for larger values of yi because the G(1,1) prior on cluster effects (eq \O(*,m) (m=1,..M) is too inflexible to accommodate them. Thus case 92 with yi=12 has posterior mean of 12.3 (and relatively large standard deviation 3.8) but the posterior density shows the conflict between prior and data (Figure 6.1). With a Ga(1,1) prior on the precision parameter (, the average number of clusters chosen is 14.6, and ( has posterior mean 6.5.

Instead let the baseline gamma prior for the (i involve unknown hyperparameters with priors a ~ E(0.1), b ~ Ga(0.1,0.1). The posterior means are now a=0.4, b=0.08 from a two chain run of 5000 iterations. The posterior for (92 is no longer bimodal but still has some skewness. The mean number of clusters is now 15.

Example 6.8 Galaxy Velocities

To illustrate Normal mixture analysis under a DPP prior, consider data on velocities (km/second) for 82 galaxies from Roeder (1990). These are drawn from six well-separated conic sections of the Corona Borealis region. Thus with equal variances across components 

                            yi |Hi ~ N((Hi,()

   



(j ~ G 

                            G |( ~ DP((G0)

                                G0= N((0,d() 

A G(1.5,1) prior for ( is adopted, in line with a prior belief of 6 clusters when n=82, and the maximum number of clusters taken as M=10. For the parameters (-1 and d, gamma priors are used, namely (-1 ~ Ga(1,0.001), d ~ Ga(2.5,0.1). West (1992b) discusses this model structure and appropriate priors on (, d, and (-1. 

Predictions from the model are based on sampling a single replicate observation. This involves selecting a new cluster, not necessarily included in the clusters selected for the actual observations (Turner and West, 1993), and then sampling the density of the appropriate cluster mean. This predictive density may be used in various ways but is here used to assess whether the mean velocity exceeds 25000 km/second.
A two chain run of 5000 iterations (convergent at 1000) gives a density for a new value as in Figure 6.2. This shows small sub-populations at approximately 9,000 and 33,000 km/sec as are apparent in the original data. The probability that the mean prediction exceeds 25000 km/sec is estimated at 0.092, and the parameter d at around 42. The posterior for ( has mean 2.7, with the average number of non-empty clusters M* at 8.7, and 95% of non-empty clusters being between 6 and 10. 

6.8 Other Non-Parametric Priors

Alternatives to Dirichlet Process Prior have been proposed, such as stochastic process priors and partition priors (Walker et al, 1999). The latter include Polya Tree priors (Walker and Mallick, 1997; Walker and Mallick, 1999; Hanson et al, 2005, p 255), and consist of a set of binary tree partitions to allocate a case to its  appropriate cluster value selected from a baseline prior G. Consider an unstructured error model for disease counts yi (and expected cases Ei) for areas i=1,..N 

           yi ~ Poi(Eiμi)

           log(μi) = β0 + (ei
and adopt an N(0,1) density as the baseline G density for ei with ( an extra unknown. The simplest Polya Tree would have one level only and select candidate values eeq \O(*,m) from two possibilities. The choice would be between candidate values selected from the partition of the real line, either from B0=(-,G-1(0.5)), or from B1=(G-1(0.5),). Thus the partitions of the parameter space at level 1 is based on the 50th percentile of G, so ensuring that the selected effects are centred (not confounded with the regression intercept). The next binary partition would involve subdivisions of B0 and B1, so that (B00,B01,B10,B11) are the breaks at level 2. The choice would then be between candidate values selected from the intervals B00={-,G-1(0.25)}, B01={G-1(0.25),G-1(0.5)}, B10={G-1(0.5),G-1(0.75)} or B11=(G-1(0.75),). 

The number of sets, namely ranges of bands from which candidate values (for parameter values or cluster random effects) are chosen, is thus 2m at level m. Most applications have considered  finite Polya partitions to level M (Hanson & Johnson, 2002, p 1022). Candidate values in the lowest and uppermost bands are selected from truncated densities, with a form defined by G. For intervening bands j, they may be selected from a uniform density with G-1[(j-1)/2m] and G-1(j/2m) as the end points.

Walker and Mallick (1997,p. 849) liken the choice of an appropriate candidate value to a cascading particle. The choice between B0 and B1 is a Bernoulli choice governed by probabilities C0 and 1-C0. The probability C0 may be selected from a prior beta density but Walker and Mallick (1997, p. 851-852) suggest C0=0.5 on the basis that the first partition is centred at the median. 

In general, if the option Bε is selected at a particular step, then the particle moves to either Bε0 or Bε1 at the next step with respective probabilities Cε0 and Cε1=1-Cε0. These are random beta variables with 

                                (Cε0,Cε1) ~ Beta(αε0,αε1) 

where αε0 and αε1 are both non-negative.  The choice of values for αε0 and αε1 should reflect prior beliefs about the underlying smoothness of F. 

For m large, one would set αε0= αε1=cm in such a way that F(Bε0) and F(Bε1) are close. This may be done by setting 

                             cm=cmd for c>0,d>1,


(6.4) 

so that cm increases with m (in line with prior expectations that some degree of pooling should be appropriate, based on the smoothness). For example cm=cm2 or cm=cm3 may be used with c=0.5 or c=0.1. Larger values of c mean the posterior will resemble the baseline prior G more closely Hanson et al, 2005, p 256). The Dirichlet Process Prior corresponds to cm=1/2m. Taking

                                   cm=(1m(2 

one may also set priors on the elements of the beta probabilities, with (2 perhaps restricted to small integer values. 

The above small area health example is in fact a mixed Polya Tree, analogous to the MDP model (Hanson and Johnson, 2002, p 1022), since the centering density G is random by virtue of the parameter (. In this example, suppose M=4 is taken as the maximum number of levels. Taking cm=0.5m2 and (=1/( would lead to the code

 C <- 0.5; tau2 ~ dgamma(1,1); phi <- 1/sqrt(tau2)

 for (m in 2:M) { c[m] <- C*pow(m,2)}

 for (i in 1:N){    V[1,i] ~ dbern(0.5)

 for (m in 2:M) {p[m,i] ~ dbeta(c[m],c[m])

                          V[m,i] ~ dbern(p[m,i])}

# level 1 choice (convert V=0,1 to B=1,2)

         B[1,i] <- V[1,i]+1

# choices at level 2 and above

    for (m in 2:M) {  B[m,i] <- sum(Vp[m,i,1:m-1])+V[m,i]+1

    for (j in 1:m-1) { Vp[m,i,j] <- V[m-j,i]*pow(2,j)}}

# select from ordinates of baseline density

   estar[i] <-  G.inv[B[M,i]];  y[i]  ~ dpois(mu[i]); 

   log(mu[i]) <- log(E[i]) + beta0+phi*estar[i] }

The options for the baseline density ordinates would then be based on the selected prior G, e.g. with G an N(0,1), and M=4, these would be the 6.25th, 12.5th, 18.75th,..93.75th percentiles of G-1.

Example 6.9 Seeds and Extracts

Walker and Mallick (1997) re-analyse the factorial lay-out data from Crowder (1978, Table 3). The original model of Crowder proposed variation of expected proportions within cell means

                    yij ~ Bin((ij,nij)                         i=1,..4; j=1,..ni
with (ij then distributed according to four beta densities Be(ai,bi). The index i corresponds to combinations of two binary factors, seed type (S) and extract type (E). Here the model is reformulated at the level of the n=21 seeds, with yk ~ Bin((k,nk), k=1,..,n. Walker and Mallick propose a Polya Tree non-parametric prior for the over-dispersion effects ek under a logit transform of the (k as in  

          logit((k)=(1+(2I(Sk=2) +(3I(Ek=2) + (4I(Sk=2,Ek=2)+ek
where the base density G for a Polya Tree prior with M=4 levels is taken to be N(0,1). Beta weights are defined including unknowns

                       cm=(1m(2
with priors (1 ~ Ga(0.5,1) and (2 ~ Po(2) assumed. 

The estimated factorial effect parameters, from the 2nd half of a run of 5000 iterations (two chains, convergent from 1000) are similar to those of Walker and Mallick. The means for (1 and (2 are 0.78 and 1.22 respectively. Only (3 (the extract effect) is clearly different from zero (Table 6.2). The probabilities of germination according to levels of each factor are also shown (cf. Crowder, 1978, Table 4). 

Table 6.2 Seeds and Extracts Data

Parameter
Mean
2.5%
97.5%

(
-0.62
-1.40
0.29


-0.08
-1.37
1.26


1.56
0.29
2.91


-0.91
-2.80
0.93

Germination rates

Extracts=1,Seeds=1)
0.38
0.32
0.44

Extracts=2,Seeds=1)
0.69
0.62
0.75

Extracts=1,Seeds=2)
0.36
0.28
0.45

Extracts=2,Seeds=2)
0.49
0.40
0.58

Example 6.10 Diabetic Hospitalisations

Diabetic complication rates may be taken as an indicator of the performance of the primary health sector in providing timely and appropriate care. In England, two indicators of diabetes care are regularly monitored, namely a) the incidence of diabetic ketoacidosis and coma and b) lower limb amputations. Here observed and expected cases of both events (for males and females combined over two financial years, 2000-1 and 2001-2) are considered for 354 English local authorities. A Poisson regression with log link is assumed. The total of observed and expected cases is the same so the mean of the log response is zero and an intercept is not strictly necessary. 

We first consider lower limb amputations alone, and contrast a Dirichlet process prior with a Polya tree approach, though the latter actually includes DP priors under appropriate settings of cm in (6.4). Under the DP prior (model A), the data are taken as Poisson with 

              yi |Hi ~ Poi(Ei(i), 

              log((i) = (eHi
with Ei being expected events, and Hi ~ Categorical(p), p=(p1,…,pM) with M=30 as the assumed maximum number of clusters and the pj defined by a stick-breaking prior.  The DP prior includes a Ga(1,1) prior on α, consistent with an expected prior cluster total of M*=5.9. The baseline density G0 is N(0,1), with (2 a variance parameter, and 1/(2 is assigned a Ga(0.5,0.5) prior. The relative risks (i average 1 at least approximately (here the mean RR slightly exceeds 1), and indicate the quality of care; high values indicate lower quality care.  

A two chain run of 5000 iterations (1000 to convergence) is used to make posterior inferences. In particular, the estimated posterior relative risks of amputation over the 354 areas suggest some multi-modality as well as outlying areas with very high rates (Figure 6.3). This would not have been so well represented by a unimodal parametric prior. The averages M* and ( are 18.5 and 4.1.

A Polya tree procedure (model B) with 26 partitions (i.e. M=6) is then applied with cm=cm2, with c=0.5 and a N(0,1) baseline density. There are high correlations between the two sets of posterior risks (DPP vs PT priors) and in the area rankings. Nevertheless the plot of risks under the PT prior (Figure 6.4, based on iterations 1001-5000 in a two chain run) shows less departure from unimodality. This may be an artifact of the restriction to preset parameters in cm. Reducing c (e.g. to 0.1 or 0.01) leads to a more bimodal plot. 

As a final illustration of a nonparametric application consider deriving an overall index of diabetic care, with higher values indicating less effective care in terms of avoiding undesirable outcomes (a common factor model).  Thus with y1 denoting diabetic amputations and y2 denoting diabetic ketoacidosis and coma consider the following common factor DP model

              y1i ~ Poi(E1i(1i), y2i ~ Poi(E2i(2i),

              log((1i) = (1eHi
              log((2i) = (2eHi
where Hi are as above (under model A) and the baseline density G0 is again a standard normal density. The factor loading (1 is set to 1 for identifiability while (2 is free and assigned a normal N(1,1) prior. The plot of the scores (Figure 6.5) shows some multimodality with 3 outlying areas (285, 289, 148) having scores approaching 0.5 while a central cluster of areas (109 from 354) have scores between 0 and 0.10.

6.9 Exercises

1. In Example 6.1 use a likelihood calculation and derive the posterior mean of the likelihood and deviance. Use the AIC and BIC criteria to compare solutions C=1,2,3,4.

2. In Example 6.1 obtain the posterior probabilities that individual cases belong to different groups. These are averages over iterations of indicator variables. 

3. In Example 6.2, extend the comparisons to C=4.

4.  For the data of Example 6.2 apply the splitting prior of (6.2) for the cases C=2 and C=3.

5. In Example 6.3, code the basic ZIP model using the individual data approach (as per Model B in Example 6.3.odc). Sample new data (predictions ynew) and derive the EPDs (expected predictive deviances) for the basic ZIP model and the three group ZIP model as already described in Example 6.3. The BICs for both models can also be obtained since the number of parameters is known.

6. In Example 6.5 (DMFT response), extend the model to allow the (j to be specific to school (j=1,..J, J=6). 

7. In Example 6.7 (DP analysis of eye tracking anomalies) try monitoring the (i to obtain posterior means eq \O((,_)i for each of the 101 subjects, and so obtain the DIC using the definition eq \O(D,_)-D(eq \O((,_)). In BUGS this will also require including code to obtain the deviance at each iteration. Assume the hyperparameters of the gamma mixing density are free. Does adopting a DPP prior (with ( a free parameter) improve over the standard Poisson-gamma mixture (Chapter 5). Is this conclusion affected by setting ( at particular values, e.g. (=1 and (=5 rather than letting it be a free parameter. 

8.  In Example 6.7 (DPP analysis of eye tracking anomalies) try a Ga(0.01,0.01) prior on the concentration parameter (. Does this affect the posterior mean for clusters? 

9. In Example 6.8 (galaxy clusters) consider the ratio of posterior mean of M* to its prior mean, as defined by the prior on the DPP concentration parameter (. What is the impact on this ratio of increasing M (the maximum clusters under a truncated DPP) to 20, and what is the impact of combining M=20 with a G(3,1) prior on (, consistent with a prior mean M*=10.

9. Use the data from Gelfand et al (1990) relating to growth for n=30 rats at five ages, and add a DP prior as in West et al (1994, p 373) and Escobar and West (1998, p 16). See also the birats example on the WINBUGS site. Thus the bivariate normal model for varying intercepts and slopes is replaced by a DP prior that allows clustering of intercepts and slopes. Specifically one could retain as G0 the bivariate normal with a precision matrix distributed as Wishart(C,2), where
                 C=
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and take M=20. The Dirichlet parameter can be assigned either a  Ga(1,1) prior or a Ga(0.01,0.01) prior as in Escobar and West (1998). Both studies applying a DP prior to these data found multimodal posteriors for the predictive distribution of the slopes.   
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