Chapter 9 Modelling Spatial Dependencies

9.1 Introduction: Implications of Spatial Dependence

Bayesian methods have played a major role in developing statistical perspectives for spatial data, with space viewed from both discrete and continuous perspectives. Many Bayesian applications have occurred in spatial epidemiology - see Lawson et al (1999) and Elliott et al (2000); in spatial econometrics – see Parent & Riou (2005), Lesage (1999); and in geostatistics - see Diggle et al (1998), Banerjee et al (2004) and Waller (2005). Whereas a discrete area framework predominates in disease mapping, in geostatistics a continuous spatial framework is typically adopted and the goal is often spatial prediction, namely interpolation between observed readings (e.g. of mineral concentrations) at sampled locations. In part this difference in approaches is a response to observations in different forms: point pattern data leading to continuous approaches whereas data for ecological aggregates (e.g. irregular lattices based on administrative areas) leads to discrete space models. 

Another important distinction in spatial modelling is between spatial interaction models and spatial error models. In spatial interaction models, the spatial pattern or space-time pattern in the response variable is the main focus of the analysis, e.g. in the analysis of ‘focussed’ clustering of excess mortality or illness around pollution point sources (Wakefield & Morris, 2001), or in the detection of crime hotspots (Gesler & Albert, 2000). These kinds of model are also used in space-time disease diffusion models (e.g. Cliff & Ord, 1981, p 32). By contrast in causal modelling of, say,  mortality or crime rates, spatial dependence often occurs because of omitted or unmeasured spatially correlated predictors, and so is reflected in regression errors. If regression errors are spatially correlated and the error structure in the model does not allow for this, then there will be overestimation of the significance of regression relationships (Richardson and Monfort, 2000, p 211). In problems involving both space and time dimensions, errors may be correlated in both time and space simultaneously (Lagazio et al, 2001); see chapter 11. 

An additional issue raised clearly by writers such as Fotheringham et al (2000) and Lesage (1999) is that of spatial heterogeneity, either in terms of regression relationships (regression coefficients varying over space) or as heteroscedasticity in a spatially unstructured error term. As in time series modelling another issue are discontinuities in the spatial pattern of responses or residuals (Knorr-Held & Rasser, 2000). Assuming smooth spatial priors when in fact the data show localised irregular patterns calls for elaborations on the usual model structures to allow for robust inferences. 

There may be identifiability problems in separating spatial dependence (e.g. correlation) from spatial heterogeneity (de Graaff et al, 2001; Anselin, 2001). There are also identifiability issues arising from using multiple random effects in the same model or priors that do not specify a level but only the form of interaction between neighbours (e.g. as pairwise differences between errors). Such problems occur in the widely used convolution model (Besag et al, 1991) for discrete spatial data. This involves two errors, one spatially structured and the other unstructured, whereas only the sum of the errors is identified by the data (Eberly and Carlin, 2000).

9.2 Discrete Space Regressions for Metric Data

Here we first consider regression models with observed continuous outcomes though it may be noted that the ideas transfer to modelling latent continuous variables when the observations are discrete (e.g. binary or ordinal), using for instance the sampling methods of Albert and Chib (1993). A discrete spatial framework (e.g. area lattice) is also assumed. Consider a n(n matrix C of contiguity measures. One option is based on adjacency, with cij=1 if areas i and j are first order neighbours, and cij=0 otherwise (with cii=0). Alternatively with inter-area distances denoted dij, a distance based interaction scheme might involve elements such as cij=1/dij (i (j) or cij=1/deq \O(2,ij) , but again with cii=0. Then scale the elements to sum to unity in rows, with W as the scaled matrix, 

                W=[wij] = [cij/jcij ]                       

What is termed a spatial autoregressive error or SAR model (Richardson et al , 1992), or a spatial error model (Lesage, 2000), takes the form

                 y =  X + e                                                  (9.1)

                  e = We + u

where ( is an unknown correlation parameter, y, e, and u are row vectors of length n, and X is of dimension n(p with rows [xi1,xi2,..xip], with xi1=1. Here the u denote spatially unstructured errors, which are typically taken as homoscedastic ui ~ N(0,2). Defining Q=I-(W, the precision matrix (-1 of e in (9.1) is                    

         (-1  = (Q(Q



     



where (=1/2 (Richardson et al, 1992). If interactions cij are scaled within rows then the maximum possible value for ( is 1 (Anselin, 2001; Bailey and Gattrell, 1995, chapter 7), and the minimum is the smallest eigenvalue of W, which is greater than –1 but less than 0. Since spatial correlation is typically positive, a prior on ( constrained to [0,1] is feasible in many applications.

One may also have a spatial interaction model (SIM), with spatial lags in the outcomes themselves (e.g. Ord, 1975; Anselin, 2001), 

               y =  Wy +X +  u                                         (9.2)

where u is white noise. Spatial dependence in both response and regression errors may occur in the same model (e.g. Anselin, 1988a), for example:

               y =  Wy + X  + e                                        (9.3)
                e =   (2We + u.

It may be noted that the spatial error model (9.1) may be expressed as

                 y - Wy =  XWX + u                           (9.4)

namely as a regression with unstructured errors of the spatially filtered response y*=y-Wy on filtered predictors X*=X-WX. 

Lesage (1997, 2000) discusses MCMC estimation of spatial models autoregressive in e or in y, as in (9.1) and (9.2) respectively. For example, assuming a flat prior p((,(,(2) ( 1/(,  the joint posterior for the spatial interaction model has the form

           p((,(,(2|y) ( |Q| (-(n+1)exp[-
[image: image1.wmf]2

s

2

1

(e(e)]

where e = y - Wy –XQy-X(For the spatial errors model the joint posterior is

            p((,(,(2|y) ( |Q| (-(n+1)exp[-
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where u = Q(y-X(). Either model implies a non-standard conditional for (, namely

      p((|(,(2,y) ( |Q| exp[-
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whereas, for ( given, the full conditionals for (2 and ( are as in the normal linear regression model. The full conditional for ( has mean

          ((=(X(X)-1(X(Qy)

in the spatial interaction model and 

          ((=(X(Q(QX)-1(X Q(Qy)

in the spatial errors model, and covariance matrices (2(X(X)-1 and   (2(X(Q(QX)-1 in the SIM and SAR models respectively.

The above setup extends to limited dependent variables, especially with the observed variable yi binary but the latent metric variable zi that gave rise to it assumed to be normal or logistic. As discussed in Chapter 4, the probit link corresponds to truncated normal sampling of the zi, on the right at zero if y=0, and on the left by zero if y=1. Then a model with both forms of autoregressive correlation is

                z  =  Wz + X  + e                                        
                e  =   (2We + u

where the variance of u is 1 for identifiability. 

In MCMC schemes using the conditional rather than the joint prior for spatial errors may have benefits when the number of areas becomes large. Consider the model y = X( + e where e are spatially correlated. The conditional autoregressive (CAR) prior expresses the error ei for a particular area as a univariate density, conditional on other errors, for example

               ei | ej(i~ N((eq \O((,j)cijej,(2)
  

       

(9.5)

where ( is bounded by the inverses of the minimum and maximum eigenvalues of C (Bell and Broemeling, 2000). For this scheme C must be symmetric. Conditions that ensure the joint density is proper (so that the ei are identifiable) when the model specification starts with a conditional rather than the joint prior
 are discussed by Wakefield et al (2000) and Besag and Kooperberg (1995). The covariance of the vector e in the joint prior corresponding to (9.5) is (=(2(I-C)-1 (Richardson, 1992; Wakefield et al, 2000). 

Example 9.1 Agricultural Subsistence and Road Access                 

The first worked example considers spatial dependence in the errors of a regression model for a continuous outcome. Several studies have considered a dataset for the i=1,..26 Irish counties relating the proportion yi of the county’s agricultural output consumed by itself (i.e. its subsistence rate) to a measure xi2 of its arterial road accessibility (ARA); a normal approximation is generally adopted to this binomial outcome. The data is discussed and analysed in Cliff and Ord (1981). 

Here a linear model containing uncorrelated homoscedastic errors ui ~ N(0, (eq \o(2,u)), and hence no allowance for spatial dependence 

                yi=Xi( + ui





(with xi1=1) serves as the baseline.  As one model diagnostic (though not a model choice criterion), measures of spatial interaction such as Moran’s I may be monitored or used in a posterior predictive check. Thus denote regression residuals at iteration t as u eq \O(i,(t)). The posterior average of Morans I statistic is then

                   I = T-1  eq \O((,t)  eq \O((,i(j) wij u eq \O(i,(t)) u eq \O(j,(t)) / i [u eq \O(i,(t))]2


where in the present application, two definitions of row standardised interactions wij are considered. One is based on binary adjacency, the other on contiguities cij=Bij/dij where Bij is the proportion of the boundary of county i in contact with county j. The Moran statistic typically has a small negative expectation, when applied to regression residuals (Cliff and Ord, 1981, p 202, eqn 8.21). However, reductions in autocorrelation to approximately zero values may be taken as controlling for spatial correlation (Haggett et al, 1977, p 357), while posterior 95% intervals for I with entirely positive values (excluding zero) indicate correlated residuals. 

With the uncorrelated errors model, three chains are run for 15000 iterations and posterior summaries are based on the last 14000 of these
. The monitoring includes Moran statistics for the regression residuals as in Table 9.1. These are similar to those cited by Cliff and Ord, for binary adjacency weights, namely 0.397 (s.e.=0.12) and for distance-boundary weights, namely 0.436 (s.e. 0.14); so there is substantial spatial correlation in the errors. There is also underestimation of subsistence in the remoter counties, and overestimation of subsistence in the less isolated eastern counties, with better road and rail links. So one option would be to include measures of such transport access, e.g. whether a county is served by a direct freight link to the Irish capital, Dublin.

However, to make correct inferences about the regression estimate of subsistence on ARA (still as a single predictor), it is preferable to model spatial dependence in the regression errors.  So model B uses contiguity weights in the spatial errors model of equation (9.1), with the regression means based on the transformed model in (9.4). For improved identification, the intercept parameter
 is represented as ( eq \o(0,') =(0-(0(. Model C uses distance-boundary weights.

Runs of 20,000 iterations over two chains with 5,000 burn in ensure convergence in (, with posterior density under model B as in Figure 9.1. The median of 0.935 compares to a Bayes mode of 0.938 cited by Hepple (1995). Comparison of the expected predictive deviance obtained by comparing actual and replicate data (section 2.8) shows that using distance-boundary weights (model C) gives a better fit (EPD of 319, compared to 330 under model B). The impact of ARA is raised slightly as compared to model B.

Table 9.1 Models for Subsistence Rates

Uncorrelated Error Model
Mean
2.5%
97.5%

Moran(Distance-Boundary Weights) 
0.45
0.21
0.69

Moran(Contiguity)
0.35
0.09
0.63

0 (Intercept)
-8.71
-15.62
-1.71

1  (ARA)
0.0053
0.0038
0.0069

Spatial Errors  Model (Contiguity)

Moran(Distance-Boundary Weights)
0.019
-0.101
0.324

( eq \o(0,')  (Intercept)
0.46
-0.83
1.92

1  (ARA)
0.0021
0.0007
0.0037


0.913
0.700
0.997

Spatial Errors  Model (Distance-boundary weights)

Moran(Distance-Boundary Weights)
-0.174
-0.365
0.174

( eq \o(0,')  (Intercept)
0.206
-1.27
1.63

1  (ARA)
0.0027
0.0013
0.0042


0.886
0.653
0.996

Example 9.2 Columbus Crime Data, Binary Response

A spatial data set originally provided by Anselin (1988b) relates to 49 neighborhoods in Columbus, Ohio, and consists of observations on neighborhood crime rates, with two predictors: average neighborhood household income and house values. Lesage (2000) considers estimation of spatial interaction and spatial error models when the originally continuous crime incident data is converted to binary form, so y=1 for crime rates exceeding 40%, y=0 otherwise.

Following work by McMillen (1995) on heteroscedasticity in the spatial probit model, Lesage investigates alternative priors on the degrees of freedom parameter ( in a scale mixture version of the limited dependent variable probit model. Thus a spatial interaction model has the form

                           zi ~ N((i,1/(i)   I(0,)                   when yi=1

                           zi ~ N((i,1/(i)   I(,0)                   when yi=0

with (i ~ Ga((/2,(/2) and with means

                           (i=(Wz +X(
under a SIM model, and 

                          (i= (Wz + X(WX
under a SAR model.

Here we consider probit models without scale mixing for SIM and SAR models; these models can be fitted in WINBUGS13 but not WINBUGS14. Both models were estimated using two chain runs of 10000 iterations with convergence apparent by around 1000 iterations. While the effect of household income is to reduce crime under the SIM model (the 95% credible interval on the income coefficient is –0.28 to –0.02) it has a nonsignificant effect under the SAR model. By contrast, house values have a significant negative effect on crime in both models.  

To assess fit, new z values are sampled (without truncation) and the ynew is 1 or 0 according as znew is positive or not. A tally is then made of the number of areas where y and ynew are the same. The posterior mean of this tally is higher under the spatial interaction model (39.2 out of a maximum of 44) than the spatial error model (36.6).

9.3 Discrete Spatial Regression with Structured &  Unstructured Random Effects

Spatial dependence figures strongly in the analysis of disease maps, where event counts are the usual focus (e.g. Besag et al, 1991). In epidemiological analysis, the main object is often to estimate the underlying pattern of relative risk by “pooling strength” over all areas or sub-populations. Conventional estimation of relative risks (e.g. by standard mortality ratios ri=yi/Ei defined as ratios of observed to expected events) assumes a Poisson density with mortality risk constant over areas and individuals within areas. In practice, individual risks vary within areas, and risks vary between areas, so that area counts are more variable than the Poisson density stipulates. 

This extra-variation can be modelled by including random effects in a model for the relative risks of disease or mortality. Some effects may be spatially unstructured and have been denoted as ‘excess heterogeneity’ (e.g. Best et al, 1999). However, overdispersion may also occur due to spatially correlated effects; such spatial effects often proxy unobserved risk factors (e.g. environmental or cultural) which vary smoothly over space (Best, 1999).

For example, suppose a count of diseases or deaths yi is observed in a set of small areas, and that expected events are Ei (derived using demographic methods). The outcomes may, subject to the necessity to take account of overdispersion, initially be taken as Poisson, 

              yi ~ Poi(Ei(i)                               

where (i is the relative risk of mortality in area i. For relatively rare events Poisson sampling may be justified by considering binomial sampling of deaths by age j in relation to populations by age Pij  with death rates ij, and by assuming relative risks and age rates are proportional, namely (ij=(i(j (Wakefield et al, 2000). Then the spatial convolution model of Besag et al (1991) has the form

        log((i)= (1+(2xi2+…(pxip +si+ui 


(9.6)

where si are spatially structured effects, and ui are spatially unstructured with possible prior,  ui ~ N(0, () where ( is itself assigned an inverse gamma prior. Other options for u might be a discrete mixture of Normal densities or a single Normal but with nonconstant variances (i (Lesage, 1999).

One possible joint density for the spatial effects s=(s1,….,sn) is in terms of pairwise differences in errors (Banerjee et al, 2004, p. 80), and a variance term (
               P(s1,…sn)  (  exp [-0.5(-1eq \O((,i(j) cij(si-sj)2 ]             (9.7)

or equivalently (Gelfand & Vounatsou, 2003, p 15),

               P(s1,…sn)  (  exp [-0.5(-1s((D-C)s ]                   (9.8)

where C=[cij] is a spatial interaction matrix, and D is diagonal with (i,i)th element ci+=eq \O((, j)cij. This joint density implies a normal conditional prior for si conditioning on the effects sj in remaining areas j(i. Letting such effects be denoted s[i], one has

               P(si|s[i],() (i, ( eq \O(i,-1))                                         (9.9)

 where (i is the weighted average

              (i = eq \O((, j)cijsj/eq \O((, j)cij =eq \O((, j)wijsj 

and 

              ( eq \O(i,-1) = (/eq \O((, j)cij 

are conditional variances. This is known as the intrinsic CAR or ICAR prior, and in contrast to (9.5) has a mean (i involving row standardised weights. 

Other pairwise difference priors are possible. Besag et al (1991) mention a double exponential (Laplace) prior 

              P(s1,…sn)  (  ( exp [-0.5(eq \O((,i<j) |si-sj|2 ]             

which, like the Student t, is more robust to outliers or discontinuities in the risk surface. ( is a scaling parameter, with smaller values implying less spatially correlated variability. 

The conditional variance in (9.9) depends on the interaction structure represented by cij. Typical forms for cij are  

a) binary adjacency: cij=1 if areas i and j are neighbours, cij=0 otherwise (and cii=0), in which case (i is the simple average of the spatial effects in the Li= ci+ neighbours of area i.

b) distance decay: cij=exp(-(dij) where (>0 and dij are distances between the area centres (and cii=0)

The more neighbours there are (definition a), or the closer they are (definition b), the more precisely is si defined (in terms of higher precisions (i). 

To assess the relative strength of spatial and unstructured variation in (9.6) requires estimates of marginal rather than conditional variances. A moment estimator var(s) = ((si- eq \O(s,_))2/(n-1) of the marginal spatial variance may be compared (at each MCMC iteration) to the variance ( of the ui, or to the moment estimator, var(u)= ((ui- eq \O(u,_))2/(n-1). The average ratio of the marginal spatial variance var(s) to the total var(u)+var(s) then measures the relative importance of spatial correlation. Eberly and Carlin (2000) consider the alternative measure (=sd(s)/[sd(s)+sd(u)].
The joint density (9.7)-(9.8) is improper with an undefined overall mean for the si. This may lead to problems in convergence and identifiability in Bayesian estimation based on repeated sampling. One way of producing identifiability is to omit the constant (1 in (9.6), so that the average of the si defines the level. Assume priors 1/( ~ Ga(a(,b(), 1/( ~ Ga(a(,b(), and Poisson data without predictors as in the ‘pure smoothing’ model, namely yi ~ Po(Ei(i) and

         log((i)=ui+si 





(9.10).

Then the  full conditionals are

      si|s[i],u,y,(,( ( exp[yisi-Ei(i-ci+(si-(i)2/2(]

      ui|u[i],s,y,(,( ( exp[yiui-Ei(i-u eq \O(i,2) /2(]

     1/( ~ Ga(a(+0.5n,b(+0.5 eq \o((,i=1,n)u eq \O(i,2) )

     1/( ~ Ga(a(+0.5n,b(+0.5 eq \o((,i=1,n)

 eq \o((,j<i)cij(si-sj)2)

(see Mollieq \o(e, ( ), 1996, on the conditionals when predictors are included). Another identifying option is to constrain the si to sum to zero
 which in practice involves centering them at each MCMC iteration (Ghosh et al, 1998). 

Inferences are also likely to be sensitive to the priors on the variances of the two error components. Bernardinelli et al (1995, p 2415) produce guidelines based on assumed normality in relative risks for a particular map (366 Sardinian communes) , and  show that the marginal variance var(s) ( 2(/ eq \O(L,_), where, under a binary adjacency form for cij,  eq \O(L,_) is the average number of neighbours. One might therefore interlink the priors on the variances as follows:

                    1/( ~ Ga(a(,b()                                      (9.11)

                    ( = 2(/ eq \O(L,_) ((var(s))

                    (=c2(
and use a discrete prior on c, with values centred at 1, for example the 19 points{0.1,0.2,..,0.9,1,2,…10}. Then a Bayes factor is obtainable on alternative mixes of unstructured and spatial variance under alternatives for the hyperparameters (a(,b(). One may also obtain the probability that (>( (marginal spatial variance exceeds marginal unstructured variance). Other options are possible: Mollieq \o(e, ( ) (1996) suggests a weakly data based prior using the variance of the crude relative risks, namely Var(r), where ri=yi/Ei. Then with (r=2/Var(r), 1/( ~ Ga(c(r,c) and 1/( ~ Ga(c(r eq \O(L,_),c) where  eq \O(L,_)  is the average number of neighbours and c is a small constant (e.g. c=0.01) that downweights the data based information.

9.3.1 Proper CAR priors

Another option introduces an extra parameter to gain propriety. Following Sun et al (1999), Sun et al (2000), and Jin et al (2005) propriety of the posterior is obtained by explicitly introducing a spatial dependence parameter ( absolutely less than 1, and replacing the precision matrix D-C of (s1,…sn) in (9.8) by D-(C, where ( is constrained to ensure D-(C is nonsingular. This requires ( to be within the smallest and largest eigenvalues, (min and (max, of  D-0.5CD-0.5, where (max=1 and (min < 0 (Gelfand and Vounatsou, 2003, p 15). The conditional prior for this ICAR(() scheme may then be expressed as 

            P(si|s[i]) (eq \O((, j)cijsj/eq \O((, j)cij,  ( eq \O(i,-1))



(9.12)



with  ( eq \O(i,-1) = (/eq \O((, j)cij and the covariance between si and sj given all other sk is obtained as 

            (2(cij/[eq \O((, k)cikeq \O((, k)cjk+(eq \o(2,)ceq \o(2,ij)].

The prior in (9.9) is then an ICAR(1). By contrast (9.12) reduces to an unstructured prior when (=0 and so there is a degree of averaging over the extreme options under the convolution model, namely ICAR(1) spatial errors on the one hand, and unstructured errors on the other. Hence one does not need to include si (as in 9.12) together with unstructured ui in a convolution model. 

Another ICAR prior proposed to produce propriety (Leroux et al, 1999; Macnab (2003) has a joint form

            s|(,( ~ Nn(0,(R-1)

where the precision matrix is R=(K+(1-()I, with ( between 0 and 1, and K a n(n structure matrix, with 

              Kij  =  -1       if areas i and j are neighbours         

                     =   0        for non adjacent areas  

                     =   ci+      when i=j

The corresponding conditional form is

            P(si|s[i],(, () ( eq \O((,j~i) cijsj /di, (/di)                 (9.13)

where j~i denotes that j is a neighbour of area i, and di=1-(+(ci+. This reduces to an ICAR(1) prior when (=1 and to unstructured variation when (=0. 

Pettitt et al (2002) propose  a proper joint prior

         s|(, (  ~ N(0,(R-1) 

with ( > 0, Rii=1+(ci+, Rij = -( when j ~ i, and Rij=0 otherwise. The conditional prior then has mean ( eq \O((,j~i) cijsj /Rii, and variance (/Rii. Czado and Prokopenko (2004) propose a modification whereby the conditional prior still has mean ( eq \O((,j~i) cijsj /Rii, but the variance is ((1+()/Rii. So as ( tends to infinity this tends to an ICAR(1) prior.

Binomial sampling with a logit (or probit) link may be used when populations at risk Ni are small, not just the event totals yi (e.g. MacNab, 2003, p 306), with yi ~ Bin(Ni,(i) and the mixed model is accordingly

              logit((i) = (Xi + ui+si.

Example 9.3 Farmer Suicides

Hawton et al (1999) consider the number of suicides by farmers between 1981 and 1993 in 54 counties in England and Wales (Table 9.2). There were 719 suicides (634 suicide verdicts and 85 open verdicts), and as predictors they considered the overall population suicide rate in each county, the density of farmers (number of farmers in each county in 1987 divided by the total county population of both genders aged 15 years and over), and the percent of farming occurring in less favoured environments. Their model used linear regression of the suicide rates per 100 thousand. Here expected suicides are calculated by multiplying person years (farmers in 1987 times 13) by the average England wide farmer suicide rate in the 1981-93 period of 26.77 per 100 thousand.  

Table 9.2 Suicides in Farmers, 1981-1993

County
Neighbours
y
E
Number of Farmers
Person Years
Crude Annual Rate per 100,000
General Suicide Rate
Farmer Density
Cattle & Sheep Farming Less Favoured Areas

Avon
54,42,18
8
8.0
2299
29887
26.76
18.21
0.29
0.0

Bedfordshire
4,5,25,35
2
5.3
1530
19890
10.05
14.29
0.38
0.0

Berkshire
23,47,54,4,39
4
3.2
924
12012
33.3
13.9
0.16
0.0

Buckinghamshire
19,25,2,35,39,3
4
7.5
2153
27989
14.29
17.5
0.43
0.0

Cambridgeshire
34,46,31,2,35,17,25
23
15.6
4492
58396
39.38
20.7
0.88
0.0

Cheshire
20,32,11,41,45,8
18
17.6
5045
65585
27.44
17.66
0.66
2.9

Cleveland
14,37
3
1.9
545
7085
42.34
16.19
0.13
0.0

Clwyd
6,41,22,40
14
15.2
4365
56745
24.67
24.52
1.31
31.1

Cornwall & Scilly
12
20
28.2
8092
105196
19.01
23.16
2.19
2.5

Cumbria
29,37,14,36
29
27.1
7797
101361
28.61
25.65
2
26.8

Derbyshire
38,44,20,6,45,30,53
17
15.4
4412
57356
29.64
20.27
0.58
13.3

Devon
9,42,13
62
44.1
12670
164710
37.64
21.64
1.51
7.6

Dorset
54,42,23,12
11
11.9
3434
44642
24.64
25
0.64
0.0

Durham
7,48,37,10,36
10
9.2
2645
34385
29.08
17.45
0.53
23.7

Dyfed
40,22,50
46
42.2
12113
157469
29.21
23.13
4.24
16.2

East Sussex
28,52
9
8.6
2461
31993
28.13
20.82
0.42
0.0

Essex
19,28,25,5,46
15
14.9
4289
55757
26.9
16.47
0.34
0.0

Gloucestershire
39,49,54,24,1,21
11
12.6
3611
46943
23.43
15.38
0.84
0.0

Greater London
28,47,4,25,17
1
1.8
531
6903
14.48
20.34
0.01
0.0

Greater Manchester
53,29,32,11,6
6
6.1
1746
22698
26.42
22.87
0.09
11.0

Gwent
18,24,40,33,43
7
8.3
2395
31135
22.48
13.45
0.68
15.6

Gwynedd
8,40,15
16
17.5
5029
65377
24.47
23.08
2.49
36.4

Hampshire
13,54,3,47,52,27
15
11.6
3322
43186
34.73
16.03
0.26
0.0

Hereford & Worcs
40,51,41,49,18,21,45
28
27.1
7775
101075
27.7
19.85
1.46
3.7

Hertfordshire
17,5,2,4,19
4
4.9
1417
18421
21.71
18.3
0.17
0.0

Humberside
31,38,37,44
18
15.4
4419
57447
31.33
22.66
0.63
0.0

Isle o f Wight
23
4
2.0
566
7358
54.35
23.4
0.57
0.0

Kent
17,19,16,47
11
17.1
4910
63830
17.23
18.68
0.41
0.0

Lancashire
37,10,20,53,32
19
23.9
6881
89453
21.24
24.77
0.62
10.2

Leicestershire
31,38,11,35,49
15
11.3
3258
42354
35.41
15.65
0.45
0.0

Lincolnshire
34,5,30,38,26
21
25.7
7372
95836
21.91
22.12
1.58
0.0

Merseyside
6,20,29
2
2.2
623
8099
24.68
18.74
0.05
0.0

Mid-Glamorgan
40,43,50,21
2
3.7
1061
13793
14.49
24.63
0.25
38.3

Norfolk
5,46,31
17
20.6
5925
77025
22.07
19.39
0.97
0.0

Northamptonshire
39,2,4,5,30,49
5
8.0
2290
29770
16.79
17.51
0.5
0.0

Northumberland
10,48,14
7
10.1
2890
37570
18.63
11.11
1.2
35.0

North Yorkshire
26,44,53,29,10,14,7
35
37.0
10641
138333
25.3
23.38
1.84
14.4

Nottinghamshire
31,11,30,44,26
9
8.2
2357
30641
29.37
21.05
0.29
0.0

Oxfordshire
3,4,35,49,18,54
5
8.3
2371
30823
16.22
14.35
0.5
0.0

Powys
8,15,21,22,33,50,24,41
33
22.3
6411
83343
39.59
18.18
6.71
68.6

Shropshire
24,40,45,8,6
19
20.2
5818
75634
25.12
17.5
1.81
9.6

Somerset
1,54,12,13
17
22.6
6483
84279
20.17
18.99
1.78
4.7

South Glamorgan
33,21
0
2.0
582
7566
0
17.95
0.18
0.2

South Yorkshire
11,38,53,37,26
4
5.9
1692
21996
18.18
17.25
0.16
3.0

Staffordshire
24,41,49,51,6,11
17
18.1
5214
67782
25.08
16.71
0.63
3.8

Suffolk
17,5,34
19
14.8
4267
55471
34.25
19.28
0.84
0.0

Surrey
28,19,3,52,23
2
6.3
1809
23517
8.5
17.33
0.22
0.0

Tyne & Wear
14,36
0
1.1
329
4277
0
18.28
0.03
0.0

Warwickshire
39,30,35,51,18,24,45
14
9.5
2736
35568
39.36
19.59
0.69
0.0

West Glamorgan
15,40,33
5
3.3
961
12493
40.01
21.28
0.33
26.1

West Midlands
49,45,24
3
1.9
557
7241
41.37
13.65
0.02
0.0

West Sussex
23,16,47
10
8.3
2381
30953
32.3
17.58
0.41
0.0

West Yorkshire
37,44,20,29,11
15
11.8
3383
43979
34.1
22.29
0.21
18.4

Wiltshire
23,3,39,18,1,42,13
8
11.6
3322
43186
18.52
15.91
0.74
0.0

A simple Poisson regression shows no predictor to be significant and has DIC of 277. An ICAR(1) model is applied with (-1 ~ Ga(1,0.001) and identification achieved by centering on the fly (which is applied via the car.normal density in WINBUGS). This fails to improve the DIC (which increases slightly to 278, with 1/( estimated at 980 from a two chain run of 10,000 iterations (1000 burn in). The large precision parameter corresponds to small (near zero) estimates of si, and so no great evidence of spatially dependent residuals.

To assess whether some degree of averaging over unstructured and spatial effects will improve fit, one of the proper spatial priors mentioned above is then applied. Thus the conditional prior of Czado and Prokopenko (2005) is used, whereby 

            si | s[i] ~ N(( eq \O((,j~i) cijsj /[1+|(|ci+], ( (1+|(|)/[1+|(|ci+]. 

As ( tends to infinity this tends to an ICAR(1) prior, while near zero ( correspond to unstructured errors. It is assumed that 

           ( ~ N(0,1000) I(0,), 

while (-1 ~ Ga(1,0.001). This model also fails to produce a gain in fit over a simple Poisson regression, with DIC of 278.4 and de=5.7. ( has a mean of 25.

It may be noted that a significant predictor (with or without spatial effects in the model too) is based on the product of farmer density and the percent of less favoured farming, without main effects in either variable. 

Example 9.4 London Borough Suicides

This example also relates to suicide mortality, but to the 32 London boroughs specifically (male and female suicides combined over 1989-93). We consider a model for suicides y without predictors first and use the prior structure in (9.11) with a 19 point discrete prior for c over {0.1,0.2,0.3,..0.9,1,2,..9,10}. Thus yi ~ Po((iEi) with

          log((i)= (+si+ui                                               

and the s values centred at each iteration. To assess significance, the probabilities of positive s and u are obtained for each area. High probabilities (e.g. over 0.9) indicate extreme positive values, while low probabilities (e.g. under 0.1) indicate extreme negative values.   Other analysis shows that suicide mortality in London is clearly spatially clustered with highest relative mortality in central London and low values in most of the suburban periphery. 

A two chain run of 50000 iterations shows slow convergence with a long spell where one chain favours unstructured over structured effects. Starting from iteration 20000, Gelman-Rubin diagnostics are satisfactory and over iterations 25000-50000, sd(s) has a mean 0.24 compared to 0.08 for sd(u).  The average of 

         (=sd(s)/[sd(s)+sd(u)] 

is 0.75. There are six boroughs with p(si>0) exceeding 0.95, and also six boroughs with p(si>0) under 0.05. By contrast, the probabilities p(ui>0) range from 0.29 to 0.78, so none are significant at area level.

Two predictors are then introduced, namely deprivation and social fragmentation. Several studies have shown that area social deprivation (i.e. meaning social and material hardship and represented by observed variables such as high unemployment, low car and home ownership) tends to be associated with higher suicide mortality (Gunnell et al, 1995). So also does social fragmentation, meaning relatively weak community ties associated with observed indices such as one person households, high population turnover and many adults outside married relationships (Allardyce et al, 2005). 

The spatial effects now are not representing clustering in the event itself but possible clustering in regression residuals. In this second regression model, the discrete mixture indicator for c in (9.11) converges much earlier. However, two chains of 50000 iterations are run for comparability (with summaries based on the last 40000). There are significant effects for both deprivation (95% credible interval 0.06 to 0.16) and fragmentation (interval  0.13 to 0.23). The probabilities p(si >0) now range from 0.32 to 0.75, while the p(ui > 0) range from 0.09 to 0.94. The last mentioned reflects a relatively high suicide rate in Lambeth in inner south London (area 21) beyond what would be expected from the regression. Now sd(s) has a mean 0.035 compared to 0.075 for sd(u), so the regression seems to have eliminated the need for a spatial effect. The average of ( is reduced to 0.31.
9.4 Moving Average Priors

Alternative specifications for spatial random effects may be based on a moving average principle, where the average uses spatial weights. Leyland et al (2000) assume that the spatial effect for area i is a spatially weighted average of unstructured errors; see Feltblower et al (2005) for a recent Bayesian application. This is an example of a multiple membership, multiple classification model (Browne et al, 2001, p 117) where both classifications relate to the same set of units. For example with ui being random effects for the areas (1st classification) and vj being random effects for the neighbours (multiple membership classification) one has, 

                 log((i)= (1+ ui +eq \O((,j=1,n)wijvj, 









         (9.14)

where the wij are row standardized interactions. If the wij are based on contiguity, then wij=1/Li if areas i and j are adjacent, with Li being the number of neighbours of area i, so 

                  log((i)= (1+ ui +  eq \o((,j(i) vj/Li
with (i denoting the neighbourhood of areas adjacent to i.  This structure has the benefit that the prior for v is proper, but the same questions of identifiability of separate u and v effects occurs as for the convolution model, since two sets of n effects are being applied to n data points. Assuming binary adjacency and setting si =eq \o((,j(i) vj/Li one can see that the marginal variance of s is approximately equal to the variance of v divided by  eq \O(L,_)= eq \O((,i)Li/n and this enables one to set a discrete prior linking the structured and unstructured variances, analogous to (9.11). For example, let vi ~ N(0,( eq \O(2,v)) and ui ~ N(0, ( eq \O(2,u)), then

                     1/( eq \O(2,v) ~ Ga(av,bv)                                    

                     ( = ( eq \O(2,v)/ eq \O(L,_) ((var(s))

                     ( eq \O(2,u)=c2(
where c is a grid of values centred at 1.

This approach extends to multivariate responses, spatially varying predictor effects models, and nonparametric modelling of spatial effects (section 9.6). For K responses a multivariate normal prior of dimension 2K allows correlation between outcome specific errors uik and sik and so expresses interdependence between the responses (Congdon, 2002). 

Another possible spatial moving average model uses a single set of underlying effects ui rather than two sets as in the multiple membership model of Leyland et al (2000). This involves a mixture of own area effect and weighted average of neighbouring area effects

                 log((i)= (+ qui +(1-q)eq \O((,j=1,n)wijuj,    



         (9.15)

where the mixture weight q might be assigned a uniform U(0,1) prior, and ui ~ N(0, ( eq \O(2,u)). More adaptiveness may be gained by variable (beta) weights qi as in 

                 log((i)= (+ qiui +(1-qi)eq \O((,j=1,n)wijuj. 



         

Best et al (2000) suggest a moving average model for disease count data based on the identity link, rather than the log link – though within the . The moving average might be based on a different spatial partitioning of the region. So if disease counts are observed for areas i=1,..,n the spatial average might be based on another (possibly spatially misaligned) geographical configuration j=1,..m. For example, let i be called areas and j be called subdivisions, and let (j be positive latent effects for subdivision j.  Let xi be a risk factor in the form of a positive ratio measure (e.g. pollution or composite social structure measure) normalised to have mean 1. Then

                 (i= (1+(2xi + (3eq \O((,j=1,m)wij(j











(9.16)

where priors on the coefficients (1,(2, (3 are constrained to ensure (i is positive. Best et al (2000) assume gamma priors on all these unknowns. The spatial interactions might also include unknowns if they are distance based. Let dij be the distance between the centre of area i and subdivision j.  Then one might specify a Gaussian decay function 

               wij =  c[exp(-dij/2(2)]

with ( an extra parameter. 

The model in (9.16) implies a decomposition of the observed area count into m+2 latent Poisson variables, i.e. yi= eq \O((,k=1,m+2)zik. Let Zi= (zi1,zi2,…zi,m+2), (i=((i1,(i2,…(i,m+2). Then

          Zi ~ Mu(yi,(i)

where (i1=(1/(i, (i2=(2xi/(i,… (i,m+2= (3wim(m /(i. This is a relatively heavily parameterised model and identifiability may require substantively based (informative) priors.

Example 9.5 London Borough Suicides, Multiple Membership Prior

This example applies the multiple membership model to the London borough suicide data, assuming a contiguity form for cij, so that

               log((i)= (+ ui +  eq \o((,j(i) vj/Li
Ga(1,0.001) priors are assumed for both u and v errors. A 10000 two chain run is used for inferences, with early convergence apparent. 

In a demonstration of the identification issues that affect such models, this model places more stress on the unstructured errors, with four probabilities p(ui > 0) exceeding 0.95 (based on iterations 1000-10000). These four include two central boroughs (Westminster & Camden) with high suicide rates, so the central London high suicide cluster is being represented by unstructured rather than structured effects under the multiple membership prior. The mean for (=sd(s)/[sd(s)+sd(u)] is 0.25 where si=eq \o((,j(i) vj/Li defines the total spatial effect and the standard deviation of the si is obtained at each MCMC iteration. 

The DIC for this model is 274 (de=28.5), and higher than that obtained (270 with de=26.3) for the standard convolution model of Besag et al (1991), as in (9.9), namely 

       log((i)= (+si+ui                                                

       si|s[i] (i, ( eq \O(i,-1)) 

       (i = eq \O((, j)cijsj/eq \O((, j)cij =eq \O((, j)wijsj 

with Ga(1,0.001) priors for the precision of u and the conditional precision of s. For identifiability the si are centred at each iteration. This model strongly favours spatial effects with posterior mean for ( of 0.83 (from iterations 1000-10000 of a two chain run).

Finally, consider the model in (9.15) with only a single random effect, and precision 1/( eq \O(2,u) ~ Ga(1,0.001). This gives a DIC of 263.5 (de=19.2) and posterior mean for q of 0.37 (from the last 9000 of a two chain run of 10000 iterations), so favouring the spatially filtered component as against the local component. Setting si=eq \O((,j=1,n)wijuj, one finds five boroughs with Pr(si >0) exceeding 0.9, based on the last 9000 of a two chain run of 10000 iterations. These include the three central boroughs (areas 6, 19 and 32 namely Camden, Kensington & Chelsea, and Westminster with crude SMRs of 161, 146 and 170).

9.5 Multivariate Spatial Priors and Spatially Varying Regression Effects

Suppose the observations for area i, yi=(yi1,…yiK), consist of counts of K interrelated outcomes (e.g. types of disease or mortality), so that  

        y=(y1,..yn)=(y11,y12,..y1K;y21,y22,..y2K;….yn1,yn2,…ynK).

Assuming Poisson variation (e.g. Held et al, 2005) with expected events Eik, and yik ~ Po(Eik(ik), one might propose shared random effects models for the relative risks (ik
         log((ik)=Xi(k+uik+sik                                          (9.17.1)

where Xi is the ith row of the n(p predictor matrix, and both the unstructured effects uik and the structured effects sik are correlated between outcomes. This reflects the fact that when the risk of one disease is high (e.g. due to measured or unmeasured environmental or socio-economic factors) so often is the risk of other diseases. To avoid excess parameterisation a number of common spatial factor models have been proposed (e.g. Knorr-Held & Best, 2001; Congdon, 2006). For example a typical such model might be 

          log((ik)=Xi(k+(1kui+(2ksi                                         

where if the variances of ui and si are retained as unknowns, one of the (1k and one of the (2k has to be set to a known value (e.g. (11=(12=1) so that the model is identified.

However, retaining the full dimension random effect structure, the correlation between the uik could involve a multivariate normal or Student t. For modelling correlation between sik and sim (k(m), Gelfand and Vounatsou (2003) generalise the ICAR(() model of Sun et al (1999). Let Si=(si1,…siK). Then the MCAR((,() prior, with ( scalar, has a  conditional prior form

            P(Si | S[i],(,()= NK(( eq \o((,j~i)WijSj, (/eq \O((, j)cij)              (9.17.2)

where S[i] denotes spatial effects than those in area i, ( is a K(K covariance matrix and Wij=wijIK(K is also K(K. The introduction of ( ensures the corresponding joint prior is proper, with nonsingular covariance matrix. Gelfand and Vounatsou (2003, p 20) suggest a discrete prior on ( to avoid Metropolis sampling; all other updating uses Gibbs sampling. If ( is set to 1, as in 

              P(Si | S[i],(,()= NK( eq \o((,j~i)WijSj, (/eq \O((, j)cij) 

  
    (9.17.3)            

then a propriety issue occurs as with the ICAR(1). Identifiability may be achieved by centering each of the K sets of effects at each iteration. 

Multinomial data yi = {yi1,..yiJ}, such as party votes in constituencies or area deaths subdivided by cause, may be included in this structure. Thus setting Ti =eq \O((,i)yij and (i =((i1,… (iJ), one might specify

              yi   ~   Mu(Ti,(i)

              (ij =   exp((ij)/eq \O((,k)exp((ik)                          

              (iJ=0

              (ij =  Xi(j +uij + sij                 j=1,..,J-1
with a zero mean multivariate normal model for uij, and with spatially correlated errors (si1,…,si,J-1) following an MCAR((,() prior. 
One application of multivariate spatial priors is in connection with spatially varying predictor effects. Instead of a constant regression effect across all areas, one may allow predictor effects to vary between them - though expecting covariate effects to show smooth variation over space, without pronounced and implausible differences between adjacent areas (Assuncao, 2003, p 454). Classical methods for this situation include geographically weighted regression (Fotheringham et al, 2000) and there have been Bayesian adaptations of the GWR approach. However, MCMC sampling has particular benefits in the case of conditional autoregressive priors, and these priors are readily adapted to varying predictor effects. This contrasts with the role of the si in the smoothing model (9.10) as effectively modelling intercept variation. Congdon (1997) estimates an ICAR(1) prior model for a single predictor with spatially varying effects, but a more typical situation is when there is both spatially patterned variation in risk (varying intercepts) and one or more predictors in a model show spatial variation in their impacts. 

Gamerman et al (2003) discuss the MCAR(1,() prior for spatially varying predictor effects when y is a univariate metric variable, and with a joint prior that is a multivariate extension of (9.7). This prior specfication extends to general linear models. For example, let yi ~ Po(Ei(i) be a single disease or mortality count, and Xi be a vector of p predictors including xi1=1. Then instead of a constant region wide regression effect, as in log((i)=Xi(+si+ui, instead one might let 

                log((i)=Xi(i=βi1+xi2βi2+…+xipβip+ui
where (i=((i1,..(ip) is a vector of spatially varying and jointly dependent predictor effects. Since xi1=1, this model still includes a random intercept, with βi1 replacing 1+si in (9.6). The joint prior is 

     P((i1,..(ip| () (  |(|-n/2 exp [-0.5eq \O((,j~i) cij((i - (j)((-1((i - (j)]            

where ( is a p(p covariance matrix, and the conditional prior is

     P((i | ([i],() = N( eq \o((,j~i)wij(j, (/eq \O((, j)cij).                (9.18)

Gamerman et al (2003, p 517) mention alternative parameter sampling schemes, either from the full conditionals ((1,…(n|() and ((|(1,…(n), or from ((1,…(n,() jointly. 

Assuncao (2003, p. 460) mentions the option of specifying a spatially varying predictor effect as a sum of a fixed effect and a zero mean random effect, 

               βik = bk+eik 





(9.19)

where all the eik are centred to have mean zero at each MCMC iteration if an improper multivariate conditional prior is specified for them.  This option enables the WINBUGS mv.car function to be used in modelling spatially varying coefficients. One may alternatively use proper spatial priors, such as multivariate equivalents of those considered in 9.3.1, to be used for eik. Alternatively Gamerman et al (2003, p 531) propose a proper prior (for metric data with regression mean (i=Xi(i), which has the conditional form

   P((i | ([i],(,() = N(qi eq \o((,j~i)wij(j +(1-qi)(i, (/(ci++())             

with ( a positive parameter and qi= ci+/(ci++(), where ci+=eq \O((, j)cij.

Example 9.6 Spatially Varying Regressor Effects on Male and Female Suicide in England
This example considers male and female suicide counts {ymi, yfi} in 354 English local authorities over 1989-93, and the impact on them of four conceptual factors: deprivation, social fragmentation, rurality and ethnicity. Scores on these are based on a total of standardized transforms of original census variables and then standardizing that total. Deprivation scores from the 1991 UK census are based on social renting, routine manual workers (social classes 4/5), not owning a car and unemployment. Social fragmentation is based on unmarried adults, population turnover, private renting and one person households. Rurality is positively loaded on agricultural workers, negatively on population density. Ethnicity is the standardised percentage of nonwhite groups in an area’s population.

First of all a spatially homogenous predictor effect model is applied, with Poisson sampling, namely

                  ymi ~ Po(Emi(mi), 

                   yfi ~ Po(Efi(fi), 

where expected deaths (Emi and Efi) use England & Wales five year age group death rates for 1991. Then with log links, the homogenous effects model is 

          log((mi)=(m+xi1βm1+…+xi4βm4
          log((fi)=(f+xi1βf1+…+xi4βf4.

N(0,1000) priors are assumed on the eight regression coefficients {(m1,(m2,(m3,(m4, (f1,(f2,(f3,(f4} and the two intercepts. A two chain run of 2500 iterations shows early convergence and the last 2000 iterations show only the fragmentation effect (f1 to be significant for females with a 95% interval (0.120,0.175) whereas for males, only ethnicity is not significant: the 95% intervals for fragmentation, deprivation and rurality effects on male suicide are (0.08,0.115), (0.034,0.066) and (0.04,0.088). The DIC is 4690, using the minus twice likelihood definition of deviance, as in the WINBUGS package. There is an indication of overdispersion with the posterior mean of the saturated deviances for male and female suicides being 563 and 517 respectively, compared to 354 data points in each case. There are also some predictive inconsistencies between the data and new data sampled from the model: only 89.5% of replicate data values sampled from the model have 95% intervals that include the actual observations.

To allow spatially varying regression effects {(m1i,(m2i,(m3i,(m4i, (f1i,(f2i,(f3i,(f4i} the prior (9.18) is adopted, using the decomposition in (9.19). Thus with

               (mki=bmk+emki
               (fki=bfk+efki
a multivariate CAR is assumed on {emk1,… ,efk4}, with a Wishart prior on the precision matrix, (-1 ~ W(I,8), where I is the identity matrix. The emki and efki are centred over areas i at each iteration. N(0,1000) priors are assumed on the bmk and bfk fixed effect parameters. The 2nd half of a two chain run of 2500 iterations gives mean saturated deviances for males & females of 324 and 340 respectively, so that overdispersion is dealt with. The effective parameter total is 333, using the method in (2.14.2) rather than (2.14.1), because the DIC is not obtainable under WINBUGS. The DIC is calculated as 3935. The model reproduces the data satisfactorily: in fact 99.7% of replicate data values sampled from the model have 95% intervals that include the actual observations. 

The posterior means of bmk and bfk  are similar to those under the homogenous regression effects model, but the credible intervals are wider – though the 95% intervals for the effects of fragmentation, deprivation and rurality on male suicide are still all positive. The model produces eight sets of coefficients and full assessment of substantive inferences includes examination of their mapped patterns.

9.6 Robust Models for Discontinuities and Non-Standard Errors 

While a smoothly varying outcome over contiguous areas is typically well represented by the convolution model of (9.6), alternative schemes may be needed when there are clear discontinuities in the spatial patterning of health events; for instance, a low mortality area surrounded by high mortality areas will have a distorted smoothed rate under a standard spatially correlated error model such as (9.6). This is especially the case for small event totals, as in the well known lip cancer data; as discussed by Stern and Cressie (2000), certain areas in this dataset have extreme crude SMRs though small event totals y and expected deaths E are involved. When event totals are large, the data will outweigh the spatial prior and the morbidity in ‘discontinuous’ areas will generally be estimated reasonably despite the spatially correlated prior, though some distortion may remain (see Example 9.7).

Where extreme crude relative risks are observed, then a robust model is suggested (even though such crude estimators cannot be relied on for any further inferences when event totals are small). One might adopt the ICAR(1) or ICAR(() priors with heavier tailed densities, e.g. student t. Thus, instead of (9.12) one might take a scale mixture version of the student t

            P(si|sj,ji) (eq \O((, j)cijsj/eq \O((, j)cij,  1/((i( i))


(9.20)

where (i ~ Ga((/2,(/2) and low values of (i correspond to spatial outliers. One might also model the (i as (i=exp(fi) where the fi themselves follow a spatial CAR with mean zero enforced by iteration specific centering.

Forms of discrete mixture have been proposed as more appropriate to modelling discontinuities in high disease risk (Militino et al, 2001). Knorr-Held and Rasser (2000) propose a scheme whereby at each iteration of an MCMC run, areas are allocated to clusters. These are defined by cluster centres and surrounding contiguous areas, and have identical risk within each of them. Clusters may be redefined at each iteration. The estimated relative risk for each area, averaged over all iterations, is then a form of non-parametric estimator, and may better reflect discontinuities. 

Lawson and Clark (2002) propose a mixture of the ICAR(1) and Laplace priors, with the mixture weights defined by a continuous (beta) density rather than binary variables. So (9.6) becomes

      log((i)= (+(xi2+…(pxip +(is1i+(1-(i)s2i +ui                

where s1i is conditional normal, but s2i follows a heavier tailed alternative to the conditional normal prior (e.g. a conditional Laplace form). Any other density might be used for s2i (e.g. one allowing skewness). Typically one takes the beta prior on the (i to have known hyperparameters, for instance (i ~ Beta(w,w) with w=1, since otherwise identifiability is likely to be poor. However, results may be sensitive to alternative values of w which can be applied in a profile analysis (e.g. one model assumes w=1, the next w=5, etc). Analogous mixture forms can be applied to the errors in the convolution model itself, which allow more emphasis on the unstructured component in discontinuous areas: 

            log((i)= (+(xi2+…(pxip +(iui + (1-(i)si 




This type of representation may also be useful for modelling edge effects, with the u effects taking a greater role on the peripheral areas where neighbours are fewer. Another possibility is a discrete mixture, allowing an unstructured term only for areas where the pure spatial effects model is inappropriate. Thus for a binomial outcome, 

               yi ~ Bin(Ni ,([i,Gi])




(9.21)

               Gi ~ Cat((1,(2)

               ((1, (2) ~ Dirch(w1,w2)

               logit((i1)= (1+si
               logit((i2)= (1+ui+si
where the wj may be preset or taken as extra unknowns. The posterior estimates for the (j provide overall weights of evidence in favour of the pure spatial model vis-a-vis the convolution model, while high posterior probabilities Pr(Gi=2|y) for particular areas indicate that purely spatial smoothing is inappropriate for them.

While the ICAR form can be applied with any member of the exponential family, it does not adapt easily to mixture density modelling. By contrast, the multiple membership prior (9.14) and the simpler spatial moving average prior (9.15) are adapted to nonparametric priors for spatial effects. For example, one might take u in (9.15) or v in (9.14) to follow a Dirichlet process mixture model. Thus define categorical indicators for area i

              Di ~ Categorical((),

where ( is of length M (M less than or equal to n), and updated using an appropriate prior such as the stick breaking prior with concentration parameter (. Associated with each cluster k is a value Vk (k=1,..M) drawn from the baseline prior G0 (that might be Normal or Student t). Then if at a particular iteration D eq \o(j,(t))=k, for j=1,..n, one obtains as a modified form of (9.15)               

            log((i)= (+ qVDeq \o(i,(t)) +(1-q)eq \O((,j=1,n)wijVDeq \o(j,(t)) .                                    

Greater flexibility may be gained by variable (beta) weights qi as in 

            log((i)= (+ qiVDeq \o(i,(t)) +(1-qi)eq \O((,j=1,n)wijVDeq \o(j,(t)) .                                    

Fernandez and Green (2002) use a discrete mixture model generated via mixing over several spatial priors. Thus for count data, assume J possible components with area specific probabilities (ij on each component

            yi ~ eq \O((,j=1,J)(ij Po(Ei(ij) 














(9.22.1)

where the (ij =Xi(j differ in intercepts or other regression effects. Then generate J sets of n underlying spatially correlated effects sij from a spatial prior such as (9.9) or (9.12) and convert them (possibly after centering) to area specific mixture weights (ij via

             (ij =exp(sij /()/eq \O((,k=1,J)exp(sik/()
       






(9.22.2)

where ( is a positive tuning parameter. Typically binary adjacency would be used to define the priors for sij. As ( tends to infinity the (ij tend to 1/J without any spatial patterning, whereas small values of ( act to reduce over-shrinkage. Another mixture prior for spatial dependence uses the Potts prior (Green and Richardson, 2002). Thus let Di ( 1,..,M be unknown allocation indicators with yi ~ Po((DieXi() where (1,…(M are distinct Poisson means. Then the joint prior for the allocation indicators incorporates spatial dependence with

              P(D|() ( exp(u(D) 

where u(D)=eq \O((,k((i,)I(Di=Dk) totals over matching allocations in the neighborhood of area i.
Another rationale for a discrete mixture in the response occurs in spatial health applications with sparse outcomes (e.g. deaths from a rare cause), when assumptions of standard densities (Poisson, binomial) regarding expected frequencies of zero events may not be realised. In particular the frequency of zero values may be inflated for count or binomial data. Thus Agarwal et al (2002) and Ugarte et al (2004) consider zero inflated Poisson models for spatial count data yi. Let Zi denote a latent binary variable such that for Z=1, such that the joint density of y and Z is                Pr(yi=0,Zi=1|(i, (i)=(i 

while for Z=0

          Pr(yi=y, Zi=0|(i, (i)=(1-(i)f(y|(i)    y=0,1,2..

where f(y|(i) is a Poisson density with mean (i. Then the marginal density for y depends on the observed value, namely  

    Pr(yi|(i, (i)= (i +(1-(i)f(0|(i) = (i +(1-(i)exp(-(i),       yi=0

    Pr(yi|(i, (i)= (1-(i)f(y|(i)=(1-(i)(e-(i(eq \O(i,yi)/yi!)                yi>0

The Zi are unknown only when yi=0, and for yi > 0 are necessarily zero. Given yi=0, the unknown Zi are binomial with probabilities

      Pr(Zi=1|yi=0, (i, (i) = (i/ [(i + (1-(i) f(0|(i)]

With EP and VarP denoting Poisson mean and variances, one obtains 

       E(yi|(i, (i)= (1-(i)EP(yi|(i)= (1-(i)(i 

and 

       Var(yi|(i, (i) = (i(1-(i)[EP(y|(i)]2 + (1-(i)VarP(yi|(i) 

                            = (1-(i)(i(1+(i(i) > EP(yi|(i, (i).

Hence the ZIP model has a larger variance than the Poisson. 

One may model the Poisson means (i as above, for example via a convolution model 

       log((i)=  Xi( + si + ui 
where the si are ICAR normal or possibly a robust form such as (9.20). In principle one might also anticipate the location of zero events to show spatial patterns. However, Agarwhal et al (2002, p 344-345) argue that identifiability of spatial effects in the model for logit((i) may be impeded because the Zi are unknowns also. To pool information over the observed and latent outcomes and improve identifiability, one might assume a common factor in the models for (i and (i (see chapter 12), so that

       logit((i)= Xi( + (1si + (2ui
where (j are loadings, typically positive. Another parameter reducing measure (Agarwal et al, 2002) is to take (=((, where ( is a scaling parameter. 

Example 9.7 Long Term Illness in London Small Areas

This example illustrates how, under a spatial CAR but with large event totals, spatially discontinuous risk patterns (isolated low risk areas surrounded by high risk areas or vice versa) will be reproduced in the model estimates, but that model structure still plays a role.  The data are from the 2001 UK census and relate to limiting long term illness (LLTI) in 133 wards in NE London; specifically a binomial model is used with yi denoting long term ill people aged 50-59 and Ni denoting the total population in this age band.  Then 

             yi ~ Bin(Ni,(i) 

             logit((i) = (1+si, 

where si follows the ICAR(1) prior (9.9), with the si centred at each iteration so that (1 is identified. This is a pure spatial smoothing model, not allowing like (9.10) does, for spatially unstructured influences on the response.

Discontinuities in illness rates in NE London reflect past patterns of housing development, since different types of housing are associated with different socio-economic composition. Thus certain isolated wards containing localised high status owner occupied housing are surrounded by wards with a preponderance of social rented housing, as in Longbridge ward in the borough of Barking & Dagenham (i=11 with crude LLTI rate of 21.7%). Other examples are the prosperous City of London area (i=1), and the riverside St Katherines Dock ward (i=109), with exclusive private renting and owned housing, both with neighbours consisting of deprived inner city areas. The City of London crude rate of 14.5% compares to rates of 30-45% in most of adjacent Hackney and Tower Hamlets boroughs. Note that these rates are based on large observation totals: the City of London rate is based on 160 LLTI people among a population group of 1105. Other highly affluent areas with exceptionally low rates are areas 90 and 96 with rates of 13.5% and 16.6%..

Under the above pure spatial smoothing a flat prior is assumed for (1 and 1/( ~ Ga(1,0.001) for the conditional precision of the si. A two chain run of 10000 iterations converges early; iterations 1000-10,000 show a posterior mean for (1 (the City of London rate) of 0.162, though the 95% credible interval {0.142,0.186} just manages to include the observed value. Two other areas (i=11 and i=90) mentioned above have posterior means (and 95% CIs) of 0.228 (0.205, 0.252) and 0.142 (0.126,0.16). So despite the pure spatial prior, the model still encompasses the extreme rates but shows some bias. The effective parameters are 120, with DIC=253 using the saturated deviance definition.

As one among several possibilities to accommodate the modest outlier problem in these data, the discrete mixture model in (9.21) is applied with w1=w2=1,  ui ~ N(0,(), and 1/( ~ Ga(1,0.001). Inferences are based on the 2nd half of a two chain run of 10000 iterations. Despite its greater total of nominal parameters, this model produces a slightly lower complexity estimate (de=118) and DIC (namely 248.6) than the spatial errors only model. The posterior mean for the model City of London rate (1 is now 0.151 with 95% interval {0.130,0.174}, so the observed rate is better represented. The posterior probability that Gi=2 for this area is 0.99, and other high probabilities that Gi=2 are for areas 11 (0.57), 90 (0.46), 96 (0.99) and 109 (0.43). However, the posterior mean of (1 is 0.898 indicating that for most areas in NE London a spatial only model is appropriate. 

9.7 Continuous Space Modelling in Regression and Interpolation 

The preceding sections have focussed on continuous and discrete outcomes for discrete areas. There are many overlaps between these methods and geostatistical methods intended primarily for observations at points in continuous space. Under such models the focus is generally on the joint rather than conditional prior for the spatial effects, with a covariance matrix between points that models the influence of proximity and possibly other effects, such as direction (Banerjee et al, 2004, chapter 2). Consider metric observations yi, i=1,..n, observed at points xi=( xi1,xi2) in two dimensional space, with interpoint distances dij=|xi-xj|. To model the patterning in y a baseline model, analogous to the discrete area convolution prior, has form

                yi = y(xi) =  (+s(xi)+ui                                   (9.23)

where ui are normal unstructured effects with mean zero and variance (2, while the joint prior governing the stationary Gaussian process, si=s(xi), is multivariate normal

                (s1,…sn) ~ Nn(0,() 













such that the n(n positive definite dispersion matrix ( reflects the spatial interdependencies within the data. Similar to time series applications, s(x) may be called the signal process (Diggle et al, 1998). The above model is equivalent to assuming the conditional distribution of y given s(x) is normal with mean (+s(xi) and ‘nugget’ variance  (2.

The off-diagonal terms in ( model the correlation between the spatial effects at xi=(xi1,xi2) and xj=(xj1,xj2), namely si= s(xi) and sj=s(xj). The n(n covariance matrix for (s1,…sn) typically takes the form

                 (= (2R

where (2 (the partial sill parameter) defines the variance terms along the diagonal (ii when dii=0. The total (2+(2 is called the sill. In the typical application, the matrix R=[rij]=r(dij,() models the correlations between the errors si and sj in terms of the distances between the points. The function r is defined in such a way that r(dii)=r(0)=1 and that R is positive definite (Anselin, 2001; Fotheringham et al, 2000). The marginal density of y is then

                 y ~ N((1, (2R+(2I) 








(9.24)

where 1 is an n-vector of ones. Instead of a constant mean (, regression effects may be introduced, often in terms of trend surfaces, where ((x)=eq \O((,j=1,p)(jfj(x), where fj(x) are powers of the grid coordinates xi1 and xi2.

The above distance-based joint prior model can also be applied to observations for discrete areas (regular or irregular lattice) with distances based on population or geographic centroids of the areas. However, MCMC sampling under geostatistical models is slower than for conditional (e.g. ICAR) priors, especially when the conditional priors are based on known forms for contiguity interactions cij. A preliminary analysis for discrete areas might, however, take the parameters in R to be known at particular trial values.

Outcomes may also be discrete (Diggle et al, 2003, p 71) and then the spatial process would be included in a model for the conditional mean (i, with link h((i). The likelihood for this kind of model is then an integral

                P(y|(,() = ( [ eq \O((,i=1,n)P(y|(i)]P(s1,…sn|()ds1…dsn.

Thus one might have binomial data yi ~ Bin(Ni,(i), i=1,..n, with

                 logit((i)= (+s(xi)+ui                                   

or counts yi ~ Po(Ei(i), with offset Ei, and 

                log((i)= (+s(xi)+ui                                   

where the role of ui is to model over-dispersion (if required). For binary data a 'clipped Gaussian' model may be defined according as yi=1 or 0 (de Oliviera, 2000). Thus for y=1, the latent variable 

               zi = (+s(xi)+ui
would be positive, while for y=0, zi would be negative. The unstructured u are N(0,1) for identifiability.

Relatively simple parametric forms for the spatial dependence between points xi and xj separated by distance dij include the exponential
rij = exp(-(dij)                         

where (>0 controls the rate of decline of correlation with increasing distance between areas or points (smaller ( values leader to slower decay). The inverse parameter (=1/( is called the range and defines the distance dij where correlation between xi and xj is zero or effectively zero. This generalises to the power exponential

               rij = exp[-(dij)(] 

where for R to be positive definite it is necessary that 0< ( <2 (Diggle et al, 1998, p 310). Wakefield et al (2000, p 117) and Diggle et al (2003, p 68) discuss priors for ( under these models. The latter suggest a discrete prior while the former suggest a uniform prior based on reasonable ranges for the correlation rij at the observed minimum distance d1=min(dij) between observations, and at the observed maximum distance d2=max(dij). For instance, if (=1, and if (d1,d2)=(0.5km,5km) then a prior ( ~ U(0.2,1) means the correlation at d2 varies between 0.007 and 0.367 while that at d1 varies between 0.606 and 0.905. Other spatial correlation functions include the Gaussian and spherical. 

Most common functions assume isotropy, whereby R is a function only of distance between points xi and xj, and not other features such as direction. By contrast, different kinds of anisotropy are possible, with Ecker and Gelfand (2003) considering range anisotropy (when the range depends on the direction). Other assumptions governing such processes include either strict stationarity where the density of {y(x1),…y(xn)} is the same as that of {y(x1+h),…y(xn+h)}, or second-order stationarity where the process has a constant mean and Cov[y(x),y(x+h)]=C(h) for all points x in the region being considered. A weaker condition is intrinsic stationarity, namely

             E[y(x+h)-y(x)]=0

             Var[y(x+h)-y(x)]=2((h)

where 2((h) is known as the variogram. This implies an alternative formulation of the covariance between points in terms of the semivariogram ((h), since ((h)=C(0)-C(h). For example, for the exponential, ((h)=(2+(2[1-exp(-(h)], while for the power exponential, ((h)=(2+(2[1-exp([-(h]()].

The empirical variogram is based on moment estimates eq \O((,^)(h) of ((h) as h varies over its range in a particular application, namely the minimum and maximum differences between points (x1,..xn). Typically it is obtained by averaging squared differences (yi-yj)2/2 within bins defined by observed distances dij.  One may use the series eq \O((,^)(h) to estimate the ( parameters in alternative possible forms of ideal variogram ((h,() (e.g. Bailey & Gatrell, 1995). Alternatively, the residuals from a linear regression with independent errors (or from a  binomial or Poisson regression without spatial effects) may be analysed by empirical variogram techniques to explore the appropriate form for the parameters (. For example, Cook and Pocock (1983) use variogram analysis to decide on the exponential decay formrij = exp(-(dij). Diggle at al (2003, p 57-59) indicate possible drawbacks to this type of approach and advocate full likelihood methods. 

In geostatistics the emphasis is on interpolation at locations xnew, on the basis of the observations yi, i=1,..n, made at points xi=(xi1,xi2). Prediction of ynew at a new point xnew involves an nx1 vector g of covariances gi=Cov(xnew,xi) between the new point and the sampled sites x1,x2...xn. For instance, if (=(2e-(d, estimates of the covariance vector are obtained by plugging in to this parametric form the distances d1new=|xnew-x1|, d2new=|xnew-x2| etc. The prediction ynew is a weighted combination of the existing points with weights i, i=1,..n determined by

                =g(-1
A point estimate of the spatial process at xnew under (9.24) is obtained (Diggle et al, 1998, p 303) as

                s(xnew)= g(-1(y-(1) = ((2I+(2R)-1(y-(1).

An example of spatial interpolation or ‘kriging’ from a Bayesian perspective is provided by Handcock and Stein (1993) who consider the prediction of topological elevations ynew at unobserved locations on a hillside given an observed sample of 52 elevations at two dimensional grid locations. 

Recent Bayesian approaches have focussed on spatial interpolation consequent on direct estimation of the covariance matrix from the likelihood for yi=y(xi) (e.g. Ecker and Gelfand, 1997; Diggle et al, 1998). Define rnew,i= r(d(xnew,xi),(), i=1,..n. Then ynew and (y1,..yn) are multivariate normal with covariance

          
[image: image5.wmf]ú

ú

û

ù

ê

ê

ë

é

s

+

t

s

s

s

2

2

2

2

2

R

I

new

r

r

new

 

and by properties of the multivariate normal, a minimum square error prediction for ynew is (Diggle et al, 2003)

        mnew=  ( + (2r eq \O((,new)((2I+(2R)-1(y-(1)

with variance

         vnew=(2-(2 r eq \O((,new) ((2I+(2R)-1(2rnew.

For (2 and ( given, the predictive distribution of ynew is obtained by integration of a normal density with mean mnew and variance vnew over the posterior density of ( and (2. This leads to a Student t predictive density. For prediction at several new sites, the density is multivariate Student t. Diggle et al (2003, p 65) advocate discrete priors on (2/(2 and the components of ( so that the predictive distribution is obtainable by suitable weighting of the student t predictive density.

Example 9.8 Spatial Kriging: London Borough Suicides

This example uses the same data as Example 9.5, but uses a joint prior based on the generalised exponential decay model (applied with the spatial.exp function in the WINBUGS package). Thus with yi ~ Po(Ei(i) the model is    

                  log((i)=(+si+ui
                 (s1,…sn) ~ Nn(0,() 

                  (=
(2R












                  rij = exp[-(dij)(] 

                  ui ~ N(0,(2)

Ga(1,0.001) priors are assumed on 1/(2 and 1/(2, with ( ~ N(0,1000). The centroids (eastings & northings) xi1 and xi2 are in units of 100 metres so dividing by 100 gives distances in units of 10km. To decide on a prior for ( one may consider actual interarea distances. The maximum interborough distance in London is 44km (between Hillingdon in the extreme west and Havering on the eastern periphery) and the minimum is around 4km. So in units of 10km, the minimum and maximum distances are 4.4 and 0.4,  and with (=1, a value of ( of 0.1 corresponds to minimum and maximum correlations {rij} of 0.75 and 0.96, while (=5 corresponds to minimum and maximum correlations of 0 and 0.15. So a uniform prior on ( between 0.1 and 5 is assumed, while for ( it is assumed that ( ~ U(0,2). 

A two chain run of 5000 iterations shows early convergence but is inconclusive in terms of spatial vs. unstructured effects. The probabilities Pr(si  > 0|y) (over iterations 1000-5000) range from 0.16 to 0.85, while Pr(ui > 0|y) range from 0.16 to 0.88. The highest values for Pr(si > 0|y) are in the central London high suicide cluster (the boroughs of Camden, Islington, Kensington/Chelsea and Westminster, namely areas 6, 18,19, and 32). These boroughs are also among those with high values for Pr(ui > 0|y) so the high suicide values in these boroughs are being attributed both to spatial and non-spatial effects. Posterior means of ( and ( are 3.04 and 0.74 respectively, corresponding to a quite rapid tailing off of correlation at increasing distances (around 0.3 at the minimum distance of 0.4). 

To illustrate spatial prediction, a model with spatial errors only is applied, namely

              log((i)=(+si.

Posterior means of ( and ( are now 3.3 and 0.58. As might be expected, probabilities Pr(si>0|y)  are now more distinct, especially for more central boroughs (6,18,19, 12,32) with high rates, and hence Pr(si>0|y) exceeding 0.95. The same applies for peripheral boroughs with low rates (areas 4,14,15,16), and hence Pr(si>0|y) under 0.05. Predictions of si and hence relative risks y/E are made at a central point and a point in outer west London. The median relative risk at the central point is 1.15, while in the outer location it is 1.02.  Both predictions have 95% credible intervals straddling zero.

A discrete prior which interlinks the precision of the si and ui effects is then applied. The hope is that such a device will establish the priority of one or other effect by more clearly recognizing their interdependence. Thus denote (s=1/(2 and (u=1/(2. Then with (s ~ Ga(1,0.001), multipliers (1,..(19 are defined such that 

                   (u=((s
with ( ranging from {0.1,0.2,..0.9,1,2,3,..10}. These values have equal prior probability. The second half of a two chain run of 5000 iterations shows the posterior density of ( concentrating on values under 1, i.e. the variance of u exceeds that of s.  As in the first model, the central London boroughs with high suicide levels have high values for both Pr(si>0) and Pr(ui>0), but the values of Pr(ui>0)  are now more conclusive, with five now exceeding 0.9. So under this form of spatial prior an unstructured error seems necessary to fully account for spatial mortality contrasts; there may however be sensitivity to the priors assumed on the parameters defining the rij (see Exercise 9.6).

Exercises

9.1 In Example 9.2 try scale mixing with ( unknown and assess whether the probit link is the most appropriate one.

9.2 In Example 9.3 (farmer suicides) analyse the data without any predictors under a convolution prior, namely

          yi ~ Po((iEi) 

          log((i)= (+si+ui.

Use the discrete prior (9.11) on the variances of spatial and unstructured effects. Obtain the probabilities p(si>0|y) and p(ui>0|y), and assess the relative importance of the two forms of variation.

9.3 In Example 9.4 (London borough suicides) apply the proper priors in (9.12) and (9.13) to a model log((i)= (+si without predictors and compare their fit (e.g. by DIC). Also compare their consistency with the data by sampling new data ynew and checking the extent to which the observed y are within 95% intervals of ynew. How do these proper priors compare in fit and consistency with the data with the full convolution model namely log((i)= (+si+ui, where s is improper.

9.4 In Example 9.6 (spatially varying predictor effects) try instead a model with spatially fixed predictor effects, but a bivariate spatial error, as in (9.17.2) or (9.17.3), combined with spatially unstructured effects ui1 for males and ui2 for females, as in (9.17.1). The latter may be independent between the two outcomes or also follow a multivariate prior. How does this compare with the spatially varying predictor model in predictive compatibility with the data (replicate data reproducing the actual data) and in terms of fit as measured by the DIC.  

9.5 Apply the prior in  (9.21) to the Scottish lip cancer data (with y Poisson rather than binomial) and assess which areas have high relative mortality risks because of spatial effects (i.e. similarity of risk to neighbours assuming an ICAR(1) prior), as compared to more localised factors. 

9.6 In the spatial kriging example for suicides (Example 9.8), try a N(0,1) prior on log((). Note that the posterior mean of ( under this model may exceed the posterior median. How does adopting this prior affect the posterior probabilities Pr(si > 0|y) of distinctive spatial effects?

9.7 Consider the data below on low birth weight in New York counties and consider which of the two models is most appropriate: a) a convolution model (9.6) with spatially constant effects of public assistance and non-white ethnicity or b) a model with spatially varying effects of these predictors. This model could have the form (for Bi denoting total births)

           yi ~ Po(Biri)

           log(ri) = (+xi1βi1+xi2βi2

with a multivariate CAR prior on the differences from the average (fixed effect) coefficients, as in (9.19).

Low Birth Weight in NY Counties










Census 2000
 
2002 Births




No.
County
% h'hlds with public assistance income
% Non white
Total
Low birth weight
% LBW
Neighbours

1
Albany
3.3
16.76
3226
273
8.5
46,47,48,42,20

2
Allegany
4.4
3.16
541
42
7.8
5,61,26,51

3
Bronx
14.6
70.09
22449
2057
9.2
31,41,60

4
Broome
3.6
8.51
2062
164
8.0
54,12,9,13

5
Cattaraugus
3.4
5.32
988
53
5.4
15,7,61,2

6
Cayuga
2.4
6.78
825
58
7.0
38,34,12,55,50,59

7
Chautauqua
3.9
6.08
1501
108
7.2
5,15

8
Chemung
3.4
9.33
1068
92
8.6
51,49,55,54

9
Chenango
2.4
2.34
551
34
6.2
4,12,27,39,13

10
Clinton
2.8
6.82
783
61
7.8
16,17

11
Columbia
2.2
7.70
598
37
6.2
42,56,20,14

12
Cortland
3.5
2.90
560
36
6.4
55,6,34,27,9,4,54

13
Delaware
2.4
3.77
417
29
7.0
4,9,39,48,20,56,53

14
Dutchess
2.1
16.45
3210
224
7.0
40,36,56,11

15
Erie
4.5
17.71
10667
926
8.7
32,19,61,5,7

16
Essex
3.1
5.45
331
21
6.3
17,10,21,57,58

17
Franklin
3.5
15.10
491
47
9.6
10,16,21,45

18
Fulton
3.6
4.01
592
38
6.4
21,46,29,22

19
Genesee
2.1
5.07
645
36
5.6
37,28,26,61,15,32

20
Greene
2.8
9.35
454
27
5.9
1,11,56,13,48

21
Hamilton
2.4
1.84
35
1
2.9
16,57,46,18,22,45,17

22
Herkimer
3.1
2.08
682
41
6.0
33,25,45,21,18,29,39

23
Jefferson
3.9
11.39
1545
103
6.7
25,45,38

24
Kings
9.2
58.79
39387
3465
8.8
43,41,31

25
Lewis
3.1
1.61
306
14
4.6
23,38,45,22,33

26
Livingston
2.8
5.83
665
43
6.5
61,19,28,35,51,2

27
Madison
2.0
3.88
710
53
7.5
34,38,33,39,9,12

28
Monroe
5.4
21.07
8883
688
7.7
59,35,26,19,37

29
Montgomery
2.7
4.95
572
38
6.6
46,18,22,39,48,47

30
Nassau
1.3
20.73
16336
1240
7.6
41,52

31
New York
5.5
45.66
19785
1593
8.1
41,24,3

32
Niagara
4.0
9.46
2405
206
8.6
15,37,19

33
Oneida
4.1
9.93
2488
196
7.9
39,27,38,25,22

34
Onondaga
3.4
15.29
5627
448
8.0
6,38,27,12

35
Ontario
2.3
4.74
1142
75
6.6
26,28,59,50,62,51

36
Orange
3.1
16.40
5041
308
6.1
53,56,14,40,44

37
Orleans
3.8
10.82
484
36
7.4
28,19,32

38
Oswego
2.8
2.98
1357
96
7.1
23,25,33,27,34,6

39
Otsego
1.9
3.97
572
49
8.6
22,29,48,13,9,27,33

40
Putnam
1.0
6.19
1195
85
7.1
36,14,60

41
Queens
4.3
55.93
30498
2394
7.8
24,3,31,30

42
Rensselaer
2.7
8.88
1671
127
7.6
11,1,58,46

43
Richmond
3.3
22.31
5820
450
7.7
24

44
Rockland
1.8
23.07
4532
302
6.7
36,60

45
Saratoga
1.1
4.19
2370
145
6.1
17,21,22,25,23

46
Schenectady
2.8
12.29
1740
143
8.2
58,57,42,47,18,21,29,1

47
Schoharie
2.2
3.63
307
18
5.9
1,48,29,46

48
Schuyler
2.8
3.68
199
16
8.0
1,20,13,39,29,47

49
Seneca
2.5
5.27
369
26
7.0
51,62,50,55,8

50
St Lawrence
3.8
5.44
1215
78
6.4
59,6,55,49,62,35

51
Steuben
3.1
3.39
1141
86
7.5
2,26,35,62,49,8

52
Suffolk
1.5
15.45
19853
1459
7.3
30

53
Sullivan
3.0
14.71
788
53
6.7
13,56,36

54
Tioga
2.9
2.83
605
42
6.9
8,55,12,4

55
Tompkins
1.9
14.50
831
54
6.5
54,8,49,50,6,12

56
Ulster
2.5
11.02
1793
124
6.9
53,13,20,11,14,36

57
Warren
2.3
2.68
662
47
7.1
16,58,46,21

58
Washington
3.1
5.22
603
40
6.6
42,46,57,16

59
Wayne
2.5
5.99
1099
67
6.1
6,50,35,28

60
Westchester
2.7
28.63
12807
1008
7.9
3,40,44

61
Wyoming
2.3
8.19
446
24
5.4
19,15,5,2,26

62
Yates
2.9
2.48
281
9
3.2
35,50,49,51
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� The identifiability issue with the ICAR(1) model is discussed in sub-section 9.3.1

� As elsewhere outlier status is assessed by the CPO statistics obtained by the method of Gelfand and Dey (1994, equation 26); the product of these statistics (or the sum of their logged values) gives a marginal likelihood measure, leading to a pseudo Bayes factor (Gelfand, 1996). The CPOs may be scaled as proportions of the maximum giving an impression of points with low probability of being compatible with the model.

� Sampled values of the true intercept (0=(� eq \o(0,') �/(1-() will be unstable when sample values of ( are  very nearly 1 and this will affect MCMC convergence. The true intercept may be estimated using posterior means of (� eq \o(0,') �and (.

� This identifiability option for the ICAR(1) model with s normal (i.e. ( constant over areas) is implemented in the WINBUGS13 (and subsequent versions) as the ‘carnormal’ density. The Laplace pairwise difference prior is available in WINBUGS as the ‘carl1’ density.
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