Chapter 8 Time Series Models 

8.1 Introduction: Alternative Approaches to Time Series Models  

The goals of time series models include smoothing irregular series, forecasting series into the medium or long-term future, and causal modelling of variables moving in parallel through time. Dependency through time is the basis for extrapolation into the future, for example via autoregression of a metric variable yt on previous values of the series yt-k (k=1,2,..) or based on known future values of predictor variables xt. Another goal of time series analysis is detecting changes in structure in the series - possibly as a result of an ‘intervention’ such as economic policy, pollution incident, or medical treatment. For example, Gordon and Smith (1990), Wang & Zivot (2000) and Martin (2000) outline Bayesian approaches to structural shifts in biochemical, interest rate and spending time series respectively. Recently much development, especially from a Bayesian perspective, has occurred in discrete data time series (Czado & Song, 2001; Czado & Muller, 2004; Cargnoni et al, 1997), in state space models (Godsill et al, 2004; Bass et al, 2005), in multivariate time series (Brandt & Freeman, 2006; Waggoner & Zha, 1999), and in model selection (Vermaak et al, 2004; Chen, 1999; Koop & Potter, 1999).

Stochastic dependence in consecutive observations themselves is widely observed (Cox et al, 1996), and observation driven models are the most commonly used for longer term forecasting. For example, Helfenstein (1991) cites time dependencies in environmental medicine, while time series of economic indicators such as prices and output levels also usually show autocorrelation over time. Another sort of dependency takes the form of regular seasonal or cyclical fluctuations, as in many climatic or biomedical series. In other cases (parameter driven models) a latent process generates the dependence in successive values of the outcome (Chib, 1993; Oh and Lim, 2001). An example is a pth order autoregression in the disturbances:

                    yt=Xt( + et
                    et=(1et-1+..+(pet-p+ut
where ut are uncorrelated white noise.

A major class of models for stationary time series data are the autoregressive integrated moving average models of Box and Jenkins (1970), where stationarity is based on removing trends, cyclical or seasonal regularities. Discrete data time series models may also try to replicate features of Box-Jenkins metric data models, as in integer valued autoregressive models (McCabe and Martin, 2005).  However, many observed series exhibit clear upward or downward trends, and require transformation or differencing to achieve stationarity, so adding to model complexity. A Bayesian perspective may facilitate approaches not limited to stationarity, so that stationarity and non-stationarity are assessed as alternative models for the data series (Berger and Yang, 1994; Naylor and Marriott, 1996).

The alternative structural model approach focuses on the observed components of series, such as trends, seasonal cycles, or changing impacts of predictors. Thus a typical time series may consist of up to four components:

 y = Trend + Seasonal Effects + Regression Term + Irregular Effects.

One option for modelling these effects is by a set of fixed coefficients, e.g. a polynomial in time to describe the trend in the level of the series, and seasonal dummies to represent seasonal factors. Such a model places equal weight on all observations when predicting the future. A more flexible approach is provided by structural time series models that allow time varying coefficients such that forecasts place more weight on recent observations (Harvey, 1989). The closely related Bayesian methodology for state space time series modelling has been denoted dynamic linear modelling (West & Harrison, 1997), though such approaches readily extend to nonlinear and non-Gaussian data (Carlin et al, 1992a; Tanizaki & Mariano, 1998; Tanizaki, 2003).

Whatever approach is adopted to time series methods and whatever the nature of the response, the usual wider modelling issues are relevant. These include allowing for possible outliers perhaps using robust alternatives to the normal (in the case of continuous yt). McCulloch and Tsay (1994) and Barnett et al (1996) discuss Bayesian outlier models which allow for additive outliers (to be added to an outlier outcome yt) and innovation outliers (to be added to outlying random shocks ut). Bayesian methods have been widely applied in other time series contexts and have played a significant role in areas such as stochastic volatility models, nonlinear time series, and in analysis of structural shifts in time series where likelihood methods may either be complex or inapplicable. 

8.2 Autoregressive Models in the Observations 

A starting point in time series and forecasting by modelling dynamic structures conditional on previous outcomes, P(yt|yt-1,yt-2,..). The first order autoregressive AR(1) process P(yt|yt-1) is the simplest such model, with

yt = (0+(1yt-1+ut             t=1,2,..,T                             

where (0 and (1 are parameters modelling respectively the overall level of the process, and the dependence between successive observations. After accounting for observation driven serial dependence, the errors ut are assumed to be unstructured, ut ~ N(0,(2) with constant variance, precision (=1/(2, and cov(us,ut)=0.  If the data are centred, the simpler model may be estimated

         yt = (yt-1+ut 

where (yt-1 is interpreted as the prediction for yt and ut as a random shock. Another representation for stationary series is in terms of deviations from a constant mean, so that an AR(1) model is

             yt = (+(1(yt-1-()+ut                                          (8.1).



Lags in yt-2,yt-3,..yt-p lead to AR(2), AR(3),....,AR(p) processes. Defining B(yt)=yt-1 and with centred y, the AR(p) process can be written

                   yt - (1yt-1-(2yt-2…..(pyt-p = yt(1-(1B-(2B2-…(pBp)=ut 

or simply as

                    ((B)yt = ut                                                (8.2)

Many time series in practice are nonstationary, for instance showing persistent trends. A non-stationary time series can often be transformed to stationarity by differencing (of order d); for example if wt=zt-zt-1=(1-B)zt=(1-B)2yt is stationary then d=2. The stationarity condition implies that the coefficients (1,.. (p in (8.2) are confined to a region Cp such that the roots of ((B) lie outside the unit circle. For example, if p=1 then C1 consists of the interval –1 to +1, while if p=2, C2 is a triangle since stationarity requires –2<(1<2, (1<-1-(2 and (1>(2-1. If ((u) is written as  eq \o((,j=1,p)(1-(ju) then the roots of ((B) are the reciprocals of (j and stationarity is equivalent to all moduli |(j| being under 1. 

The presence or not of stationarity governs the initial conditions of the series. The unconditional variance V(yt)=( for a centred series is obtained as

            (=E[V(yt|yt-1)]+V[E(yt|yt-1)]=(2+( eq \O(2,1)(. 

So for a stationary AR(1) observation driven model with ( ([–1,1], the first observation y1 is taken to have variance (=(2/(1-( eq \O(2,1)) without needing to consider the latent preseries value y0. Similarly, for a stationary AR(2) series, {y1,y2} is bivariate normal with covariance matrix (2(, where

                 (=R(R( + K1K1(,

K1=(1,0)( and 

                 R  = 
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In a distributed lag regression, predictors xt, and their lagged values, are introduced in addition to the lagged observations yt-1,yt-2, etc. A distributed lag model for centred data has the form

                 yt= eq \O((,m=0)(mxt-m +  ut                           

while a model with lags in both y and x may be called an autoregressive distributed lag (ADL or ARDL) model (see Bauwens et al, 2000; Greene, 2000):

((B)yt=((B)xt + ut
The latter form leads into recent model developments in terms of error correction models (Strachan & Inder, 2004).

In much time series analysis, out of sample predictions are a major goal either by autoregression on previous values of the series itself, or by making forecasts including predictors xt. Consider successive one step forecasting to future periods on the basis of an AR(1) process applied to y1,..yT. Such forecasts accumulate error. The forecast for yT+1 is based on sampling from P(yT+1|yT,(0,(1), since conditional on yT the value of yT+1 is independent of previous values. The forecast for yT+2 will be sampled from P(yT+2|yT+1,(0,(1), and so will accumulate errors both from the model fitted up to time T and from the prediction error of yT+1. Forecasts for successive periods follow recursively. Competing models may be compared by cross-validation within the observed series, namely fitting to periods t=1,..M, where M < T, and obtaining a criterion such as the mean square error (Armstrong & Fildes, 1995; Brandt & Freeman, 2006) of the forecasts to M+1,M+2,..T. If ft is the forecast (e.g. posterior mean) for period t, and 

                rt=(ft-yt-1)/yt-1, 

                dt=(yt-yt-1)/yt-1, 

then an MSE criterion is

                MSE = eq \O((,t=M+1,T)(rt-dt)2/(T-M). 

An example of within sample model comparison (of models j) using one step ahead predictive densities P(yt+1,j|Dt) is a comparison over M periods of 
                  eq \O((,t=M+1,T)log(P(yt+1,j|Dt)

where Dt contains all observations to time t (Vrontos et al, 2003, p 442 et seq). It may be noted that forecasts beyond the data generally penalise complex models, especially when these are based on ‘data mining’ and estimated models that are too close to the sample data but unstable in out of sample predictions (Lin and Pourahmadi, 1998). 

8.2.1 Priors on autoregressive coefficients

In contrast to classical methods, the Bayesian approach to estimation does not necessarily restrict (1 in the AR(1) process to be between –1 and +1, and so applies to both explosive and non-explosive cases (Zellner, 1996). By monitoring the proportion of values of (1 exceeding the stationarity bound, one may test for stationarity without necessarily imposing it a priori (Broemeling and Cook, 1993; Naylor and Marriott, 1996). Similarly for an AR(p) process there need be no restriction of (=((1,…,(p) to the region Cp defined by the roots of ((B). For a general lag p models, the roots of the polynomial in the lag operator ((B)=(1-(1B-(2B2-(3B3-...(pBp) can be evaluated at each sample of the (1,.. (p and the probability that the roots lie outside the unit circle monitored.

For p>1, an algorithm derived from Schur’s theorem (Henrici, 1974) may be used to check on stationarity (e.g. within an MCMC run) without solving the characteristic equation. Non-stationarity with estimated parameters (=((1,..(p) occurs if any of the NS[] in the following BUGS program are unity rather than zero.

model { a[1,1] <-   -1;     for (k in 1:p)  { a[k+1,1] <- rho[k]

for (j in 1:p+1-k) { b[j,k] <-  a[1,k]*a[j,k]-a[p+2-k,k]*a[p+3-k-j,k]

                    a[j,k+1] <- b[j,k]}

                    NS[k] <- step(-b[1,k])}}

Thus for p=2 and ((1, (2)=(1.5,-0.49) there is non-stationarity, but for ((1, (2)=(1.5,-0.51) there is stationarity (Naylor and Marriott, 1996, p. 709).

In the absence of accumulated knowledge about stationarity, non-informative priors on  or (2, and unconstrained priors on the elements of  eq \O((,~)=((1,…,(p), are sometimes used. For example, a prior 

p((1, )   1/
in an AR(1) model leads to posterior densities of standard form on (1, and 2  (Broemeling and Cook, 1993; Zellner, 1996),  so permitting direct sampling from the full conditional densities of the parameters. A possible prior that favours stationary regions but allows values outside it is (j ~ N(0,(), j(1, where ( is small, e.g. 1 or 0.5. To select out significant lags, one may use scale factors (j ~ N(0,(/(j) where large weights ((j considerably exceeding 1) indicate a redundant lag. Another possibility is a mixture prior

     (j ~ (N(0,()+(1-()N(0,(/M).

If M is taken large (e.g. M=100), with an auxiliary indicator (j =1 or 0 according to whether the first or second mixture component is selected, then a high value for Pr((j=0|y) indicates redundancy. Application of SSVS methods is also possible (Chen, 1999).

One may assume a priori that the process is stationary: an expectation of a stationary rather than explosive process in an AR(1) model would involve a prior constraint that (1 < 1. This could be imposed by taking a prior on the real line (e.g. a normal) and then using rejection sampling. It could also involve assuming (1 uniform between -1 and +1, U(-1,1), or adopting a re-parameterisation 1=log(1+(1)-log(1-(1) so that the new parameter 1 covers the whole real line (Naylor and Smith, 1988). Berger and Yang (1994) consider the problems in devising a prior for the AR(1) model which ascribes equal prior weight to the stationary and explosive options. For an AR(p) model stationarity can be imposed by only retaining draws of (=((1,…,(p) that lie within Cp (Chib, 1993).

Another option involves reparameterisation of the (j in terms of the partial correlations rj of the AR(p) process (Barndorff-Nielsen and Schou, 1973; Jones, 1987; Marriott and Smith, 1992; Marriott et al, 1996). In an AR(p) model let 

((p)= ((eq \O((p),1) ,(eq \O((p),2) ,…,(eq \O((p),p) )  
with (eq \O((p),j) the jth coefficient in an AR(p) model. Then the stationarity conditions that ((p) lies within Cp become equivalent to restrictions that (rk( < 1 for k=1,2,..p. The transformations relating r=(r1,…rp) and ( for k=1,..p and i=1,..k-1 are

            (eq \O((k),k)  = rk                                  
   (eq \O((k),i)   = (eq \O((k-1),i)  -   rk (eq \O((k-1),k-i) 
For example, for p=3 the transformations would be 

          (eq \O((3),3)  = r3

 (eq \O((3),1)   = (eq \O((2),1)  -  r3 (eq \O((2),2)  = (eq \O((2),1)  - r3 r2                  (for k=3,i=1)

 (eq \O((3),2)   = (eq \O((2),2)  -  r3 (eq \O((2),1)  = r2 -   r3 (eq \O((2),1)                 (for k=3,i=2)

 (eq \O((2),1)   = (eq \O((1),1)  - r2 (eq \O((1),1)  = r1 - r2r1                        (for k=2,i=1).

It may be noted that these partial correlations rj play a central role in identifying the order of an AR process, and one might apply Bayesian procedures to test their significance at various lags (see Box and Jenkins, 1970, chapter 6). Thus Barnett et al (1996) outline procedures for selecting the order of an AR(p) model, using the methods of George and McCulloch (1993) that may be applied either to the rj or directly the (j.

As in Marriott and Smith (1992), the usual Fisher transformations for correlations may be used such that r*j is a normal or uniform draw on the real line, so that the rj are obtained from r*j=log([1+rj]/[1-rj]). Alternatively, Jones (1987) proposes the partial correlations be generated using beta variables r*1,r*2,r*3,..,r*k, with beta priors B(1,1), B(1,2), B(2,2) and B({(k+1)/2},{k/2}+1), where {x} here denotes the integer part of x. These are then transformed to the interval [-1,1] via r1=2req \O(*,1) -1, r2=2req \O(*,2) -1, etc. An alternative prior structure proposed for AR models applies to the real and complex roots of the characteristic equation and has been applied to time series decomposition (Huerta and West, 1999), while for stationary AR models Johnson & Hoeting (2003) suggest suitably constrained priors in the decomposition P((1,…(p)=P((p)P((1,…(p-1|(p)..P((1|(2,..(p). For example a stationary AR(2) prior is obtained by taking (2 ~ U(-1,1), (1|(2 ~ U(-(1-(2),1-(2).

8.2.2 Initial Conditions as Latent Data

A remaining complication in the analysis of the AR(p) process, particularly if stationarity is not assumed a priori, is the reference to latent (unobserved) quantities before the system started. With observations y1,…yT, the first observation in an AR(1) process  is modelled as

        y1= (1y0 + u1
where y0 is unknown, and for an AR(p) process the latent variables are y0,y-1,..y1-p. If a stationarity assumption is made then {y0,y-1..y1-p} may be modelled within the exact likelihood for an AR(p) process (Newbold, 1974; Marriott et al, 1996).

For nonstationary models missing data points, such as y0 in an AR(1) model, become extra parameters. One option is to write the composite unknowns, such as (1y0 in the AR(1) model, and (1y0 +(2y-1 and (2y0 in the AR(2) model, as new parameters that can be modelled as fixed effects. For example, in the AR(1) case y1 could be normal with mean m1(((1y0) and variance  eq \O(2,1). One may also model the latent pre-series by a heavy tailed version of the main data model; for example, if the main error series is normal with variance (2, then the latent pre-series is Student t with the same variance but low degrees of freedom (Naylor and Marriott, 1996).  Another option is ‘backcasting’ to estimate the latent starting data (Pai et al, 1994).

Finally, for longer time series a pragmatic approach may be to condition on the initial observations (Chib, 1993). For example, the AR(1) likelihood would be specified only for those t when both yt and yt-1  are known. This amounts to treating the initial observations as fixed (i.e. having zero variance). The conditional likelihood approach makes it easier to deal with models involving higher order lag dependence, but involves a loss of data in the likelihood. The importance of assumptions about initial observations diminishes with longer series of observed points. 

Example 8. 1 US Unemployment

Fuller (1976) considers classical estimation of an AR(2) model 

           yt = (0+(1yt-1+(2yt-2+ut      t=1,2,..T             

           ut ~ N(0,(2)

for the quarterly US unemployment rate yt (uncentred) over the 25 years 1948-1972 (so T=100), and then carries out predictions to the four quarters of 1973.  Here stationarity is not assumed and ((0,1) priors are adopted for (1 and (2. Following Zellner (1996), an option for the pre-series unknowns (y0,y-1) involves two extra parameters mj ~ N(0,100) 

       (1 = (0+m1                      (m1=(1y0+(2y-1)

       (2 = ((y1+m2                   (m2=(2y0)

       (t = (0+(1yt-1+(2yt-2        t=3,…,T

Predictions for 1973 are generated recursively as follows:

       y100+t ~ N(((1y100+t-1+(2y100+t-2,(2)            t=1,..4.

Assuming (0 ~ N(0,1000), the code is

 for (t in 1:T) {    y[t] ~ dnorm(mu[t],invsig2) }

                           mu[1] <- rho.0+m[1];        

                           mu[2] <- rho.0+rho[1]*y[1]+m[2]

 for (t in 3:T) {   mu[t] <- rho.0 +rho[1]*y[t-1]+rho[2]*y[t-2]}

# Predictions

 for (t in 1:4) {y[T+t] ~ dnorm(mu[T+t],tau); 

                      mu[T+t] <- rho.0+rho[1]*y[T+t-1]+rho[2]*y[T+t-2]}

# Priors

 rho.0 ~ dnorm(0,0.001); invsig2    ~ dgamma(1,0.001)

 for (j in 1:2) {rho[j]  ~ dnorm(0,1); m[j] ~ dnorm(0,0.01)}}.

As in Fuller (1976), the predictions (Table 8.1) from the 2nd half of a two chain run of 10,000 iterations are for a falling rate in 1973, though there is lower precision for the later forecasts.

Table 8.1 Posterior Summary, Forecasts AR2 Model

Parameter
Mean
St devn
2.5%
Median
97.5%

(
0.62
0.15
0.32
0.62
0.91

(
1.56
0.08
1.40
1.56
1.71

(
-0.69
0.08
-0.83
-0.69
-0.53

  y101
5.08
0.34
4.43
5.08
5.76

  y102
4.9
0.63
3.65
4.90
6.16

  y103
4.75
0.88
3.00
4.75
6.48

  y104
4.65
1.05
2.6
4.62
6.73

8.3 Trend Stationarity in the AR(1) model

There is a wide literature on the question of trend stationarity of yt in the AR(1) model (8.1). If || < 1 then the process is stationary with marginal variance 2/(1- eq \O(2,1)) and long run mean

                     =/(1-).





    

If || < 1 the series will tend to revert to its mean level after undergoing a shock. If =1, the process is a nonstationary random walk with mean and variance undefined by parameters in (8.1). 

Tests for nonstationarity may compare the simple null hypothesis H0:=1 with the composite alternative H1: || < 1, or alternatively compare H0:(1 ( 1 with H1: || < 1 (Naylor and Marriott, 1996; Lubrano, 1995). Hoek et al (1995) consider a prior for  confined to non-explosive values, but putting a mass of 0.5 on the unit root =1. If the hypothesis =1 is not rejected then this implies that the differences yt=yt-yt-1 are stationary (this is known as difference stationarity as opposed to trend stationarity in the undifferenced outcome).

If there is genuinely explosive behaviour in the series then artificially constraining the prior to exclude values of  over 1 may be inconsistent with other aspects of appropriate specification. The posterior probability that   1 is then a test for nonstationarity. Hoek et al (1995) show that Student t rather than normal innovations ut provide robustness against outliers that cause a flatter estimate of  than the true value, so causing over-frequent rejection of non-stationarity. Marriott and Newbold (2000) discuss the problems involved in distinguishing stationarity from nonstationarity when there are one or more changes in mean (trend breaks). They consider distiguishing between four models defined by stationarity or not and trend break or not.

The simple model (8.1) may be extended (Schotman, 1994) by adding deterministic trends in t (e.g. linear growth) and lags in increments yt rather than the yt themselves. These modifications are intended to improve specification and ensure that the ut are uncorrelated. For example, Hoek et al (1995, p 44) consider an AR(3) model to model one of the widely analysed Nelson-Plosser datasets (Nelson & Plosser, 1982), namely

        yt = (+yt-1 + t + (1yt-1 + 2yt-2 + ut    

          (8.3)

where t models a linear trend. Bauwens et al (2000) consider a non-linear AR model derived by an autoregression in a process that includes a linear trend, namely (1-B)(yt-(-t)= ut or equivalently

         yt = yt-1 +  + (1-)(( + t) + ut
This can be re-expressed (Bauwens et al, 2000, p 186) as 

           yt = yt-1 +  + (1-)(( + t) + 1yt-1 + 2yt-2 + ut       

and so can be reparameterised as (8.3), whereas the linear equivalent based on (1-B)(yt-()=ut is

          yt = yt-1 +  (1-)(  + ut.

Bauwens et al report differences in the behaviour of non-linear and linear versions of the AR model under nonstationarity or unit root situations: the linear model is biased towards stationarity.

A different approach introduces a random AR(1) coefficient in the stochastic unit root model (Jones and Marriott, 1999; Godsill et al, 2004), namely

            yt = (tyt-1+ut
with ut ~ N(0,(2) and various possible priors on such as 

a) (t ~ N(((,(2); this model is nonstationary when (eq \O(2,()+(2 ( 1;

b) (t =exp((t) where (t is autoregressive of order p, with 

                 (t =(0 +(1(t-1 +…(p(t-p +(t
c) an autoregression in the ( themselves but confined to stationarity, as in (8.2) (Godsill et al, 2004) e.g. (1t ~ N(((1,t-1,(2).

Under option (b), the mean of the AR process on (t is 

      (( = (0/[1-(1-…-(p] 

and the posterior probability of stationarity is Pr(((<0|y). If this is high (e.g. over 0.95) then the series y is predominantly non-explosive and can possibly be modelled by a simpler model (e.g. a constant coefficient AR model).

Example 8.2 Nelson-Plosser Velocity Series

As an illustration of models for analysing possible nonstationarity, the velocity series from Nelson and Plosser (1982) is considered, updated to 1988 (spanning 1869 to 1988). The extended model in (8.3), including a deterministic trend, is the first approach considered. Following Hoek et al (1995), t( innovation errors ut are assumed with variance (2 and with scaling weights (t sampled from a Ga(0.5(,0.5() prior. An exponential prior E(() for the degrees of freedom ( is assumed with parameter ( which is itself U(0.01,1). The pre-series values, y0, y-1, y-2 are assumed to be Student t with mean (, (=2 and variance (2.

Summaries are based on two chains with 10,000 iterations and 1000 burn-in. The series is found to be predominantly stationary, with a 0.02 posterior probability that (>1. The posterior mean for ( is 0.95, with the innovations apparently heavier tailed than normal (the mean for ( is 7.7). Figure 8.1 plots one step ahead predictions, together with forecasts for 1989-92. The lowest weights (t are for 1881, 1918 and the depression year 1932.

As an alternative modelling approach explicitly designed to detect shifts in mean, an additive outlier model (see section 8.10) is applied. This takes the form

    yt = (( + ot) +((yt-1-ot-1)+(t +ut
    ot =(t(t
where (t is binary, (t ~ Bern(((), with ((=0.05, and (t represents potential shifts in the mean with (t ~ N(0,k(2) where k=5. Since this model takes account of outliers, the innovations ut are taken as normal, ut ~ N(0,(2). Following McCulloch and Tsay (1994), ot for years preceding (and after) the series are taken as zero. N(0,1) priors are assumed on ( and (, while ( ~N(0,100). 

The mean for ( (from a two chain run of 10000 iterations with 1000 burn-in) is 0.962 with a 0.048 probability of non-stationarity. The probabilities Pr((t=1|y) peak in 1918 and 1832 at 0.30 and 0.26 compared to a prior probability of 0.05. The one step prediction errors of this model are better than under (8.3) with narrower intervals extending to forecasts. 

8.4 Autoregressive Moving Average Models

In the AR(p) model the observed value of an outcome is related to its past values and to a random innovation error. Moving average models allow for an impact of the innovation series that is not necessarily fully absorbed in the same period. For example, an MA(1) error model for centred data, with AR(1) dependence in the data themselves, is

yt  = (1yt-1+ut - (1ut-1                   t=1,2,..T

A second order moving average MA(2) would involve a term (2ut-2. The number of lags p in the data autoregression, the number of lags q in the moving average, and the order of differencing d, determine an ARIMA(p,d,q) model. If the data are undifferenced, an autoregressive lag p and MA lag q is denoted ARMA(p,q). Thus an ARMA(3,3) model would be 

yt-(1yt-1-(2yt-2-(3yt-3 = ut-(1ut-1-(2ut-2-(3ut-3
or as polynomials in the backward shift parameter

((B)yt=((B)ut








with ((B)=1-(1B-(2B2-(3B3 and ((B)=1-(1B-(2B2-(3B3.

Since MA errors are a form of structured error, one may assume for greater flexibility an unstructured measurement error term (t specific to the tth point (West, 1996; Berliner, 1996). For example, an ARMA(1,1) model becomes

yt   = (1yt-1+ut - (1ut-1  + et                                                                 (8.4)

with et~N(0,1/(e) and ut~N(0,1/(u). 

The constraint of invertibility for an MA(q) model can be achieved by on-line rejection of incompatible values or by subsequent selection only of samples satisfying invertibility. Alternatively, as for an AR(p) model,  one may re-parameterise the coefficients ((q)=((eq \O((q),1),(eq \O((q),2),…,(eq \O((q),p)) in terms of partial autocorrelations sj, with (eq \O((q),j) the jth MA coefficient in an MA(q) process. Then the invertibility conditions requiring that ((q) lie within a region Cq become equivalent to restrictions that (sk( < 1 for k=1,2,..q. The transformations for k=1,..p and i=1,..k-1 are       


      (eq \O((k),k)  = sk
     (eq \O((k),i)   = (eq \O((k-1),i)  - sk(eq \O((k-1),k-i) 
If both lag and moving average terms are included in an ARMA(p,q) model then both sets of coefficients would be modelled via this parameterisation.

An ARMA(p,q) model involves latent data y0,y-1,..y1-p and the innovation errors u0,u-1,..u1-q which initiate the process. Marriott et al (1996) outline Gibbs sampling procedures for the exact ARMA likelihood, including both latent series. Their values may also be modelled as fixed effects or via ‘backcasting’, using duality between the backward and forward ARMA models under stationarity (Ravishanker and Ray, 1997; Pai et al, 1994). For instance, an ARMA(1,1) model for centred observations

                     yt=(yt-1+ut - (ut-1
can also be generated by the corresponding backward model

                     yt=(yt+1+bt - (bt+1,

where bt has the same distribution as ut. Starting with bT=0, these equations can be used to generate bT-1,..b1, and then y0 and u0, the latent quantities needed for an ARMA(1,1) model. 

Example 8.3 Trapped Lynx, 1821-1934

A much analysed series is the number of lynx yt (subject to a log10 transform) trapped each year in the Mackenzie River district of North-West Canada between 1821 and 1934 (T=114). Among possible models applied, an ARMA(3,3) process has been found to give a suitable fit. 

Here constrained priors are applied (using partial correlations as above) to ensure stationarity and invertibility in an ARMA(3,3) model. Additionally a measurement error is included as in (8.4). With centred yt the model is 

yt-(1yt-1-(2yt-2-(3yt-3 = ut-(1ut-1-(2ut-2-(3ut-3+et
where the precisions on ut and et have Ga(1,0.001) priors. Finally the latent preseries y values are sampled from a t density with 4 degrees of freedom and mean ( while the latent u are sampled from a t density version of the normal prior for ut, t=1,…T.

After a two chain run of 20000 iterations (with 2nd half for inferences), the autoregressive and MA parameters have posterior means similar to those reported by Marriott et al (1996). Figure 8.2 shows a reasonable correspondence between actual data and one step ahead forecasts though some points (e.g. t=10, 11, 15, 47, 66, 67, 76, 87 and 97) are not well predicted. The posterior means of the standard deviations (e and (u are respectively 0.04 and 0.19, so the measurement error variance is relatively small though its density is bounded away from zero.

Table 8.2 Posterior Summary ARMA(3,3) Model


Mean
St devn
2.5%
97.5%

(
1.70
0.24
1.23
2.19

(
-1.18
0.37
-1.94
-0.47

(
0.16
0.21
-0.22
0.60

(
0.55
0.35
-0.37
1.13

(
0.08
0.28
-0.41
0.84

(
-0.52
0.26
-0.91
0.24

8.5 Autoregressive Errors

In the specifications above, the innovation errors ut are assumed temporally uncorrelated with diagonal covariance matrix and autocorrelation is confined to the observations themselves. Consider instead a regression model with r-1 predictors 

                yt = (1 + x2t+…+ (rxrt +(t
where errors (t may be correlated over time and the covariance matrix is no longer diagonal (Ghosh & Heo, 2003). One context where this may be important is in nonparametric regression (Smith et al, 1998).

For example, an AR(p) transformation of the (t 

                 ((B)(t=ut 

may be required in order that ut is uncorrelated with constant variance, where  ((B)=1-(1B-(2B2-...(pBp. More generally an ARMA(p,q) error scheme has the form

           (t-(1(t-1-(2(t-2..-(p(t-p = ut - (1ut-1 - (2ut-2....- (qut-q           

As an example first order autocorrelation, i.e. AR(1) dependence, in the errors (t would imply 

                  yt=Xt(+(t
                  (t=((t-1+ut                                       
and 

                  var((t) =(2var((t-1)+2+2(1cov((t-1,ut)

                             =(2var((t)+2
so that

                  var((t)=2/(1-(2). 

Also corr((t, (t-1)=(, and corr((t, (t-k)=(k. 

Variation in the errors (t will be understated if the model does not explicitly allow autocorrelation and credible intervals for the components of β will be too narrow. The AR(1) error model may be re-expressed in non-linear autoregressive form (for t>1) with homoscedastic errors ut,     

               yt =Xt( + ((yt-1-Xt-1() + ut.                      

This is known as the Cochrane-Orcutt transformation and if stationarity is assumed includes a special transformation for the first observation. An alternative scheme known as the Prais-Winsten transformation assumes that (t is stationary (Fomby & Guilkey, 1978).

Bayesian estimation of the autoregressive AR(p) error model is simplified by conditioning on the first p observations when there is a pth order autoregressive dependence in the (ADVANCE \d3tADVANCE \u3 (Chib, 1993). This avoids specifying a prior for the latent data (0, (-1,.. (1-p. Another option uses composite parameters for terms involving the latent data. For example, for AR(1) errors and without a stationarity assumption, the first observation can be modelled as 

           y1= X1(+ g + u1
where g=((y0-X0() is an unknown fixed effect (Zellner and Tiao, 1964). A full likelihood approach to the ARMA(p,q) errors regression model is developed by Chib and Greenberg (1994).

Bayesian regression with autoregressive errors does not a priori restrict (1,.. (p to satisfy the stationarity constraint. However, a model without such a constraint that involves regression on a covariate(s) may lead to identifiability problems if the changing level of yt could be due equally to changes in the level(s) of xt as to non-stationary errors. Zellner and Tiao (1964) illustrate the dependence which may occur between a non-stationary error process and the posterior density of the regression parameter ( in an AR(1) error model with a single covariate.

Example 8.4 Cobb-Douglas Production Function

Judge et al (1988) analyse T=20 observations from a series {yt,x1t,x2t} denoting the logarithms of output Qt, labour Lt and capital Kt respectively. The Cobb-Douglas production relation is multiplicative

             Qt=αLtβ1Ktβ2ηt
with error ηt. A possible log-linear version is

             yt =β1+β2x1t+β3x2t + (t
with (t=((t-1+ut, ut ~ N(0,(2). Economic theory suggest parameter constraints 

             0<β2<1, 0<β3<1 

though values outside this range are not absolutely excluded. Judge et al obtain a Bayesian estimate (=0.67 (sd=0.19), as compared to maximum likelihood of 0.56 (sd=0.19). The ML estimates of the other parameters are β1=4.06 (5.77), β2=1.67(0.28), β3=0.76(0.14), and (2=6.1(1.9). 

An AR(1) errors model can be expressed as 

            yt= β1+β2x1t+β3x2t+((yt-1-β1-β2x1,t-1-β3x2,t-1) + ut
for t=2,..T. If stationarity is assumed with –1 < ( <1, the residual variance of y1 is σ2/(1-(2) with mean (1=β1+β2x11+β3x21, while subsequent observations have mean 

       μt=β1+β2x1t+β3x2t+((yt-1-β1-β2x1,t-1-β2x2,t-1) 

and variance (2. N3(0,() priors are assumed on βj (j=1,3), where (=diag(1000), Additionally ( ~ U[-1,1] in line with stationarity. A two chain run of 10000 iterations (500 burn-in) gives (=0.66 (sd=0.19), β1= 4.9 (5.6), β2=1.65(0.32), β3=0.77(0.16), and (2=7.6 (2.8). The autocorrelation parameter is similar to that cited by Judge et al.

Another approach, not restricted to stationarity, follows Zellner (1996) in modelling all the data together, i.e. yt ~ N((t,(2), t=1,..T, with (t=β1+β2x1t+β3x2t+((yt-1-β1-β2x1,t-1-β3x2,t-1) for t>1, but with μ1 involving latent data in a composite parameter g, such that

                    μ1=β1+β2x11+β3x21 + g - ((1.

A N(0,1) prior on ( is assumed, and g modelled jointly with the ( parameters in a N4(0,() prior with (=diag(1000).  A two chain run of 10000 iterations yields a higher value of (, namely 0.77(0.21), with 15% probability of non-stationarity. The labour structural parameter (2 is elevated but has lower precision under this model, with mean 1.92 and standard deviation 0.59. 

8.6 Multivariate series
The above univariate methods may be extended to modelling multivariate dependence through time. For example, autoregressive observational dependence would mean each series depending both on its own past and on the past values of one or more the other series (Sims, 1980; Sims & Zha, 1998), and are often extended to panel data (Canova & Ciccarelli, 2001) One advantage of simultaneously modelling several series is the possibility of pooling information to improve precision and out-of-sample forecasts. Vector autoregressive models have been used especially in economic forecasts for related units of observation, for example, of employment in industry sectors or across regions, and of jointly dependent series (unemployment and production), as well as in analyses of historic fluctuations (Ritschl & Woitek, 2000). 

These models involve only predetermined variables as predictors, so avoiding specification of endogenous dependence (Bauwens & Lubrano, 1995). However, they may originate as reduced forms of models that do incorporate endogenous dependence. For example, consider consumption Ct as a function of income Yt and previous period consumption Ct-1;  income Yt is also a function of previous income and consumption, so that

             Ct=(1+(1Ct-1+(1Yt+u1t
             Yt=(2+(2Yt-1+(2Ct-1+u2t
Substituting (2+(2Yt-1+(2Ct-1+u2t for Yt in the 1st equation gives a reduced form that involves only lagged predictors.

Bayesian developments have included the informative Minnesota prior approach (Litterman, 1986; Doan et al, 1984), more general priors in VAR models (Sims & Zha, 1998), and vector ARMA models (Ravishanker & Ray, 1997). The Minnesota prior is one approach to possible overparameterisation and collinearity in such models (Zellner, 1985). A VAR system with K variables and p lags on each variable has K2p+K coefficients, including constant terms.

For example, one model for centred metric variables yt = (y1t,y2t,..yKt) of dimension K is a multivariate normal autoregression of order p, denoted VAR(p), with

                   yt = yt-11+....+yt-pp + ut                  

                   ut ~ NK(0,()

where the matrices 1,..p are each KxK, and the covariance matrix is for exchangeable errors ut=(u1t, u2t,..,uKt). Alternatively

                  yt = Xt(+ Ut                  

where Xt=(yt-1,..yt-p) is (1(KP), and ( is (KP(K). So, if K=2, (1 would consist of own-lag coefficients relating y1t and y2t to the lagged values y1,t-1 and y2,t-1 and cross-lag coefficients relating y1t to y2,t-1 and y2t to y1,t-1. In many applications there are asymmetries on hypothesized economic linkages so that the predictors (lagged y variables) are not the same in all equations and some equations may include trends & seasonal effects while others do not; for example

     y1t=(111y1,t-1+(112y2,t-1+(211y1,t-2+(212y2,t-2+u1t
     y2t=(121y1,t-1+(122y2,t-1+u2t.

where (1 is 2(2, but (2 has non-zero coefficients only in its first row.

In matrix form, obtained by stacking the observations for each of the t=1,..,T time points

                  Y=X(+U

where U ~ NT(K(0,((IT). Under a non-informative prior, 

           P((,() ( |(|-(T+1)/2
the posterior density of ( is a multivariate t with mean (X’X)-1X’Y. Under the informative Minnesota the priors on ( coefficients are normal with diagonal covariance matrices and means of zero except for the lag 1 own variable coefficient with a prior mean of one; standard deviations on the coefficients also depend on whether the coefficient is an own or cross lag. If the prior standard deviation of the own lag 1 coefficient, such as (111 in 

             y1t=(111y1,t-1+(112y2,t-1+(211y1,t-2+(212y2,t-2+u1t
 is (, then the prior standard deviation of the own lag k coefficients (kjj (k > 1) is (/k, reflecting a prior belief that higher order lags are expected to be closer to zero. For the cross lag k coefficients (kjm in variable m in the jth equation the prior standard deviation is (((j/(k(m) where 0<(<1 and ((j/(m) adjusts for different scales between the variables. The (j are square roots of the diagonal terms of (. Since this prior is modelling the coefficients as a collection, an extension is to take ( and ( as unknowns (e.g. with exponential and beta priors respectively).

Example 8.5 US Personal Consumption and Income

This example considers the bivariate series from Judge et al (1988, p 758-759) relating to 75 quarters (1951.2 to 1969.4) of personal consumption expenditures (y1) and disposable personal income (y2), both at constant prices and seasonally adjusted. A lag four VAR(4) model in each component of the bivariate outcome is adopted, and the ukt are taken as bivariate normal, with precision matrix (-1 assumed Wishart with 2 degrees of freedom and scale matrix Diag(0.1). The likelihood is based on observations 5-71, with conditioning on the first four points. Forecasts are made for the remaining four periods.

Initially N(0,100) priors are assumed on the lag coefficients. With a 2 chain run taken to 5,000 iterations (and burn-in of 500), most of the lag coefficients are not significant in the sense of having 95% credible intervals entirely negative or positive. The significant effects are the lag 1 effect of y2 on y1 with mean coefficient (and s.d.) of 0.50 (0.13) and the own lag 1 effect on y2 on itself, namely 0.32 (0.16). The cross-variable correlation in the errors ukt is estimated at around 0.56, with 95% credible interval (0.36, 0.72). The forecasts for personal consumption in the 1969 quarters are 10, 14, 8 and 16 compared to the actual 21, 9, 9 and 16. 

A Litterman prior with ( ~ E(1) and ( ~ Be(1,1) is then assumed on the ( coefficients but with prior cross-lag standard deviations specified as N(0,((sj/(ksm)), where {sj,sm} are observed variances. This gives very similar estimates both for the ( coefficients, and the 1969 quarterly consumption forecasts, namely 10,14.5, 7.5 and 16.

8.7 Time Series Models for Discrete Outcomes

8.7.1 Observation Driven Autodependence

For discrete outcomes dependence on past observations and predictors may often be handled by adapting metric variable methods within the appropriate regression link. For example, lags in the observations themselves are often used within logit or probit link models for binary or categorical data. For binary data yt ~ Bern((t), an AR(1) model in yt and a regression terms Xt(, such as

        logit((t) = Xt(+(yt-1




is a generalisation of a stationary first order Markov chain stationary represented by the model

             logit((t)=(1+(yt-1.                                         

Higher order lags in y represent higher order Markov chain dependence. For multi-category data with K categories there are K-1 free category probabilities and these might be related to lagged values on up to K-1 binary variables. This leads to models similar to VAR(p) models for multivariate metric outcomes, in that there are ‘own’ and ‘cross’ lags (Pruscha, 1993). 
An alternative approach for binary and categorical time series, augments the model with a latent univariate or multivariate series Wt according to the value of yt. For binary data, one might then assume an underlying true series or signal ft such that

             Wt ~N(ft,1) I(At1,At2)

              ft = (ft-1 + ut
with At=(-(,0) or (0,() according as yt=0 or 1, and with |(|<1 corresponding to stationarity (Carlin & Polson, 1992). Alternatively an AR(1) dependence on previous responses, either observed (y) or latent (W) could be specified, as in  

               Wt ~ N((t,1) I(At1,At2)

                t=(Wt-1 +(yt-1+ Xt(.

For Poisson or binomial data, it makes sense for lagged value of the outcome to be in the same form as the transformed mean of the current outcome value (e.g. Zeger & Qaqish, 1988). Thus under a log link for count data, yt ~ Po((t), a first lag dependence on yt-1 would set

                     log(t) = Xt( + (log(y(t-1)                                   

                     y(t-1= max(c,y t-1)                 (0<c<1)                  

where  the definition of y(t-1 is to avoid taking logs of zero lagged counts. Either c can be an additional parameter or taken as a default value such as c=0.5 or c=1. Fokianos (2001) presents a similar model for truncated Poisson data. 

A further observation driven option for count data (e.g. Grunwald et al, 2000; Jung & Tremayne, 2003) is a conditional linear autoregessive lag p scheme or CLAR(p), whereby 

             E(yt|yt-1,…)=(t= (1yt-1 +(2yt-2…+(pyt-p +Zt                                where Zt is any positive series (e.g. gamma, log-normal). For example, one option sets Zt ~ Po((t) with (t=exp(Xt() where Xt includes an intercept. To allow overdispersion in the time series, one may specify an additive gamma error as in

              (t=(1yt-1 +(2yt-2…+(pyt-p +Zt                                             

where

                   Zt~ Ga((,(/(t). 

which tends to the Poisson as (((.

To consider extended lags or moving average effects for frequent binomial events or counts, then unmodified ARMA methods – applied as if the outcomes were effectively metric, and using normal approximations to the binomial or Poisson - may be appropriate. However, there are potential problems in applying standard ARMA models to count data since the assumption of normality (or of any symmetric density) may not be appropriate, especially for rare events. 

8.7.2 INAR Models

Integer valued autoregressive (INAR) schemes are designed to reproduce properties of ARMA models for metric outcomes, while also being adapted to discrete sampling mechanisms for counts (McKenzie, 1988; McCabe & Martin, 2005; Jung & Tremayne, 2006; Freeland & McCabe, 2004)). They introduce dependence of the current count yt on previous counts yt-1,yt-2,.. via binomial thinning and also include an integer valued innovation series wt. Thus in an INAR(1) model, one considers the chance ( that each of the yt-1 particles from period t-1 survives through to the next period, so the autoregressive (observation driven) component of the INAR(1) model for yt (t>1) is

               Ct =  eq \O((,k=1,yt-1 ) Bern(() = (  yt-1
with y1 ~ Poi(). Equivalently Ct is binomial with yt-1 subjects and ( the probability of success. McKenzie (1988) proposes the innovations wt to be Poisson with mean (1-() in order to ensure stationarity in the mean for y, with

                yt=Ct+wt.

One may also adopt negative binomial innovations. One might consider Poisson densities for wt not tied to ( in an INAR(1) model, especially if there is over-dispersion.  Thus Franke and Seligmann (1993) propose a mixed Poisson for wt with two possible means 1 and 2 in an analysis of epileptic seizure counts. Switching in the innovation process at time t is determined by binary variables Qt (which may in turn be drawn from an overall beta density). 

An INAR(2) process would refer to two preceding counts yt-1 and yt-2 and involve two survival probabilities, (1 and (2. Note that for an INAR(p) process stationarity is defined by eq \O((,k=1,p) (k < 1 (Cardinal et al, 1999). For overdispersed data, McKenzie (1986) suggested that the ‘survival probabilities’, such as (t in an INAR(1) model, be time varying, possibly under a hierarchical prior such as (t ~ Be(a,b) where a,b are also unknown, or via autoregressive priors on preceding probabilities. The thinning probabilities may also be related  to predictors Zt by logit regression (Kedem & Fokianos, 2002, chapter 5).

The INAR model involves an identity link in seeking to replicate metric ARIMA features but INAR type mechanisms (e.g. binomial thinning, discrete innovations) can be used in conditional Poisson means and in non-identity links (Grunwald et al, 2000). For example, the CLAR models mentioned above may include features of the INAR approach, as in

                yt ~ Po((t)

                 (t=((yt-1 + (t
with (t=exp(Xt(). Other options include allowing the parameters generating the innovations to be time varying, as in (t=(yt-1+wt, wt ~ Poi(exp[(t]), where (t follows a random walk prior, (t ~ N((t-1,((). 

8.7.3 Error Autocorrelation

If autocorrelation (or moving average dependence) is postulated in the regression errors rather than in the lagged counts, events or latent data, one obtains parameter driven models (e.g. see Jung et al, 2005 for a discussion of stochastic autoregressive mean models for counts). There are close connections between such models and dynamic general linear priors for discrete outcomes (section 8.8) with random walk priors in parameters. 

A common scheme for ARMA(p,q) error dependence in time series models for discrete data is the AR1 error model. For a Poisson outcome (Oh and Lim, 2001; Chen and Ibrahim, 2000; Chan & Ledolter, 1995) this has the form

          yt ~ Poi(t)

          log(t)= Xt( + (t

          (t = ((t-1 + ut  

where |(|(1 and ut ~ N(0,(2). Chen and Ibrahim (2000) set out sampling algorithms under a power prior approach for this model based on similar historic data, while Oh and Lim (2001) and Jung et al (2005) consider augmented data sampling for Poisson counts. A multiplicative error model (Zeger, 1988; Davis et al, 2000) has the form

           (t=exp(Xt()(t
where (t is gamma with mean 1 when Xt includes an intercept. Houseman et al (2004) present a public health application.

Similarly Zeger and Qaqish (1988) propose, for a Poisson outcome, the lagged regression error model

           log(t)= xt + ((logy eq \O(',t-1)  - xt-1)

while a lag 2 model would be

           log(t)= xt + ((logy eq \O(',t-1) - xt-1)+ ((logy eq \O(',t-2) - xt-2)
and ‘moving average’ terms would compare logy eq \O(',t-j)  with log(t-j . This leads to GARMA(p,q) models (e.g. Benjamin et al, 2003) so that an ARMA(1,1) type model would be

           log(t)= xt + ((logy eq \O(',t-1) - xt-1)+ ((logy eq \O(',t-1)  - log(t-1).

Davis et al (2003) consider partially observation driven models of the form yt ~ Po(exp[Wt]),                    

            Wt=Xt(+Zt

where Zt is a latent series

            Zt=(1(Zt-1+et-1)+…+(p(Zt-p+et-p)+(1et-1+…(qet-q
et are lagged regression errors,

            et=(yt-exp[Wt])exp(-(Wt)

and where ( and ( coefficients are constrained to stationary values. This method is illustrated by a simple example with q=1, p=0, namely            Wt = Xt(+((yt-1-exp(Wt-1)exp(-Wt-1)

for T=15, Xt containing only a constant, (=2, and (=0.7. If WINBUGS is used as a computing medium, the nonstandard likelihood is coded as follows

model { beta ~ dnorm(0,1); gam ~ dunif(-1,1)

for (t in 1:T) {h[t] <- 1; h[t] ~ dbern(P[t])

log(P[t]) <- -mu[t]+y[t]*log(mu[t])-logfact(y[t])}

log(mu[1]) <- beta; W[1] <- log(mu[1])

for (t in 2:T) {log(mu[t]) <- W[t]

W[t] <- beta+gam*(y[t-1]-exp(W[t-1]))*exp(-W[t-1])}}

with posterior means from a single chain run of 5000 iterations obtained as (=2.1(1.8,2.4), (=0.76 (0.45,0.98).

Example 8.6 AIDS cases via dependent Poisson model

A lag 1 INAR scheme models are illustrated using T=14 quarterly AIDS death totals in Australia. The first model adopted here is specified for the conditional Poisson mean

                        yt ~ Po((t) 

                        (t= Ct+wt       t=2,…T

                       Ct =  eq \O((,k=1,yt-1 ) Bern(() = (  yt-1
                        y1 ~ Poi()

                        wt ~ Po((w)

with ( ~ Be(1,1), ( ~ Ga(1,0.001), (w ~ Ga(1,0.001). A prediction for five more quarters is included. The total rises from 0 in early 1983 to 45 in mid 1986 and Dobson (1984) proposes the growth model yt ~ Po((t). The 2nd half of a two chain 10000 iteration run gives the parameter estimates and one step prediction as in Table 8.3.

Table 8.3 AIDs Deaths Prediction Model


Mean
 sd
2,5%
97.5%

y15
45.4
7.6
31.0
61.0

y16
45.8
10.7
26.0
68.0

y17
46.4
13.3
22.0
74.0

y18
47.0
15.5
20.0
80.0

y19
47.7
17.3
18.0
85.0

(w
3.58
1.06
1.75
5.85

(
0.93
0.06
0.78
1.00


1.00
1.00
0.03
3.67

The second model exactly replicates the model 

              yt = (  yt-1+wt              t =2,..T

              y1 ~ Po((1)

                      wt ~ Po((w)

using the INAR(1) likelihood (e.g. Freeland & McCabe, 2004). This is a stationary model not appropriate to this particular series but included for illustration. One finds means (=0.47(0.457,0.472) and (w=17.8. Forecasts beyond T eventually revert to the mean (w.

8.8 Dynamic Linear Models and Time Varying Coefficients

Whereas classical ARMA approaches rely on transformation and differencing to ensure stationarity assumptions are met, dynamic linear models based on state space priors seek to directly represent features of time series, such as trend, seasonality or regression effects, without using differencing. This may have advantages in interpreting regression relationships that might be obscured by differencing in both the y and x series and in treating series subject to abrupt discontinuities or shifts, the impact of which cannot be simply removed by differencing (West and Harrison, 1997, page 300). Autoregressive or moving average mechanisms might, however, still be components of a dynamic linear model. Applications of state-space models include models for the impact of advertising (Migon and Harrison, 1985), stochastic volatility models for financial series (Meyer and Yu, 2000), forecasts of exports (Migon, 2000), modelling air pollution (Calder et al, 2002), and decomposition of geological series relating to climate change (West, 1997).

For metric univariate or multivariate outcomes a dynamic linear model (DLM) describes the evolution of the observations yt in terms of unobserved continuous states (t. Covariates Xt may also be used. The DLM consists of an observation equation and a state equation. The observation equation specifies the distribution of yt conditional on the states (t, while the state equation specifies how the states change dynamically, usually through a Markov model (Berliner, 1996; Meyer, 2000). For instance a first order Markov dependence in (t leads to a model such as 

                yt|(,(t = Xt f1((t,()+(t
                (t |(    = f2((t-1,()+(t
where f1 and f2 may be linear or non-linear functions and typically the (t and (t are normal. The final component of the DLM is the prior on the initial states, whose number depends on the order of the Markov dependence. 

Linear forms for the two equations typically involve a known design matrix Ft in the observation equation, specifying which latent states and covariates impact on the outcomes, and a known transition matrix Gt in the state equation, describing how successive latent state values are related. Thus 

      yt= Ft(t + (t                    (t ~ N(0,Vt)                            (8.5.1)

      (t=Gt(t-1+(t                            (t ~ N(0,Wt)                                       (8.5.2)

Suppose yt is multivariate of dimension m and (t of dimension d, so that Ft is m(d and Gt is d(d. Even though yt might be univariate (m=1), (t may be of dimension greater than 1; in this case some of the design matrix elements will be zero. The errors (t and (t are generally taken to be mutually uncorrelated and not correlated with the initial latent state values. 

A normal errors model in (8.5) with (t ~ N(0,Vt), (t ~ N(0,Wt), is the basis for Kalman updating (West and Harrison, 1997; West et al, 1985), whether in classical or Bayesian applications. Let Dt denotes all information available up to time t including predictors and the form of Gt. Then updating is based on the prior, predictive and posterior distributions at each time point, namely 

          P((t|Dt-1)= (P((t|(t-1)P((t-1|Dt-1)d(t-1, 

          P(yt|Dt-1) = (P(yt|(t)P((t|Dt-1)d(t, 

and

           P((t|Dt) (  P((t|Dt-1)P(yt|Dt-1). 

Suppose the posterior for (t-1 given data observed to time t-1, is 

           (t-1|Dt-1 ~ N(mt-1,Ct-1). 

Then the prior for the next state (t given Dt-1 operates via (t=Gt(t-1+(t and includes extra uncertainty from the state errors (t, namely

           (t|Dt-1 ~ N(Gtmt-1,GtCt-1Geq \O((,t)+Wt).

A prediction for the next value of yt given Dt-1 can then be made, operating via yt= Ft(t + (t, namely

           ynew,t|Dt-1 ~ N(FtGtmt-1,FtRtFeq \O((,t)+Vt), 

where Rt=GtCt-1Geq \O((,t)+Wt. The posterior for (t, given an extra observation to form Dt=(yt,Dt-1), includes forecast error et=yt-FtGtmt-1. Writing Qt= FtRtFeq \O((,t)+Vt one obtains 

            (t|Dt ~ N(mt,Ct) 

where

            mt=mt-1+Atet
            Ct=RtVtQeq \O(-1,t)
            At=FtRtQeq \O(-1,t).

So in a local level model with Ft=I, Gt=I, Vt=V and Wt=W, namely 

           yt= (t + (t                       

           (t = (t-1+(t                                    
one obtains

           (t|Dt-1 ~ N(mt-1,Ct-1+W),

           ynew,t|Dt-1 ~ N(mt-1, Ct-1+W+V), 

           (t|Dt ~ N(mt-1+Atet,VAt) 

           At= (Ct-1+W)( Ct-1+W+V)-1.

Unless the analysis conditions on some early observations, initialising prior assumptions are needed for the initial latent state values. In a 1st order Markov scheme for (t these would consist of a single parameter (0 which is usually assigned a diffuse prior, (0 ~ N(m0,C0). As well as prediction and filtering (updating from t-1 to t) (e.g. West and Harrison, 1997, pp 104-105), retrospective smoothing of the states (t given the full data DT can also be undertaken (West & Harrison, 1997, p 570; Fruhwirth-Schnatter, 1994). 

Models with state-space parameter updating are included within the class of dynamic generalised linear models for both discrete and metric responses (West et al, 1985; Gamerman, 1998). Let yt have a conditional density given state (t that belongs to the exponential family  

               f(yt|(t,(t) = exp[{yt(t-b((t)}/a((t) + c(yt,(t)]

with expectation (t=E[yt|(t,(t]. Then with a p dimensional predictor vector Xt including an intercept, the observation model includes the linked regression

               g((t)= Ft(t
or

               g((t)= Ft(t+(t
where (t is a optional random effect to model overdispersion. As for metric responses the state equation might specify first order updating as in

                (t = Gt(t-1+(t               t=2,…T

where (t has mean zero and p dimensional covariance matrix W, and the initial condition (1 has a diffuse prior. 

For instance, a DGLM approach to categorical time series is presented by Cargnoni et al (1997), whereby

                 (yt1,yt2,….ytK) ~ Mult(nt,[(t1, (t2,…. ,(tK])

                 (tk= exp((tk)/ eq \O((,k)exp((tk)

                 (tk= (tk+Xt(k,         k=1,…K-1

                 (tK=0

with category specific intercepts (tk following multivariate random walk priors, for example (t ~ NK-1((t-1,(().

Different MCMC sampling schemes have been proposed for DLMs and DGLMs according to the form of outcome. Carlin et al (1992a) suggest a Gibbs sampling scheme where states are updated individually based on the conditional densities of the components p((jt|([-j]t,(,y] where ( specifies the observation and state dispersion matrices. A more efficient Gibbs scheme for metric data is proposed by Carter and Kohn (1994) and Fruhwirth-Schnatter (1994), with block updating for the state vector based on the full conditional density p((t|(,y) – see Migon et al (2005, p 566).  Gamerman (1998) proposes updating via the (t in (8.5.2) rather than the usually highly correlated (t. Thus setting (0=(0 one obtains (when Gt=I), (1=(1+(0, (2=(2+(1+(0, etc. Other computational considerations are relevant to identifiability of models involving state space priors. For example, random walk priors do not usually specify a mean for the series (t, so if the level of the data is represented by another parameter, centering the (t at each MCMC iteration assists in stable convergence. 

8.8.1 Some Common Forms of DLM

The model form (8.5) or its DGLM equivalent may be illustrated by some commonly used models for univariate outcomes. Thus an additive component or basic structural model (Harvey, 1989, section 2.3; Fruhwirth-Schnatter, 1994, p 187; Durbin and Koopman, 2001; Feder, 2001; Harvey et al, 2005) involves an underlying trend (t (((1t), a local trend slope (t, a seasonal component (t (((2t) and an uncorrelated error (t, as in

                yt = (t+(t+(t.

                (t = (t-1 + (t-1 + (1t
                 (t = (t-1 + (2t
                 (t = -(t-1 -(t-2-(t-3 …-(t-S+(3t
where S is the number of seasons (e.g. S=12 for months, S=4 for quarters) and the errors (t, (1t, (2t and (3t are uncorrelated over time and independent of each other. The seasonal component specifies mutually cancelling effects (t which are stochastic but sum to zero. If var((3t)=0 then determistic seasonal effects are applicable. The seasonal component may be modeled in trigonometric form.

The full conditionals for this model when the errors are normal are set out by Fruhwirth-Schnatter (1994). Explanatory variates may also be included, and their coefficients taken to vary over time. Thus for a p-dimensional predictor, some or all of the coefficients (t=((1t,(2t,…(pt) may vary over time: 

                yt =(t+Xt(t+(t+(t.

For the levels (t or regression coefficients (t commonly used schemes are first and second order random walks, typically taken to be normal; these are sometimes referred to as smoothness priors (Fahrmeir and Knorr-Held, 2000; Fahrmeir & Lang, 2001). 

A first order random walk for (t has the form

                (t = (t-1 + (t
where (t ~ N(0,(() and penalises large differences (t - (t-1, especially if the prior on (( favours relatively small variances. A second order random walk has the form

                 (t = 2(t-1 - (t-2 + (t
or equivalently

                 (t  ~ N(2(t-1- (t-2,(()

and penalizes large deviations from the linear trend 2(t-1- (t-2. These schemes can also be written as improper multivariate normals

                  (  ~ N(0, ((K_)

where K is a penalty matrix with generalised inverse K_ (Fahrmeir & Lang, 2001, p 206). 

In RW1 and RW2 priors there are respectively one and two initial values to consider, namely (0={(0} and (0={(0,(1}. These are typically assigned diffuse fixed effects priors (e.g. Zuccolo et al, 2005),  though see Carlin et al (1992a) for an example of a more informative initial prior. In the RW1 model one might take (0 ~ N(0,V0) with V0 large and known (say V0=1000). 

As an example of how Ft and Gt in (8.5) are specified in a BSM context, consider a model with yt=(t+(t, where (t~ N(2(t-1- (t-2,((). Then 

            (t = 
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and yt=(1,0)(t+(t , so that Gt=G is 2x2 and Ft=F is 1x2. 

While apparently asymmetric RW priors may be written in undirected form, referring both forward and backward in time. For example assume normal errors (t and (t
             yt = (t+(t
             (t = (t-1 + (t
with precisions (=1/(2, and ((=1/((. Then the full conditionals for (t (t=2,..,T-1) are normal with means 

    (((((t+1+(t-1)+(yt)(2((+()-1
and variances 1/(2((+(). The conditional for (1 has mean ((((2+(yt)(((+()-1, and that for (T has mean ((((T-1+(yt)(((+()-1.

For regression coefficients a multivariate version of the random walk might be used allowing for correlated evolution through time, with a 1st order model then being  (t ~ Np((t-1,(). In all the preceding models autoregressive parameters may be added, and need not be confined to stationary schemes. For instance an RW(1) prior for a single regression coefficient might be

                 (1t ~ N(((1,t-1,(1)

where the prior for ( is centred at 1 or 0.

The assumption of normal errors in a DLM may not be robust to sudden shifts in the series or outlying observations. Alternatives include a Student t density based on scale mixing or discrete mixtures of normals (Knorr-Held, 1999; Carter and Kohn, 1994). These options may be used for the observation equation, for some or all components of the state equation, or both. For example, under a scale mixture prior on the trend component of the state equation, an RW(1) prior for (t would become

              (t = (t-1 + (t
where  

              (t ~ N(0,((/(t),  

              (t ~ G(0.5(,0.5()

and ( is the degrees of freedom parameter of the Student t density. Another possibility is a discrete mixture with known probabilities on components, as for two groups

             (t ~ (1-()N(0,(() + (N(0,((()                (8.6)

where (=0.05 or 0.01 and ( is large (say between 10 and 100) to accommodate outliers. 

A major use for DLM state-space models is to construct a smooth ‘signal’ ft from data yt subject to measurement error. Consider a univariate metric series yt observed at equidistant points, t=1,2,3,..T, with 

                  yt = ft +(t,           (t ~ N(0,2)
     
       (8.7.1) 

while the true series ft follows a random walk prior, RW(k). If k=2, 

                 ft = 2ft-1 - ft-2 + (t              


       (8.7.2)

with (t ~ N(0,2). One may expect the conditional variance 2 of the true series to be less than that of the noisy series yt, with the noise to signal ratio 2=2/2 then exceeding 1, and 1/(2 being under 1. So a prior (e.g. gamma) on 1/(2 might be taken that favours small positive values. Higher values of 2 correspond to greater smoothing (as the variance 2 of the smooth function becomes progressively smaller).

Instead of simple random walk priors for signal extraction models, autoregressive priors involving lag coefficients (1,...,(p may be specified as smoothness priors. For example, an AR(p) prior in the true series would be, for p=2,

               ft ~ N((1f t-1+(2ft-2,)

Kitagawa and Gersch (1996) illustrate the use of such priors (with high order p) to estimate the spectral distribution of a stationary time series.

8.8.2 Priors for Time Specific Variances or Interventions 
Subject to emepirical identification there may be greater flexibility if the state variances change through time. Ameen and Harrison (1985) suggest a discounting process to modify successive variance matrices; this avoids estimation of each time specific variance but allows some flexibility through time. For univariate states, one may also use normal random walk or autoregressive priors in the log(variance) (Kitagawa and Gersch, 1996, chapter 10), or gamma priors on successive precisons such as Pt ~ Ga((,(/Pt-1) with 0 <( (1 (West and Harrison, 1997, p 360). Other approaches to stochastic variances involve ARCH-GARCH and structural shift models and are discussed in sections 8.9 and 8.10.

Consider a model with time varying intercept and time varying regression coefficient 

yt=(1,t+(2txt +(t

(1t=(1,t-1+(1t
(2t=(2,t-1+(2t
with (jt ~ N(0,Wjt). One might specify a prior on the 1st period precisions, but down-weight this information in successive periods. Suppose first period precisions on the state variances are P11=1/W11, and P21=1/W21. Subsequent precisions are discounted by a factor 0<((1. Thus

Pjt = (Pjt-1 
j=1,2;             t>2                             

A discount factor of 0.95 is approximately equivalent to a 5% increase in uncertainty in each time period. Pole et al (1994) suggest a few standard values (0.9,0.95,0.99) be tried and fit compared, since the likelihood is often flat in terms of distinguishing between such values. Alternatively a discrete prior focussing on values between 0.9 and 1 could be assumed.

Often instability will be caused by external events or ‘interventions’ (e.g. a competitor opening a new product line). Then one approach is to introduce an extra error term at the time of the intervention to accommodate the anticipated series shift. Following Pole et al (1994) assume sales (S) of a commodity at time t are assumed to depend only on prices (P) at t. Assume also that evolution of the level (L) and sales effect (() is confined to a random walk auto-regressive prior with a fixed variance. Then the observation model is

St=Lt+tPt+t

with state evolution (t>1)

Lt=Lt-1+1t           (1t ~ N(0,W1),                            
t=t-1+2t        (2t ~ N(0,W2),                     

while initial conditions are specified as diffuse fixed effects, for example

(1 ~ N(0,100);L~ N(0,100).

If the intervention is at time I and affects only the level of sales then the the prior for the level may be extended with an additional effect (1t operating only from time I. Thus

Lt=Lt-1+1t                                                        t=1,….I-1

Lt=Lt-1+1t  + (1t                             t=I,….T

(1t ~ N(0,H1)                                  t=I,….T

If the intervention at time I may affect the price-sales relationship (e.g. a government price control) then a similar modification could be made to the prior for (t to reflect the greater uncertainty about the parameter’s future evolution. If it is not assumed that the variances of 1t and 2t are constant then discontinuities may also be modelled via a discounting mechanism. To allow for greater uncertainty about the smoothness of the process around a particular time point (when the intervention time is known) a larger than usual discount factor may be adopted (West et al, 1985). One may also model I as unknown or adopt a change point prior for the discount factor (see section 8.10).

8.8.3 Nonlinear and non-Gaussian State Space Models

Greater flexibility in modelling particular substantive problems or discontinuities may be gained by nonlinear regression in the observation equation or nonlinear updating of states in the transition equation (Carlin et al, 1992a; Tanizaki & Mariano, 1998). State and observation errors may also have non-Gaussian forms; discrete mixtures of normal errors in the observation equation are mentioned above, while for positive series (e.g. count data) a log-normal or gamma error term might be used. Among a range of applications involving nonlinear transitions, Mariano and Tanizaki (2000) consider testing the permanent income hypothesis, Meyer (2000) considers nonlinear chaotic dynamics in physics, and Meyer and Millar (1999) and Clarke (2003) consider biological and ecological population models.

Thus in Meyer and Millar (1999), fish biomass Bt at time t (the unknown state) is modelled as 

                      Bt=f2(h[Bt],(t) 

                      h[Bt] = Bt-1 + rBt-1(1-Bt-1/K)-Ct-1
where Ct is the previous years observed catch, r is the rate of natural growth in the fish population and K is equilubrium biomass. The observe abundance index, yt, a proxy for biomass (e.g. catch rates in fishery surveys) is modelled as

                        yt = f1(g[Bt],(t)

                        g[Bt]=qBt
Including multiplicative errors, the model is

             Bt = [Bt-1 + rBt-1(1-Bt-1/K)-Ct-1]e(t

              yt = qBte(t

where ( and ( are normal.

Discrete mixtures of latent class processes are used by Gordon and Smith (1990) to model discontinuities in medical time series. They extend a trend-slope model as follows

yt=t+ eq \O(j],t)
t=t-1+t+  eq \O(j],t)
t=t-1+( eq \O(j],t)
with J=4 possible latent classes j=1,..J. Here yt denotes the measured biochemical variable, (t its ‘actual’ or true level, and (t is the trend or slope of the series. Thus for class j=3, say, the (t have a large variance, the (t have virtually no variance, and the (t have a ‘typical’ variance:  eq \O(3],t) eq \O(3],t) eq \O(3],t)Choice of this class corresponds to a marked change in the slope of the series. Choice of other categories of j at a particular time t may refer to typical changes in observed level only (with no discontinuity in either slope or actual level), or marked changes in actual level but not in slope or measured level, or marked change in measured level.

Example 8.7 UK Gas Consumption

As an example of the basic structural model of 8.8.1 applied to metric data, consider data on logged quarterly demand for gas in the UK from 1960 to 1986, {yt, t=1,108} from Durbin and Koopman (2001, p 233). Durbin & Koopman propose a baseline normal error observation model with mean specified as a local linear trend and quarterly seasonal effect. Thus a baseline model is

               yt = (t+st + (t
               (t= (t-1+(t-1+(1,t-1
               (t-1=(t-2 + (2,t-2
               st=-st-1-st-2-st-3 + (3t
with (t ~ N(0,(2), (=1/(2, (jt ~ N(0,Wj) and Pj=1/Wj. They demonstrate the greater effectiveness of an alternative observation model, with (t taken as Student t, in correcting for an outlier. Here the model options considered are (a) (t and the errors (1,(2 and (3 all taken as normal, (b) a discrete mixture on (t as in (8.6), with (1,(2 and (3 still normal.  

Convergence is obtained under option (a) only with an informative prior assuming the precision of the (t series to be greater than that in the observation equation. So Pj=(/( where ( ~ U(0,1). A two chain run of 20000 iterations (burn-in of 2500) then gives posterior means of the variances as (2=0.0009, W1=0.00022, W2=0.00015, and W3=0.0039. Figure 8.3 shows the estimated seasonal effects st and suggests the variance of the seasonal component is higher from 1971 (t=45,..48), namely that W3 should not be taken to be constant; se also Durbin & Koopman (2001, p 235). Monte Carlo estimates of log CPOs show times 43 and 44 (-5.3 and –3.7 compared to a maximum log CPO over all 108 points of 1.96) to be most aberrant; these are quarters 3 and 4 of 1970 when there was disrupted gas supply.

A modified version of option (a) (left as an exercise) assumes a simple once for all increase in W3 (reduction in precision P3=1/W3) after a quarter t*. That (unknown) quarter is sampled from a uniform density, U(2,107), and P3 is multiplied by a reduction factor R subsequent to t*. R has a Ga(1,0.001) prior. Posterior means of t*=39 and R=0.06 are obtained. 

The discrete mixture model for (t shows convergence in a 2 chain run of 20000 iterations after around 5000 iterations and as expected the probability of belonging to the minority group with inflated variance is 0.9998 and 0.9725 for observations 43 and 44, whereas for most other observations the posterior probability is around 0.03. 

Example 8.8 Reconstructing Signal from Noisy Data

This example illustrates the detection of a signal in noisy data when the form of the signal is exactly known, as in (8.7). Thus Kitagawa and Gersch (1996, Chapter 4) simulate a time series according to the truncated and asymmetric form

                yt = ft + (t                  t=1,200

where the true series or signal is 

              ft = (24/2() exp(-[t-130]2/2000)

and (t ~ N(0,1). The maximum value of the true series is just under 3.3 at t=130, with the true series being below 0.1 for t under 45. Kitagawa and Gersch contrast different orders k in random walk RW(k) smoothness priors, and select k=2 on the basis of an AIC criterion, so that

                  ft = 2ft-1 - ft-2 + (t              

with (t ~ N(0,(2). The k=1 model is found by Kitagawa and Gersch to be too ragged while the smoothing obtained with values k=2,3,4 is visually indistinguishable. With conjugate priors Pj ~ Ga(aj,bj) on precisions P1=1/(2 and P2=1/(2, direct sampling from the full conditionals may be simply applied

   P1 ~ Ga(a1+0.5T,b1+0.5 eq \o((,t=1,T)( eq \O(2,t))

   P2 ~ Ga(a2+0.5(T-k),b1+0.5 eq \o((,t=k,T)( eq \O(2,t)).

Here a G(1,0.001) prior on 1/(2 is adopted and two alternative priors assumed for ((2|(2), one a uniform prior U(0,1) on B=(2/[(2+(2], the other a Ga(0.1,0.2) prior on /. The latter prior favours values under 1 in line with variability about the signal being expected to be less than that around the observations. N(0,100) priors are assumed on the initial values f1 and f2.

The median value of 2 obtained under the 1st prior, from the 2nd half of a two chain run to 20,000 iterations, stands at 1.03E-4, as compared to the value of 0.79E-4 cited by Kitagawa and Gersch using a series generated by the same process. The median observational variance (2 is estimated at 1.11. The true series is reproduced satisfactorily (Figure 8.4). This prior leads to convergence in under 5000 iterations.

Other priors, whether gamma or uniform on the ratios (2/(2 or (/( tend to converge more slowly. A Ga(0.1,0.2) prior on (/( takes 100000 iterations to obtain (2 around 1.1 and a median on (2 of 0.6E-4, and provides a slightly better fit to the high values of the series.

Example 8.9 Market Share, Promotion and Prices

Variance discounting and time varying regression effects are illustrated by the sales model of Pole et al (1994). They consider a weekly time series over two years (1990 and 1991) of the market share St (t=1,..,T) of a consumer product. Fluctuations in market share are related to (a) the price of the product relative to the average for such products, denoted PRICEt (b) an index of the promotion level for the product, OWNPROMt, and (c) an index of promotions of alternative competing products, CPROMt. On economic grounds, the impact on the product’s market share of increased competitor promotion activity or raised price should be negative, while promotion of the brand itself should enhance market share. The share variable is a percentage but varies within a narrow range (about 40-45%) and can be approximated by a normal.  The predictors are in standardised form.

First a static model, with regression coefficients fixed through time (and measurement variance also fixed), is applied 

           St = β1 + β2PRICEt + β3OWNPROMt + β4CPROMt  + (t
with (t ~ N(0,V(), 1/V( ~ Ga(0.5,0.5) , and priors on (j as suggested by Pole et al (1994), namely β1 ~ N(42,25),  β2 ~ N(0,4),  (3 ~ N(0,4), and  β4 ~ N(0,4). A two chain run of 10000 iterations (with early convergence) shows (2-(4 with signs as expected. However, forecasting market share one week ahead with this model gives evidence of autocorrelation in the forecast residuals (lag 1 correlation of 0.68). The forecasts tend to be high in the weeks 10-20 of 1990 and the last few weeks of 1990, but lower through 1991. The mean absolute deviation is 0.377. This may indicate insufficient temporal flexibility in the parameters describing the level of market share and the impact on market share of the three predictors. 

A varying coefficient model is therefore applied

               St = β1t + β2tPRICEt + β3tOWNPROMt + β4tCPROMt + (t
The first period regression effects are modelled as fixed effects with priors as in the static model above. Succeeding regression components (t>1) follow independent RW1 priors,

              βjt ~ N(βj,t-1,Wjt).

with β2t and β4t constrained to be negative, and β3t constrained to be positive. The measurement variance and variance of the evolving regression parameters vary through time via discount factors. Thus if Pjt = 1/Wjt and Pj1 denotes the initial precisions (j=1,..4), then 

                   Pjt =(δj)t-1Pj1
The initial measurement precision is denoted P(1=1/V(1 and subsequent precisions P(t=1/V(t are discounted with a factor δ(. Gamma priors are assumed, G(0.5,0.5) for P(1 and G(1,1) for Pj (j=1..4). 

Following Pole et al, δ( is set to 0.99 but varying assumptions are made about (j, j=1,4. As an example of the possibilities of varying the discounts to improve predictions, the mean absolute deviation is compared for two models

(a) a fixed precision on the predictors (δ2=δ3=δ4=1), but variable precision on the level (δ1=0.99)

(b) a fixed precision on the level (δ1=1), but variable precision on the predictors (δ2=δ3=δ4=0.99).

One might also use selection indicators in such a situation.

Over the 2nd half of two chain runs of 10000 iterations, the average  mean absolute deviation of model (a) is 0.313 but for model (b) is 0.320. The lag one correlation in the forecast residuals under model (a) is estimated at under 0.15. Figure 8.5 shows estimates of the price coefficient β2t. The mean of this coeficient varies from -1.9 to –1.1, with a fall in the (absolute) impact of price in the first and second quarters of 1991 (t=53 to t=78). Pole et al attribute this to increased promotion activity on the brand (i.e. a rise in OWNPROMt) in this period, and also to their being a relative price advantage for the product around this time. A suggested exercise is to apply the option δ1=δ2=δ3=δ4=0.99.

8.9 Models For Variance Evolution

In the dynamic coefficient models just discussed it may be necessary to model observed time series yt or make forecasts, when the variance is not fixed, but itself stochastic over time. Such situations are exemplified by stock price and exchange rate series where large forecast errors tend to occur in clusters, when the series is changing rapidly. In many applications of such models the series is defined to have an effectively zero mean; for example, in many financial time series (e.g. exchange rates or stock returns zt) the ratio of successive values zt/zt-1 averages 1 and a series defined by the log of these ratios yt=log(zt/zt-1) will then approximately average zero. Another change variable often used is yt=(zt-zt-1)/zt-1 also with average zero. Typically there is strong autocorrelation between successive values of yeq \O(t,2) or of the squared errors when a regression mean is in the model; this is known as volatility clustering.

8.9.1 ARCH and GARCH Models

Engle (1982) consider an autoregressive conditional heteroscedastic or ARCH(1) model, namely

            yt= Xt(+ (t= Xt(+utht, 

 



            

where the ut are either N(0,1), or possibly t(0,1,() as in Bauwens and Lubrano (1998), and the ht depend on squared errors at lag 1

           ht = (t +  eq \o(t-1,2)                                                 
with both (t and  positive to ensure that the variance is positive, and with (t=( often assumed. Additionally the persistence parameter  is confined to values under 1, with  values of (1 indistinguishable from zero implying no stochastic volatility. The variance is conditional in the sense of depending on preceding error terms 

           Vt= E(( eq \o(t,2)|t-1)= E(ut2) [(t + 2t-1] = (t + 2t-1 

and this dependence also means the errors are heteroscedastic. An ARCH(p) model has 

           ht = (t + 1 eq \o(t-1,2)  + ..+peq \o(t-p,2) 

where all the (j are positive. To ensure the persistence parameter  eq \O((,j=1,p)(j  is under 1, a Dirichlet prior may be used for {(1,..(p,1- eq \O((,j=1,p)(j). Kaufman and Fruhwirth-Schnatter (2002) present a Bayesian treatment of a switching ARCH model (see also section 8.10) where                 

         ht = (Ht} + 1 eq \o(t-1,2)  + ..+peq \o(t-p,2)
where Ht ( (1,..K) is a categorical indicator governed by a Markov switching mechanism and constraints are placed on {(1,..(K} for uniqueness.   

If the mean for yt series is effectively zero and there are no predictors, one may write (Politis, 2006)

           yt = (t= utht












                

where ut are N(0,1) ot t((0,1), and for an ARCH(p) model

           ht = (t + 1y eq \o(t-1,2)+ 2y eq \o(t-2,2)…+ py eq \o(t-p,2)
so that the ARCH model can be classified as observation rather than parameter driven, with easy extension to forecasting (Shephard, 1996, p 12). If yt follows an ARCH(1) model then, conditional on yt-1, yt is normal

            yt|yt-1 ~ N(0,(t + 1y eq \o(t-1,2))

and estimation of the ARCH part of the model can take place for {y2,..yn} conditional on y1 (Shephard, 1996).

Another option is the unobserved ARCH model (Shephard, 1996; Giakoumatos et al, 2005), in which an ARCH model holds for the underlying signal rather than the observed series. For a centred y series and no predictors, a measurement error model combined with an ARCH(1 model leads to

             yt ~ N(ft,V)
























             ft  ~ N(0,ht)

             ht = (t + (1f eq \o(t-1,2),

where (t and (1 are positive and 0 ( (1 (1 ensures that the ARCH series is covariance stationary. If there are covariates, ft ~ N((t,ht) where (t=Xt(.

In the GARCH model the conditional variance depends on previous values of ht as well as possibly on  eq \o(t,2) or y eq \o(t,2). Whereas lags in  eq \o(t,2) or y eq \o(t,2) are analogous to moving average errors in an ordinary ARMA time series, lags in ht are parallel to autoregressive effects (Greene, 2000). A GARCH(p,q) model involves a lag of order p in ht and one of order q in  eq \o(t,2) or y eq \o(t,2) and so a GARCH(1,1) model for centred y would be

               yt=utht
               ht = (t + 1y eq \o(t-1,2)+ (ht -1,                    
where ut ~ N(0,1), (t  > 0 and for covariance stationarity (1 + (1 < 1. To ensure the latter constraint one may use a Dirichlet prior on ((1,(1,1-(1-(1). Miazhynskaia et al (2003) instead monitor the proportion of iterations where the condition holds. Bauwens and Lubrano (1998) discuss a scale mixture version of the Student t density for ut, namely ut ~ N(0,1/(t), (t ~ Ga(0.5(,0.5() and use Griddy Gibbs sampling on (. Multivariate Bayesian ARCH and GARCH models are discussed by Vrontos et al (2003), while Miazhynskaia et al (2003) consider Bayesian model selection using GARCH(1,1) models with Gaussian errors and Student t errors. 

Engle and Russell (1998) propose a GARCH type autoregressive conditional mean model for count data, with an ACM(1,1) model being

                yt|(t ~ Po((t)

                (t = (t + 1yt-1+ ((t -1,                    
which is stationary when (1 + (1 < 1.         

8.9.2  Stochastic volatility models

Stochastic volatility models (or SV models) adopt a DLM framework for stochastic variances and are parameter rather than observation driven, with a state space mechanism for the latent volatility. Meyer and Yu (2000) demonstrate WINBUGS codes for such models and point out possible advantages of the SV approach compared to ARCH and GARCH models in that two noise processes are typically involved, one for the data and one for the latent volatilities; comparisons are also made by Kim et al (1998), Yu (2005) and Gerlach et al (2005).  Berg et al (2004) consider the DIC criterion for comparing Bayesian SV models, while Chib et al (2002) obtain Bayes factors using the method of Chib (1995).

Several formulations for stochastic volatility models have been proposed. For example, one may specify

             yt=Xt( + t
            t ~ N(0,exp(gt)) 

where kgt follows a nonstationary random walk process (Kitagawa and Gersch, 1996; Harvey et al, 1994).  So with k=1, gt ~ N(gt-1,(2g). However, the main area of research has been in nonlinear state space models (e.g. Harvey et al, 1994). For example, an AR(p) autoregressive SV model for a centred y series with no regressors is

             yt = utexp(gt)





                 

gt= (+gt-1 -() +..+pgt-p -()+ (t     


(8.8)      

where ut ~ N(0,1), t ~ N(0,(. Stationarity is obtained by the usual constraints in ARMA models; so for an AR(1) model in gt, the gt are stationary with variance (/(1-(eq \O(1,2)) when |(| < 1. There are then questions regarding the appropriate AR lag order, and the density of ut,  whether normal or heavier tailed, for example Student t (Jacquier et al, 2004; Chib et al, 2002). To allow explicitly for discontinuities the observation equation may include a jump component (Chib et al, 2002). Thus

            yt = stqt+utexp(gt/2)                    
where qt~Bern(() and log(1 + st) ~ N(-(2/2,(2).

For multivariate series (e.g. of several exchange rates) subject to volatility clustering, common factor models have been proposed (Pitt and Shephard, 1999). For instance for two series ytk, k=1,2 and one factor Ft, one might have  

            yt1 = (1Ft + (t1
            yt2 = (2Ft + (t2
with Ft and the (tk both evolving via SV priors. Thus Ft ~ N(0, exp(g1t)), (t1 ~ N(0, exp(g2t)), (t2 ~ N(0, exp(g3t)), where gjt (j=1,3) follow priors like (8.8).

Example 8.10 Pound-Dollar Exchange Rate

Meyer and Yu (2000), Durbin and Koopman (2000) and Harvey et al (1994) apply stochastic volatility models, with (8.8) as a baseline, to a series of length T=945 on the pound-dollar exchange rate between October 1st 1981 and June 28th 1985. They define a model with no predictor term or constant, since the observations consist of differences in logged exchange rates zt, with yt=(log(zt). 

First consider a stochastic volatility AR(1) model, as in (8.8). Priors are as in Meyer and Yu (2000), namely 1/2~ Ga(2.5,0.025), (=2(*-1, where (* ~ Be(20,1.5), and N(0,10) priors on ( and the initial condition g0. The 2nd half of a two chain run of 10,000 iterations gives a median estimate for ( of 0.3, a lag coefficient ( with mean 0.979, and modal volatility with mean 0.45. The DIC is 1816 with de=43.

The variances are below 0.5 for most of the period but increase to over 1 in the spring of 1985 (t=878 to t=882; see Figure 8.6), exceeding 2.5 for some days. Monte Carlo estimates of the log CPOs show some observations not well fitted (times t= 878, 331, 862 and 656 have the lowest log CPOs). The log pseudo marginal likelihood (PsML) is –912. Meyer and Yu consider also an SV model (8.8) with lag 2, and Student t errors (t; they also consider a model including a leverage effect, such that changes in volatility reflect the sign and magnitude of price changes asymmetrically.

Here ARCH(1) and GARCH(1,1) models are illustrated for these data, with the ARCH model conditional on the 1st data point, namely

        yt|yt-1 ~ N(0,( + 1y eq \o(t-1,2)).

A Ga(1,1) prior is assumed on ( and a U(0,1) prior on (1. This model converges rapidly and iterations 1000-2500 of a two chain run give means (sd) on ( and (1 of 0.41 (0.03) and 0.23 (0.06) respectively. However the DIC and log(PsML) deteriorate (to 2013 and –1007 respectively).  A GARCH(1,1) model, namely  yt=utht
               ht = ( + 1y eq \o(t-1,2)+ (ht -1,                    
where ut ~ N(0,1) is then applied with a Ga(1,1) prior is assumed on (, and (1, (1 assumed to be N(0,1), constrained to positive values. This model is also run for 2500 iterations gives some improvement over the ARCH model with the DIC reduced to 1874. The probability of stationarity Pr((1+(1 < 1| y) is 0.99, with posterior means (sd) on (1 and (1 of 0.10 (0.02) and 0.87 (0.03).

8.10 Modelling Structural Shifts and Outliers

Standard ARMA and state space models may not be sufficiently flexible in the face of temporary shifts or permanent structural breaks in time series parameters that occur as a consequence of ‘interventions’ such as government policy change, new sales strategies or natural disasters. More appropriate model approaches may allow for changes in regression regimes and shifts in error structure. Switching regression models originate in classical statistics with Quandt (1958) and have received attention in Bayesian terms in works by Geweke and Terui (1993), Odejar and McNulty (2001) and Lubrano (1995). Time series model estimation and selection may also be affected by temporary outliers in observations or error series, though the detection of outliers and of shifts in series are closely interrelated (Zhou, 2005). This section considers models for different types of outlier, models for shifts in both the mean and variance of autoregressive errors, models for regime switching according to a latent Markov series, and transition function models.

The simplest models for level shifts (or regime shifts) are discrete change point models; these cause problems for classical estimation because the likelihood is not differentiable at the change points but their analysis is simplified by Monte Carlo simulation methods (Stephens, 1994; Carlin et al, 1992b). Note that change point models have affinities with nonparametric regression when the knot locations are unknown (see chapter 10). Chib (1998) considers choice between multiple change point models and introduces a latent regime indicator following a Markov transition scheme in which shift probabilities depend on the existing regime at point t; see also Chib (1996) and section 8.10.1. Models for change points in the mean generalise readily to regression change point models - see Western and Kleykamp (2004) for a recent political application. A single change point at ( leads to a switching regression model (for metric outcome)

    yt = X(1+(t    t((  

    yt = X(2+(t    t > (
with extension to multiple change points discussed by Maddala & Kim (1996). Similar change point models are applicable to variance shifts (de Pace, 2005).

Fluctuating level models refer to temporary rather than permanent shifts in level or to alternations in level. Shumway and Stoffer (1991) describe a state space model where the observation equation is subject to shifts in level (e.g. periods of negative and positive economic growth). Their model is for differenced yt and a signal ft, namely

              (yt=(ft+(0+(1St
where St is binary, so that the level alternates between (0 and ((0+(1). McCulloch and Tsay (1994) and Barnett et al (1996) discuss outlier models which allow for additive outliers (in the response itself) and innovation outliers (in random shocks ut). For example, consider an ARMA(1,1) model

yt-(yt-1 = ut-(ut-1
To allow for additive and innovation outliers, an additional error term ot is introduced such that

yt-(yt-1 = ut-(ut-1+ot


with  ot ~ N(0,K1tσ2), and ut ~ N(0,K2tσ2). One possible approach involves specifying parings of preset variance inflators Kt=(K1t,K2t), with K1t 0 and/or K2t 1 when an outlier occurs. If K1t exceeds 0 then there is an additive outlier at point t in the series, while if K2t exceeds 1 there is an innovation outlier. Selection between alternative parings is made according to a discrete prior. Prior choices on possible pairings of (K1t.K2t) are set, and for identifiability only an additive or an innovation outlier is allowed at a particular time t. Thus Barnett et al (1996) propose a seven point discrete prior on (K1,K2), namely (0,1), (3.3,1), (10,1), (32,1), (0,3.3), (0,10), (0,32) with equal prior probability on each option. 

McCulloch and Tsay (1994) consider models allowing for shifts in the mean of the series or in the variance of autoregressive errors. By allowing for variance shifts as well as changes in level, nonstationary trends that might otherwise have been attributed to changes in level may be seen as possibly due to heteroscedasticity. With yt = t + (t, a change in level is accommodated by the modified random walk

             t=t-1 + 1t t







The 1t are binary variables which equal 1 if a shift in mean occurs and t are random effects for the shift if it occurs (e.g. normal with low precision ). The autoregressive error follows an AR(p) scheme, namely

              (t = (1(t-1 + (2(t-2+ ..  +(t-p(t-p + ut
         (8.9)

where shifts in the var(ut) are allowed. Thus let ut ~ N(0,Vt) and let 2t be another binary series such that

                Vt = Vt-1                (2t=0)



                     = Vt-1 (t           (2t=1)

where (t models the proportional change in the variance at shift points. The probabilities that 2t and 2t equal 1 are known (e.g. (1=(2=0.05), or may be assigned beta priors that favour low values.

8.10.1 Markov Mixtures and Transition Functions

A different approach to discrete changes in regime involves state indicators where the probability of change depends on the existing state, as in the Markov switching models and hidden Markov models of Chib (1996), Billio et al (1999), Ghysels et al (1998), c et al (2001), Kim & Nelson (1999), Spezia et al (2004), and others. HMMs for count data (albeit from a classical perspective) are discussed by Leroux and Puterman (1992), Cooper and Lipsitch (2004) and Altman (2004). Thus suppose for each time point the process is in one of m states {st} (t > 1), as determined by an mm stationary Markov chain P={pij} where                   

           pij=Pr[st=j|st-1=i].                                            

The first state (namely s1) is determined by drawing from a multinomial with m categories. Given the underlying state st=k the observation follows the kth of m possible densities, and these densities might differ in means, variances or regression parameters. It may be noted that this is a form of discrete mixture model and subject to the label switching problem, so parameter constraints are an option (Munch et al, 2005) as well as postprocessing.

A model with both regression mean and variance shifts that is based on a latent Markov series for st is suggested by Albert and Chib (1993). Their model has m=2 states (so st is binary with st=1 corresponding to a shift) and order p autoregressive errors. For metric response yt, the model can be expressed as

  yt |st = xt+ (st + (1(yt-1-Xt-1( - (st-1)+ (2(yt-2-Xt-2 - (st-2) +..

                      ...+ (p(yt-p- Xt-p( - (st-p) + ut




where ( models shifts in level, and ut ~ N(0,Vt). Variance shifts are produced according to the mechanism

          Vt = 2(1+st)







where is the proportionate shift in variance when st=1. 

In transition function models, shifts between regimes are determined by a transition formula Kt that drives a step function (t, either an abrupt step function (Tong, 1983) or a smooth transition function (Teräsvirta, 1994; Pastor-Barriuso et al, 2003; Lopes & Salazar, 2005; Campbell, 2004). The latter is typically a cumulative distribution function between 0 and 1, such as the logit (Bauwens et al, 2000). A binary step function (t might be activated if a trend in time exceeds an unknown threshold ( and zero otherwise. If the trend were linear in t then the switching regression mentioend above

               Kt= t-( < 0 ( (t=0





               Kt= t-( > 0 ( (t=1

is obtained, with two regression regimes:

                yt = (zt + (1-(t) Xt(1  + Xt(2 + ut             

where, for example, ut ~ N(0,(2). Bauwens et al (2000) include a scale parameter c in Kt, namely Kt=c(t-() which requires preliminary standardisation of yt. The transition formula might also be defined by lags on the outcome, as in the step function

             Kt=yt-1- d < 0 ( (t=0

             Kt=yt-1- d > 0 ( (t=1

where d is unknown. Since the shift is generated according to a lagged value of y this type of model is called a self exciting threshold autogression (SETAR). A logit based smooth transition function in these two cases might take the form 

                (t =exp(({t- (})/[1+exp(({t- (})]

or

                (t =exp(({yt-1- d})/[1+exp(({yt-1- d})]

where ( >0 governs the smoothness of the transition.

More generally the appropriate lag p in yt, such that (for ( abrupt)

                  (t=1   if yt-p > d 

is an additional unknown (the delay parameter) as well as d (the threshold parameter). Geweke and Terui (1993) consider joint prior specification for {p,d} in models where the alternative regression regimes involve different order lags in y, namely an AR(p1) model if (t=1, and an AR(p2) model (with different coefficients throughout) if (t=0. Koop and Potter (1999) discuss formal Bayes model selection for comparing SETAR models (with p and d unknown) to hidden Markov models.

Example 8.11 US Unemployment

As an illustration of models allowing mean and variance shifts, consider analysis by by Rosenberg and Young (1995) of transformed unemployment rates Ut 

            yt = 100  log(1+Ut+1/100)  -  100  log(1+Ut/100).

with overall model  

              yt = t + (t + et
where the level series (t is a 1st order random walk subject to random shifts, namely

t=t-1 + 1t t







(t is an autoregressive error as in (8.9), and et is an unstructured measurement error. The series spans 1954 to 1992 inclusive, providing 78 six monthly averages, so yt has 77 values. Assume Bernoulli indicators 1t and 2t for shifts in the means (t and in var(ut) respectively, with unknown probabilities 1 and 2 defined by Be(1,19) priors. Thus              

                  yt = t + (t + et
                           et ~ N(0,1/(e)

                  t=t-1 + 1t t


t>1




                  (t ~ N(0,1/(()

                  (t = (1(t-1 + (2(t-2+ ..  +(t-p(t-p + ut


                  ut ~ N(0,Vt)

                          Vt= Vt-1 (eq \O(t,(2t) 

Fixed effects N(0,1) priors may be assumed for the initial conditions (0, (-1,..(-(p-1) and (1. 

Here the autoregressive series is taken as order p=1, and variance shifts (t are taken to have a gamma prior with average of 1,(t ~ G((,(), where (=1. As to the variance of the (t, Rosenberg and Young (1995) suggest using a large multiple (e.g. 10 times) of the residual variance from a standard ARMA model. Based on their paper a preset value, namely var((t)=0.1, is asssumed.

A two chain run of 5000 iterations (with inferences using the 2nd half) shows the lag parameter ( to have a mean (and 95% credible interval) of 0.52 (0.31, 0.73). There is a higher probability (2 of a variance shift than a mean shift (namely 0.098 vs 0.047). High posterior probabilities of a mean shift occur at t=8, 12 and 71) while high probabilities of a variance shift occur at t=18 and t=61-62. Rosenberg & Young in their analysis of quarterly rather than six monthly series also found a higher probability (2 of a variance shift than a mean shift, but with the excess of (2 over (1 (0.086 vs 0.015) more pronounced than under the model here. An adequate fit to all observations is obtained, with log CPOs varying from –0.6 to 1.3.

Example 8.12 Fetal Lamb Movements

An example of the hidden Markov model is provide by a time series of lamb fetal movement counts yt from Leroux and Puterman (1992), where the presence in the mixture of more than one component leads to Poisson overdispersion. Suppose a two class Markov mixture applies, with shifts between two Poisson means determined by a Markov chain (i.e. m=2). Dirichlet priors for the elements in each row are assumed, namely

                  pi,1:m ~ Dir(1,1,..1). 

although a beta prior can also be used for m=2. The same prior is used for the multinomial vector governing the choice of initial state. For the two Poisson means G(1,1) priors are stipulated, with an identifiability constraint that one is larger – an initial run justified such a constraint, showing the means to be widely separated.

With this model, a two chain run of 5000 iterations (1000 burn-in) shows the state occupied most of the periods (about 220 from 240) to have a low average fetal movement rate (around 0.23), and a minority state with a much higher rate, around 2.2-2.3. The majority state has a high retention rate (reflected in the transition parameter p22 around 0.96) while movement out of the minority state is much more frequent. 

The actual number of movements yt is predicted closely, though Leroux and Puterman show that using m=3 components leads to even more accurate prediction of actual counts. The model with m=2 shows relatively small CPOs for the movements at times 85 and 193 (counts of 7 and 4 respectively).  

For comparison, and since the outcome is a count, model B consists of an INAR(1) type model for the conditional mean. The ‘innovation’ process is governed by Bernoulli switching between means (1 and (2 (with (2>(1 to guarantee identifiability). Thus

         yt ~ Poi((t)

         (t=     yt-1 + (1(t + (2(1-(t)              t>1

with the first observation having mean

         (1=  (1(1 + (2(1-(1).             
The switcing indicators have prior (t ~ Bern(() with ( itself assigned a beta prior. This model also identifies a sub-population of periods with a much higher movement rate, around 4.5, than the main set of periods. It has a very similar marginal likelihood to the two state Markov switching model (-180 vs –179).

8.11 Other NonLinear Models 

Some of the above models are often characterised as nonlinear, such as the threshold autoregressive approaches. Here some other nonlinear methods are mentioned which bring greater flexibility in modelling certain time series features (e.g. changing volatility, discontinuities in level) but possibly at the cost of computing complexity or heavy parameterisation (Koop and Potter, 1999, p 260). For instance, for large datasets a flexible but highly parameterised generalisation of the stochastic unit root model is the time varying autoregression (TVAR) model (Godsill et al, 2004, p 160), with

          yt = (1tyt-1+(2tyt-2+…(ptyt-p+(t
where (t ~ N(0,(2), and where each of the (kt follow random walk prior or autoregressive priors, for example separate univariate priors (kt ~ N((k(k,t-1,( eq \o(k,2)). If the ( coefficients are to be stationary then RW or AR priors are applied to partial correlation coefficients with transformation back to ( coefficients as discussed in section 8.2.  An extension allows (2 to vary over time also (Godsill et al, 2004, p 161). Discontinuities can be modelled using heavier tailed priors.

Discrete mixture non-linear models also seek to represent time series discontuinuities. Wong and Li (2000) mention mixture autoregressions with K components differing in lag order pk and with prior probabilities (k, so that 

              P(yt|Dt-1) = eq \O((,k=1,K) (k (
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where Dt-1 is all data up to t-1. They denote these as MAR(K,p1,p2,..pK) models and discuss their ability to represent changing conditional variances. 

Muller et al (1997) describe a discrete mixture AR schemes using DP priors, making no assumption on stationarity. Suppose there are K possible AR(1) models, each with their own intercept (k0 and lag coefficient (k1 on  yt-1 and each with their own variance.  For example if Gt ~ Categorical(q,1:K) and Gt=k, then

           yt|Gt ~ N((k0+(k1yt-1,1/(k).

The time specific category selector Gt is obtained using a Gaussian kernel prior, with

            Pr(Gt=k)=qtk ( exp(-0.5(yt-1-(k)2/V).

with {(k,V} as additional parameters and the initial condition y0 having a separate prior. The parameters (k={(0k,(1k,(k,(k} are selected from candidate values (eq \O(k,*)={(eq \O(0k,*),(eq \O(1k,*),(eq \O(k,*),(eq \O(k,*)} using a Dirichlet process prior with concentration parameter (, so allowing for greater robustness when there are jumps in series or multimodality. Conditional on (eq \O(k,*) and yt, the predictive distribution for yt+1 is a locally weighted mixture of normal linear autiregressions. A particular application is to harmonic process models (West, 1995) whereby periods (k=2(/[acos(0.5(k)] are estimated from the model 

             yt |Gt=k ~ N((kyt-1-yt-2,1/(k).

where for stationarity, the constraint |(k| < 2 applies. The kernel prior is now multivariate with 

         qtk (  exp(-0.5(xt-(k)(V-1(xt-(k)) 

where xt=(yt-1,yt-2) and (k =((1k, (2k), and V is a covariance matrix.

Example 8.14 Lynx Data, AR Mixtures

Wong and Li (2000) consider the well known lynx data (T=114) and detect a two component mixture (K=2) with lags in y at t-1 and t-2 in each component, namely a MAR(2,2,2) model. The analysis conditions on the first two data points. A two component model is applied here with constraints on (k for identifiability. Another possibility might be a constraint on (k. The lag parameters {(0k,(1k,(2k}, k=1,..,K, are assigned N(0,1) priors. 

The second half of a two chain run of 10000 iterations shows a smaller component ((1=0.30) with (1=(1/(1)0.5=0.09. Means (sd) for the lag parameters are (01= 0.72 (0.26),  (11= 1.07 (0.16) and (21=-0.27 (0.15). For the larger component these parameters have means (sd) of 1.01 (0.16), 1.49 (0.10) and –0.86 (0.10) respectively. One step ahead predictions have an MSE of 0.228 (see Figure 8.7), while the concurrent predictive mean error sum of squares is 0.073. (This is the sum of squared differences between yt and ynew,t divided by 112).

To apply a DP stage on the possible parameters in the components of the AR2 model, the maximum number of possible components is set at M=5, and ( preset at 5. It is assumed that V ~ U(0.5,10), while the (k are uniform within the minimum and maximum of the observed data. A two chain run of 2000 iterations (with the 2nd half for inferences) shows a posterior mean for V of 3.7. The MSE is 0.222, a slight improvement over the standard discrete mixture, with predictive mean ESS of 0.068. Figure 8.8 plots the 112 posterior means of (1t and (2t (time varying lags on yt-1 and yt-2) over times t=3,..T obtained by monitoring the category Gt selected at each iteration for time t.

8.12 Exercises

8.1 In Example 8.2 (Real GNP series) apply the stochastic unit root model yt = (tyt-1+(t with (t ~ N(0,(2), and exp((t)=(t. With p=1 and p=2 in the AR model for the (t series, assess the probability (( is below 0.

8.2 In Example 8.3 (the trapped lynx series) try using priors on the AR and MA coefficients based on the maximum likelihood solution but with the precision downweighted by 10. The maximum likelihood estimates from SPSS are 

                     Mean   S.E.

       (1          2.07   0.126

       (2         -1.77   0.200

       (3          0.49   0.123

       (1          0.90   0.121

       (2         -0.09  0.141

       (3         -0.49  0.100

       (            2.90  0.064

Also consider estimation with the priors as in the worked example but conditioning on the first three data points. Finally consider the model as in the worked example, including modelling of latent pre-series values, but introduce an error outlier mechanism such that with probability 0.05, some (t have variance 10 times (eq \O((,2). How do these options affect parameter estimates and one step ahead predictions? 

8.3 In Example 8.5 (Expenditure & Income) try including binary predictor selection indicators in the VAR(4) model (e.g. in an SSVS prior) and compare inferences on lag effects to a model without any form of predictor selection. 

8.4 Consider data on monthly totals (000s) of international airline passengers from  January 1949 to December 1960 (T=144) (see Exercise 8_4.odc). Among features of the data are an increasing trend, seasonal effects (higher totals in summer months), and increasing variability. Consider a model with heteroscedastic seasonal effects and a growth trend, namely

                    yt = (t+st+(t
                    (t=(t-1+(t+(1t
                    (t=(t-1+(2t
                    st=- eq \O((,j=1,11)st-j+(3t
where (t is normal white noise, (1t and (2t have constant variances but (3t has an evolving variance. One option is to adapt the following code by introducing appropriate priors for the initial values (beta.init, logtaus.init, etc). 

model {for (t in 1:T) {  y[t] ~ dnorm(m.y[t],tau[4])

                                      m.y[t] <- mu[t] +s[t]}

for (t in 2:T){  mu[t] ~ dnorm(m.mu[t],tau[1])

                       m.mu[t] <- mu[t-1]+beta[t-1]

                       beta[t] ~ dnorm(beta[t-1],tau[2])}

                       beta[1] <- beta.init

 for (t in 12:T) { s[t] ~ dnorm(m.s[t],taus[t])

                           m.s[t] <- -sum(s[t-11:t-1])

                           taus[t] <- exp(logtaus[t]); 

                           logtaus[t] ~ dnorm(logtaus[t-1], tau[5])}

                        logtaus[11] <- logtaus.init

# initial seasonal conditions

                      for (j in 1:11) {s[j] <- s.init[j]}

# variances

                       logtau[1:5] ~ dmnorm(nought[],T[,])

                       for (j in 1:5) { tau[j] <- exp(logtau[j])

                                            var[j] <- 1/tau[j]}}

8.5 In Example 8.7 (gas demand) consider the option where (t follows a Student t obtained via a scale mixture with degrees of freedom ( set at 5. So weights wt (reducing the precision 1/(2) are obtained from a Gamma density G(2.5,2.5). Compare the predictive loss criterion  C(k) (see section 2.6 and eqn 6 in Gelfand and Ghosh, 1998) for this model and the two models already considered. This criterion is

           C(k)=  eq \O((,i=1,n) var(ynew,i) + [k/(k+1)] eq \O((,i=1,n) {E(ynew,i) – yi}2

where var(ynew) and E(ynew) are obatined over a large number of MCMC iterations; try k=1 and k=1000. Does allowing ( to be a free parameter improve C(k) for the scale mixture option?

8.6  In Example 8.8 (reconstructing signal) compare the fit of an RW(3) model with the RW(2) normal errors model for the signal using a pseudo marginal likelihood method (based on MC estimates of log CPOs), the DIC, or other model assessment approach. Also examine the fit compared to the true series. Finally consider whether a Student t errors RW prior in f[t], (obtained via scale mixing with known degrees of freedom (=4) improves estimation of the true series.

8.7 Using the binary REM sleep data from Carlin and Polson (1992) (see Exercise 8_7.odc) apply a dynamic logistic model with scale mixing on the variance of the states, and with degrees of freedom assigned the prior used by Knorr-Held (1999). Thus 

                   yt ~ Bern((t)

                   logit((t)=(t
                    (t ~ N((t-1,V/(t)   t>1

                    (t ~ Ga(0.5(,0.5()

with appropriate priors for the initial value (1 and with an equally weighted discrete prior on (=2k, for k=-1,-0.9,-0.8,…6.9,7. Consider the form of the density for the one step ahead state (121 at T=120.

8.8 For the AIDS data (Example 8.6) apply the autoregressive conditional mean model

                yt|(t ~ Po((t)

                (t = ( + 1yt-1+ ((t -1,                    
with positive priors on all parameters and with and without stationaity assumed for {1, (}. How do the forecasts for t=15,16, etc compare to those of the INAR model fitted in Example  8.6.

8.9 Consider the time series yt on t=1,..,T counts of coalmining disasters from Carlin et al (1992b). The series runs from 1851 to 1962. and a lower rate of disasters is suggested from the late 19th century by simple plots. Carlin et al consider a change point model

                   yt ~ Poi((1) 


t ( (
                   yt ~ Poi((2) 


t > (
where (1#(2 with independent gamma priors on (1 and (2 and a discrete uniform prior for ( on (1,...N). So (1 ~ G(a1,b1), (2~G(a2,b2) where a1 and a2 are known constants and an additional gamma prior stage is put on b1 and b2 , namely b1 ~ G(g1,h1) and b2 ~ G(g2,h2). One possible expression of such a model is as

      yt ~ Poi((t)

      log((t) = (1 + (2 I(t ( () 

      (j ~ N(0,Vj), j=1,2

      ( ~ U(1,T)

where the Vj are known and I(u)=1 if u is true. Consider this model and a two change point model defined by 

      log((t) = (1 + (2 I(t ( (1) + (3 I((1 < t ( (2)

Does the latter improve over the single change point model?

8.10 In Example 8.11 (structural shifts in unemployment) assess the fit of a model assuming ( and var((t) unknown whereas (1 and (2 are preset (e.g. at 0.05). Are inferences changed with regard to outlier time points?

8.13 References

Albert, J, Chib, S (1993) Bayes inference via Gibbs sampling of autoregressive time series subject to Markov mean and variance shifts. J. Bus. Econ. Stat., 11, 1-15.

Altman, R (2004) Assessing the goodness-of-fit of hidden Markov models. Biometrics 60, 444–450

Ameen, J, Harrison, P (1985) Normal discount Bayesian models. Bayesian Statistics 2, Proc. 2nd Int. Meet., Valencia/Spain 1983, pp 271-298

Armstrong, S, Fildes, R (1995) On the selection of error measures for

comparisons among forecasting methods. Journal of Forecasting, 14, 67-71

Bac, C, Chevet,J, Ghysels, E (2001) Time-series model with periodic stochastic regime switching. Macroeconomic Dynamics, 5, 32-55

Barndorff-Nielsen, O, Schou, G (1973) On the parameterization of autoregressive models by partial autocorrelation. J. Multiv Analysis, 3,408-419

Barnett, G, Kohn, R, Sheather, S (1996) Bayesian estimation of an autoregressive model using Markov chain Monte Carlo,  J. Econometrics,  74,  237-254

Bass, F, Bruce, N, Majumdar, S, Murthi, B (2005) A dynamic Bayesian model of advertising copy effectiveness in the telecommunications sector. Marketing Sci Forthcoming

Bauwens, L, Lubrano, M (1995) Bayesian and classical econometric modeling of time series. Journal of Econometrics 69, l-4

Bauwens, L, Lubrano, M (1998) Bayesian inference on GARCH models using the Gibbs sampler. Econometrics J., 1, C23-C46.

Bauwens L, Lubrano M, Richard J (2000) Bayesian Inference in Dynamic Econometric Models. Oxford University Press, New York.

Benjamin M, Rigby R, Stasinopoulos D (2003) Generalized autoregressive moving average models. J. Amer. Stat. Assn, 98, 214-223

Berg, A, Meyer, R, Yu, J (2004) Deviance information criterion for comparing stochastic volatility models. J. Bus.Econ. Stat., 22, 107-120

Berger, J, Yang, R (1994) Noninformative priors for Bayesian testing for the AR(1) model, Econometric Theory, 10, 461-482

Berliner, L (1996) Hierarchical Bayesian time series models. In Hanson, K, Silver, R (eds) Maximum Entropy and Bayesian Methods, Kluwer Academic

Billio, M, Monfort, A, Robert, C (1999) Bayesian estimation of switching ARMA models. J. Econometrics, 93, 229-255.

Box, G, Jenkins, G (1970) Time Series Analysis: Forecasting and Control, Holden-Day: New York

Brandt, P, Freeman, J (2006) Advances in Bayesian time series modeling and the study of politics: theory testing, forecasting, and policy analysis. Political Analysis, 14,1–36

Broemeling, D, Cook, P (1993) Bayesian estimation of the mean of an autoregressive process. J. Appl. Statistics, 20, 25-38

Calder, C, Holloman, C, Higdon, D (2002) Exploring space-time structure in ozone concentration using a dynamic process convolution model. In Carriquiry, A, Gelman, A, Gatsonis, C (eds), Case Studies in Bayesian Statistics, vol. 6. Springer: New York, 165-176.

Campbell, E (2004) Bayesian selection of threshold autoregressive models. J. Time Series Ana, 25, 467–82.

Canova, F. Ciccarelli, M (2001) Forecasting and turning-point predictions in a Bayesian panel VAR model. Discussion Paper Series- Centre For Economic Policy Research London

Cardinal, M, Roy, R, Lambert, J (1999) On the application of integer-valued time series models for the analysis of disease incidence. Statist. Med. 18, 2025-2039

Cargnoni, C, Müller, P, West, M (1997) Bayesian forecasting of multinomial time series through conditionally Gaussian dynamic models, J. Amer.Stat. Assn., 92, 640-647

Carlin, B, Polson, N, Stoffer, D (1992a) A Monte Carlo approach to non-normal and nonlinear state space modeling. J. Amer.Stat. Assn., 87, 493–500.

Carlin, B, Gelfand, A, Smith, A (1992b) Hierarchical Bayesian analysis of change-point problems. Applied Statistics 41, 389–405.

Carlin, B, Polson, N (1992) Monte Carlo Bayesian methods for discrete regression models and categorical time series. In Bayesian Statistics 4, J. Bernardo et al (eds), Clarendon Press: Oxford, 577-586

Carter, C, Kohn, R (1994) On Gibbs sampling for state space models. Biometrika 81, 541-553 

Chen, C (1999) Subset selection of autoregressive time series models. J. Forecasting, 18, 505-516 

Chen, M, Ibrahim, J (2000) Bayesian predictive inference for time series count data. Biometrics 56, 678-68

Chib, S (1993) Bayes regression with autoregressive errors: a Gibbs sampling approach. Journal of Econometrics, 58, 275-294

Chib, S (1996) Calculating posterior distributions and modal estimates in Markov mixture models. Journal of Econometrics 75, 79–98.

Chib, S (1998) Estimation and comparison of multiple change-point models. J. Econometrics, 86, 221-241

Chib, S, Nardari, F, Shephard, N. (2002) Markov Chain Monte Carlo methods for stochastic volatility models. Journal of Econometrics, 108, 281-316.

Chib, S, Greenberg, E (1994) Bayes inference in regression models with ARMA(p,q) errors. Journal of Econometrics, 64, 183-206

Clark, J (2003) Uncertainty and variability in demography and population growth: a hierarchical approach. Ecology, 84, 1370–1381.

Cooper, B, Lipsitch, M (2004) The analysis of hospital infection data using hidden Markov models. Biostatistics, 5, 223–237.

Cox, D, Hinkley, D, Barndorff-Nielsen, O (1996) Time series models in econometrics, finance and other fields. Monographs on Statistics and Applied Probability. 65. London: Chapman and Hall.

Cryer, J (1986) Time series analysis. Boston: Duxbury Press.

Czado, C, Song, P (2001) State space mixed models for longitudinal observations with binary and binomial responses. Discussion Paper 232, SFB 386, University of Munich

Czado, C, Müller, G (2004) An autoregressive ordered probit model with application to high frequency financial data. J. Comp. Graph. Stats, 14, 320-338.

Davis, R, Dunsmuir, W, Wang, Y (2000) On autocorrelation in a Poisson regression model.  Biometrika 87,  491-506

Davis, R, Dunsmuir, W, Streett, S (2003) Observation-driven models for Poisson counts.  Biometrika, 90: 777-790

De Pace, P 2005. Grid-Bootstrap Methods vs. Bayesian Analysis. Testing for Structural Breaks in the Conditional Variance of Nominal Interest Rate Spreads - Four Cases. Econometrics 0509011, EconWPA.

Doan, T, Litterman, R, Sims, C (1984) Forecasting and conditional projection using realistic prior distributions. Econometric Reviews 3, 1–100.

Dobson A (1984) An Introduction to Statistical Modelling. Chapman & Hall: London

Durbin, J, Koopman, S (2001) Time Series Analysis by State Space Methods. Oxford Statistical Series 24, Oxford University Press

Engle, R (1982) Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation. Econometrica, 50, 987-1007

Engle, R, Russell, J (1998) Autoregressive conditional duration: a new model for irregularly spaced transaction data. Econometrica 66, 1127-1162.

Fahrmeir, L (1992) Posterior mode estimation by extended Kalman filtering for multivariate dynamic generalized linear models. Journal of the American Statistical Association, 87, 501-509 

Fahrmeir, L, Knorr-Held, L (2000) Dynamic and semiparametric models. In Schimek, M (ed.), Smoothing and Regression: Approaches, Computation and Application. Wiley: New York, 513-544. 

Fahrmeir, L, Lang, S (2001) Bayesian inference for generalized additive mixed models based on Markov random field priors. J. Roy. Stat. Soc., Ser C, 50, 201-220.

Feder, M. (2001) Time series analysis of repeated surveys: the state-space approach. Statistica Neerlandica, 55, 182-199.

Fokianos, K (2001) Truncated Poisson regression for time series of counts. Scandinavian Journal of Statistics, 28, 645-659

Fomby, T, Guilkey, D (1978) On choosing the optimal level of significance for the Durbin-Watson test and the Bayesian alternative, Journal of Econometrics 8, 203-213.

Freeland, R, McCabe, B (2004) Analysis of low count time series data by Poisson autoregression. Journal of Time Series Analysis, 25, 701-722

Fruhwirth-Schnatter, S (1994) Data augmentation and dynamic linear models.  J. Time Ser. Ana., 15, 183-20

Fuller, W (1976) Introduction to Statistical Time Series. Wiley: New York

Giakoumatos, S, Dellaportas, P, Politis, D (2005) Bayesian analysis of the unobserved ARCH model. Statistics & Computing,15, 103-11

Gamerman, D. (1998). Markov Chain Monte Carlo for dynamic generalized linear models. Biometrika, 85, 215-227

Gelfand, A, Ghosh, S (1998) Model choice: a minimum posterior predictive loss approach. Biometrika, 85, 1-11

George E, McCulloch R (1993) Variable selection via Gibbs sampling. Journal of the American Statistical Association, 88, 881-889 

Gelman, A, Carlin, J, Stern, H, Rubin, D (1995) Bayesian Data analysis, 1st edition Chapman and Hall Texts in Statistical Science Series. London: Chapman & Hall. 

Gerlach, R, Park, Tuyl, F (2005) MCMC methods for comparing stochastic volatility and GARCH models. International J. Forecasting.

Geweke, J, Terui, N (1993) Bayesian threshold auto-regressive models for nonlinear time series. J. Time  Ser. Ana., 14, 441-454

Ghosh, M, Heo, J (2003) Default Bayesian priors for regression models with first-order autoregressive residuals. J. Time Ser. Ana., 24, 269-282

Ghysels, E, McCulloch, R, Tsay, R (1998) Bayesian Inference for Periodic Regime-Switching Models. Journal of Applied Econometrics, 13,  129-143

Giakoumatos, S, Dellaportas, P, Politis, D (2005) Bayesian Analysis of the Unobserved ARCH Model. Statistics and Computing, 15, 103-111

Godsill S, Doucet A, West M (2004) Monte Carlo smoothing for non-linear time series. J. Amer. Stat. Assn., 99, 156-168

Gordon, K, Smith, A (1990) Modeling and monitoring biomedical time-series, J. Amer. Stat. Assn., 85, 328-337

Greene, W (2000) Econometric Analysis, 4th ed. Prentice Hall, New Jersey.

Grunwald, G, Hyndman, R, Tedesco, L, Tweedie, R (2000) Non-Gaussian conditional linear AR(1) models. Aust. N. Z. J. Stat. 42, 479–495

Harvey, A (1989) Forecasting, Structural Time Series Models and the Kalman Filter. Cambridge University Press

Harvey, A, Ruiz, E, Shephard, N (1994) Multivariate stochastic variance models. Rev. Econ. Stud. 61, 247-264

Harvey, A, Trimbur, T, van Dijk, H (2005) Trends and cycles in economic time series: a Bayesian approach. Working Paper, University of Cambridge, UK.

Helfenstein, U (1991) The use of transfer-function models, intervention analysis and related time-series methods in epidemiology. International J. Epidemiology, 20, 808-815

Henrici, P (1974) Applied and Computational Analysis, Vol 1. Wiley: New York

Hoek H, Lucas, A, van Dijk H (1995) Classical and Bayesian aspects of robust unit root inference, J. Econometrics, 69, 27-59

Houseman, Coull, B, Shine, J (2004) A nonstationary negative binomial time series with time-dependent covariates: enterococcus counts in Boston harbor. Harvard University Biostatistics, Working Paper Series, No 17

Huerta, G, West, M (1999) Priors and component structures in autoregressive time series models. J. Roy. Stat. Soc.B, 61, 881-899

Jacquier, E, Polson, N, Rossi, P (2004) Bayesian analysis of stochastic volatility models with fat tails and correlated errors. J. Econometrics, 122, 185– 212.

Johnson, D, Hoeting, J (2003) Autoregressive models for capture-recapture data: a Bayesian approach. Biometrics, 59, 341–350

Jones, M (1987) Randomly choosing parameters from the stationarity and invertibility region of autoregressive-moving average models. Applied Statistics, 36, 134-138 

Jones, C,   Marriott, J (1999) A Bayesian analysis of stochastic unit root models. In Bernardo, J (ed.) et al., Bayesian Statistics 6. Proceedings of the 6th Valencia international meeting. Clarendon Press: Oxford, 785-794

Judge, G, Hill, R, Griffiths, W, Luetkepohl, H, Lee, T (1988) Introduction to the Theory and Practice of Econometrics. 2nd ed. Wiley: New York 

Jung, R, Tremayne, A (2003) Testing for serial dependence in time series models of counts. Journal of Time Series Analysis, 24, 65-84

Robert Jung, Martin Kukuk and Roman Liesenfeld (2005) Time Series of Count Data: Modelling and Estimation. Economics Working Paper 2005-08 Christian-Albrechts-UniversitÄat.

Jung, R, Tremayne, A (2006) Binomial thinning models for integer time series. Statistical Modelling (forthcoming)

Kaufmann, S, Fruhwirth-Schnatter, S (2002) Bayesian analysis of switch ing ARCH Models. J. Time Series Ana., 23, 425-458

Kim, S, Shephard, N, Chib, S (1998). Stochastic volatility: likelihood inference and comparison with ARCH models. Rev. Econ. Studies, 65, 361–393.

Kim, C, Nelson, C (1999) State-space models with regime switching: classical and Gibbs-sampling approaches with applications. MIT Press (Cambridge, MA)

Kitagawa, G (1987) Non-Gaussian state-space modelling of nonstationary time series. J. Amer. Stat. Assn., 82, 1032-1063

Kitagawa, G, Gersch, W (1996) Smoothness Priors Analysis of Time Series. Lecture Notes in Statistics 116. Springer: New York

Knorr-Held, L (1997) Hierarchical Modelling of Discrete Longitudinal Data - Applications of Markov Chain Monte Carlo. Herbert Utz Verlag: Munich.

Knorr-Held, L (1999) Conditional prior proposals in dynamic models, Scandinavian J. Statistics, 26, 129-144

Koop, G, Potter, S (1999) Bayes factors and nonlinearity: evidence from economic time series. J. Econometrics 88, 251-281

Leroux, B, Puterman, M (1992) Maximum penalized likelihood estimation for independent and markov-dependent Poisson mixtures. biometrics, 48, 545-558

Lin T, Pourahmadi M (1998) Nonparametric and non-linear models and data mining in time series: a case-study on the Canadian lynx data Applied Statistics, 15, 187-201 

Litterman, R (1986) Forecasting with Bayesian vector autoregressions—five years of experience. J. Bus. Econ. Stat. 4, 25–38.

Lopes, H, Salazar, E (2005) Bayesian model uncertainty in smooth transition autoregressions. J. Time Series Ana. Online publication date: 15-Sep-2005

Lubrano, M (1995) Bayesian tests for cointegration in the case of structural breaks. Recherches Economiques de Louvain, 61, 479-507

McCabe, B, Martin, G (2005) Bayesian predictions of low count time series. Int. J. Forecasting, 21, 315-330.

McCulloch, R, Tsay, R (1994) Statistical analysis of economic time series via Markov switching models. J. Time Series Ana., 15, 523-539.

McKenzie, E (1988) Some ARMA models for dependent sequences of Poisson counts, Adv. Appl. Probab. 20, 822-835

Maddala, G, Kim, I (1996) Bayesian detection of structural changes. In Berry, D, Chaloner, K, Geweke, J, Maddala, G, Kim, I (eds), Bayesian Analysis in Statistics and Econometrics, Wiley: New York, 359-370.

Mariano, R, Tanizaki, H (2000) Simulation-based inference in non-linear state space models: application to testing the permanent income hypothesis. In Mariano, R, Weeks, M, Schuermann, T, (eds.), Simulation-Based Inference in Econometrics: Methods and Applications. Cambridge University Press, 218-234

Marriott, J (1988) Reparameterisation for Bayesian inference in ARMA time series. Bayesian statistics 3, North Holland: Amsterdam, 701-704 

Marriott, J, Smith, A (1992) Reparameterisation aspects of numerical Bayesian methodology for ARMA models. J. Time Series Ana., 13, 327-343

Marriott, J, Ravishanker, N, Gelfand, A, Pai, J (1996) Bayesian analysis of ARMA processes: complete sampling based inference under exact likelihoods, Chapter 20 in Berry, D et al (eds) Bayesian Analysis in Statistics and Econometrics, Wiley: New York.

Marriott, J, Newbold, P (2000) The strength of evidence for unit autoregressive roots and structural breaks: A Bayesian perspective.  J. Econom. 98, 1-25

Martin, G (2000) US deficit sustainability: a new approach based on multiple endogenous breaks. J. Appl. Econom., 15, 83-105

Meyer, R. (2000) Applied Bayesian data analysis using state-space models. In Gaul, W, Opitz, O, Schader, M (eds) Data Analysis: Scientific Modeling and Practical Applications. Springer Studies in Classification, Data Analysis, and Knowledge organization. Springer: New York, 259-271.

Meyer, R, Yu, J (2000) BUGS for a Bayesian analysis of stochastic volatility models. Econometrics J, 3, 198–215.

Meyer, R, Millar, R (1999) BUGS in Bayesian stock assessments. Can. J. Fish. Aquat. Sci., 56, 1078-1087.

Miazhynskaia, T, Fruhwirth-Schnatter, S, Dorffner, G (2003) A comparison of Bayesian model selection based on MCMC with an application to GARCH-type models. Vienna University of Economics

and Business Administration, Report No 83.

Migon, H (2000) The prediction of Brazilian exports using Bayesian forecasting. Inverstigación Operativa, 9, 95-106

Migon, H, Harrison, P (1985) An application of non-linear Bayesian forecasting to television advertising. In Bayesian Statistics 2, ed. Bernardo, J, DeGroot, M, Lindley, D, Smith, A. North Holland: Amsterdam, 681-696

Migon, H, Gamerman, D, Lopes, H, Ferreira, M (2005) Dynamic Models. In Handbook of Statistics, Vol. 25 (eds D. Dey & CR Rao) Elsevier, 553-588

Mueller, P, West, M, MacEachern, S (1997) Bayesian models for non-linear auto-regressions. J. Time Series Ana., 18, 593-614

Munch, S, Mangel, M, Kottas, A (2005) Environmental regimes and density-dependence: a Bayesian modeling approach for identifying recruitment regimes. UCSC Department of Applied Math and Statistics Technical Reports, AMS 2005-05. University of California

Naylor J, Smith A (1988) Econometric illustrations of novel numerical-integration strategies for Bayesian inference. J. Econom., 38, 103-125

Naylor, J, Marriott, J (1996) A Bayesian analysis of non-stationary AR series. Bayesian Statistics 5, J Bernardo, et al (eds), OUP, pp 705-712

Nelson, C, Plosser, C (1982) Trends and random walks in macroeconomic time series. J. Monetary Economics, 10, 139–162

Newbold, P (1974) The exact likelihood function for a mixed autoregressive-moving average process. Biometrika 61, 423-426

Odejar, M, McNulty, M (2001) Bayesian analysis of the stochastic switching regression model using Markov Chain Monte Carlo methods. Computational Econ., 17, 265-284

Oh, M-S, Lim, Y (2001) Bayesian analysis of time series Poisson data. J. Appl. Stat., 28, 259- 271

Pai, J, Ravishanker, N, Gelfand, A (1994) Bayesian-analysis of concurrent time-series with application to regional IBM revenue data, J. Forecasting, 13, 463-479

Pastor-Barriuso, R, Guallar, E, Coresh, J (2003) Transition models for change-point estimation in logistic regression. Statist. Med., 22, 1141–1162

Pitt M, Shephard N (1999) Time varying covariances: A factor stochastic volatility approach. In J. Bernardo, J. Berger, A. Dawid, A. Smith (eds.), Bayesian Statistics 6. Oxford University Press, 547–570.

Pole, A, West, M, Harrison, P (1994) Applied Bayesian Forecasting & Time Series Analysis. Chapman and Hall: London

Politis, D (2006) A multivariate heavy-tailed distribution for ARCH/GARCH residuals.  Advances in Econometrics, 20, 105-124,

Pruscha, H (1993) Categorical time series with a recursive scheme and with covariates. Statistics, 24, 43-57

Quandt, R (1958) The estimation of the parameters of a linear regression system obeying two separate regimes. J. Amer. Stat. Assn., 53, 873–880.

Ravishanker, N, Ray, B (1997) Bayesian analysis of vector ARMA models using Gibbs sampling.  J. Forecasting , 16, 177-194

Ritschl, A. Woitek, U (2000) Did Monetary Forces Cause The Great Depression? A Bayesian VAR Analysis For The US Economy. Discussion Paper Series, Centre For Economic Policy Research London.

Rosenberg, M, Young, V (1995) A Bayesian approach to understanding time series data.  N. Amer. Actuarial J. 3, 130-143.

Schotman, P (1994) Priors for the AR(1) model - parameterization issues and time-series considerations. Econom. Th., 10, 579-595.

Shephard, N (1996) Statistical aspects of ARCH and stochastic volatility. In: Cox, D, Hinkley, D, Barndorff-Nielson, O (eds) Time Series Models in Econometrics, Finance and Other Fields. Chapman & Hall, London, 1–67.

Shumway, R, Stoffer, D (1991) Dynamic linear models with switching. J. Amer. Stat. Assn., 86, 763-769

Sims, C (1980) Macroeconomics and reality, Econometrica 48, 148.

Sims, C, Zha, T (1998) Bayesian methods for dynamic multivariate models. International Economic Review, 39, 949–968.

Smith, M, Wong, C, Kohn, R. (1998) Additive nonparametric regression with autocorrelated errors. Journal of the Royal Statistical Society B, 60, 311-331.

Spezia, L, Paroli, R, Dellaportas, P (2004) Periodic Markov switching autoregressive models for Bayesian analysis analysis and forecasting of air pollution.  Statistical Modelling, 4, 19-38.

Steele, M (2006) Bayesian time series analysis. Working paper, Dept of Statistics, Warwick University

Stephens, D (1994) Bayesian retrospective multiple-changepoint identification. Applied Statistics, 43, 159–178.

Strachan, R, Inder, B (2004) Bayesian analysis of the error correction model. Journal of Econometrics, 123, 307-325

Tanizaki, H, Mariano, R (1998) Nonlinear and non-Gaussian state-space modeling with Monte Carlo simulations. J. Econometrics, 83, 263 - 290

Tanizaki, H (2003) Nonlinear and non-gaussian state-space modeling with Monte Carlo techniques: a survey and comparative study.  In Rao, C, Shanbhag, D (eds), Handbook of Statistics, Vol.21: Stochastic Processes: Modeling and Simulation, North Holland, 871-929 

Teräsvirta, T (1994) Specification, estimation, and evaluation of smooth transition autoregressive models. Journal of the American Statistical Association, 89, 208-218.

Tong, H (1983) Threshold models in non-linear time series analysis. Lecture Notes in Statistics, 21, Springer—Verlag: Berlin.

Vermaak, J, Andrieu, C,Doucet, A, Godsill, S (2004) Reversible Jump Markov Chain Monte Carlo strategies for Bayesian model selection in autoregressive processes. J. Time Series Ana., 25, 785-809

Vrontos, I, Dellaportas, P, Politis, D (2003) Inference for some multivariate ARCH and GARCH models. J. Forecasting, 22, 427–446 

Waggoner, D, Zha, T (1999) Conditional forecasts in dynamic multivariate models. Review of Economics and Statistics 81, 639–651.

Wang, J, Zivot, E (2000) A time series model of multiple structural changes in level, trend and variance. J. Business & Economic Statistics, 18, 374-386

West, M (1995) Bayesian inference in cyclical component dynamic linear models. J. Am. Stat. Association, 90, 1301-12.

West, M (1996) Bayesian time series. In Hanson, K, Silver, R (eds) maximum Entropy and Bayesian Methods, Kluwer, 23-34

West, M, Harrison, J (1997) Bayesian Forecasting and Dynamic Models, 2nd ed. Springer-Verlag, New York.

West, M, Harrison, J, Migon, H (1985) Dynamic generalised linear models and Bayesian forecasting. Journal of the American Statistical Association, 80, 73-83

Western, B, Kleykamp, M (2004) A Bayesian change point model for historical time series analysis. Political Analysis, 12, 354–374.

Wong, C, Li, W (2000) On a mixture autoregressive model. J. R. Statist. Soc. B, 62, 95-115.

Yu, J (2005) On leverage in a stochastic volatility model. Journal of Econometrics, 127, 165–178

Zeger, S (1988) A regression model for time-series of counts. Biometrika 75, 621-629

Zeger, S, Qaqish, B (1988) Markov regression models for time series: a quasi-likelihood approach. Biometrics, 44, 1019-1031

Zellner, A (1985) Bayesian econometrics, Econometrica, 53, 253-270.

Zellner, A (1996) An Introduction to Bayesian Inference in Econometrics.  John Wiley: New York

Zellner, A, Tiao, G. (1964) Bayesian analysis of the regression model with autocorrelated errors Journal of the American Statistical Association, 59, 763-778

Zhou, H (2005) Nonlinearity or structural break? - data mining in evolving financial data sets from a Bayesian model combination perspective. Proc.38th Hawaii Int. Conf. on System Sciences. 

http://doi.ieeecomputersociety.org/10.1109/HICSS.2005.456

Zuccolo, L, Maule, M, Gregori, D (2005) An epidemiological application of a Bayesian nonparametric smoother based on a GLMM with an autoregressive error component. Metodoloski Zvezki, 2, 259-270









PAGE  
60

_1093396703.unknown

_1093396868.unknown

_1093396900.unknown

_1210348387.unknown

_1093396780.unknown

_1087436657.unknown

_1093396616.unknown

_1061828268.unknown

