Chapter 12 Latent Variable and Structural Equation Models for Multivariate Data

12.1 Introduction: Latent Traits and Latent Classes

In the analysis of both continuous and discrete responses, the goal of introducing latent variables is to improve the understanding of multivariate collections of measured (i.e. observed) variables, by a parsimonious latent variable model that is of lesser intrinsic dimension, and also accounts for  intercorrelations and other features in the observed data (Bartholomew and Knott, 1999; Wedel et al, 2003). The latent variables are unobserved constructs that summarise the set of observed indicators and are imperfectly measured by these indicators. These latent variables may be either continuous (as in latent trait factor analysis) or categorical, as in latent class analysis (Wilcox, 1983; Berkhof et al, 2003). The original variables might themselves be discrete or continuous and may measure either continuous or categorical latent variables. For example, in psychometrics the observations might be multiple binary items (right/wrong responses) and a latent metric variable might be assumed, reflecting a specific ability or general intelligence (Johnson and Albert, 1999). On the other hand a set of items measuring ability to perform certain coordination tasks might be taken to represent a discrete latent developmental category. A regression relationship between the latent variables leads to a broader class of structural equation models, abbreviated as SEMs  (Dunson et al, 2005). Such models may involve latent classes and continuous latent traits for a single dataset (Guo et al, 2006). 
Latent trait and latent class analysis are a particular form of the more general classes of random effects and discrete mixture models respectively, with Skrondal and Rabe-Hesketh (2004) and Muthen (2002) giving unified treatments. However, in terms of their implementation via MCMC techniques, such models may raise labelling and identification issues that are not present in simple random effects models. For latent class (i.e. discrete trait) analysis, the label-switching issues in MCMC analysis are well known and post-processing methods well established (e.g. Garrett and Zeger, 2000). For latent traits, a labelling issue occurs because the direction in which most latent variables are measured is arbitrary (Bartholomew, 1987, p 98), an example being the left-right political spectrum. For example, factor (latent trait) models are generically formed by products of a loading ( and a subject level factor score F and so the schemes (F and (-()(-F) are equivalent. These are referred to as ‘sign changes’ by Everitt (1984, p 16). It follows that non-informative unconstrained priors are not necessarily suitable, and formally constrained priors, preferably supported by subject matter knowledge, may be adopted. Alternatively methods of post-processing the MCMC output may be applied, for example, by considering rankings of factor scores over subjects at each iteration. The ranking might reverse its direction during a MCMC chain due to a switch in the direction of a continuous factor F. 

Formal mathematical identification of factor analysis or SEM models generally requires constraints on loadings or factor variances, even aside from the labelling issue (Stern and Jeon, 2004). These constraints are needed to avoid location and scale invariance (Wedel et al, 2003). Empirical identifiability (identifiability of a complex model from a given set of observations) is an additional issue to mathematical identification (Garrett & Zeger, 2000). Empirical identification of more complex structural equation models, especially with smaller sample sizes or greater measurement error, might require relatively informative priors (Guo et al, 2006). Lee and Song (2004, p 143) suggest a preliminary run with noninformative priors to generate sensible values for more informative priors. Even classical maximum likelihood methods (Golob, 2003) set guidelines for identification in terms of sample size in relation to the number of parameters, especially when usual assumptions are in doubt (e.g. multivariate normality in linear metric factor analysis).

Prior information is also relevant in defining the model. The latent variables may be defined conceptually before an analysis, in which case only a subset of possible loadings would be free parameters (the rest being set to zero), as in confirmatory factor analysis (Lee and Shi, 2000) or constrained latent class analysis (Hoijtink, 1998). Alternatively there may be little preceding idea about the way a set of responses may be structured, leading to an exploratory analysis. The measured variables may fall naturally into dependent Y1,..YP and predictor variables X1,…XM in which case the latent variables will fall into two categories (exogenous, endogenous) and figure as underlying responses and underlying predictors in a structural equation model. 

While subject to possible labelling issues, Bayesian MCMC applications of factor analysis, SEMs and latent class analysis illustrates greater flexibility in certain settings as compared to classical estimation. Examples include models with nonlinear effects of factors (Song and Lee, 2002) and models introducing a latent scale for discrete data under the Abert & Chib (1993) model for binary or ordinal observations Y or X (Ansari et al, 2000; Lee & Song, 2003). Bayesian applications also demonstrate the potential of posterior predictive model checks, for example, by adapting the usual SEM measures of discrepancy between actual and predicted covariance matrices (Rubin & Stern, 1994; Gelman et al, 1996; Stern & Jeon, 2004; Scheines et al, 1999). Ansari et al (2000, p 481) suggest a posterior predictive check in binary variable factor analysis using an approximation to the tetrachoric correlation. Approximations to the Bayes factor for model choice via the BIC criterion are illustrated by Raftery (1993) and Song & Lee (2002). Lee and Song (2004) demonstrate path sampling to estimate log Bayes factors, while Ansari et al (2000) employ pseudo Bayes factors based on Monte Carlo estimates of the cross-validation predictive density, and Lopes and West (2004) apply a metropolized version of the Carlin-Chib (1995) algorithm to jump between factor models of different dimension.  Finally Dunson (2006) considers a form of SSVS search adapted to factor analysis.

A range of extensions to the basic model types are possible. For example, repeated data on each subject as in longitudinal or multilevel studies allows one to consider heterogeneity in a SEM over subjects, namely subject specific loadings or measurement error variances (Ansari et al, 2000). One may also define latent traits for clusters (e.g. schools) as well as for subjects in multi-level factor analysis (Goldstein and Browne, 2005; Ansari & Jedidi, 2000).  A related situation, multi-group factor analysis, is when variables {Y,X} are observed for groups of subjects, and the goal is to assess whether the parameters of the factor model (e.g. loadings, measurement error variances) need to be distinguished between groups or whether they can be equated without loss of fit (Song and Lee, 2002). Factor and structural equation analysis for mixtures of metric and discrete variables have also been investigated from a Bayesian perspective (Lee and Song, 2004).

12.2 Factor Analysis and SEMs for Continuous Data

Where the observations are continuous and consist of both responses Y and predictors X, a latent trait model often takes the LISREL form (Joreskog, 1973), with a linear structural regression models relating endogenous latent variables F to one another and to exogenous latent variables G, and a measurement model linking observed endogenous indicators Y to F and observed exogenous indicators X to G. Both F and G are continuous and usually assumed normal. With binary, ordinal or multinomial Y or X the LISREL form may also be used in conjunction with augmented data sampling of the latent metric variables underlying the observations (Albert & Chib, 1993; Lee & Song, 2004). There is then ‘doubly missing data’ in terms of, say, the latent continuous zi1, zi2,..., ziP that generate p binary observations yi1,yi2,..yiP, and the latent factors Fi1,..FiQ that explain the correlations between the z variables, typically with Q <<P.

For subject i, the structural model is a simultaneous equation system

           Fi = ( + (Fi + (Gi + ei                 (12.1)

where Fi is a Q(1 vector of endogenous (response) latent variables, Gi is a V(1 vector of exogenous constructs, ei is a Q(1 error vector with covariance (, and ( and ( are Q(Q and Q(V regression coefficient matrices. The form of the covariance (e depends on whether factors are taken orthogonal or oblique (Fokoue, 2004). Assuming continuous observations, the links between observations and constructs are defined by the measurement model

        Yi = (Y + (Fi + ui
                   (12.2)

        Xi = (X + (Gi + vi



where Yi and Xi are vectors of length P and M. The matrices ( and ( are P(Q and M(V matrices of loading coefficients, describing how the observed indicators determine the latent factor scores of an individual, Fi=(Fi1,Fi2,..FiQ) and Gi=(Gi1,…GiV). The measurement errors u and v have diagonal covariance matrices (Y and (X under the assumption of conditional independence, namely that the constructs F and G explain all the covariation among the observed Y and X respectively. This is a common working assumption but can be modified if need be. In this type of model, restrictions to ensure identifiability (and consistent labelling of the constructs) can be applied to either the loadings or to the scale of the factor scores (see section 12.2.1). 

Often the analysis may involve just a multivariate normal measurement model, sometimes called the normal linear factor model (Bartholomew et al, 2002, p 149), namely

       Yi = ( + (Fi + ui


           (12.3)

with Yi a p(1 vector, ( of dimension p(q, ui ~ NP(0, (), and Fi ~ NQ(0,(). The Q latent variables Fi1,..FiQ may be assumed uncorrelated or correlated, subject to the correlations being identifiable. Some of the loadings in ( may be preset to zero in line with a confirmatory approach (Stern and Jeon, 2004). While the standard presentation of the normal linear factor model assume the Fi are independent over subjects, in fact they might be structured, e.g. correlated over space in a geographic application (Hogan & Tchernis, 2004; Wang & Wall, 2003). So for Q>1, and in an application admitting correlations in F scores over both variables and areas, one might use a MCAR normal prior for (Fi1,..FiQ) (see Chapter 9). Several authors have noted that assumption that the Fi are normal may need to be modified in certain applications (Wedel et al, 2003; Wedel & Kamakura, 2001); greater flexibility may also be obtained by discrete mixture SEMs or factor models (Arminger et al, 1999; Utsugi & Kumagai, 2001; Temme et al, 2001; Yung, 1997; Dolan & van der Maas, 1998).

The conditional density of Y given F under (12.3) is N(( + (F, (), whereas the marginal distribution of Y is N((, ((((+(). A factor model such as (12.3) is essentially a model for the covariance matrix (=((((+( of the combined random error (Fi + ui. The model’s identifiability may be assessed by comparing the number of parameters in (, ( and ( against the p(p+1)/2 elements that are contained in the empirical covariance matrix. It is possible to set constraints on ( such that some or all of elements of ( can be identified (Lee and Shi, 2000); see section 12.2.1 for alternative identification devices. However, assume identifiability is gained by assuming a known scale for the factor scores, as in Fi ~ NQ(0,I). The marginal distribution of Y is then N((, (((+(). Stern & Jeon (2004) suggest using classical discrepancy functions in posterior predictive checks; these functions compare the modelled covariance matrix H to the empirical covariance matrix S (or its replicate data equivalent), as in the measure T = tr(SH-1).

It may be noted that under Bayesian estimation via MCMC methods, one typically uses data augmentation in which the scores Fi (the ‘missing data’) are sampled at each iteration to define the complete data likelihood. For given Fi, (12.3) is then analogous to a multivariate normal regression; see Aitkin & Aitkin (2005), Fokoue (2004) and Song and Lee (2002, p. 528) for more on this missing data interpretation. Thus estimation involves alternation between a step to update the density [F|(,Y] of the F scores given the data and the hyperparameters (={(, (, (, (), and a step to update the density of hyperparameters [(|F,Y], given the F scores and Y. 

Gibbs sampler updates for the ( parameters are analogous to those for multivariate normal regression if conjugate priors are used, as discussed in Press and Shigemasu (1989), and subsequent papers (e.g. Zhu and Lee, 1999; Stern & Jeon, 2004, pp 336-338; Song and Lee, 2002, pp 530-533). Gibbs sampling can be extended to discrete mixture Bayesian factor analysis, e.g. Utsugi & Kumagai (2001).  The particular form of full conditional depends on which identifiability constraints are adopted to define F and (, and which form of conditional independence is assumed for Y given F. The update of the loading matrix in a confirmatory analysis is algebraically complicated by the fact that some loading are preset.  If nonlinear effects of F are allowed (section 12.5) then Metropolis-Hastings sampling will be required for updating the F scores.

12.2.1 Identifiability Constraints in Latent Trait (Factor Analysis) Models 

Factor and latent trait models often assess the nature of constructs postulated by substantive theory, or on testing causal hypotheses based on theory. For example, confirmatory factor analysis specifies a loading structure in which only certain loadings are free parameters, and identification is achieved by reducing the parameters to be estimated as compared to the available degrees of freedom, the p(p+1)/2 elements in the covariance matrix of Y (Stern & Jeon, 2004). However, in either confirmatory or exploratory factor analysis, the location and scale of the latent variables have to be set and this requires constraints either on the factor variances or loadings (Steiger, 2002). 

As an example of alternative constraints to define the location and scale of the latent variables, suppose P=4 indicators Y1,..,Y4 are taken to be measures of Q=2 constructs, F1 and F2 in a spatial application. Suppose area indicators Y1 and Y2 (e.g. square roots of percent rates of unemployment and of socially rented households) have loadings 1 and 2 on construct F1 (social deprivation) while indicators Y3 and Y4 (e.g. square roots of percent rates of population turnover and of one person households) have loadings {3,4} on F2 (social fragmentation). In this hypothesized structure, four of eight possible loadings are assumed to be zero; there are no loadings of Y1 and Y2 on F2, or of Y3 and Y4 on F1. Note that the F scores may be correlated over areas (Congdon, 2002; Wang and Wall, 2003; Hogan and Tchernis, 2004) whereas a typical assumption of factor analysis is that the F scores are not correlated over subjects (see, e.g. Stern and Jeon, 2004, p 333). Another question of substantive as well as modelling interest is whether the variables F1 and F2 are taken to be independent or whether correlation is allowed (as in ‘oblique’ factor analysis). 

Since F1 and F2 have arbitrary location and scale, one option to set their location and scale is to define them to be in standardised form, with zero means and variances of unity; see Bentler and Weeks (1980), and Wang and Wall (2003) in a spatial application. This ensures that the variance of the generic loading-factor product (jkFik is determined by (jk and that the factors are not location invariant. If correlation between the two constructs is allowed, it follows that were they taken to be bivariate normal then the covariance matrix is a correlation matrix (so has only one unknown). Under the standardised factors option, all the loadings can be taken as free parameters, apart from those preset to zero under the confirmatory model. So, with spatially unstructured F scores, one might have

                     (Fi1,Fi2)  ~ N 
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                     yi1 = (1 +(11Fi1 + ui1
                     yi2 = (2 +(21Fi1 + ui2
                     yi3  = (3 +(32Fi2 + ui3
                     yi4 = (4 +(42Fi2 + ui4

Since the F are standardized and the constructs are intended to summarise information in the indicators, relatively informative priors, e.g. N(1,1) or N(0,1), may be used for the loadings (Johnson and Albert, 1999). Often a scaling of the observed indicators (e.g. centred or standardized Y) is also useful in empirical identification of a model and in setting priors on precisions (West, 2003). 

An alternative parameterisation to fix the scale of the constructs involves selecting one loading corresponding to each factor - here one among the loadings {(11,(21} and one among {(32,(42} - and setting them to a predetermined non-zero value, usually 1 (e.g. see the example analysis in Stern & Jeon, 2004, p. 340). The variances of F1 and F2 are then free parameters. Suppose (11=(32=1, so that

                     y1i = (1 +      Fi1 + ui1
                     y2i = (2 +(21 Fi1 + ui2
                     y3i = (3 +      FI2 + u3i
                     yi4 = (4 +(42 Fi2 + ui4
with the F now bivariate normal with zero means and with all parameters in the dispersion matrix free. 

This form of constraint is sometimes known as ‘anchoring’ (Skrondal and Rabe-Hesketh, 2004, p 66) and has utility in countering sign changes (i.e. relabelling) of the constructs F1 and F2 during MCMC sampling. Since Y1-Y2 are positive measures of deprivation in this example, setting (11=1 means the construct F1 will be a positive measure of deprivation. If, however, one fixed var(F), so that the F are not scale invariant and all (jk are free parameters, it may be necessary, in order to prevent label switching (switching in the sign of the factor), to set a prior on one or possibly more loadings that constrains them to be positive, e.g.    

                 (11 ~ N(m,C)  I(0,)                     (12.4)

                 (32 ~ N(m,C)  I(0,).

where m and C are known (cf. Treier & Jackman, 2002). If applied to more than one of the set of loadings (jk applied to a particular factor Fik, such constraints would need to be justified by substantive knowledge. Sinharay (2004) uses a prior log((j) ~ N(0,1) on the slopes in an item response analysis, so ensuring that the factor scores Fi are measures of ability. The 2PL (two parameter logit) model for the probability pij of a correct response by pupil i to binary items j is then logit(pij)= (jFi - (j (see section 12.4). A similar constraint is suggested by Albert & Ghosh (2000, p 180) on the basis that the probability of a correct response is an increasing function of the latent ability trait.

When there are Q>1 factors, additional constraints are needed so that the factor structure is not transformation invariant. Thus both ( and F may be subject to transformation by an orthogonal matrix M, namely M(M=I, giving new loadings (M and new scores M(F, without affecting model predictions (Fokoue, 2004). Bartholomew et al (2002, p 218) suggest though that if a factor analysis gives loadings that can be interpreted without rotation, then extra constraints to avoid transformation invariance can be omitted.

Suppose the scores Fik are uncorrelated and have variance 1, and all possible identifiable loadings are of interest, as in an exploratory factor analysis. Then Q(Q-1)/2=1 restrictions on the PQ loadings are required to avoid transformation invariance (Everitt, 1984, p. 18). If ( is diagonal (with P unknown variances), there are P(P+1)/2- {PQ-Q(Q-1)/2+P}=½[(P-Q)2-(P+Q)] degrees of freedom available for the loadings, and so Q must not be too large to cause the degrees of freedom to be negative (Lopes & West, 2004). So, if Q>1, and (jk is the loading on the jth indicator on the kth factor then one might for example impose zero, unity or equality constraints (e.g. for Q=2, set (12=0 or (12=1 or (12=(22). Lopes and West (2004) and Fokoue (2004) suggest constraining ( to be block lower triangular, with diagonal loadings constrained to be positive – this will have a similar effect to the constraint (12.4) in terms of preventing sign changes. 

To improve empirical identifiability, West (2003) and Fokoue (2004) also use shrinkage priors for loadings that discourage small, marginally significant, loadings. Thus West (2003) considers principal component regression where Y=X(+( (X of dimension M) is restated as 

           Y=(F()((()+(=F(+( 

where (((=I, F(F=diag(dj), and F is of dimension K<<M. Then Student t priors on the coefficients (j have the form (j ~ N(0,cj/(j) where (j ~ Ga(0.5(,0.5() and parameters cj=(/j2 penalise coefficients for higher order components.     

Example 12.1 Alienation Through Time

Following the classic study of Wheaton et al (1977) consider a simple model with P=2 endogenous variables (alienation at two time points) and Q=1 exogenous construct (social status). Observed scales y1 and y2  measure alienation F1 in 1967, and {y3,y4} measure the same concept (denoted F2) in 1971. Social status is based on M=2 indicators years of education (x1), and Duncan’s socio-economic index (x2). The structural model includes an autoregression in F as well as a time specific alienation-status link

              Fi2 = (1 + (1Gi + (Fi1 + ei1                          

              Fi1 = (2 + (2Gi + ei2
Since the scale and location of the latent constructs are arbitrary one option is to assume eij ~ N(0,1) and Gi ~ N(0,1) which leaves all loadings in ( and (=((,(,() as free parameters. An alternative is to use the Y and X scales to set the variance of the constructs. With the former option, the Wheaton et al confirmatory measurement model for Y is 

             yi1=(y1 + (11Fi1+ui1                             

             yi2=(y2 + (21Fi1+ui2
             yi3=(y3 + (32Fi2+ui3
             yi4=(y4 + (42Fi2+ui4
with (12=(22=(31=(41=0, while social status Gi is measured using

              xi1=(x1+(11Gi +vi1                            

              xi2=(x2+(21Gi +vi2.
Typically maximum likelihood could finish specification here, but in estimation via MCMC sampling a labelling issue occurs because products such as (11Fi1 in the equation for yi1 can be achieved in two ways. Without further constraints  the score Fi1 might emerge as a positive measure of alienation (with (11 also positive) or as a measure of non-alienation (with (11 negative). To avoid label switching we specify that loadings are constrained positive 

             (jk ~ N(1,1) I(0,)   

             (jk ~ N(1,1) I(0,)    

Since the Y variables are positive measures of alienation, this ensures that the factor scores F will increase as alienation does, and similarly for X in terms of social status.

Gamma priors with index 1 and scale 0.001 (Besag et al, 1995) are assumed on (1=1/var(u1),..,(4=1/var(u4), (5=1/var(v1), and (6=1/var(v2). Analysis in SEM packages usually assumes multivariate normality so that means and covariance matrices are sufficient statistics and so can constitute the input data. In a Bayesian analysis this approach may also be used (e.g. Scheines et al, 1999; Lee, 1981). However retaining a subject focus, with input data Yi =(yi1,..yiP)( and Xi =(xi1,..xiQ)(, makes it easier to identify outliers or adopt robust modelling alternatives, such as scale mixing within a normal prior, leading to a heavier tailed (e.g. Student t) analysis. 

Here the Wheaton et al covariance matrix is used to ‘re-generate’ the sample data on Yi and Xi at individual level (and in centred form with mean zero). This involves obtaining the inverse covariance matrix (T[,] in the following) from the known covariance matrix (Cov[,] in the following).  To introduce some extreme observations we assume a multivariate Student t model with 4 degrees of freedom:   

model { T[1:P, 1:P] <- inverse(Cov[ , ])

             for (i in 1:N) { Z[i,1:6] ~ dmt(m[], T[,], 4) }}

Data: list(m=c(0,0,0,0,0,0),N=932,P=6,

Cov=structure(.Data=c(11.83,6.94,6.82,4.78,-3.84,-21.9,

                                  6.94,9.36,5.09,5.03,-3.89,-18.83,

                                  6.82,5.09,12.53,7.49,-3.84,-21.75,

                                  4.78,5.03,7.49,9.99,-3.62,-18.77,

                                  -3.84,-3.89,-3.84,-3.62,9.61,35.52,

                                  -21.9,-18.83,-21.75,-18.77,35.52,450.2),.Dim=c(6,6)))

With the data so generated in a 932(6 matrix Z, the coding for SEM estimation with two chains is 

model  {   for (i in 1:N) { y1[i] <- Z[i,1];   y2[i] <- Z[i,2];   y3[i] <- Z[i,3];  y4[i] <- Z[i,4];   

                                     x1[i] <- Z[i,5] ;  x2[i] <- Z[i,6]

# structural model

      F1[i] ~ dnorm(.F1[i],1);         .F1[i] <- c[1]*G[i]

      F2[i] ~ dnorm(.F2[i],1);          .F2[i] <- b* F1[i]+c[2]*G[i]

      G[i] ~ dnorm(0,1)

# endogenous construct measurement model

      y1[i] ~ dnorm(1[i],[1]);        y2[i] ~ dnorm(2[i],[2])

      [i] <-  [1]+[1]* F1[i];        [i] <-  [2]+[2]* F1[i]

      y3[i] ~ dnorm([i],[3]);        y4[i] ~ dnorm([i],[4])

      [i] <-  [3]+[3]* F[i];        [i] <-  [4]+[4]* F[i]

# exogenous construct measurement model

      x1[i] ~ dnorm([i],[5]);         x2[i] ~ dnorm([i],[6])

      [i] <-  [5]+[1]* G[i];          [i] <-  [6]+[2]* G[i]}

# priors on regression parameters & precisions (inverse variances)

 for (j in 1:6){[j] ~ dnorm(0,0.001); [j] ~ dgamma(1,0.001)}

 for (j in 1:2) {c[j] ~ dnorm(0,0.001)}    b ~ dnorm(0,0.001)

# priors on loadings

for (i in 1:4) { [i] ~ dnorm(1,1) I(0,)}  for (i in 1:2) {[i] ~ dnorm(1,1) I(0,)}} 

Inits: list(=c(1,1,1,1,1,1), c(1,1,1,1),=c(1,1),c(0,0,0,0,0,0),cc(0,0),b=0)

         list(=c(0.2,0.3,0.2,0.3,5,0.02),c(2,2,2,1.5),=c(3,9),c(0,0,0,0,0,0),cc(-0.5,-0.2),b=0.9)
where the code uses a stacked notation on the loadings. 

Convergence using Gelman-Rubin diagnostics is obtained after 1000 iterations in a 5000 iteration run. Among the inferences that can be made one may note that the lag coefficient ( in the structural model (showing the stability of alienation over time) has a posterior mean 0.90 with 95% credible interval (0.75, 1.15), while higher socio-economic status has a negative though diminishing influence (via (1 and (2) on alienation. 

Instead of a normal error assumption with a single scale, one might use Student t sampling which is more robust to outliers. For example, a Student t model with (1 degrees of freedom for the Y1 regression is obtainable via scale mixing, with          

        yi1 ~ N((Y1 + (11Fi1,( eq \o(2,1)/(i), 

        (i ~ Gamma(0.5(1,0.5(1). 

To identify possible outliers, one may monitor the lowest weights (i. 
12.3 Latent Class Models

In many applications there may be substantive reasons to assume the latent variable is categorical rather than continuous. Latent class analysis (LCA) is a generic term for models with categorical latent variables and applicable both to metric and discrete manifest variables, though typically more common for discrete responses. The choice between using categorical or metric latent variables is often not clearcut, and Bartholomew (1987) and Molenaar and von Eye (1994) explore connections between latent trait and latent class models. For a P dimensional discrete response Y=(Y1,..YP), where Yj has Rj levels, LCA explains the interdependence among the manifest variables by Q < P latent categorical variables Li1,...LiQ, with C1,C2,..CQ categories respectively (Goodman, 1974). The most common latent class models assume conditional or local independence (Formann, 1982): conditional on the level of the latent variables, the manifest variables are independent.

Frequently Q=1, as when P clinical tests may represent morbidity or unknown true diagnosis Li (Rindskopf and Rindskopf, 1986; Castle et al, 1994), whereas Q>1 would be appropriate when a small number of diagnostic subtypes are extracted from a large number of items (Volk et al, 2005). The subject level latent class when Q=1 may also be represented as the multinomial vector (i =((i1,..(iC) where (ic=1 if Li=c and all other (ic are zero. Even though the true diagnosis is unknown, one will be interested in the conditional or item probabilities (cjm that yij=m given Li=c. In diagnostic applications when Li is typically binary, these probabilities estimate sensitivity when the latent class is viewed as the true diagnosis (e.g. Qu et al, 1996). As a social survey example, Tanner (1997) cites the example of P=3 responses to dichotomous questions on abortion attitudes with binary latent class variable Li, namely pro or anti-abortion. The item probabilities give the probability of a positive response to a question given that Li is 1 or 2. 

Under conditional independence, the manifest variables are independent of each other within a given category of the latent variable, namely

Pr(Yi|Li=c) = Pr(yi1= m1 |Li=c) Pr(yi2= m2 |Li=c)… Pr(yiP= mP |Li=c)                                            c=1,..C; i=1,..n

The marginal probability of response profile Yi=(yi1,..yiP)=(m1,…mP) under conditional independence is

 Pr(Yi)= eq \O((,c) (c Pr(Yi|Li=c) 

           = eq \O((,c) (c Pr(yi1= m1 |Li=c) Pr(yi2= m2 |Li=c)… Pr(yiP= mP |Li=c).

Totalling over subjects the marginal likelihood is

               eq \O((,i=1,n) [eq \O((,c) (ceq \O((,p=1,P) eq \O((,k=1,Rp) {Pr(yip= k|Li=c) }dipk]

where dipk=1 if yip=k. The posterior probability that a given subject i belongs to a class c is (Everitt & Hand, 1981, p. 10), 

              (ic=(c Pr(Yi|Li=c)/  eq \O((,c) (cPr(Yi|Li=c)                   (12.5).

Consider a set of binary outcomes (yij=0 or yij=1), with prior probabilities (1,.. (C for C categories of a single latent variable (Q=1), and item probabilities (cj that yij=1 for a subject in class c (c=1,..C; j=1,..P). Then under conditional independence 

      (j =  eq \O((,c) (c Pr(yij=1|Li=c) = (1(1j+(2(2j+…+(C(Cj        j=1,.P

      (kj = (1(1k(1j+(2(2k(2j  +…+(C(Ck(Cj                                   k,j=1,..P

      (kjm = (1(1k(1j(1m+(2(2k(2j(2m+…+(C(Ck(Cj(Cm      k,j,m=1,..P

and so on. In the first expression (j=Pr(yij=1) is the marginal probability of a positive response to item j, in the second (kj is the joint marginal probability of a positive response on items k and j, and so on. Over all subjects and items the conditional and marginal likelihoods of a set of binary observations Yi=(yi1,..yiP) are then

               eq \O((,i=1,n) Pr(Yi|Li=c) = eq \O((,i=1,n)

eq \O((,j=1,P) ( eq \O(cj,yij) (1-(cj)(1-yij) 

and 

                eq \O((,i=1,n) [  eq \O((,c) (c eq \O((,j=1,P) ( eq \O(cj,yij) (1-(cj)(1-yij) ].

As for metric data, Bayesian LCA estimation uses augmented data sampling whereby each subjects latent class L eq \O(i,(t)) ( (1,..,C) (at any MCMC iteration t) is sampled and hence ‘known’, with complete data likelihood then having the form

             eq \O((,i=1,n) eq \O((,j=1,P) ([ L eq \O(i,(t)), j]yij (1-([ L eq \O(i,(t)),j])(1-yij) ]

Let Neq \O(c,(t)) be the number of subjects allocated to class c at the tth iteration. Then with Dirichlet prior ((1,..(C) ~ Dir(a1,..aC), the Gibbs update  is ((eq \O(1,(t)),…,(eq \O(C,(t))) ~ Dir(Neq \O(1,(t))+a1,.., Neq \O(C,(t))+aC). With binary measured variables, let seq \O(cj,(t)) be the number of subjects in class c with a positive response yij=1. Then with beta prior (cj ~ Be(w,w), the Gibbs update is Be(seq \O(cj,(t))+w, Neq \O(c,(t))- seq \O(cj,(t))+w). From (12.5), the multinomial update on the probabilities that Li=c (i.e. that (ic=1) involves probabilities

          (eq \O(ic,(t)) = (eq \O(c,(t))

eq \O((,j=1,P) [( eq \O(cj,(t))]yij [1-( eq \O(cj,(t))]1-yij/ { eq \O((,c=1,C)(eq \O(c,(t))

eq \O((,j=1,P) [( eq \O(cj,(t))]yij [1-( eq \O(cj,(t))]1-yij} 

If Yi includes a categoric variable yim with R categories, and seq \O(cmr,(t)) is the number of subjects in class c sampled to have a response yim=r, then the Gibbs update on (cjm involves a Dirichlet step using elements seq \O(cmr,(t)), r=1,..R.

An alternative non-conjugate parameterisation is exemplified by Garrett and Zeger (2000), and earlier Formann (1982), in terms of gcj = logit((cj) and hj=log((j/(C), typically with normal priors on gcj and hj, and with full-conditionals 

         P(gcj|L,Y) ( P(gcj) eq \O((,i=1,n) [exp(yijgcj)/(1+exp(gcj)](ic
         P(hc|L) ( P(hc) eq \O((,i=1,n)

eq \O((,c=1,C) [exp(hc)/  eq \O((,k=1,C)exp(hk)](ic
         P(Li|h,g,Y)([exp(hLi)/ eq \O((,k=1,C)exp(hk)] [eq \O((,j=1,P) [exp(yijgLij)/(1+exp(gLij)].

The latent class model raises issues of label switching during MCMC chains as in other types of discrete mixture model, and a Bayesian analysis will typically involve either post-processing to remove the effects from the output (Stephens, 2000) or specifying priors to ensure unique labelling. For example, a constraint on the prior density of a categorical latent variable with C=2 classes would typically ensure that one class is always the more frequent. Additional constraints would be applied in confirmatory latent class analysis in line with relevant substantive theory; examples of such constraints and the truncated sampling that this requires are described by Hoijtink (1998).

Latent class analysis extends to joint distributions of several polytomous categorical outcomes or to broader SEM analysis. For example, consider  a two-way table and let Y1 and Y2 denote P=2 manifest variables with levels i=1,..R1 and j=1,..R2 respectively and aggregate counts nij. Let L be a discrete latent variable with levels 1,..C, with (c= Pr(L=c), and let item probabilities be denoted

(ic = Pr(Y1=i(L=c)

(jc = Pr(Y2=j(L=c).

Under conditional independence, the joint marginal probabilities (ij= Pr(Y1=i,Y2=j) can therefore be written

    
(ij=  eq \O((,c=1,C) (c (ic (jc.

The probability of an observation in cell (i,j) belonging to category c of L is then


(ijc = (c(ic(jc/ [(1(i1(j1 + (2(i2(j2+….(C (iC (jC]          (12.6).

Consider the case C=2, with (ij  = (1(i1(j1 + (2(i2(j2. Then one may assume (1 ~ Beta(a,b), (2=1-(1, and since each of the four sets of parameters {(i1},{(j1},{(i2}, and {(j2} sums to one, a Dirichlet prior may be adopted for each set. While it is possible to sample individual class membership indicators (ic one may also sample aggregates such as the unobserved count rij1 of subjects in cell i,j belonging to latent class 1, according to 

          rij1 ~ Bin((ij,nij)                                                                 

where (ij = (1(i1(j1/ [(1(i1(j1 + (2(i2(j2]. For C>2 and P=2, the ( parameters would be Dirichlet and the unobserved data would be sampled using multinomial sampling using the probabilities (12.6). A model for three way counts nijk would use the conditional independence result

         (ijk=  eq \O((,c=1,C) (c (ic (jc (kc
where (kc=Pr(Y3=k|L=c). Another aggregate level model for LCA involves a log-linear model approach (see Example 12.2).

To illustrate LCA as part of a broader SEM, Guo et al (2006) describe a structural equation model for binary indicators Yi=(yi1,..yiP) that are measures of a latent behaviour category, Li ( 1,...C (e.g. type of eating disorder). This is the latent response in the SEM. A set of M metric indicators Xi=(xi1,..xiM) are measures of V continuous attitudinal scales Gi=(Gi1,..GiV) (e.g. relating to body perceptions). The latter are latent predictors in the SEM. There are additionally predictors Wi measured without error (e.g. body mass index). So the marginal likelihood is

         P(Yi,Xi|Wi) =  eq \O((,c=1,C) ( P(Yi,Xi,Gi,Li=c|Wi) dGi
Guo et al (2006) assume Yi to be conditionally independent of Xi and Wi given Gi and Li, Additionally they assume Yi to be independent of Gi given Li, and Xi to be independent of Li given Gi. They also assume the sequence 

         P(Gi,Li=k |Wi)=P(Li=k |Gi,Wi)P(Gi|Wi). 

So the complete data likelihood is

         P(Yi,Xi,Gi,Li=k|Wi) =  P(Yi,Xi|Gi,Li=k,Wi) P(Gi,Li=k|Wi)

                                        =  P(Yi|Li=k) P(Xi|Gi) P(Gi|Wi) P(Li=k |Gi,Wi)

In fact Guo et al (2006) assume Gi independent of Wi so the Gi have mean zero for identifiability. What this means in practice is the sequence

                      yij ~ Bern(([Li,j])          j=1,...P

                     (xi1,...xiM) ~ NP({(i1,..(iM}, ()

                      (ir=(r0+(r1Gi1+...(rVGiV
                      Gi ~ NV(0,()

with the latent behaviour category determined using a generalized logit link, so

                      Li ~ Categorical((i1,...(iC)

                      (ik=exp((ik)/  eq \O((,k=1,C) exp((ik)

                      (ik = (k+Gi(k+Wi(k
where (k is of dimension V, and parameters {(k,(k,(k} are set to zero in  a reference category (e.g. k=1 or k=C).

12.3.1 Local Dependence 

The assumption of conditional independence may need to be modified if the LCA is not adequately representing the covariation between manifest (observed) variables. Such covariation, if it is not fully removed, may be termed ‘local dependence’ (Hagenaars, 1988). The expedient of increasing the number of latent classes until the covariation is represented properly may lead to an overparameterised model, whereas simply modifying the LCA to allow  for limited local dependence is more parsimonious. Suppose replicates (‘new data’) Zi=(Zi1,…ZiP) on the P discrete responses are sampled at each iteration. One way to check for local dependence in a Bayesian framework involves accumulating the predicted two way table between each response variable: if there were four binary responses, A, B, C and D then there would be 6 cross tables.  Then a posterior predictive check involves comparing the odds ratios, ORaj and ORrj for actual and replicate data respectively, for all j=1..,J possible pairwise tables. Garrett and Zeger (2000) suggest checking whether log(ORrj) lies within the empirical 95% interval of log(ORaj).

Model elaborations to encompass local dependence may add random effects Fi to a baseline LCA model with discrete latent index Li (e.g. Qu et al, 1996;  Uebersax, 1999). The rationale is that similarity among responses is caused by subject specific factors (e.g. frailty) operating together with the latent category (e.g. true disease status). Thus for binary outcomes yij on ability items or different diagnostic raters (j=1,..,P), Qu et al propose the model

        Pr(yij=1|Li=c, Fi) = ((ajc+bjcFi)                   (12.7)

where Fi ~ N(0,1). So items are conditionally independent only given both L and F. Elaborations include making the random error density specific to the category of the discrete latent variable L (though only C-1 variances are identified), while simplifications include setting bjc=bc for all items. If local dependence is suspected only between certain item pairs (e.g. yij and yik) , then one may use the standard LCA model

         Pr(yih=1|Li=c) = ((ahc)                  

for all items apart from these, but for items j and k specify (12.7) with bkc=bjc.

Example 12.2  Latent Class and Trait Analysis of Abortion Attitude Data

Haberman (1979) analyzes P=3 binary items relating to abortion attitudes from the General Social Surveys in three years (1972, 1973, 1974) and with three binary attitude questions. Let nijkm denote the totals of patients in year i according to their answers to the attitude questions (j=1,2 of question B; k=1,2 of question D; m=1,2 of question F), where 2=no to abortion eligibility in various circumstances. There are N=3181 participants in all. Letting L be a binary indicator of overall abortion views, one may represent a latent class analysis through a log-linear model with means (ijkmc incorporating L as an extra classification. 

Since the labelling of the two categories of L is arbitrary, MCMC sampling is subject to label switching, so priors may be set that ensure consistent labelling; see also Tanner (1997, p. 131-135) on the identifiability issue in these data. The likelihood is multinomial

           (nijk1,nijk2) ~ Mult(N,[ (ijk1, (ijk2]) 

with

           ijkm =  eq \O((,c)ijkmc/ eq \O((,ijkmc) ijkmc
Under the conditional independence assumption, interactions between the observed classifications are ruled out once L is known, so log(ijkmc) is modelled in terms of 

a) main effects for each question and also the latent variable

b) interaction effects between the questions and the latent variable.

Specifically

   log(ijkmc)= (+(i(j(k(m(c(ic(jc(kc(mc
with corner constraints on the parameters (e.g. (11=(21=(31=(41=(51=0). 

For identifiability in terms of consistent labelling of the two categories of L one may impose one or more of the constraints (222>0, (322>0 and (422 > 0. These are equivalent to the expectation that persons in category 2 of L are more likely to be anti-abortion and to give answer 2 to questions B, D and F respectively. This is a constraint based on substantive background and the form of the questions and does not extend in a natural way to survey year (the other observed classifier). One may assess the conditional independence assumption regarding questions B, D and F, using the predictive check on ORaj and ORrj for actual and replicate data as mentioned above. 

Since question F corresponds to the most liberal circumstances for abortion (that entitlement should occur when a woman is not married and does not want to marry the man) the constraint (422 > 0 is applied, so that L=2 is identified with a negative view on entitlement. From the 2nd half of a two chain run of 5000 iterations, the overall fit of the 2 class LCA appears satisfactory (Table 12.1), with a chi square comparing actual and posterior mean frequencies of 10.6. The average pro-abortion attitude probability, (1=Pr(L=1), is 0.46, with some  increase from 1972 (0.41) to 1973 (0.48) and 1974 (0.49). There is no evidence of conditional dependence between questions B, D and F, with the predictive probabilities for the three odds ratio pairs being 0.56 (B vs. D), 0.47 (B vs. F) and 0.55 (D vs. F). 

Table 12.1 Abortion Attitudes


Configuration of Responses (1=Yes, 2=No regarding right to abortion)



Total Responses (Predicted under 2 class LCA)



Year
Question B
Question D
Question F
Total Responses (Actual)
Mean
2.5%
97.5%

1972
1
1
1
334
345
298
393

 
1
1
2
34
27
16
39


1
2
1
12
12
5
20


1
2
2
15
18
9
28


2
1
1
53
45
31
61


2
1
2
63
62
45
81


2
2
1
43
40
26
55


2
2
2
501
503
449
561

1973
1
1
1
428
416
367
468


1
1
2
29
32
20
46


1
2
1
13
14
7
23


1
2
2
17
16
8
26


2
1
1
42
54
38
72


2
1
2
53
56
40
73


2
2
1
31
36
23
50


2
2
2
453
445
393
497

1974
1
1
1
413
418
368
470


1
1
2
29
32
20
46


1
2
1
16
14
7
24


1
2
2
18
16
8
25


2
1
1
60
54
38
71


2
1
2
57
55
39
72


2
2
1
37
35
23
50


2
2
2
430
437
387
487

Example 12.3 AIDS Tests

To illustrate an application where conditional independence is doubtful, consider data on AIDS diagnostic tests from Alvord et al (1988). These authors use LCA on four tests to determine sensitivity & specificity for HIV antibodies in 428 subjects in the absence of a gold standard test. The first of the four tests involved radioiummunoassay (RIA) using antigen ag121, the second and third involved RIA with purified HIV p24 and gp120 respectively, while the fourth was enzyme-linked immunosorbent assay (ELISA). The test results are represented as vectors of length 4 with entries 0 = negative result, 1 = positive result.

The fit of a conventional two class LCA was not that good as judged by a chi-square test, and the observed frequency (namely 17) of the pattern (1,0,0,1) (negatives on tests 2 and 3, and positives on tests 1 and 4) was underpredicted. One option might be to add extra classes. We instead consider a random effects LCA model for i=1,..428

            Pr(yi1=1|Li=c, Fi) = ((a1c)                   

            Pr(yi2=1|Li=c, Fi) = ((a2c+bc Fi)                   

            Pr(yi3=1|Li=c, Fi) = ((a3c+bc Fi)                   

            Pr(yi4=1|Li=c, Fi) = ((a4c)                   

where Fi ~ N(0,1), Li ~ Categoric((1,(2), ( ~ Dir(1,1), and b2 constrained to exceed b1 to ensure a unique direction for F. An expanded model for outcomes 1 and 4 could also be used. Table 12.2 shows the predicted array totals from the 2nd half of a 5000 iteration two chain run, with a good fit apparent. 

Table 12.2 Random Effects LCA For AIDS tests



Posterior

Pattern
    Observed
Mean
Median

0000
170
168.2
169

1000
4
5.0
5

0100
6
6.4
6

1100
1
0.2
0

0010
0
0.6
0

1010
0
0.3
0

0110
0
0.1
0

1110
0
0.4
0

0001
15
14.8
14

1001
17
17.1
17

0101
0
0.6
0

1101
4
4.1
4

0011
0
0.3
0

1011
83
82.5
82

0111
0
0.4
0

1111
128
127.0
127

12.4 Factor Analysis and SEMs for Multivariate Discrete Data

Section 12.2 focussed on the normal linear factor model (12.3) for P continuous outcomes and Q continuous factors F, namely

     yij  = (ij +uij               j=1,..,P

(ij(j + (jFi1 + (jFi2 +..+ (jQFiQ
for i=1,..n subjects. For identifiability the usual options are to assume standardised factor scores, and/or to constrain loadings to fixed values. The residual error terms u are usually taken to be independent. This structure is the template for general linear factor models for observations on P discrete items (binary, count, multinomial or ordinal data) to be explained by Q metric factors. For binary, multinomial or ordinal data one may additionally sample from a latent outcome model (e.g. Albert & Chib, 1993), so that the missing data consists not only of the factor scores but the metric zij that underlie the observed yij. Thus for yij binary, and yij=1 if zij>0 (yij=0 otherwise) one might take zij to be normal or logistic with variance known for identifiability, for instance zij ~ N((ij,1) I(aij,bij) where the truncation ranges are determined by the observed yij (Lee & Song, 2003). Where the latent outcome approach is not possible or not well identified linked regression may be used.

As usual, a baseline assumption is that there is no association between the manifest variables once the latent variable or variables are known (local independence). The conditional probability that an individual i with latent traits Fi=(Fi1,..FiQ) exhibits a particular pattern of manifest responses to P categorical items is then

   Pr(yi1=m1,yi2=m2,.,yiP=mP|Fi)=Pr(yi1=m1|Fi)Pr(yi2=m2|Fi)..Pr(yiP=mP|Fi). 

Suppose Yi consists of P binary ability tests, with 1 denoting a correct answer and 0 an incorrect answer, then under conditional independence the joint success probability given Fi is

      Pr(yi1=1,yi2=1,..,yiP=1|Fi) = Pr(yi1=1|Fi) Pr(yi2=1|Fi).. Pr(yiP=1|Fi)


If latent observations zij are not introduced, the likelihood reduces to separate Bernoulli likelihoods yij ~ Bern((ij) for outcomes j and subjects i with function h linking (ij to (ij, e.g. 

      h((ij) = (ij(j + (jFi1 + (jFi2 +..+ (jQFiQ.  


   (12.8)

The most common assumption for the density of F is normal with known scale, Fik ~ N(0,1). If instead the assumption Fik ~ Logist(0,1) is made, with loadings (jk, then (jk (((3/()(jk, since the variance of a standard logistic is (2/3 (Bartholomew, 1987). Another possibility involves F scores linked (e.g. by probit or logit transforms) to uniform scores z. For example

      h((ij) = (j + eq \O((, Q, k=1)(j Fi






               Fi= logit(zi) 

               zi ~ U(0,1)

corresponds to the Fi being logistic. In the case of multivariate count responses Wedel et al (2003) suggest gamma distributed factors in an identity link model as well as normal F scores combined with a log link. Thus a gamma specification for Fi could be

               yij ~ Po((ij)

               (ij=exp((j)F eq \O(i,(j)
either with the variance of the F scores unknown as in

               Fi ~ Ga((,()

provided one of the (j is set to a fixed value, or with the variance of F preset, as in Fi ~ Ga(1,1).  Factor models with Q < P may be contrasted with full dimension error models for multivariate count data (e.g. Chib and Winkelmann, 2001).

If the items are positive criteria for ability and Q=1 then the underlying scores F will measure ability, provided the (jk in (12.8) are suitably defined to prevent label switching (i.e. ensure a unique direction for F). This may mean constraining one or more of the (jk to be positive, or using a positive prior on the loadings, as suggested for IRT models by Albert & Ghosh (2000). In the case Q>1, it is necessary to fix certain (jk  to ensure identifiability; without such a constraint an orthogonal transform of the (jk leaves the likelihood unchanged (Bock and Gibbons, 1996; Bartholomew and Knott, 1999; Lopes and West, 2004). Thus if Q=2, it is sufficient to set one of the regression coefficients of item j on the 2nd latent variable to equal 0, 1, or some other quantity (e.g. (12=0). Overidentified models may be defined to improve empirical identifiability of the model from sparse data and are justified by prior substantive knowledge in confirmatory factor analysis settings. For example, suppose Q=2 with the first subset of p1 variables loading only on the first factor, and the second subset of p2 observed variables loading on the second factor; setting all but the first p1 of the (j1 to zero and the last p2 of the (j2 loadings to zero goes beyond what is required for formal identifiability (see Lee and Song, 2003, p 3080, for a worked example with P=9 and Q=3).

The latent trait model (12.7) with probit link and Q=1 corresponds to the generalised item response theory (IRT) model widely used in educational and psychological testing (Albert, 1992; Rupp et al, 2004; Fox & Glas, 2005). Item response models are frequently applied to batteries of P test or attitude items which can be scored correct (yij =1) or incorrect (yij=0), or agree/disagree, and where all items can be conceived as representing a single continuous underlying trait. There are commonly two goals of such an analysis: first, to rank the ability, or other form of underlying trait, for each subject, and second to identify the effectiveness of different items in measuring the underlying dimension. An item response curve measures the probability that an individual answers correctly or affirmatively given their trait score, Fi. The curve can be represented

                 Pr(yij=1|Fi)=(((jFi - (j)                           


(12.9)

with a negative sign on the intercepts in order that (j can be interpreted as measures of difficulty of item j, while j measure an item’s power to discriminate ability or trait between subjects. For two subjects separated by a given distance from each other on the F scale, the bigger the absolute value of j the greater is the difference in their probability of giving a positive response. A model with all item slopes equal to 1

       Pr(yij=1Fi) = ((Fi-(j)

was considered by Rasch (1960), with Fi interpreted as subject ability. Fox and Glas (2005) describe Bayesian model choice analysis for IRT models allowing for differential item functioning (DIF) - when an item is not appropriate for measuring ability because the knowledge needed for a correct answer is culturally specific. Thus let xi=0 for a reference population and xi=1 for a focal group (e.g. disadvantaged or minority group); then DIF is indicated if the extended model

             Pr(yij=1|Fi)=(((ij)

             (ij= (jFi - (j + xi((Fi - () 

has better fit than the standard model without group differentiation.

The IRT model may involve sampling the latent metric variables underlying the observations (Albert and Chib, 1993), so there is ‘doubly missing data’ in terms of latent continuous zi1, zi2,...,ziP that generate P binary observations yi1,yi2,..yiP, and the latent traits Fi1,..FiQ that explain the correlations between the z variables. The latent z may be sampled from normal or logistic densities and one may additionally apply scale mixing if outliers are suspected. Lee and Song (2003) adopt this latent outcome approach to a structural equation model form for multiple binary observations, where a causal model relates endogenous traits F to exogenous traits G. These models pose possible identification problems because one type of latent variable z is being modelled in terms of another, namely F or G scores.

Several modelling schemes are possible for multivariate multinomial outcomes. For example, suppose observations consist of P=p1+p2 variables, p1 of which are continuous variables yij, and p2 are ordinal variables wij (j=p1+1,P) containing R1,R2,..Rp2 categories respectively with P=p1+p2 (e.g. Lee & Shi, 2001; Lee & Song, 2004; Lee & Tang, 2006). To model correlation among these variables or introduce regression effects one may define latent variables zij with Rj-1 cut points (jm such that

                    wij= m        if        (j,m-1   zij < (jm      (m=1,..Rj)           
                   -  (j1 ...(j,Rj-1   

Under a full dimension analysis the total set of responses {Yi,Zi} might be taken to be multivariate normal or Student t of dimension P. Alternatively under a common factor model they result from a smaller set (Q << P) of metric factors Fik as in

                      yij = (j1Fi1+…+(jQFiQ + (ij          j=1,..p1
                      zij = (j1Fi1+…+(jQFiQ + (ij         j=p1+1,..P

where the errors (ij for j>p1 have known variance to ensure identification of the scale of the z. Under proportional odds the loadings are not specific to ordinal category m. 

By contrast, for unordered polytomous items with Rj categories (j=1,..P), intercept and loading parameters are typically specific to the category of each item – with one category (e.g. the first of the Rj) as reference. One may use the latent response approach with zijh exceeding zero for the observed option wij=h and negative otherwise. Alternatively assume a multiple logit link (Bartholomew, 1987), with multinomial parameter (ij=((ij1,…(ijRj) for subject i and outcome j. Then                          

                      yij ~  Categoric((ij1, (ij2,… (ijRj)

                 ijh  = (ijh /  eq \O((,r=1,Rj)(ijr                  h=1,..Rj
                      log((ijh) = (jh + (jh1Fi1+…+ (jhQFiQ

with (j1=(j11=…=(j1Q=0 for identification, as well as the usual constraints to avoid scale and rotational invariance.

Example 12.4 Introductory Statistics

Tanner (1997) presents binary data for n=39 students on P=6 test items (yij=1 for correct) on an Introductory Statistics course. One option for such data is the probit IRT model (12.9), with

                  yij |Fi ~ Bern(pij)              j=1,..6; i=1,..39

                  pij = (((jFi - (j)

where the difficulty and discrimination parameters, (j and (j respectively, are assigned priors (j ~ N(0,1) and (j ~ N(1,1). The scores Fi are assumed to be N(0,1). To ensure unique labelling one might impose constrained priors on one or more of the (j (e.g. if they were constrained to positive values, F would be an ability factor). As an ad hoc device the scores on subjects with the most extreme observed profiles may be monitored; subjects 8, 24 and 38 have positive responses on all items and if F is a positive ability measure the F scores for these subjects will generally include the maximum F score at a particular iteration. One might monitor the ranking of F scores for sub-chains of, say, 50 or 100 iterations: if the score for a low ability subject (e.g. 31 with 1 only on item 1, 0 for the other five) exceeds the F scores for 8,24 and 38 then a label change would be apparent.

Monitoring the score for high ability subjects over the 2nd half of a two chain run of 20000 iterations suggests the labelling is stable and this is confirmed by subject level posterior probabilities of 0.2 that subjects 8, 24, and 38 have the highest F scores. The estimated parameters suggest item 4 as the most difficult, with items 3,5 and 6 as the most discriminating in terms of identifying ability (Table 12.3). These three loadings have entirely positive 95% credible intervals. So to formally ensure a consistent direction in the F scores, one option might be to set one among these three loadings to a fixed positive value (e.g. (5=1). 

Table 12.3 Introductory Statistics, Posterior Summary

Parameter
Mean
St devn
2.5%
Median
97.5%


-0.11
0.21
-0.53
-0.10
0.30


-0.18
0.22
-0.63
-0.18
0.25


0.10
0.28
-0.45
0.10
0.67


0.57
0.26
0.10
0.55
1.13


0.29
0.31
-0.28
0.28
0.95


-0.15
0.28
-0.73
-0.14
0.39


0.25
0.36
-0.39
0.23
1.01


0.42
0.41
-0.27
0.38
1.34


0.95
0.59
0.06
0.85
2.39


0.63
0.49
-0.15
0.57
1.80


1.19
0.66
0.17
1.10
2.73


1.02
0.66
0.03
0.92
2.61

Default assumptions of normality, linearity etc in factor and latent trait analysis should be assessed for their robustness. So one might assume the F scores to be Student t, for example. A more comprehensive approach is to sample from the latent metric data Z underlying the observed binary data. This facilitates assessment of residuals (Albert & Chib, 1995) and allows assessment of alternative links via scale mixing with unknown degrees of freedom. Scale mixing also highlights atypical datapoints which will receive lower weights. Here the following model is adopted

                         yij = I(zeq \O(,ij) >0)

                         zeq \O(,ij) ~ N((jFi - (j, 1/(i) 

                         (i ~ Ga(0.5(,0.5()

                         ( ~ E(()

                         ( ~ U(0.01,1)          

It appears (again from the 2nd half of a 20,000 iteration two chain run) that the latent Z should be regarded as more heavily tailed than normal with ( estimated at around 3.1, and some ( weights (subjects 2,23 and 37) having posterior means around 0.6. The ( coefficients in this second analysis have means {0.18,0.49,1.04,0.79,1.09,1.12} so items 3,5 and 6 remain the most discriminating.

Example 12.5 SEM for Sexual Attitudes

Bartholomew and Knott (1999) present a latent class analysis of data on sexual attitudes from the 1990 British Social Attitudes Survey. There are P=10 binary items measuring such attitudes on N=1077 subjects. They are as follows, with y=1 corresponding to ‘liberal’ opionions:

1.  Should divorce be easier? (1=yes,0=no)

2.  Do you support the law against sexual discrimination? (1=yes,0=no)

3.  Is premarital sex always wrong (0=always, 1=not always)

4.  Is extra-marital sex always wrong  (0=always, 1=not always)

5. Are sexual relationships among members of the same sex wrong (1=no, 0=yes)

6.  Should gays teach in schools (1=yes,0=no)

7.  Should gays teach in higher education (1=yes,0=no)

8.  Should gays hold public positions (1=yes,0=no)

9.  Should a gay female couple adopt children (1=yes,0=no)

10. Should a gay male couple adopt children (1=yes,0=no)

Positive responses (yij=1) on questions 1, 4 and 10 are less frequent than for the other variables. 

Bartholomew and Knott (1999) suggest that a relatively complex LCA is needed to explain these data. Here we consider instead a latent metric variable  model including a linear regression relating two hypothesized constructs, one being general liberalism in sexual outlook (measured by observed items 1 to 4) and the other being attitude to homosexuality (measured by items 5 to 10). A similar model is suggested by Lee and Song (2003) except for the inclusion here of intercepts in the measurement model equations. Thus the measurement model specifies

         yij = 1 if zij >0

         zij = (j + (j1Fi1+(j2Fi2+uij
with uij ~ N(0,1), while the structural model states

              Fi2= (1+(2Fi1.

The prior specification allows the F scores to have free variances while fixing certain loadings as follows:

            Fi1 ~ N(0,1/(1), Fi2 ~ N(0,1/(2), 

             (11=1, 

             (k1 ~ N(1,1),             k=2,..,4, 

             (k1=0,                       k=5,..,10

             (k2=0,                      k=1,..,4

             (52=1, 

             (k2 ~ N(1,1),            k=6,..,10, 

              (j ~ N(0,1)               j=1,2

A bivariate Normal prior is assumed for (j=log((j). The alternative completely standardised scheme would take (11 and (52 to be free parameters but set (1=(2=1.

Inferences are based on the last 5000 iterations of a two chain run of 15000 iterations. Convergence is slowest for (2 and the factor score precisions (1 and (2 which have posterior means of 8.6 and 1.3 respectively. The impact (2 of Fi1 on Fi2 has a posterior mean of 1.9 (95% interval 1.3 to 2.6) so the two types of attitude do seem to be related. The model seems a reasonable description of the data as measured by the posterior predictive check suggested by Lee and Song (2003, Appendix C) which compares the error sum of squares eq \O((,i)

eq \O((,j)u eq \O(ij,2)  based on the zij with one based on sampling replicate zij. This check has an average value of 0.69.

Example 12.6 Ordinal Variable Factor Analysis

Bartholomew et al (2002) consider ordinal factor analysis using cumulative response probabilities (ijs=Pr(yij > s) where yij is the original ordinal variable falling into 1 of Rj categories. Then the model becomes a set of n(Rj-1) binary regressions, involving indicators dijs=1 if yij > s, dijs=0 if yij ( s. Assume all P items have R categories, and let {Fik, k=1,..Q} be Q<P factors. Then with a logit link and proportional odds, there are (R-1)P separate binary regressions defined by 

             dijs ~ Bern((ijs)           i=1,..,n; j=1,…P; s=1,…R-1

             logit((ijs) = (js +  eq \O((,k=1,Q)(jkFik 

Bartholomew et al (2002, pp 217-219) consider responses to P=7 items from a 1992 Eurobarometer Survey relating to attitudes regarding science & technology. The first four items are on a four-point scale (1=strongly disagree, 2=disagree to some extent, 3=agree to some extent, 4=strongly agree). They relate to (1) science & technology creating more comfortable & healthier lives, (2) science and technology not protecting the environment, (3) science & technology making work more interesting, and (4) science & technology creating chances for future generations. The remaining items, also on a four point scale, are summarised as (5) technology does not depend on research, (6) research does not benefit industry, and (7) the benefits of science outweigh harmful effects. Bartholomew et al (2002) propose a two factor model and report the first factor to be positively loaded on questions 2, 5 and 6 corresponding to a negative view of the impact of science for the environment, and to the role of research in technology and industry. Holding this view does not necessarily imply a negative view on other impacts of science & technology (represented in questions 1,3,4 and 7).

Here we do not constrain the loadings to produce this pattern, or impose any rotational constraint. The scale of the factor scores is set to 1 and the loadings are assigned N(1,10) priors. The last 1000 iterations of a two chain run of 2500 iterations does show the first factor to have significantly positive loadings on items 2,5 and 6, and mainly nonsignificant effects on the other items. So respondents with high positive Fi1 scores will have negative views regarding the environmental benefits of science and the role of research; an example is subject 29, with item profile {3,4,1,3,4,4,2}. The second factor loads positively on the other items and represents people with positive views of science and technology in terms of implications for comfort, work, the future, and the balance of benefits against harm. The loadings (mean and sd) on the first factor are 0.44 (0.41), 2.20 (0.41), -0.21 (0.51), 0.12 (0.89), 1.69 (0.31), 1.47 (0.27) and 0.13 (0.44). For the 2nd factor they are 1.06 (0.27), -0.28 (0.83), 1.36 (0.24), 2.28 (0.40), -0.20 (0.61), 0.25 (0.54) and 1.16 (0.21).

 A predictive assessment of the model is based on sampling replicate response data and comparing predicted question category to actual question category. For the two factor model this shows very similar concordancy across the 7 items (on average, around 200-202 of the 392 subjects have their category predicted correctly).

12.5 Nonlinear Factor  Models

Just as the LISREL model parallels normal linear regression, nonlinear factor models parallel nonlinear regression. The introduction of nonlinearity reflects  substantive features that are likely such as quadratic effects of factors and interactions between latent constructs. The most general type of model would have nonlinear functions of factor scores in both the structural and measurement equations of (12.1)-(12.2), possibly combined with multi-level or multi-group analysis (Song and Lee, 2002). Thus one might have 

              Fi = ( + (SF(Gi)+ ei                

where Fi is a Q(1 vector of endogenous latent variables, and SF is a function of the V exogenous constructs Giv. For example, if SF contained first and second powers of all Giv then ( would be a Q(2V loading matrix. Assuming continuous observations, the measurement model would be

        Yi = (Y + (YSY(Fi)+ u eq \O(Y,i)
                  

        Xi = (X + (XSX(Gi)+ u eq \O(X,i)



where Yi and Xi are of dimension PY and PX respectively, Fi and Gi are of dimension Q<PY and V<PX, but SY(Fi)=[s1(Fi),s2(Fi),…sHY(Fi)] and SX(Gi)=[s1(Gi),s2(Gi),…sHX(Gi)] are of dimension HY(Q and HX(V and contain nonlinear transformations (e.g. squares, product interactions) of the elements of Fi and Gi.

Because Y may be nonlinear in F its marginal density is usually non-normal (Arminger & Muthen, 1998). Also in contrast to the standard model in section 12.2, it is possible, subject to empirical identifiability, for HY to exceed PY as well as Q (Song and Lee, 2002). The analysis of such models is complex under classical approaches, and may involve defining extra measured variables (products and interactions between measured variables) to represent nonlinear constructs (Lee et al, 2004). Bayesian analysis avoids such procedures, though parameter sampling involves Metropolis-Hastings updates when nonlinearity in the structural or measurement model is introduced (Lee and Song, 2004, p 136). 

A relatively simple structure assumes a linear measurement model with nonlinear effects confined to the structural equation or equations (Arminger and Muthen, 1998).  For example, with two factors G=(G1,G2) and observations on continuous data (Y,X1,X2,X3,X4), one might specify (with yi=Fi and assuming a confirmatory measurement model) 

                  yi=(1+(1Gi1+(2Gi2+(3Geq \O(2,i1)+(4 Geq \O(2,i2)+(5 Gi1Gi2+ui

(12.10)

                            xi1=(2+(11Gi1+vi1
                  xi2=(3+(21Gi1+vi2
                  xi3=(4+(32Gi2+vi3
                  xi4=(5+(42Gi2+vi4
More complex options include nonlinear effects in the measurement model also as in 

                  yi=(1+(1Gi1+(2Gi2+(3Geq \O(2,i1)+(4Geq \O(2,i2)+(5 Gi1Gi2+ui
                  xi1=(2+(1Gi1+(2 Geq \O(2,i1)+vi1
                  xi2=(3+(3Gi1+(4 Geq \O(2,i1)+vi2
                  xi3=(4+(5Gi2+(6 Geq \O(2,i2)+vi3
                  xi4=(5+(7Gi2+(8 Geq \O(2,i2)+vi4.

where one of the (j loadings must have a preset value, and the variances of {Gi1,Gi2} must be set (e.g. to 1), to ensure parameter identification using the rules set out in section 12.2.1 for the case P=4, and Q=2.

For spatial data, and with nonlinearity again only in the structural model, variations on common spatial factor models are possible. For example, let Xi=(Xi1,..XiQ), where Xij=Nij/Pi are percentage census indicators with denominator populations Pi. Let Yi=(Yi1,.. YiP) denote a vector of disease or mortality counts by area. Also let denote xij=(Xij)0.5, after applying a variance stabilising square root transformation (Hogan and Tchernis, 2004). Then with Q=4 social indicators, P health outcomes, and two social constructs G1 and G2, correlated both over space and with one another, one might specify

                   Yij ~ Po(Eij(ij)           j=1,..,P

                   log((ij)=(j+(j1Gi1+(j1Geq \O(2,i1) +(j2Gi2+(j2Geq \O(2,i2)
                   xi1=(2+(11Gi1+vi1
                   xi2=(3+(21Gi1+vi2
                   xi3=(4+(32Gi2+vi3
                   xi4=(5+(42Gi2+vi4

In this model the bivariate factor scores Gi =(Gi1,Gi2) are distributed according to a multivariate CAR prior, the measurement errors are assumed normal with vij ~ N(0,(j/Pi), and zero loadings are assumed (namely (12=(22=(31=(41=0) under a confirmatory measurement model. To set the scale for the factors, one may either assume standardised factors, so that the covariance matrix for (G1,G2) reduces to a correlation matrix, or assume (11=(32=1 under an ‘anchoring’ prior. Additional constraints on the coefficients may be needed to ensure consistent labelling of the G scores. 

Example 12.7 Simulated Non-Linear Factor Effects

Arminger and Muthen (1998, p 286) present a simulated data analysis of a simple SEM with nonlinear factor effects in the structural model – as in (12.10), but with linear and quadratic effects in only one factor, Gi1=Gi. They consider varying numbers of subjects, and show how the precision of the estimated variance and loading parameters improves with sample size. Here, we assume n=250 and M=4 observed variables that measure the latent variable G, with model form

                   yi=(1+(2Gi+(3Geq \O(2,i)+ui



                            xi1=(1+(eq \O(,1)Gi+vi1
                   xi2=(2+(eq \O(,2)Gi+vi2
                   xi3=(3+(eq \O(,3)Gi+vi3
                   xi4=(4+(eq \O(,4)Gi+vi4.

The variances of vij are 0.2,0.2,0.5 and 0.5, the variances of ui and Gi are 0.5 and 1.4, the intercept parameters ( are {-0.4,-0.2,0.2,0.4}, the coefficients {(1,(2,(3} in the structural model are 0.5, 1.0 and –0.6 and the loadings (j in the measurement model are {1,0.9,0.8,0.7}. 

We seek to re-estimate the model not knowing that the parameters conform to an ‘anchoring’ prior rather than a standardised factor prior. An initial model assumes however an anchoring prior with (1=1 and the remaining (j assigned normal N(1,1) priors. The initial model also (incorrectly) assumes only a linear structural model yi=(1+(2Gi1+ui. A N(0,1000) prior is assumed for (1 and a N(1,1) prior for (2. Gamma Ga(1,0.001) priors are assumed for precisions of the vij, ui and Gi. Model fit is based on a predictive error sum squares criterion (Gelfand & Ghosh, 1998), E(k)=E(k,x)+E(k,y), where 

    E(k,y) =  eq \O((,i=1,n)V(yi,new)+
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   eq \O((,i=1,n)[E(yi,new)-yi,obs]2.

    E(k,x) =  eq \O((,i=1,n)

  eq \O((,j=1,Q)V(xij,new)+ 
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eq \O((,i=1,n)   eq \O((,j=1,Q) [E(xij,new)-xij,obs]2.

and k is a positive constant.

A two chain run of 5000 iterations shows no labelling problems despite negative starting values for {(2,(3,(4} in one chain. Convergence is apparent from 1000 iterations using G-R statistics, and the last 4000 iterations yield a mean PRESS statistic E(k) (for k=1000) of 1574.  The mean (sd) of (2 in the linear model is 1.21 (0.08).

For the nonlinear (quadratic structural) model, the priors are as above, except that (3 ~ N(0,1). Again there are no labelling problems and the last 4000 of a 5000 iterations two chain run show the predictive fit clearly favouring the nonlinear model with E(1000)=979. The posterior means (sd) of (2 and (3 are 1.14 (0.10) and –0.60 (0.05). 

12.6 Exercises

12.1 In Example 12.1 estimate the six equations of the measurement model with scale mixing (equivalent to Student t sampling) and degrees of freedom in each equation as additional unknowns in the model. Thus for the first measurement equation one would have

         yi1 ~ N((y1 + (11Fi1,( eq \o(2,1)/(i), 

         (i ~ Gamma(0.5(1,0.5(1). 

with (1 unknown. How does adopting this approach affect the posterior estimates for the structural coefficients {(,(1,(2}? Apply a posterior predictive check to the measurement model based on the classical SEM test statistic comparing actual and model covariance matrices. 

12.2 Consider the infant temperament study data of Rubin and Stern (1994), in the form of counts nijk relating to three behaviour measures of N=93 infants. These are motor activity at age 4 months (X), with levels i=1,..,4, and higher categories denoting greater activity; fret/cry activity at 4 months (Y with levels j=1,2,3), and fear level at 14 months (Z with levels k=1,2,3). The data are 

list(n=structure(.Data=c(5,4,1,0,1,2,2,0,2,15,4,2,2,3,1,4,4,2,3,3,4,0,2,3,1,1,7,2,1,2,0,1,3,0,3,3),.Dim=c(4,3,3)),I=4,J=3,K=3)
Consider latent class models in which X, Y and Z are imperfect measures of an underlying latent variable L, such that within sub-populations defined by L, the observed variables are independent. As mentioned in section 12.3 one may estimate the model for individuals or use an aggregate approach. This may be done via a loglinear model (see Example 12.2) or by exploiting the conditional independence result

         (ijk=  eq \O((,c=1,C) (c (ic (jc (kc
where (ijk=Pr(X=i,Y=j,Z=k) is the joint marginal probability of a positive response on items i, j and k, (ic=Pr(X=i|L=c), (jc=Pr(Y=j|L=c), and (kc=Pr(Z=k|L=c).  Then (n111,…..,n433) ~ Mult(N, [(111,…..,(433]. 

The option C=1 is equivalent to conventional independent factors log-linear model, while Rubin and Stern (1994) cite substantive basis for a two class model (C=2) distinguishing infants with low motor and fret activity and low fear (class c=1) from infants with higher motor and fret activity, and also higher fear (class c=2). The Dirichlet prior parameters relating to (ic, (jc, and (kc used by Rubin and Stern are intended to ensure consistent labelling. Thus they assume (i1 ~ Dir(0.45,0.35,0.15,0.05), (j1 ~ Dir(0.8,0.15,0.05), (k1 ~ Dir(0.8,0.15,0.05), whereas (i2 ~ Dir(0.05,0.15,0.35,0.45), (j2 ~ Dir(0.05,0.15,0.8), (k2 ~ Dir(0.05,0.15,0.8) together with a Dirichlet prior Dir(0.55,0.45) on the latent class mixture probabilities (c. 

One might also apply extra constraint(s) to ensure against label switching with regard to the latent classes. For example if an initial analysis without such constraints suggests clear differentiation in the class probabilities (ic (for c=1 as against c=2), or in the mixture probabilities (c, then this differential may be used to set a constraint in a final analysis.

Fit the C=1 and C=2 models and use the criterion  L2 = 2eq \O((,ijk)nijklog(nijk/eq \O(n ,^)ijk) in a posterior predictive check to assess whether the independence and two class models are compatible with the data; this involves sampling new data nnew,ijk at each iteration. Finally apply the alternative log-linear model approach (e.g. as in Example 12.2) using priors consistent with a unique labelling. 

12.3 Consider a latent class analysis of the sexual attitudes data in Example 12.5 and compare the options C=2 and C=3 using a posterior predictive p test based on a simple chi-square criterion

12.4 Repeat the latent trait analysis in Example 12.5 but apply the posterior predictive check procedure proposed by Ansari & Jedidi (2000). This involves 45 correlations based on odds ratios (=ad/(bc) where a and d are the diagonal frequencies and b and c are the off diagonal frequencies in the (all 1077 subjects) contingency table for each pair (j,k) of the 10 binary items. A correlation coefficient based on the C-type distribution of Mardia (1970) is approximated by T(j,k) = ((0.74-1)/((0.74+1). The T statistics are compared between observed and replicated data. What implications are there from these pairwise comparisons regarding the conditional independence assumptions of the model?

12.5 In Example 12.6 (attitudes to science & technology) try a one factor model and assess its fit against the two factor model fitted above.

12.5 Generate data according to the logit-logit latent trait model of Bartholomew (1987). There are 100 subjects and P=5 binary items and Q=1 factor. The generating program is

       model { for (h in 1:100) { for (j in 1:5) {x[h,j] ~ dbern(p[h,j]) 

                                                  logit(p[h,j]) <- kappa[j]+lambda[j]*F[h]}

                                                  F[h] <- logit(y[h]) ; y[h] ~ dunif(0,1)}}

with parameter values list(kappa=c(-1,-1,0,1,1),lambda=c(2,2,1,0.5,0.5)). Using only the X[100,5] binary values so generated, re-estimate the ( and ( parameters. This may involve constrained priors on ( to ensure that the direction of F is identified.

12.6 In Example 12.7 try a cubic structural model 

           yi=(1+(2Fi1+(3Feq \O(2,i)+(4Feq \O(3,i)+ui



and assess its predictive performance against the quadratic model. Try other values of k apart from 1000 (e.g. k=1,k=10); this means formally obtaining the posterior means and variances of yi,new and xij,new (see Gelfand & Ghosh, 1998, pp 4-5).
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