CHAPTER 2 BAYESIAN MODEL CHOICE, COMPARISON, AND CHECKING

2.1 Introduction: the formal approach to Bayes model choice and averaging 

Model assessment has several components: checking that a model or models are plausible descriptions of the data, and then choosing between them or averaging inferences over them. The formal Bayesian approach to model selection may have limitations in choosing over-simple models (Gelman & Rubin, 1995), or when diffuse priors are adopted (Sinharay & Stern, 2002). It is also subject to problems of estimation in complex models (Han & Carlin, 2001). Although alternative ways to assess models exist, such as predictive model selection  (Barbieri and Berger, 2004; Meyer & Laud, 2002), we commence with the formal approach as a reference point for other methods.

One of the benefits of the formal Bayesian approach is its commonsense approach to testing hypotheses or selecting models. In the classical approach a hypothesis is accepted or rejected according to whether the test statistic falls in a pre-specified critical region. Comparisons between models when one model is defined on the boundary of the parameter space (e.g. as in discrete mixture models or change point analysis in time series) are problematic, since likelihood ratios no longer have standard distributions (Self & Liang, 1987). Classical methods also face problems with comparison of non-nested models: an example would be ecological disease model (chapter 9) involving only spatially correlated random effects compared to a model involving only unstructured random effects.

By contrast, Bayesian inference is aimed at computing a posterior probability distribution over a set of hypotheses or models, in terms of their relative support from the data. Inference, model choice and estimation are not impeded in parameter boundary situations such as change point analysis (e.g. Chu and Zao, 2004), or in non-nested models. Posterior probabilities are the basis for model averaging, especially for closely competing models, so acknowledging model as well as parameter uncertainty. Model averaging in classical statistics is less clear foundationally though methods have been suggested (e.g. Burnham & Anderson, 2002). If a specific decision needs to be taken to reject or accept one or other hypothesis in a Bayesian analysis, then a loss function defined by the problem at hand may need to be established to express the costs of making the wrong choice. However, Bayesian model comparison and choice can proceed without a substantively based loss function. 

The formal Bayesian model choice procedure rests on work by Jeffreys (1961).  Let m be a multinomial model index, with m taking values between 1 and K or between 0 and K-1. Formal Bayes model choice is based on prior model probabilities Pr(m=k), marginal likelihoods p(y|m=k) and posterior model probabilities Pr(m=k|y). Consider the full Bayes formula,

               p((k|y,m=k) = p(y|(k,m=k) p((k|m=k)/ p(y|m=k)     (2.1)

where (k consists of unknowns in the likelihood p(y|(k,m=k) for model k, and p((k|m=k) is the prior on (k. Considering the marginal likelihood as a basis for preferring (k values may imply different choices than choosing ( that maximises the likelihood L((k|y,m=k)(p(y|(k,m=k). The marginal likelihood can be written

                    p(y|m=k)= p(y|(k,m=k) p((k|m=k)/ p((k|y,m=k)

or following a log transform as

    log [p(y|m=k)]=log[p(y|(k,m=k)] +log[p((k|m=k)] – log[p((k|y,m=k)]

The term log[p((k|m=k)] – log[p((k|y,m=k)] acts as a penalty to favour parsimonious models, whereas a more complex model virtually always leads to a higher log-likelihood log[p(y|(k,m=k)]. 

Choice between models, or at least ranking of their plausibility, involves comparison of marginal likelihoods. The marginal likelihood is the probability of the data y given a model, and is obtained by averaging over the priors assigned to the parameters in that model. The comparison of two models is based on the ratio of marginal likelihoods, or Bayes factor, of model 1 against model 0, namely 

           B10 = p(y|m=1)/p(y|m=0) 

This resembles a likelihood ratio except that the densities p(y|m=k) are obtained by integrating over parameters rather than maximising, with

           p(y|m=k) = p(y|k,m=k) p(k|m=k)dk              k=0,1.                 

There is no necessary constraint in such comparisons that models 0 and 1 are nested with respect to one another – an assumption often necessarily made in classical tests of goodness of model fit. The Bayes factor expresses the support given by the data for one or other of the models, in a similar way to the conventional likelihood ratio. However, unlike classical significance procedures the Bayes factor does not tend to reject the null hypothesis more frequently as sample sizes become large. Taking twice the log of the Bayes factor gives the same scale as the conventional deviance and likelihood ratio statistics. Approximate values for interpreting B10 and 2logeB10 are as in Table 2.1 (Kass & Raftery, 1995).

Table 2.1 Guidelines for Bayes Factors

          B10
      2logeB10
Interpretation

      Under 1
     Negative
Supports model 0

        1 to 3
      0 to 2
Weak support for model 1

         3-20
        2-6
Support for model 1

      20-150
        6-10
Strong evidence for model 1

     Over 150
      Over 10
Very strong support for model 1

For large data sets differences in the log marginal likelihoods are the natural measure of model comparison, as probabilities themselves become numerically intractable.

The posterior probability of a model can be obtained from the prior probability and the marginal likelihood via the formula

             
Pr(m=k|y) = Pr(m=k)p(y|m=k) / p(y)                 

where Pr(m=k) is the prior probability on model k and 

             p(y)= eq \O((,j) Pr(m=j)p(y|m=j). 

For two models, it follows that 

      Pr(m=1|y)/Pr(m=0|y) 

          = [p(y|m=1)Pr(m=1)]/[p(y|m=0)Pr(m=0)], 

          = [p(y|m=1)/p(y|m=0)] [Pr(m=1)/Pr(m=0)], 

namely that the posterior odds on model 1 being correct equal the Bayes factor times the prior odds on model 1. Hence the Bayes factor is also obtained as the ratio of posterior to prior odds.

To compare and evaluate models, one may fit them separately and consider their relative fit in terms of summary statistics, such as the marginal likelihood. Alternatively one may search over the model space as well as over parameter values k|m=k (Carlin & Chib, 1995; Green, 1995). For equal prior model probabilities, the best model is the one chosen most frequently (i.e. with highest posterior probability of being selected). Under a search model, the Bayes factor is obtained as the ratio of posterior to prior odds, not from marginal likelihood estimates.

Unless the posterior probability of one model alone is overwhelming, we may average over parameter or function values obtained from different models. Ideally this is carried out during MCMC estimation via forms of model search, as in stochastic search variable selection (George & McCulloch, 1993; Yang et al, 2005), and in switching models in time series analysis. This involves averaging over different regression models, some of which include certain predictors, while others exclude them; see Yi et al (2003) for one of several recent applications of SSVS in genetic analysis. Using the same strategy one might average over links or variable transformations (Czado & Raftery, 2005). 

If models are estimated one by one, one would estimate posterior model probabilities after an MCMC run is finished (using marginal likelihood estimators), and then average over posterior expectations or densities of parameters (Hoeting et al, 1999). Given equal prior model probabilities, the weights in the average are 

             wk= Pr(m=k|y)

                 = p(y|m=k)/[(p(y|m=1)+p(y|m=2)+...p(y|m=K)]

The posterior mean for parameter ( would thus be an average over models 

             E((|y)=  wkE((k|y,m=k) = k wk(k
where (k=E((k|y,m=k) is the posterior mean under model k. The posterior variance is obtainable as

             Var((|y) = k [var((k|y,m=k) + (k2] - {E((|y)}2
In the case where there is model uncertainty, these results show that selecting a single model will overstate the precision of parameters and other functions derived from assuming that model is the only correct one (i.e. with weight wk=1).

2.2 Analytic Marginal Likelihood Approximations and the BIC 

The marginal likelihood may be problematic to estimate in practice. Analytic approximations include the Laplace approximation (Raftery, 1995; Tierney & Kadane, 1986; Kass & Raftery, 1995; Azevedo-Filho & Shachter, 1994; Lewis & Raftery, 1997) for a model of dimension d. Specifically

          p(y)=(2()d/2 |Gh| p(y|(h)p((h)

where (h is a high density point (e.g. a vector of posterior means), p((h) is the set of prior densities evaluated at p((h), and Gh is minus the inverse of the Hessian matrix (2h((|y)/(((((() of h((|y)=log[p(y|()p(()] evaluated at (h. h((|y) is the log of the unnormalized posterior density

       p*((|y)=p(y|()p(()=p((|y)p(y).

This approximation works best when the posterior p((|y) is approximately multivariate normal. Gh can also be estimated via MCMC approximation to the posterior covariance matrix of (. 

Raftery (1996) and Raftery and Richardson (1996) review Laplace approximations to the Bayes factor using the maximum likelihood estimate of (m as (h. Thus expand the log of the integrand

        p(y) =  p(y|) p() d


















(2.2)

namely h(y)=log[p(y|)p()] by a Taylor series about (mBecause h(((m) = 0, this expansion gives 

        h()  h((m) + ½ (-(m)h(((m) (-(m)

Substituting in (2.2) and remembering h((m) is constant, this gives

       p(y)  exp(h((m))  exp[½ (-(m)h(((m) ( - (m)] d
The integrand in (2.3) is proportional to a multivariate normal with precision matrix (inverse covariance matrix) A=[-h(((m)]. This leads to the marginal likelihood approximation

           p(y)  exp[h((m)] (2()d/2 |A|-0.5
or equivalently

           log p(y)  log p(y|(m) + log p((m) +d/2 log(2() - ½ log|A|

This form demonstrates why taking diffuse priors leads to Lindleys paradox (Shafer, 1982) whereby the simplest model tends to be selected. For any given (m, making p((m) more diffuse will reduce p(y). For n large, AnI where I is the expected information matrix for a single observation, which means |A|=nd|I|. Suppose also p() is taken to be multivariate normal with mean (m and precision I (i.e. the prior is equivalent to a single extra observation), then

   log p(y)  log p(y|(m) + [½ log|I| - (d/2) log(2()]

                                +(d/2) log(2() - d/2 log(n) - ½ log|I|

                 = log p(y|(m)- (d/2)log(n).

This quantity is known as the Bayes Information Criterion (BIC) and penalises model complexity according to the log of model dimension (Raftery, 1995); it has been argued to penalise overfitting more effectively than the AIC measure, though is best applied when relatively informative priors are used. Although it does not explicitly depend on p((), the BIC approximates p(y) under the unit information prior (Kass & Wasserman 1995), or under a normalized Jeffreys prior (Wasserman 2000), and may be used in regression selection when p(y) is not known analytically (Chipman et al, 2001). The appropriate definition of the sample size n is discussed by Raftery (1995). For example, in an IxJ contingency table of counts mij the sample size would not be IJ but the sum eq \O((,i)

eq \O((,j)mij. Weakliem (1999) and Burnham and Anderson (2002) provide further discussion on the utility of the BIC approximation and the appropriate definition of n. 

For large samples, the Laplace method can also be used to approximate the log Bayes Factor as

   log(B12)=log [p(y|m=1)] - log [p(y|m=2)]

              log[p(y|(1m,m=1)] – log[p(y|(2m,m=2)] – log[n(d1-d2)/2]

So  

              2log(B12)  G2 - log(n)                                                (2.4)

where G2 is the likelihood ratio comparing the models for =d1-d2 degrees of freedom. When the comparison model is the saturated model then the test for model k against the saturated model involves the GLM deviance for model k:

             2logB12 Deviance(Mk) - klogn                             

The maximum likelihood solution (m may be approximated in a MCMC run (Raftery, 1996; Gelman et al, 1996) by that ( giving the maximum L(t)max of the log-likelihood values L(t)=log p(y|(t)). A BIC approximation may use the average eq \O(L,_) of the sampled log-likelihoods, leading to the measure (Carlin and Louis, 1997, chapter 6):

              BIC(= eq \O(L,_) - d/2 log(n)                                               (2.5)

Approximations such as (2.4) and (2.5) have improved validity for large sample sizes, and are most straightforward in models containing only fixed effects, such as regression models where the only parameters are regression coefficients, and possibly residual variances. A problem with the Laplace and BIC approximations occurs in complex hierarchical models involving random effects with unknown model dimension, though the estimator de=2[eq \O(L,_)L(eq \O((,_) proposed by Spiegelhalter et al (2002) may be substituted into (2.5) (Pourahmadi & Daniels, 2002).

2.3 Marginal Likelihood Approximations from the MCMC Output

The formula (2.1) implies that the marginal likelihood may be approximated by estimating the posterior ordinate p((h|y) in the relation 

        log[p(y)]=log[p(y|(h)]+log[p((h)]-log[p((h |y)] 

where (h is any point with high posterior density. Most generally, one may estimate p((h|y) by kernel density methods or moment approximations (Sinharay & Stern, 2004; Bos, 2002). Alternatively Chib (1995) considers a marginal/conditional decomposition of p((|y) into D ( d  blocks, in the case when the full conditionals are in closed form. Thus

          p((h|y)=p((1h|y)p((2h|(1h,y)p((3h|(1h,(2h,y)…p((Dh|(1h,..(D-1,h,y)

with p((h|y), and thus p(y), estimated by using D-1 subsidiary samples drawn from separate sampling chains. If D=2, namely (h=((1h,(2h), the posterior ordinate at (h|y is expressed as p((1h|y)p((2h|y,(1h).  The first ordinate in this decomposition is estimated from the output of the main sample, e.g. as

           p((1h|y)= eq \O((,t=1,T) p((1h|y,( eq \O(2,(t)))

or by an approximation technique (e.g. assuming univariate/multivariate posterior normality of (1 or a kernel method). The second ordinate is available by inserting (1h and (2h in the usual full conditional density. When there are the three blocks, the first ordinate is estimated as for D=2, with                 

          p((1h|y)= eq \O((,t=1,T) p((1h|y,( eq \O(2,(t)) ,( eq \O(3,(t)))

but the second ordinate, p((2h|y,(1h) is estimated from the output of a subsidiary MCMC simulation with block (3 free, but block (1 held fixed at its value (1h within (h; specifically 

         p((2h|y,(1h)= eq \O((,t=1,T) p((2h|y,(1h,( eq \O(3,(t))).

The ordinate for the third block is obtained by substituting (h=((1h,(2h,(3h) in the usual conditional density of (3, given y, (1 and (2. The same principle extends to higher numbers of blocks, with

      p((dh|y,(1h,..(d-1,h)= eq \O((,t=1,T) p((2h|y,(1h,.., (d-1,h,( eq \O(d+1,(t)),… ( eq \O(D,(t))).

Chib and Jeliazkov (2001) extend this method to cases where full conditionals do not have a known normalising constant and have to be updated by M-H steps.

Several methods use importance sample approximations to p((|y) to produce estimates of the marginal likelihood using MCMC output. From the identity

          p(y) =
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(2.6).

Generally the importance function g should be chosen to reduce the variance of p(y|()p(()/g((), and so should be more heavily tailed than the unnormalised posterior p*((|y)=p(y|()p(() as well as being a good approximation to p((|y) (Yuan & Dresdel, 2005). Rossi et al (2005, chapter 6) consider the distribution and variance of the importance ratios w(t)=p*(((t)|y)/g(((t)) and show possible sensitivity to outliers of the estimator (2.6) and other common estimators of marginal likelihoods.
Another importance sampling estimate of p(y) is based on the identity 
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[image: image4.wmf])

q

(

)

q

)

q

p

|

p(y

y

|

(

p

)

y

(

p

d
p(y) is a constant so can be moved to the left hand side, giving
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Gelfand and Dey (1994) recommend g be an importance density approximation for p((|y), such as a multivariate normal, derived possibly as a moment estimator
 from an MCMC sample of the components of (, namely (eq \O(1,(t)), (eq \O(2,(t)), …,(eq \O(d,(t)). The values of g(t), L(t) = p(y|((t)), and ((t)= p(((t)), namely the importance density, likelihood and prior ordinate, are evaluated at each value ((t) sampled from p((|y). From (2.7), the marginal likelihood is approximated as

               1/eq \O(p,^)(y) = T-1eq \O((,t=1,T) [g(t) /(L(t)(t))]                             (2.8)

namely the harmonic mean of the quantities L(t)((t)/g(t). In this estimator the g function is analogous to the reciprocal of an importance function and so the estimator works best when the tails of g are thin as compared to p((|y). Note that this estimator implies that arithmetic mean of the ratios L(t)((t)/g(t) - using samples  ((t) from p((|y) - may be a satisfactory estimator of p(y) when g(() has thick tails relative to p((|y). 

If g is taken as the prior p(one obtains the harmonic mean of the likelihoods as an estimator for p(y), namely 

eq \O(p,^)(y) = T-1 eq \O((,t=1,T) {1/p(y|(t))}                              (2.9) 

This estimator may be unstable if by chance a few low likelihood values are present in the sampling output; the impact of such aberrant cases can be monitored by batching the MCMC output (e.g. in bands of 5000 iterations) to assess stability in the harmonic mean. One might then average over batches, or perhaps form some robust estimate of the mean. 

Newton and Raftery (1994) suggest an importance sampling function based on combined samples from prior p(() and posterior p((|y) to improve on the stability of the estimator (2.9). Thus define 

              g(() = (p(() + (1-()p((|y)                            (2.10)

with 0<(<1, and typically ( small for numeric stability (e.g. (=0.05). They also propose a synthetic estimator based on (2.10) that avoids sampling from the prior density (see also Kass and Raftery, 1995, p 780). Thus suppose T values of the likelihood are available from an MCMC output. Then sampling from the prior can be avoided by imagining (T/(1-() further values of ( are notionally sampled from the prior with likelihood values exactly equalling their expectation p(y). The resulting estimator is obtained via a linear iterative scheme, as in the following matlab code which sets (=0.01 and assumes a scheme with 10 iterations:

function [logML]=synthetic(T,L)

% input data: sampled log-likelihoods L(t),t=1,..T

% proportion from prior

      del=0.01;   eps = del/(1-del);       mL=mean(L); 

% centre log LKs before exponentiation

      for  t=1:T  f(t) = exp(L(t)-mean(L)); 

      end

      gam(1) = 1; 

% revised estimates of (centred) Marg LKD

      for j=2:10     A(j)=0;     B(j)=0; 

      for t=1:T      A(j)=A(j)+f(t)/(del*gam(j-1)+(1-del)*f(t)); 

                           B(j)=B(j)+1/(del*gam(j-1)+(1-del)*f(t)); 

      end

% revised estimate at iteration j     

      gam(j) = (eps*T+A(j))/(eps*T/gam(j-1)+B(j));

      end

% final log ML estimate

      logML= log(gam(10))+mL;

Meng and Wong (1996) propose the bridge sampling method, under which the Gelfand-Dey and importance sampling estimators are special cases; see also Mira & Nicholls (2004) and Meng & Schilling (2002). Thus the marginal likelihood of model k is the normalizing constant ck = p(y|m=k) in the relation

          p((k|y,m=k) = p(y|(k,m=k)p((k|m=k)/p(y|m=k)

                              = p*((k|y,m=k)/ck
where 

         p*((k|y,m=k)=p(y|(k,m=k)p((k|m=k) 

is the un-normalised posterior. Obtaining the Bayes Factor Bjk=p(y|m=j)/p(y|m=k) amounts to estimating a ratio cj/ck of two normalising constants. Let g(() be an importance density approximation to p((|y), which has a known normalising constant (e.g. if g is MVN or a mixture of MVNs). Bridge sampling is based on the identity

      1=   ( [((()p((|y)g(()d(]/( [((()g(()p((|y)d(]

        =   Eg[((()p((|y)]/Ep[((()g(()] 

where ((() is the bridge function, and Eg[] denotes expectation with regard to the density g. Substituting p*((k|y,m=k)/p(y|m=k) for p((|y) in the relation

       1 = Eg[((()p((|y)]/Ep[((()g(()] 

gives the result

        p(y|m=k)= Eg[(((k)p*((k|y,m=k)]/Ep[(((k)g((k)]

Given samples  (eq \o(k,(t)) (t=1,..M) and  eq \O((,~)

eq \o(k,(t)) (t=1,…L) from p((k|y,m=k) and g((k) respectively, one may estimate p(y|m=k) as

      {L-1eq \O((,t=1,L)[((eq \O((,~)

eq \o(k,(t)))p*(eq \O((,~)

eq \o(k,(t))|y,m=k)]}/ {M-1eq \O((,t=1,M) [(((eq \o(k,(t)))g((eq \o(k,(t)))]}.

Setting ((()=1/g(() gives the estimator considered above, namely

     L-1eq \O((,t=1,L)  [p*( eq \O((,~)

eq \o(k,(t))|y,m=k)/ g( eq \O((,~)

eq \o(k,(t)))]

and uses only samples from the importance density. Setting ((()=1/p*((|y) gives the estimate of Gelfand and Dey (1994), as in (2.7), namely the harmonic mean of the ratios p*((eq \o(k,(t))|y,m=k)/g((eq \o(k,(t))). Setting ((()=1/[p*((|y)g(()]0.5 gives the geometric estimator  considered by Lopes & West (2004), 

   {L-1eq \O((,t=1,L)[p*(eq \O((,~)

eq \o(k,(t))|y,m=k) )/ g( eq \O((,~)

eq \o(k,(t)))]0.5} /   

                    {M-1eq \O((,t=1,M) [g((eq \o(k,(t)))/p*((eq \o(k,(t))|y,m=k)]0.5}.

Fruhwirth-Schnatter (2004) considers the estimation of optimal functions ((() and hence marginal likelihoods in Markov switching models. Lopes and West (2004) compare model selection results obtained with several of the above approximations, and also with the RJMCMC method, for simulated Bayesian factor analyses. Sinharay and Stern (2005) consider warp transformations of p* based on the approach of Meng & Schilling (2002).

To illustrate the geometric estimator it was applied to model M9 of the binary data from Chib (1995, p. 1318),  relating to clinical risk factors for probabilities (i of nodal involvement in 53 cancer patients. The estimation using the following winbugs code:

model   {for (i in 1:N) { y[i]   ~ dbern(pi[i]); pi[i] <- phi(etaD[i])

etaD[i] <- b[1] +  b[2]*log(x1[i])+ b[3]*x2[i] + b[4]*x3[i]+b[5]*x4[i]

etaN[i] <- b.g[1] +  b.g[2]*log(x1[i])+ b.g[3]*x2[i] + 

               b.g[4]*x3[i]+b.g[5]*x4[i]

# log-likelihoods

LD[i] <- y[i]*log(phi(etaD[i])) + (1-y[i])*log(1-phi(etaD[i]))

LN[i] <- y[i]*log(phi(etaN[i])) + (1-y[i])*log(1-phi(etaN[i]))}

# quantities for numerator & denominator of ML estimator

Pstar.post <- sum(LN[])+sum(PrN[]); g.post <- sum(gN[])

Pstar.imp <- sum(LD[])+sum(PrD[]); g.imp <- sum(gD[])

mon[1] <- Pstar.post;  mon[2] <- g.post; 

mon[3] <- Pstar.imp;   mon[4] <- g.imp; 

# sample from priors and importance functions

for (j in 1:5) {b[j] ~ dnorm(M[j],P[j])

       b.g[j] ~ dnorm(g.m[j],g.p[j]);           g.p[j] <- 1/pow(g.se[j],2)

PrD[j] <- 0.5*log(P[j]/6.28)-0.5*P[j]*pow(b[j]-M[j],2)

gD[j] <- 0.5*log(g.p[j]/6.28)-0.5*g.p[j]*pow(b[j]-g.m[j],2)

PrN[j] <- 0.5*log(P[j]/6.28)-0.5*P[j]*pow(b.g[j]-M[j],2)

gN[j] <- 0.5*log(g.p[j]/6.28)-0.5*g.p[j]*pow(b.g[j]-g.m[j],2)}}

Univariate normal importance functions are used for the five probit regression coefficients and are based on posterior means g.m=(0.68,1.65,1.06,0.86,0.66) and posterior standard deviations, g.se=(0.41,0.69,0.49,0.44,0.45) of the coefficients from an earlier run. The prior means, M[1:5] and precisions, P[1:5], are as used by Chib (1995). The quantities in mon[1:4] in the above code are accumulated over  a batch of 9000 iterations (after 1000 burn-in iterations in a single chain) and can be fed into a spreadsheet (or program such as matlab) where relevant exponentiations are carried out. The resulting estimate of the log marginal likelihood for this model is –38 compared to –36.65 for the simpler
 model (M8) excluding predictor x4, giving a Bayes factor favouring the smaller model of 3.86 and a posterior probability on this model of 0.794. Very similar estimates of marginal likelihoods and p(y|M8) are obtained using the iterative (optimal estimator) scheme mentioned by Lopes & West (2004, p 54) and Fruhwirth-Schnatter (2004, equation 8). For equal iteration totals (namely T) from the posterior and importance sample this procedure can be implemented using the following matlab function:

function [logML]=MW(T,Pstar_post,g_post,Pstar_imp,g_imp)

% initial estimate of Marg LKD      

      r(1) = 1; 

      for t=1:T W1(t) = exp(Pstar_post(t)-g_post(t));

                      W2(t) = exp(Pstar_imp(t)-g_imp(t));

      end                

% revised estimates of Marg LKD

      for j=2:10     A(j)=0;     B(j)=0; 

      for t=1:T      A(j)=A(j)+W2(t)/(0.5*W2(t)+0.5*r(j-1));

                           B(j)=B(j)+1/(0.5*W1(t)+0.5*r(j-1)); 

      end

% revised estimate at iteration j     

      r(j) = A(j)/B(j)

      end

% final log ML estimate

      logML= log(r(10));

Marginal likelihood and Bayes factor estimates for random effects models with the above methods often require that the random effects be integrated out at each iteration. Thus let the complete data likelihood (for one level data yi) be P(yi|bi,(,() = P(yi|bi,(), where ( are variance hyperparameters governing the distribution of random effects bi, and ( are remaining parameters. Then most of the adaptations of the above methods considered by Sinharay & Stern (2005) involve integration out of the random effects to obtain the likelihood P(yi|(,() and the above methods then applied with (=((,(). The marginal likelihood is then p(y) =((p(y|(,()p((,()d(d(. In MCMC sampling the integration out of random effects would be done at each iteration (e.g. by Simpsons rule, quadrature or importance sampling). 

Taking the parameter set as (=((,b,() is feasible but involves developing relevant functions (e.g. importance functions) for individual random effects bi. The marginal likelihood is then p(y) =(((p(y|(,b)p(b|()p((,()dbd(d(. Chib (1995) considers the option (=((,b,() while Zijlstra et al (2005) consider the Newton-Raftery synthetic method applied to complete data likelihoods P(yi|bi,(). Alternative likelihood perspectives in random effects models are also discussed by Spiegelhalter et al (2002) in relation to the DIC.   

Finally, let (h=((h,(h) be parameter values at a high density point. Then Chen (2005) presents an estimator based on the identity

     p(y|(h) = ( p(y|(h,b)p(b|(h)g((|b)d(db

                 =
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where the expectation is with respect to p((,b|y). Taking g((|b)=p(() is one possibility, giving a simulation consistent estimator 

  log[p(y)]=log[p(y|(h)]-log
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2.4 Approximating Bayes Factors or Model Probabilities

Some approximation methods used in formal Bayesian model choice produce posterior model probabilities or Bayes factors (Han & Carlin, 2001; Friel & Pettitt, 2006) rather than marginal likelihoods per se. Gelman and Meng (1998) suggest constructing a path to link two models being compared and estimating the Bayes factor as a ratio of normalizing constants. To consider path sampling, from  p((|y) = p(y,()/p(y) one may obtain for s([0,1] 

                  p((|y,m=s) = p(y,(|m=s)/p(y|m=s)                             

where values of s form a path linking models 0 and 1. Suppose the alternative models were

            Model 0:     yi= (0 + x1i(1+ui0                                   

            Model 1:     yi= (1+ x1i(1+x2i(2+ui1                                  

The intermediate models are defined by

            Model s:     yi = (s + x1i(1 + sx2i(2+uis                                                
with uis ~ N(0,(eq \O(2,s)). 

Let Z(s)=p(y|m=s) be the marginal density of model s, so that Z(1)=p(y|m=1) and Z(0)=p(y|m=0). Then

             log[p((|y,m=s)] = log[p(y,(|m=s)] – log[Z(s)]

Differentiating with respect to s, and interchanging integration with differentiation, gives (Dellaportas & Roberts, 2003, p 33)
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where the expectation is with respect to p((|y,m=s). If p(() is independent of model s, then 
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log[p(y|(,m=s)] then the logarithm of the Bayes factor is obtained as 

            logB10 = log[Z(1)/Z(0)] = ( eq \O(0,1) R((,u)du. 

To estimate the integral, define a grid s0=0, s1< s2<s3 <…sG < sG+1=1. One may then estimate logB10 by the trapezoid rule as

            eq \O(logB10 , () = 0.5 eq \o((,j=0,G) [eq \o(R,_)j+1+eq \o(R,_)j] [sj+1-sj] 

where eq \o(R,_)j = eq \O((,t=1,T)R(((t),sj)/T is an average over T iterations from an MCMC chain of parameters ((t) sampled from p((|y,m=sj). In the above regression example   

 log[p(y|(,m=s)]=-0.5n[log(2()+log((eq \O(2,s))]-0.5eq \O((,i=1,n)[yi-(s-(1xi-s(2x21]2/(eq \O(2,s)
and 

 R((,s)= 
[image: image18.wmf]ds

d

log[p(y|(,m=s)]= -eq \O((,i=1,n) [yi-(s-(1xi-s(2x2i] [-(2x2i]/ (eq \O(2,s).
We illustrate this method for the radiata pine data analysed by Song and Lee (2004), Chib & Carlin (1995), and Green and O’Hagan (1998). The observations are y (maximum compression strength parallel to the grain), x (density),and w (resin-adjusted density) for 42 specimens of radiata pine. The alternative models are

    Model 0 : yi = α0 + β1(xi − eq \O(x,_)) + ui0                        

    Model 1 : yi = (1 + (2(wi −  eq \O(w,_)) + ui1
with 

     Model s:  yi = (s + (1-s)β1(xi − eq \O(x,_)) + s(2(wi −  eq \O(w,_)) +uis                                               
The following WINBUGS code produces an estimate for logeB10 of 8.485 (with Monte Carlo s.e of 0.004) from iterations 1000-10,000 of a two chain run with initial values as also listed, and with G=21. This corresponds to a Bayes factor of 4842, similar to that reported in the above studies.

model {for (i in 1:42) {x[i] <- X[i]-mean(X[]);w[i] <- W[i]-mean(W[])}

# grid for G equal subdivisions of [0,1]

t[1] <- 0;      for (s in 2:G) {t[s] <- (s-1)/(G-1)

                                            BF[s] <- (t[s]-t[s-1])*(U[s]+U[s-1])}

# log Bayes factor

                    logBF <- 0.5*sum(BF[2:G])

 b[1] ~ dnorm(185,0.0001); b[2] ~ dnorm(185,0.0001); 

 for (s in 1:G) { U[s] <- sum(u[,s])

 alph[s] ~ dnorm(3000,0.000001); tau[s] ~ dgamma(3,180000)

for (i in 1:42) { Y[i,s] <- y[i];   Y[i,s] ~ dnorm(mu[i,s],tau[s])

    u[i,s] <- (y[i] - alph[s] - (1-t[s])*b[1]*x[i]-t[s]*b[2]*w[i])* 

                  (-b[1]*x[i]+b[2]*w[i])*tau[s]

     mu[i,s] <- alph[s] + (1-t[s])*b[1]*x[i]+t[s]*b[2]*w[i]}}}

Inits: list(alph=c(3000,3000,…),b=c(184.6,178.2),tau=c(1,1,…)) list(alph=c(3000,3000,…),b=c(184.6,178.2),tau=c(0.001,0.001,…)) 

2.5 Joint Space Search Methods

Model search methods consider the joint state space {(k,k} defined both by model parameters (k and the model index m=k, where k(1,..K where the posterior parameter-model index distribution can be factorized as
         p(k,(k|y) = p((k|y, k)p(k|y).

Two classes of search algorithm have been proposed for sampling from the joint state space: product space and reversible jump (RJMCMC) algorithms. Both are special cases of a composite space M-H algorithm that considers moves from current state (k,() to a potential new state (m,(*) where (=((1,..,.(K) and (*=(( eq \O(*,1),..,.( eq \O(*,K)) are parameter sets over the K possible models (Godsill, 2001; Chen et al, 2000, p 301).
The basic form of the reversible jump MCMC algorithm (Green, 1995) generalises the Metropolis-Hastings algorithm to include a model indicator. Moves from (k,(k) to (m,(m) are proposed according to a density q(m,(m|k,(k) and the acceptance probability is the minimum of 1 and

          [p((m,m|y) q(k,(k|m,(m)/ [p((k,k|y) q(m,(m|k,(k)].

In practice the proposal density will typically take account of nesting of models and relationships between parameters of different models, rather than proposing the entire new parameter vector (Godsill, 2001). 

Suppose the current model is j with parameters (j. The RJMCMC algorithm proposes a new model k with probability rjk where eq \O((,k=1,K)rjk =1. If k=j then an MCMC iteration within model j is carried out. Otherwise an auxiliary variable uj is generated  from a density qjk(uj|(j ,j,k) and one sets ((k,uk)= gjk((j,uj) where gjk is a bijective or dimension matching function ensuring dj+dim(uj)=dk+dim(uk). The move is accepted with probability min(1,(jk Jj) where

     (jk =[p*((k|y,k) (krkj qkj(uk|(k,k,j)]/ [p*((j|y,j) (j rjk qjk(u|(j,j,k)] 

with p* the unnormalised posterior, (k =Pr(m=k) denoting prior model probabilities, and Jj = 
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u

,

(

)

u

,

(

g

j

j

j

j

jk

q

¶

q

¶

. Han & Carlin (2001, p 1130) mention problems with RJMCMC in hierarchical random effects models. Possible solutions are to integrate out the random effects from P(y|(,bi) (e.g. by numerical integration) or, if random effects are not integrated out, to take the auxiliary variable uj to correspond to all the parameters of model k, as in Sinharay and Stern (2005).

Carlin and Chib (1995) propose a simultaneous model selection procedure sampling over the joint space defined by model indicators j  {1,..K} and the parameters of each model ={1,..K}. Assume that parameters in different models are non-overlapping. The joint density of the data, the model parameter vector , and the model index for a particular model m=j is

              p(y,,m=j) = p(y|,m=j) p(|m=j) Pr(m=j).                     

It is assumed that m indicates which (j is relevant to y, so that y is independent of (k (k(j) given that m=j. So 

               p(y,,j) = p(y| j,j) p(|j) Pr(m=j).                     

The second component in the joint density expansion is

               p(|j) =  eq \O((, k=1,K)p((k|j)                                    

where the prior p((j |j) within this product is the usual one (the ‘true’ prior) specifying prior assumptions on the parameters of model j when it is selected. The prior p(k |j) for k(j is termed a pseudo-prior by Carlin and Chib (1995) and specifies the prior assumptions made about the parameters of model k given that another model (j) is selected. This prior is needed if the chain is to switch between models. The full conditional for parameter j is then proportional to 

                     p(y|j,m=j) p(j|m=j)                    

when model j is chosen, but is defined as

                     p(j|m=k)

when model k is chosen. Usually common pseudo-priors p(j|m=k) are assumed for all k(j when K>2.

Carlin and Chib (1995) recommend using separate model estimates from pilot runs to provide appropriate parameters for the pseudo-priors. That is pseudo priors {p(j|k), k(j} are equated to estimates of the ‘own model’ posterior density p(j|y,m=j). Godsill (2001, p 234) mentions that this is a good choice for the pseudo priors since when the estimate of p(j|y,m=j) is exact, the sampling step for the model indicator is a draw from the model posterior, i.e. j ~ Pr(m=j|y).

An application of the joint space procedure in Chapter 10 involves choosing between Gompertz and logistic growth models for data on the growth of onion bulbs. Separate pilot runs are made to estimate Gompertz growth curve parameters G and logistic parameters L, with posterior precisions PG and PL. A precise (i.e. informative) pseudo-prior is based on these pilot estimates, and a (considerably) less precise prior centred on these estimates is used as the true prior. The true prior for the Gompertz (when the Gompertz model is selected, m=G) might be 

                       m=G ~ N(G, CP eq \O(-1,G))

with C large (e.g. C=1000), and the pseudo prior for the Gompertz parameters when the logistic model is selected would be

                      m=L ~ N(G, P eq \O(-1,G)).

Katsis and Ntzoufras (2004) provide a related model search method, that is generic for nested and non-nested models. Consider the case where model 0 is nested within model 1, with parameters (1=((0,(a) where (a are the additional parameters present in model 1 but not in model 0. Define a binary index ( which is 1 when H1: m=1 is true. Define the likelihood conditional on m=( and (( (where (=0 or 1) as

 
     p(y|((,m=() = p(y|(0,m=0)1-( p(y|(1,m=1)(
The prior distributions have the form p((k,m=(,()=p((k|m=()p(() where k may or may not equal (. When (=k (k=0 or 1), these are the usual priors, denoted p((1,m=1,(=1) and p((0,m=0, (=0). When ((k they are pseudo priors, specifically p((1,m=0, (=0) and p((0,m=1, (=1). One may write the first pseudo prior, for sampling model 1 parameters when model 0 is selected, as

   p((1,m=0, (=0) =p((1|m=0)Pr((=0) 

                             =p((0,(a|m=0)Pr((=0)
                             =p((0|m=0) p((a|(0,m=0)Pr((=0)
where p((a|(0,m=0) is a pseudo-prior for the additional parameters in model 1. The other pseudo prior is p((0,m=1, (=1)= p((0|m=1)Pr((=1). 

Including the parameter ( in the sampling scheme means that when (=0, then (0 is sampled from p((0|m=0,y) ( p(y|(0,m=0)p((0|m=0) and (a is sampled from p((a|(0,m=0). When (=1, one just samples (1 from p((1|m=1,y) ( p(y|(1,m=1)p((1|m=1). ( is then Bernoulli with probability (/(1+() where 

            ( =LR10PR0PRa [Pr(m=1)/Pr(m=0)]
and where LR10 =p(y|(1,m=1)/p(y|(0,m=0) is the usual likelihood ratio, PR0=p((0|m=1)/ p((0|m=0) is the ratio of the pseudo prior ordinate for (0 to the usual prior ordinate, and PRa=p((a|(0,m=1)/ p((a|(0,m=0). 

A Metropolis-Hastings version of the Carlin & Chib (1995) algorithm is discussed by Dellaportas et al (2002) and Han and Carlin (2001). Thus with current state ((j,j), a new model k is proposed with probability rjk, and (k needs to be generated from the pseudo prior p((k|m=j). The acceptance probability is then the minimum of 1 and 

  [p(y|(k,m=k)p((k|m=k) p((j|m=k)Pr(m=k)rkj]/                    

                   [p(y|(j,m=j)p((j|m=j) p((k|m=j)Pr(m=j)rjk].

To ensure smooth transitions between models it is necessary to assume the pseudo-prior p((k|m=j)
[image: image20.wmf]( p((k|m=k,y), namely that the pseudo prior is effectively a proposal density (Godsill, 2001), close to or equal to the posterior density of (k. 

2.6 Direct Model Averaging by Binary and Continuous Selection Indicators 

When models involve shared rather than distinct parameters the composite parameter-model space procedure still applies (Godsill, 2001). Examples are the 2p possible regression models with p potential predictors, or models with multiple random effects which may vary in their relative importance for particular subjects. Model averaging in such situations can be carried out using either discrete (e.g. binary) or continuous (e.g. beta) densities (George & McCulloch, 1993; Wood & Kohn, 1996; Lawson & Clark, 2002). 

For example, in linear regression binary indicators (j relating to the inclusion or exclusion of the jth predictor can be included as part of the prior specification (Wood & Kohn, 1996; Kuo & Mallick, 1998), so that with metric responses yi ~ N((i,(2), one has

                   (i = (+(1(1xi1+(2(2xi2…+(p(pxip                       (2.11).

with the constant included by default. Typically (j=Pr((j=1) is set to 0.5, ensuring equal probabilities for all the 2p possible models. A MCMC run of length T provides marginal posterior probabilities that (j=1 (i.e. that xj should be included in the regression model), while model averaged estimates of the regression parameters are provided by the posterior profiles of (j=(j(j. In nonlinear regression involving sums of exponential or sinusoids, a selection indicator can be applied to an entire component, as in models for the concentration or intensity of a process with mean at time t

              (t = eq \O((,j=1,K)(j [(jexp((jt)]

or          

              µt = eq \O((,j=1, p/2) (j [(jsin((jt) + (j].

The selection of different regression models (and their posterior probabilities) will be affected by the priors placed on the fixed effects (e.g. ( coefficients) and precisions (=1/(2 (Fernandez et al, 2001, p 387; George, 1999). This has led to the development of benchmark, possibly data based priors, to ensure comparability in inferences between studies or produce similarity with formal Bayesian selection. For example, Fernandez et al (2001) propose a benchmark prior based on the g-prior of Zellner, which assumes that the prior correlations for ( equal those observed between the sample predictor variables; so the prior precision for the ( coefficients is ((/g)(X(X) and prior covariance is g(2(X(X)-1 (Liang et al, 2005). In the normal linear regression case, the unit information prior of Kass and Wasserman (1995) corresponds to taking g = n, resulting in model selection and posterior model probabilities similar to what would result from using the BIC; Fernandez et al (2001) suggest g=max(n,p2). In fact, for certain choices of prior in the linear normal regression, predictor selection via binary indicators can be combined with formal model choice via Bayes factors, since the Bayes factors comparing all models can be calculated analytically (Fernandez et al, 2001; Liang et al, 2005).  

In random effects models Shively et al (1999) suggest a two stage strategy to provide an informative prior on precisions of different types of effect. Exploratory model runs with diffuse priors are used to provide data-based priors to be used at a second stage. The second stage involves model selection using binary indicators on the variance components. 

For example, consider choosing between a pure ICAR model and a convolution model for spatial counts yi (see Chapter 9). For areas that are discordant with their neighbours in terms of disease risk, pooling to the neighbourhood average may be inappropriate. Consider instead a discrete mixture model with binary indicators specific to each area. One might have a pure spatial model as the default (when (i=0) but allow an additional unstructured term (i.e. a full convolution model) for areas where the pure spatial effects model is inappropriate. So pooling to the neighbourhood average would be less when (i =1 and the relative risk for area i then involves both a structured and unstructured effect. This is somewhat similar to switching models used to model structural breaks in time series. Thus McCulloch & Tsay (1994) suggest a random level-shift autoregressive  model

     yt = (t +(t
     (t =(t-1 + (t(t
     (t =(1(t-1+(2(t-2+…+ut
where (t ~ Bern((), random effects (t ~ N(0,(2) describe the level shifts, (t are autoregressive errors, and ut ~ N(0,(2) are unstructured. The shift variance (2 is presumed to exceed the white noise variance (2. The probability of a shift ( is beta with parameters favouring low probabilities, for instance ( ~ Beta(5,95)
In a spatial application with populations or expected totals Ei, suppose yi ~ Po(Ei(i,(i) with prior probability Pr((i=1)=(, where ( may be preset or taken as an extra unknown. Then a ‘spatial switching’ model specifies

               log((i0)= Xi(+si





               log((i1)= Xi(+ui+si
Following Shively et al (1999) one strategy might be to make initial runs of (a) the pure spatial model with a diffuse priors on (s (the conditional precision in the ICAR model), and of (b) the pure unstructured model with a diffuse prior on (u.  Long run of samples of (eq \O((t),s)=log((eq \O((t),s)) and (eq \O((t),u)=log((eq \O((t),u)) would then be obtained and provide the basis for log normal priors on (s and (u at the second stage. Specifically as in Yau et al (2003, p 34), the median of (eq \O((t),s) provides the mean for the second stage lognormal prior while the variance of that prior is provided by n times the variance of (eq \O((t),s) (where n is the number of areas). Shively et al (1999, pp 779-780) argue that scaling by the sample size in this way leads to model selection that approximately replicates selection via the BIC.
Another possible mechanism for model averaging in random effects models is provided by beta or Dirichlet mixing over different types of random effect (Congdon, 2000; Congdon, 2006a; Lawson & Clark, 2002). For example in a spatial model with yi ~ Po(Ei(i) one could mix over two spatial errors (e.g. one a normal ICAR, the other a heavier tailed Laplace) as in                  

               log((i)= Xi(+bis1i+(1-bi)s2i



where bi ~ Beta(c1,c2), with c1 and c2 known. One could also use continuous mixing to average over structured and unstructured errors as in  



               log((i)= Xi(+biui+(1-bi)si.

Dirichlet mixing would apply if one were mixing over an unstructured error and two spatial errors as in 

               log((i)= Xi(+bi1ui+bi2s1i+bi3s2i
with (bi1,bi2,bi3) ~ Dir(c1,c2,c3). This type of strategy is exemplified in Congdon (2006a) in a spatial disease model allowing both for nonlinear predictor effects and spatial variation in such nonlinear effects.

Models with beta/Dirichlet mixing over different forms of random effect could possibly be seen as an instance of continuous model expansion (Draper, 1995). Model expansion replaces the conditioning on a single structure S* regarding parameters by a broader continuous class of structures S with S* as a special case.  Draper (1995) gives an example of the S* approach as the linear model yi=(+ei, with ei ~N(0,(2), whereas an S approach might take e to follow a symmetric power exponential or epsilon-skew-normal density (Mudholkar & Hutson, 2000; Elsalloukh et al, 2005) which include the normal as a special case. Discrete model expansion is exemplified by models with discrete binary selection on predictors or random effects, as above.

2.7 Predictive Model Comparison via Cross Validation

Cross-validation methods are well established in frequentist statistics, and in Bayesian statistics involve predictions of a subset yi of y (the validation data) when only the complement of yi, denoted  y[i] (the training data) is used to update the prior (Gelfand et al, 1992; Alqallaf & Gustafson, 2001; Dey et al, 1997). Thus if only a single observation, say y1, were omitted, y[1] would consist of observations {y2,...yn}. One may regard the validation data yi as unknowns, just like parameters (, and seek to estimate their posterior p(yi|y[i]) when only y[i] are used to update the prior p((). Then even if p(() and hence also p(y), is improper, the conditional predictive density or conditional predictive ordinate (CPO) 

                 p(yi|y[i]) = p(yi|,y[i])p(|y[i])d
is proper, provided the posterior based on y[i], namely p(|y[i]) is proper (Gelfand, 1996; Dey et al, 1997). Typically, the yi are conditionally independent of y[i] given the unknowns (, possible exceptions being when there is explicit dependence on previous observations (time) or neighbouring observations (space). Then 

                 p(yi|y[i])  = p(yi|)p(|y[i])d
The CPO expresses the posterior probability of observing the value (or set of values) yi when the model is fitted to all data except yi, with a larger value implying a better fit of the model to yi, and very low CPO values suggesting that yi is an outlier with regard to the model being fitted (McNeil & Wendin, 2005). 

The usual marginal likelihood p(y) is defined equivalently by the set p(yi|y[i]) (Besag, 1974), and Geisser and Eddy (1979) suggest the product

                   eq \O(p,^)(y) =  eq \O((, i=1,n) p(yi|y[i]),                 

of conditional predictive ordinates as an estimator for the marginal likelihood, sometimes called the pseudo marginal likelihood PsML. A higher value of the PsML implies a better fit of a model to the observations. A related criterion is the average logarithm of the pseudomarginal likelihood (ALPML) as suggested by Ibrahim et al (2001). The ratio of PsML for two models is then a surrogate for the Bayes factor, sometimes known as the pseudo Bayes factor (Gelfand, 1996; Sahu, 2004). 

Vehtari & Lampinen (2002) consider estimates for the density p(ynew,n+h|xn+h,D)= p(ynew,n+h|,xn+h,D)p(|D)d of predictions ynew,n+h given training data D={y=(y1,..yn),x=(x1,..xn)} and updated predictor values xn+h. They also consider density estimates for case specific utility functions uh under different models (and summary statistics such as expected utilities). They consider out-of-sample predictions based on single case omission and k-fold cross-validation. In this case, utility measures are based on comparing predictions against actual data, for example absolute differences uh=|Ey(ynew,n+h|D,xn+h)-yn+h|. Often the density of uh may be taken approximately Gaussian, in which case the significance of the difference in utility expectations under two models eq \O(u,_)M1- eq \O(u,_)M2 =Eh[uM1,h-uM2,h] can be computed analytically. 

Cross-validation methods have a broader role in model checking than simple overall model fit, namely in terms of identifying influential cases, outliers and other model discrepancies (Stern and Cressie, 2000). Cases with very low CPO statistics suggest model discrepancies; that is the model is not reproducing certain data points effectively. Gelfand et al (1992) propose a range of checking functions involving comparison of the actual observations with predictions eq \O(y,^)i from p(yi|y[i]). 

The simplest is the prediction error  g1i = yi - eq \O(y,^)i with expectation 

              d1i=yi - E(yi|y[i]).

If 2i=var[yi|y[i]] then a standardised checking function is 

              e1i=d1i/i
and F1=eq \O((,i=1,n)e eq \O(1i,2) can be used as an index of overall model fit. Under approximate posterior normality, 95% of the e1i should be within -2 to +2, and systematic patterns (e.g. as revealed by plots against covariates) indicate model inadequacy.  Another check g2i=I(eq \O(y,^)i  yi) is simply whether the prediction exceeds or is less than the actual observation yi. The expectation is d2i=Pr(eq \O(y,^)i  yi|y[i]) and in an adequate model these are uniformly distributed with average around 0.5. An overall index of fit is then F2=(d2i-0.5)2. A third possible check involves assessing whether the prediction is contained in a small interval (yi-,yi+) around the true value. The function

                             g3i=I(yi- eq \O(y,^)i  yi + )/2
then has an expectation 

                             d3i=p(yi|y[i]) 

(i.e. the CPO) when  tends to zero. 

The statistics d3i can be estimated without needing to actually exclude case i and carry out n separate estimations (Gelfand and Dey, 1994). By monitoring the inverse likelihood of each case for T iterations after a burn-in period, a Monte Carlo estimate of the CPO is obtained (Gelfand, 1996) as

        CPOi = 
[image: image21.wmf]1 / {T-1  eq \O((,t=1,T) [p(yi|θ(t),Bi)]-1}
                (2.12)

This estimator follows by virtue of the relation 

   p(yi|y[i])=p(y)/p(y[i]) =
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A log pseudo marginal likelihood (PsML) estimate is obtained from multiplying over cases as 

               log(PsML)= eq \O((,i=1,n) log(CPOi)  








(2.13).

Other estimators of the CPO, and hence the PsML, are obtainable by importance weighting or importance resampling (Vehtari & Lampinen, 2002; Stern & Cressie, 2000). This avoids expensive re-estimation of the model n times based on omitting each case separately. If the goal is identification of poorly fit cases, various preliminary methods can be used to identify outliers (e.g. via e1i statistics), and such re-estimation might be confined to those (Stern & Cressie, 2000, p2388). 

Importance sampling to estimate p(y|y[i]) uses case specific weights obtained ratios of likelihood products over cases, with the numerator product excluding case i. Thus at MCMC iterations t=1,..T,

             weq \O(i,(t)) = eq \O((,k(i,n) L eq \O(k,(t)) /eq \O((,k=1,n)L eq \O(k,(t)) .

Usually weq \O(i,(t)) = 1/ L eq \O(i,(t)) unless expected values have to be recalculated when cases are omitted (Stern & Cressie, 2000). Consider count data yi; and define 

            qeq \O(1i,(t)) = Pr[yi,new=yi|((t)] weq \O(i,(t)) 

Since Pr[yi,new=yi|((t)] is the probability that a replicate observation equals the actual observation, obtained using the likelihood p(y|() (e.g. Poisson) assumed for the model, the CPO is estimated as  eq \O((,t=1,T) qeq \O(1i,(t)) /  eq \O((,t=1,T) weq \O(i,(t)).

One may also calculate measures of compatibility between replicates and actual observations (similar to d2i) by taking 

               qeq \O(2i,(t)) = Pr[yi,new > yi|((t)] weq \O(i,(t)).

Since leave one out cross validation involves heavy computation if carried out directly, an alternative is repeated 2-fold or k-fold cross validation. Alqallaf and Gustafson (2001) consider cross-validatory checks based on repeated two fold data splits into training and validation samples. Let {y1,..yn} be the data and for split s, let Vs be the validation sample for (if vis=0 or 1 according as observation i is included in the validation data at split s, Vs contains all subjects with vis=1). For s=1,..,S such splits let (s be the parameters based on the training data. Replicate data yrep are sampled from p(yi|(s) for all n cases regardless of whether vis=0 or 1, but the focus is on comparing yrep with yobs for validation cases with vis=1, e.g.  via a statistic

               eq \O((,s=1,S) eq \O((,i(Vs,n) {E(yi,rep) – yi,obs}2.

One may also apply posterior predictive checks (see section 2.8), as in 

                 eq \O((,s=1,S) I{H(yrep,Vs) > H(yobs,Vs)}2.

where H(yrep,Vs) is a checking function calculated only for members of the validation sample; for example, a checking function might be a chi-square fit measure (Stern & Cressie, 2000,  p 2386). Another option is k fold validation where the data is split into a small number of groups (e.g. k=5) of roughly equal size and cross-validation is applied to each of the k partitions obtained by leaving each group out at a time. Kuo and Peng (1999) use this approach to obtain the predictive likelihood for the gth validation group, and use a product of these likelihoods over the k partitions as a marginal likelihood approximation

2.8  Predictive Fit Criteria and Posterior Predictive Model Checks

Predictive cross-validation based on omission of cases may be difficult to implement in samples with many cases, or with missing data, or in models involving random effects or latent mixtures. Model fit and model checking procedures may also involve replicates ynew under the model without assuming omission of any sample members. Such procedures are based on the posterior predictive density

         p(ynew|y) =  p(ynew|y,) p(|y) d
 p(ynew|) p(|y) d
where the second equality applies when ynew are conditionally independent of y given (. 

Using new observations y eq \O((t),new) given the current sampled value of a parameter set t, one possibility is to obtain overall fit measures  (sum of squares, deviances, etc) comparing the actual and replicated observations. Laud and Ibrahim (1995) suggest these be used for model selection and argue that model selection criteria such as the Akaike Information Criterion and Bayes Information Criterion rely on asymptotic considerations, whereas the predictive density for a hypothetical replication ynew of the trial or observation process leads to a criterion free of asymptotic definitions. As they say, “the replicate experiment is an imaginary device that puts the predictive density to inferential use”. 

Denoting (i = E(ynew,i|yi) and Vi=var(ynew,i|yi), Laud and Ibrahim consider the measure

        C = eq \O((,i=1,n) [{(i – yi}2 + Vi]









taking account both of the match of predictions (replications) to actual data, and the variability of the predictions. These represent bias (goodness of fit) and complexity respectively. 

Gelfand and Ghosh (1998) generalise this procedure to deviance forms appropriate to discrete outcomes and to allow for various weights k/(k+1) on the fit component  eq \O((,i=1,n){(i – yi}2. Thus for continuous data and for any k > 0 

         C(k) = eq \O((,i=1,n) [Vi + [k/(k+1)] {(i – yi}2].

Typical values of k at which to compare models might be k=1,k=10 and k=100,000. Larger values of k put more stress on fit and downweight the precision of predictions. 

Analogous criteria for non-normal data are based on other deviance types. Let (i be the posterior average of the deviance term based on the sampled new data at iteration t, yeq \O((t),new),i. For example, for Poisson distributed count data (i is the mean of sampled values of d(ynew,i)= ynew,i log(ynew,i)-ynew,i. The same formula is used for d(i) and d(yi). Define (i=((i+kyi)/(1+k), then the Poisson deviance version of weighted predictive criterion is 

         2 eq \o((,i) [(i-d((i)] + 2(k+1)  eq \o((,i) [{d((i)+kyi}/{1+k}-d((i)].

Continuing with the count data example, Carlin and Louis (2000) consider the standardised deviance measures

         Dt(ynew,y) = 2i{yilog(yi/ yeq \O((t),new),i) - (yi - yeq \O((t),new),i)}

with the average of the Dt(ynew,y) providing an estimate of D1=E[D(ynew,y)|y] known as the expected predictive deviance (EPD). One may also derive a deviance D2 = D((,y) =D(E(ynew|y),y) calculated at the average value of the yi,new. Carlin and Louis (2000) show how the difference D1-D2 may be interpreted as a predictive corrected fit measure, approximately equal (for Poisson data) to

                 E {i [yi,new - (i]2/(i |y}.

A model checking procedure based on the posterior predictive density p(ynew|y), is proposed by Gelman et al (1996), developing work by Rubin and Stern (1994). Model checks assess whether predictions ynew from the models being averaged over, or chosen from, effectively reproduce the observations yobs. For a realised discrepancy measure D(yobs;), such as the deviance or chi-square, a reference distribution PR is derived from the joint distribution of ynew and :

                  PR(ynew,) = p(ynew|) p(|yobs)

The realised value of the discrepancy D(yobs;) may then be located within its reference distribution by a tail probability analogous to a classical p value:

                 pb(yobs) = PR[D(ynew;) > D(yobs;) | yobs]. 

In practice this involves calculating D(ynew(t), (t)) and D(yobs, (t)) in an MCMC run of length T and then calculating the proportion of samples for which D(ynew(t), (t)) exceeds D(yobs, (t)). 

Systematic differences in distributional characteristics (e.g. in percents of extreme values or in ratios of variances to means) between replicate and actual data indicate possible limitations in the model(s). Specifically values of pb around 0.5 indicate a model consistent with the actual data, whereas extreme values (close to 0 or 1) suggest inconsistencies between model predictions and actual data. However, it is not true that values of the PPC criterion around 0.5 show a model is the ‘correct’ one for the data. Application of the posterior predictive p-value method are illustrated in the structural equation model of Scheines et al (1999). 

Another model checking procedure based on replicate data is suggested by Gelfand (1996) and involves checking for all sample cases i=1,..n whether observed y are within 95% intervals of ynew. In stratified models (e.g. area-age-cohort-period models) with several dimensions for the observations, this may be done both for all cells (providing a global predictive concordance), and for each dimension (e.g. age, area, cohort, prior) by aggregating over the model cells involving a specific age, area, cohort, or period (Congdon, 2006b). An improved model should reduce the gap between maximum and minimum concordance rate within dimensions, as well as ensuring the aggregate model predictive concordance is around 95% (Gelfand, 1996, p 158). Systematic model discrepancies will be apparent in patterning of unusually low predictive concordance over particular subsets of the dimensions (e.g. for younger ages or later periods). This procedure may also assist in pointing to possible overfitting, e.g. if all (i.e. 100%) of the observed y are within 95% intervals of ynew. 

2.9 The DIC criterion

Consider the unstandardised deviance defined as D(y,()=–2log[p(y|()]. The DIC criterion of Spiegelhalter et al (2002) may be justified in predictive terms, as the expected deviance E{D(ynew, (h)} for replicate data ynew  at a high density parameter estimate (h such as the posterior mean eq \o((,_) or posterior median (Gelman et al, 2003, p 182). In developing this criterion, Spiegelhalter et al (2002) propose an estimate for the effective total number of parameters or model dimension, denoted de, generally less than the nominal number of parameters dn in hierarchical random effects models where there is no way to count parameters. More generally this is a measure of model complexity, and may also reflect instability caused by particular parameterisations. 

Let L(t)=log[p(y|((t))] denote the log-likelihood obtained at the tth iteration in a long sampling chain, and D(t)=-2L(t) be the corresponding unstandardised deviances. Another definition of the deviance (the standardised or saturated deviance) is provided by McCullagh and Nelder (1989) and both definitions may be used to derive the DIC or the total of effective parameters. Then de is estimated as the gap between the mean  eq \O(D,_) of the sampled deviances D(t), estimating E(D|y,(), and the ‘reference deviance’. This term is used to define the deviance by which de is obtained by subtraction from  eq \O(D,_), and is most commonly taken as D( eq \O((,_)|y), namely the deviance evaluated at the posterior mean  eq \O((,_) of the parameters, giving de=  eq \O(D,_)- D( eq \O((,_)|y). It might also be a deviance D((h|Y) at some other high density point, such as the posterior median.

The reference deviance may also be estimated at the posterior means (i of the observations i=1,..n (Ohlssen et al, 2006), with Spiegelhalter et al (2002, section 5) comparing resulting estimates of de for exponential family densities. Spielgelhalter (2006) refers to this reference deviance as the ‘direct parameters’ estimate. The reference deviance D( eq \O((,_)|y) based on posterior means (and possibly other direct parameters such as the variance in a normal regression) may be more easily obtainable than D( eq \O((,_)|y) in certain complex (e.g. discrete mixture) models. 

The DIC is then either  

               D( eq \O((,_)|y) + 2de                                             (2.14.1)

or 

               D( eq \O((,_)|y) + 2de                                              (2.14.2)

where de is the difference between  eq \O(D,_) and the reference deviance.

An alternative estimate of complexity (effective parameters) is based relies on the asymptotic chi-square distribution of D((|y)-D((min|y) where (min is the value of ( minimising the deviance for a given model (Gelman et al, 2003). From the properties of the chi square density, 

             deq \O(*,e)=0.5var(D(t)).  

with DIC*= eq \O(D,_)+ deq \O(*,e).

Effective parameter estimates in practice include aspects of a model such as the precision of its parameters and predictions; for example they may be inflated by poorly identified parameters in nonlinear models. Congdon (2005) shows how iteration by iteration comparison of the deviances of two models {m=1,2} leads to an estimate of the total complexity deq \O(*,e1) +deq \O(*,e2) of the models, after correcting for a small Monte Carlo correlation between the sampled deviances. 

2.10 Posterior and Iteration Specific Comparisons of Likelihoods and Penalised Likelihoods

A possibly controversial approach to model assessment involves direct consideration of posterior distributions of the data likelihoods L(k|y) = p(y|k,m=k) and of log-likelihood ratios LR=L(0|y)/L(1|y). Thus Dempster (1997) proposed a “inferential pairs” (,k) rule, involving comparisons of posterior likelihood ratios against a threshold k, with k small, e.g. k=0.1, or k=0.05. Thus model 1 is preferred if, under the posterior density of LR|y, the likelihood ratio is less than k with a high probability (. 

Aitkin (1997) proposes a development on this where k is varied over a set of possible values (e.g. k = 0.1, 0.2,0.3,0.4,0.5, 1) changes in the posterior probability k that LR < k are obtained. This is similar in spirit to using penalised deviance criteria to compare models, especially if k is related to the difference in model dimension d0-d1. The test that LR<1 is equivalent to a version of the standard p test, and is the least conservative criterion, possibly leading to overstatement of the evidence against model 0. To obtain stronger evidence against model 0 involves taking a small value such as k=0.1. 

Aitkin (1997) cites the case of a mean of  eq \O(y,_) =0.4 obtained from a sample of n=25 cases from a normal population with known variance 1. The null model 0 specifies a normal mean =0. The probability LR(0)/LR() <  1 is 0.046, giving a high (possibly overstated) probability on the alternative (model 1) that  ( 0. By comparison the more stringent test

                  LR(0)/LR() <   0.2

leads to a probability on M0 being true of 0.327. The posterior Bayes factor approach of Aitkin (1991) argues that likelihood ratio comparisons are less subject to distortion by prior assumptions than the conventional Bayes Factor.

One may also compare models based on posterior densities of penalised fit measures (Congdon, 2005; Congdon, 2006c). An example is the density of the difference in AICs between models j and k, 

             (AICjk=AICj-AICk, 

where AICj=Dj+dj. On exponentiation, this is also expressible as an “evidence ratio” (Burnham and Anderson, 2002) 

                   Ejk=(Lj/Lk)exp(dk/dj).                                    

Similarly relevant to model comparisons are Akaike or AIC weights (Brooks, 2002) obtained by comparing AICj to the minimum AIC for model m*, giving differences (AICj =AICj-AICm*. Let 
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j be the posterior mean of the AIC for model j. These means may be rescaled, namely

               (
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m*
where m* is the model with the lowest mean AIC. Then posterior model weights (summing to 1) may be used to prefer models or average over their parameters, namely

               (j=exp(-0.5(
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j)/   eq \o((,m)[exp(-0.5(
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m)].                 

Another option, based on Schwartz (1978), are BIC weights (Wintle et al, 2003). Comparison with the minimum BIC model m***, gives (BICj =BICj-BICm***, and posterior weights

             (j=exp(-0.5(
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j)/ eq \o((,m) [ exp(-0.5(
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m)].                  

Rather than model choice based on posterior means of (penalised) likelihoods or corresponding weights, the fit measures of two or more models can be compared iteration by iteration within an MCMC run (Congdon, 2005; Congdon, 2006c). Thus likelihood ratios could be penalised for complexity leading to AIC or BIC selection of models at each iteration.  This type of procedure can be used for iteration specific model averaging. 

Suppose model k(1,..K had the highest penalised likelihood at iteration t from K models being compared, then one option is that the model averaged parameter at iteration t is set to the best fitting model. An alternative is to form an average at each iteration that gives some weight to less well fitting models. For example, consider an iteration specific average of a function ( of parameters and data ((y,(eq \O(j,(t))) over models j=1,..K. Then using AIC weights (eq \O(j,(t)) also specific to iteration one obtains the weighted average

                   q((((t),y) =  eq \O((,j=1,K) weq \O((t),j) Q((eq \O(j,(t)),y) .                                

Then the posterior mean

                   E(q(((,y)|y) = eq \O((,t=1,T)q((((t),y)/T 

provides a model averaged estimate that takes account of both model and parameter uncertainty. 
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