

QMUL-BUPT Joint Programme
JP Student Innovation Centre
Annual Showcase 2021/22

Virtual Smart Assets (Phase 1)

Tie Cheng (E-comm, Y3)

Shiming Jiang (Telecomm, Y2)

Ni Qiao (IoT, Y3)

Zhenghao Weng (IoT, Y3)

Zhe Zou (IoT, Y3)

Project Supervisor: Dr Ethan Lau

Outline

- Background
- Process

Result

Future work (next Phase)

Background

- Big changes in energy consumption and generators.
- Quantify the power consumed in UK.
- Translate calculation formula into code (python).
- Analyze carbon footprint, and the resultant and carbon emission per energy use in the electricity.
- Obtain trends, conclusions and future suggestions.
- Develop a website interface (next Phase).

Background-Dataset

- Source: Elexon (subsidiary of UK National Grid)
- 2011-2022
 UK Power generation/demand energy dataset
- Types of generation:
- Common generator

 Coal, solar, wind, hydro, pumped
- Uncommon generator Nuclear, CCGT, OCGT

Nuclear These stations use a Uranium nuclear reaction to produce heat. This is used to heat water to produce steam which turns a steam turbine which drives a generator to produce electricity. The output from these is more constant than other power generation. Fluctations usually indicate maintenance, refuelling or problems. There are currently 8 Nuclear power stations in the UK.

CCGT Combined Cycle Gas Turbine - These use Natural Gas to power a Turbine which turns a Generator. A second system uses the heat to produce steam which is used to turn a turbine which powers a generator. There are 39 CCGT power stations in the UK.

Open Cycle Gas Turbine - These use Natural Gas, Diesel or Gas oil to power a Turbine which powers a Generator. These are expensive to run so are only used when necessary. There is currently approximately 30 of these in the UK.

Background-Basic analysis

- For coal
 Daily & Yearly diagrams
 Figure out outliers
 Analyse trend
 Get conclusions
- For other generator

Clean generator

Process-carbon emission computation

• CO_2 emission (\mathcal{E}) is estimated using life-cycle assessments with units kilogram CO_2 (kgCO2),

$$\mathcal{E} = \sum_{t=1}^{N_t} E(t) \times C(t),$$

E = amount of energy generated/consumed (kWh), C(t) = CO_2 intensity based on the averaged fuel-mixed used for generation, t =time step and N_t is the total number of time steps.

C(t) is estimated as:

$$C(t) = \frac{\sum_{m=1}^{M} (C_m \times E_g(t))}{\sum_{m=1}^{M} E_g(t)},$$

 E_g = amount of energy generated/consumed (kWh). C_m = $\mathbf{CO_2}$ intensity based on the m number of fuel-mixed used for generation, t =time step.

Process-carbon emission computation

Example: CO₂ intensity across different generation fuels

Types of energy	Carbon factors (gCO ₂ /kWh)
Oil	700
Coal	990
Gas	488
Nuclear	26
Wind	96
Hydro	13

Result

For example:

- Assuming that the power consumption of a Macbook is 61W, and a user is using the Macbook continuously (unplugged) for 8 hours.
- The CO_2 emission from the Macbook is therefore (assuming the averaged CO_2 intensity is 0.35kg CO_2 /kWh):

 0.061kW 8 hours of usage

$$61 \div 1000 \times 0.35 \times 8 \approx 0.17 \text{ kgCO}_2$$

 User can clearly see how much carbon is consumed when using an electrical product

Phase 1 Result

Yearly Carbon Emission Fuel Mix Percentage in 2014

Phase 1 Result

Yearly Carbon Emission Fuel Mix Percentage in 2020 (COVID)

time

Phase 1 Result

Average UK Electricity Carbon Intensity

Result-Yearly Carbon Percentage(analysis)

- In 2014, **COALS** take a highest percentage of yearly carbon fuel mixes.
- The UK government urged for a gradual halt to coal power generation.
- CCGT gradually replaced coal power generation and became the main energy source.
- So, CCGT take a high percentage of yearly carbon after 2019.

Result-Difference between 2014 & 2019

• The overall level of carbon intensity is lower:

The differences between seasons are smaller

Future work (next Phase)

Interface

- User-friendly
- Easy to understand
- Integrated
- Automatic
- Climate change awareness

