

Science and Engineering

QMUL-BUPT Joint Programme JP Student Innovation Centre Annual Showcase 2021/22

Monocular Depth Estimation using Deep Neural Networks

Student: Yuheng Li Project Leader: Dr Changjae OH

- **Depth estimation:** estimate the distance of each pixel in the image relative to the shooting source
- **Object:** investigate a depth estimation model for **UAV**(unmanned aerial vehicle) based on deep neural networks

Depth estimation in automatic driving

Depth estimation in UAV

- Binocular VS. Monocular depth estimation
- Binocular method —— require more devices, not light !

Monocular method

• Supervised VS. Unsupervised monocular depth estimation

input images 0, -1, +1

CNN

prediction depth + relative pose

Target: input image 0 Output: reconstructed image

Baseline model—Monodepth2

Monodepth2 on KITTI dataset

Strengths of Monodepth2

- Unsupervised monocular depth estimation model
- State-of-art model in KITTI dataset

Monodepth2 on MidAir dataset

Limitations of Monodepth2

- Almost can't improve the effect of **high-resolution** inputs
- Inaccurate in predicting the depth of large gradient areas

Proposed model SS-MDE

• Idea for improvement—bilinear interpolation

SS-MDE: Self-Supervised Monocula Depth Estimation HR: High Resolution

LR: Low Resolution

Abs Rel: Absolute relative error

6

Proposed model SS-MDE

Depth estimation network-U-net structure

Zhou, Z., & Rahman Siddiquee, & M., & Tajbakhsh, N., & Liang, J. (2018). Unet++: A nested u-net architecture for medical image segmentation. In Deep learning in medical image analysis and Multimodal Learning for Clinical Decision Support (pp. 3-11). Springer, Cham.

Results of the experiment

• Qualitative results(tested on MidAir)

no detection error

clearer semantic objects

Results of the experiment

• Quantitative results

Abs Rel: Absolute Relative Error

Sq Rel: Squared Relative Error

RMSE: Root Mean Squared Error

RMSE log: Root Mean Squared Logarithmic Error

 δ : Standard Deviation

Model	Train	Abs Rel↓	Sq Rel↓	RMSE↓	RMSE log↓	$\delta < 1.25$ \uparrow	$\delta < 1.25^2$ \uparrow	$\delta < 1.25^3$ \uparrow
Wang	КІТТІ	0.241	5.532	12.599	0.368	0.648	0.831	0.911
Monodepth	КІТТІ	0.314	8.713	13.595	0.438	0.678	0.828	0.895
ST-CLSTM	КІТТІ	0.404	6.390	13.685	0.438	0.751	0.865	0.911
Monodepth2-KITTI	КІТТІ	0.717	37.164	74.552	0.882	0.281	0.425	0.521
Monodepth2-MidAir	MidAir	0.135	2.500	13.214	0.222	0.720	0.910	0.996
M4Depth	MidAir	0.143	3.680	8.864	0.246	0.840	0.924	0.959
SS-MDE	MidAir	0.114	1.742	10.766	0.173	0.791	0.967	0.998

Summary of my final project

- ✓ Learned deep learning and completed literature survey for monocular depth estimation
- Implemented the baseline Monodepth2
- ✓ Performded a self-supervised monocular depth estimation in UAV data
- Designed the algorithm to improve baseline model : dense skip connections in U-Net structure contributing to predicting more accurate depth maps
- Implemented the algorithm and experiments validated that proposed model SS-MDE achieved state-of-art performance in UAV dataset
- ✓ Realized the application of proposed model SS-MDE with real UAV video and got expected results

Science and Engineering

QMUL-BUPT Joint Programme JP Student Innovation Centre Annual Showcase 2021/22

Thank you