

Science and Engineering

Leonardo Project

Honglin Li Project Leader: Dr Yan Sun

QMUL-BUPT Joint Programme JP Student Innovation Centre Annual Showcase 2021/22

What is an ornithopter

A heavier-than-air aircraft with wings that flap up and down like those of a bird

Project introduction

Realizing Da Vinci's idea of ornithopter

The bird is a machine which works on mathematical principles, and man is capable of imitating this machine including all its movements. -Leonardo da Vinci

Da Vinci Research and Draft

flight posture of bird

wing structure of birds -

Da Vinci's manuscript study

preliminary design with SolidWorks

Knowledge of ornithopte r design

TIME LINE

Our project process

Experiment preparation

Validate different approaches to design

Experiment reflection

Mechanical analysis and vibration model of Multi—link

Power System

Pneumatic & Material

The experimental design

\checkmark Background and Target

There is a mature ornithopter, relevant sensors...

Get a lot of data, build models

\checkmark The data collection

Load core sensors and collect the rest by ground equipment

Use Bluetooth and data line, Python climb, MATLAB analysis

Pre condition

Sequence	Pre condition
	Keep no wind, standard temperature
1	and humidity environment
	Fixed different wind speed, keep wind
	direction and standard temperature
2	and humidity environment
	Fixed different wind speed, keep wind
	direction and standard temperature
3	and humidity environment
	Keep no wind, standard temperature
	and humidity environment, fixed
4	different brightness
	Fixed wind speed, switch wind
	direction and standard temperature
5	and humidity environment
	Switch wind direction, wind speed
	and standard temperature and
6	humidity environment
7	Keep calm in icy conditions

Purchasing items

		Attachme
The equipment	items	nt
number		methods
	Hanwang	/
1	ornithopter	/
	Six-axis Bluetooth	helly
2	accelerometer	UCity
3	anemometer	ground
4	Light sensitive switch	ground
5	Tension meter	ground
6	farmar	belly

The experiment plan

Senoral number	pre condition		The equipment number	Constant in this case	independent variable	dependent variable	independe nt variable	depende nt variable	indepen dent variable	dependent variable	indepe dent variab
1		Measure the lift generated by the vehicle under full power operation	1、5	lift	/	/	/	/	/	/	/
2	_	Measure the lift force generated by the aircraft under full power operation (with acceleration sensor)	1 2 5	lift	/	/	/	/	/	/	/
3		Measure the influence of different angles (three gears) of the aircraft tail on flight speed and acceleration under full power			Wing Angle		Wing		Wing		Wing
		operation	1、2	lift	1	Velocity	Angle 2	Velocity	Angle 3	Velocity	Angle
	_						_	V2		V3	-
	1/2					v11222 acceleratio n	_	v22 accelerat ion		v33 acceleratio n	
	/3/4 /5/6 /7					al	-	a2		a3	-
						a11	-	a22		a33	
4		By increasing the load (small mass weight) and fixing the Angle of the aircraft tail (third gear) under full power operation, the flight speed and acceleration are measured	1、5、6	lift	Wing Angle 1 / load 1	Velocity, acceleratio n	Wing Angle 2 / load 1		Wing Angle 3 / load 1		Win{ Angle / load
	-					v1	-				-
	_					acceleratio n	_	accelerat ion		acceleratio n	-
	_						_				-

15

Experiment (trial)

The ornithopter can't keep the sensors flying

The core acceleration and axis Angle cannot be obtained, so it is difficult to build a model based on the remaining data

Attempted to replace the battery but could not determine circuit load

A lighter equivalent sensor could not be found

It is difficult to increase the load by breaking the existing structure

