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Programme   

 

10:00 Welcome - Simon Dixon 

10:10 

KEYNOTE 

 

 Physics-based Audio: Sound Synthesis and Virtual Acoustics, Stefan Bilbao- (Acoustics and Audio 

Group - University of Edinburgh)  

  

11:10 Break (Coffee break) 

11:30 

“In-depth performance analysis of the state-of-the-art algorithm for automatic drum transcription”, 

Mickaël Zehren (Umea Universitet, Sweden), Marco Alunno (Universidad EAFIT, Colombia) 

and Paolo Bientinesi (Umea Universitet, Sweden) 

11:50 
“Automatic Guitar Transcription with a Composable Audio-to-MIDI-to-Tablature Architecture”, 

Xavier Riley, Drew Edwards and Simon Dixon (Queen Mary University of London, UK) 

12:10 
“The Stories Behind the Sounds: Finding Meaning in Creative Musical Interactions with AI”, Jon 

Gillick (University of the Arts London, UK) 

12:30 

Announcements: 

“The Cadenza Challenge for Improving Music for People with a Hearing Loss”, Gerardo Roa Dabike 

and Trevor Cox (Universities of Salford, UK). 

“Timbre Tools Hackathon; Timbre Tools for the Digital Instrument Maker”, Charalampos Saitis, 

(Queen Mary University of London, UK). 

 

12:45 

  

 

Lunch - Poster Session 

 

14:15 
“An automated pipeline for characterizing timing in jazz trios”, Huw Cheston, Ian Cross, and Peter 

Harrison (University of Cambridge, UK) 

14:35 
“Electric Guitar Sound Restoration with Diffusion Models”, Ronald Mo (University of Sunderland, 

UK) 

14:55 
“DedAI: Advanced AI-Driven Music Composition Informed by EEG-Based Emotional Analysis”, 

Elliott Mitchell (University of Westminster, UK) 

15:15 Break (Coffee break) 

15:35 

“PolyDDSP: A lightweight, Polyphonic Differentiable Digital Signal Processing Library”, Tom 

Baker, Ke Chen (University of Manchester, UK) and Ricardo Climent (NOVARS Research 

Institute, University of Manchester, UK) 

15:55 

“A Two-Stage Differentiable Critic Model for Symbolic Music”, Yuqiang Li, Shengchen Li (Xi’an 

Jiaotong-Liverpool University, China) and George Fazekas (Queen Mary University of London, 

UK) 

16:15 Close - Simon Dixon 

 
* - There will be an opportunity to continue discussions after the Workshop in a nearby Pub/Restaurant for those in London. 
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Keynote Talk 

Keynote:  By Stefan Bilbao 

Tittle: Physics-based Audio: Sound Synthesis and Virtual Acoustics  

Abstract: Any acoustically-produced sound produced must be the result of physical laws that describe the 

dynamics of a given system---always at least partly mechanical, and sometimes with an electronic element as 

well. One approach to the synthesis of natural acoustic timbres, thus, is through simulation, often referred to in 

this context as physical modelling, or physics-based audio.  In this talk, the principles of physics-based audio, 

and the various different approaches to simulation are described, followed by a set of examples covering: various 

musical instrument types; the important related problem of the emulation of room acoustics or “virtual 

acoustics”; the embedding of instruments in a 3D virtual space; electromechanical effects; and also new modular 

instrument designs based on physical laws, but without a counterpart in the real world. Some more technical 

details follow, including the strengths, weaknesses and limitations of such methods, and pointers to some links 

to data-centred black-box approaches to sound generation and effects processing. The talk concludes with some 

musical examples and recent work on moving such algorithms to a real-time setting. 

Bio: Stefan is a Professor (full) at Reid School of Music, University of Edinburgh, he is the Personal Chair of 

Acoustics and Audio Signal Processing, Music. He currently works on computational acoustics, for applications 

in sound synthesis and virtual acoustics. Special topics of interest include: Finite difference time domain 

methods, distributed nonlinear systems such as strings and plates, architectural acoustics, spatial audio in 

simulation, multichannel sound synthesis, and hardware and software realizations. 

More information on: https://www.acoustics.ed.ac.uk/group-members/dr-stefan-bilbao/ 

 

Location 

Mason Lecture Theatre, Bancroft building 

Queen Mary University of London - Mile End Campus  

 

 

  

https://eur01.safelinks.protection.outlook.com/?url=https%3A%2F%2Fwww.acoustics.ed.ac.uk%2Fgroup-members%2Fdr-stefan-bilbao%2F&data=05%7C01%7C%7Cc243a71fea274747b8ba08dbc10cf5be%7C569df091b01340e386eebd9cb9e25814%7C0%7C0%7C638316033655697336%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=Tr2SL2NGqyiUJkFBKRk93GXF9YXeKV%2FUKwUVOJnFeAo%3D&reserved=0
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1 “Tokenization Informativeness and its Impact on Symbolic MIR Tasks”, Dinh-Viet-Toan Le (Univ. Lille, 

CNRS, Inria, Centrale Lille, UMR 9189 CRIStAL, F-59000 Lille, France), Louis Bigo (Univ. 

Bordeaux, CNRS, Bordeaux INP, LaBRI, UMR 5800, F-33400 Talence, France) and Mikaela Keller 

(Univ. Lille, CNRS, Inria, Centrale Lille, UMR 9189 CRIStAL, F-59000 Lille, France)  

2 “Rhythm Guitar Tablature Continuation from Chord Progression and Tablature Prompt”, Alexandre 

D'Hooge (Univ. Lille, CNRS, Centrale Lille, UMR 9189 CRIStAL, F-59000 Lille, France), Louis Bigo 

((Univ. Bordeaux, CNRS, Bordeaux INP, LaBRI, UMR 5800, F-33400 Talence, France) and Ken 

Déguernel (Univ. Lille, CNRS, Centrale Lille, UMR 9189 CRIStAL, F-59000 Lille, France) 

3 “Subjective Evaluation of Roughness for Perceptual Audio Coding”, He Xie, Bruno Fazenda and Duncan 

Williams (University of Salford, UK) 

4 “Adapting Beat Tracking Models for Salsa Music: Establishing a Baseline with a novel dataset”, Antonin 

Rapini and Anna Jordanous (University of Kent, UK) 

5 “Efficient Optimisation Techniques for Large Generative Audio Models”, Bradley Aldous and Ahmed M. 

A. Sayed (Queen Mary University of London, UK)

6 “Towards Melodic Development with Discrete Diffusion Models for Symbolic Music”, Keshav Bhandari 

and Simon Colton (Queen Mary University of London, UK) 

7 “Rethinking music representation learning for music and musicians”, Julien Guinot (Queen Mary 

University of London, UK), Eliot Quinton (Universal Music group, UK) and George Fazekas (Queen 

Mary University of London, UK) 

8 “Towards End-to-End Automatic Guitar Transcription via a Multimodal Approach”, Zixun (Nicolas) Guo 

and Simon Dixon (Queen Mary University of London, UK) 

9 “Neuro-Symbolic Meta-Composition”, Adam Z. He (Queen Mary University of London and DAACI, 

UK) Doon MacDonald (DAACI, UK), Geraint A. Wiggins (Vrije Universiteit Brussel, Belgium and 

Queen Mary University of London, UK) 

10 “Improving music recommendation and representation using DJ mix tracklists”, Gregor Meehan and 

Johan Pauwels (Queen Mary University of London, UK) 

11 “Self-Supervised Music Source-Separation using Vector-Quantized Source Category Estimates”, Marco 

Pasini (Queen Mary University of London, UK), Stefan Lattner (Sony CSL) and George Fazekas 

(Queen Mary University of London, UK) 

12 “Limited-Data Incremental Learning in Music”, Christos Plachouras, Johan Pauwels and Emmanouil 

Benetos (Queen Mary University of London, UK) 

13 “Timbre Tools for the Digital Instrument Maker”, Haokun Tian and Charalampos Saitis (Queen Mary 

University of London, UK) 

14 “Music-Driven dance generation”, Qing Wang and Shanxin Yuan (Queen Mary University of London, 
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15 “Using AI to Help Render Orchestral Scores to Expressive Mockups”, Yifan Xie and Mathieu Barthet 

(Queen Mary University of London, UK) 
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16 “Computational auditory scene analysis: what next?”, Farida Yusuf and Marcus Pearce (Queen Mary 

University of London, UK) 

17 “Multimodal AI for musical collaboration in immersive environments”, Qiaoxi Zhang and Mathieu 

Barthet (Queen Mary University of London, UK) 

18 “Generative Deep Learning for Explainable AI Music-Making: A survey and Taxonomy”, Shuoyang Zheng 

(Queen Mary University of London, UK), Anna Xambó (De Monfort University, UK) and Nick Bryan-

Kinns (University of the Arts London, UK) 
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Bannister (University of Leeds, UK), Jon Barker (University of Sheffield, UK), Trevor J. Cox 
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In-depth performance analysis of the state-of-the-art algorithm for
automatic drum transcription

Mickaël Zehren∗1, Marco Alunno2 and Paolo Bientinesi1

1Department of Computing Science, Umeå Universitet, Sweden, mzehren@cs.umu.se
2Department of Music, Universidad EAFIT, Colombia

Abstract— In this work, we assess the most common
sources of errors in a recent drum transcription algo-
rithm.

Index Terms— Automatic drum transcription

I. INTRODUCTION

In music information retrieval, the task of Automatic
Music Transcription (AMT) is especially important be-
cause the results it produces—i.e., the notes played by the
instruments—help estimating many high-level features of a
musical track, such as structure, melody, and rhythm. A sub-
task of AMT is automatic drum transcription in the presence
of melodic instruments (DTM), which focuses on the estima-
tion of the notes’ onsets and their corresponding drum instru-
ment in multi-instrument tracks.

Recently, we presented a new DTM algorithm based
on large supervised learning from crowdsourced annota-
tions [1]; thanks to the size and diversity of the datasets cu-
rated, we found that this algorithm surpasses the accuracy of
the previous methods [2]. However, the resulting models are
not perfect, as their estimations still contain mistakes.

In this work, we expose the most common sources of er-
rors in the estimations, aiming to help the development of
even more accurate models. This was done in three steps, as
described in the following.

II. EXPERIMENTS

First, to identify the most difficult instruments to tran-
scribe, we independently evaluated the performance of the
models on the different instrument classes. When trained and
evaluated on (a different split of) the crowdsourced datasets,
we observed that the typical difficulty of transcribing the in-
struments that play the least was attenuated. This is likely be-
cause now we can count with a much larger amount of train-
ing examples than before. However, despite this improve-
ment, our model cannot yet transcribe cymbals as reliably as
drums.

∗The computation was enabled by resources provided by the National
Academic Infrastructure for Supercomputing in Sweden (NAISS).

Second, to understand why cymbals are problematic, we
employed both a new metric and a pseudo confusion ma-
trix. Through the new metric, we identified that the esti-
mations of cymbals are prone to mistakes because of their
timbre. Specifically, their long sustain overlapping with sub-
sequent quiet (ghost) notes makes them difficult to transcribe.
Through the pseudo-confusion matrix, we showed that differ-
ent kinds of cymbals are hard to discern, very likely because
of both their similar timbres and the presence of other (non-
cymbals) overlapping instruments.

Last, we assessed how much the quality of crowdsourced
annotations affected the results of the models’ evaluation.
Due to discrepancies in the labels, some of the correct es-
timations from the models could have been mistakenly re-
ported as errors. To estimate the accuracy of the ground truth
itself, we quantified the agreement among different annota-
tors of the same tracks. Any difference in their annotations
indicates that at least one of them made a mistake. We found
that, indeed, the annotators made many mistakes similar to
those reported from the models. Thus, the discrepancies be-
tween the estimations and the ground truth might be caused
by errors from either the models or the annotators. Since
the best model evaluated achieves a performance close to the
agreements between annotators, we believe it has little mea-
surable margin of improvement on the crowdsourced dataset.

III. CONCLUSIONS

Through crowdsourcing, we curated large datasets for the
supervised training of DTM models and we conducted an in-
depth analysis of their performance. The results of this study
highlight the limits of the current method and can be used to
steer the development of future algorithms.

IV. REFERENCES

[1] M. Zehren, M. Alunno, and P. Bientinesi, “High-quality and
reproducible automatic drum transcription from crowdsourced data,”
Signals, vol. 4, no. 4, pp. 768–787, 2023. [Online]. Available:
https://www.mdpi.com/2624-6120/4/4/42

[2] R. Vogl, G. Widmer, and P. Knees, “Towards multi-instrument
drum transcription,” in 21th International Conference on Digital
Audio Effects (DAFx-18), June 2018. [Online]. Available: http:
//arxiv.org/abs/1806.06676
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Automatic Guitar Transcription with a Composable
Audio-to-MIDI-to-Tablature Architecture

Xavier Riley∗, Drew Edwards and Simon Dixon

Centre for Digital Music, Queen Mary University of London, United Kingdom, j.x.riley@qmul.ac.uk

Abstract— This work-in-progress demonstrates an
end-to-end guitar transcription system. The architecture
takes as input a solo guitar recording, transcribes the
audio to MIDI, and then estimates a tablature for the
performance. The audio-to-MIDI transcription exhibits
strong generalisability, including state-of-the-art perfor-
mance on GuitarSet in a zero-shot setting. The tablature
estimation is a novel approach applying masked language
modeling to per-note string assignment.

Index Terms— guitar, transcription, tablature, AMT

I. GUITAR MULTI-PITCH ESTIMATION

Automatic transcription of piano has achieved good re-
sults in recent years due to the availability of large datasets
such as MAESTRO [1]. Several successful architectures
have been proposed, however the guitar does not yet have a
comparable dataset with which to train these models. Ex-
isting guitar datasets tend to be smaller, with less timbral
diversity [2]. We address this lack of data by adapting a
recent score alignment technique proposed by Maman and
Bermano [3]. We use this to produce aligned MIDI for 78
commercially available guitar recordings. These form our
new dataset which we then use to fine-tune an existing piano
model. In contrast the work by Maman and Bermano, we
use a newer high-resolution piano model proposed by Kong
et al. [4] which is shown to be more robust to noisy labels.
We also use data augmentations on the MAESTRO dataset
when training the base piano transcription model. This helps
with generalisability when fine-tuned on guitar recordings.

II. TABLATURE ESTIMATION

Our approach to guitar tablature estimation uses the
MIDI as input instead of audio. This loses timbral infor-
mation but affords certain advantages. First, since the input
and output are symbolic, a user can change the string and fret
assignment of a particular set of notes and regenerate the esti-
mated tablature. Second, this modular architecture provides
a novel solution to arranging for guitar with a MIDI key-
board. A composer or arranger can play MIDI and quickly

∗XR and DE are research students at the UKRI Centre for Doctoral
Training in Artificial Intelligence and Music. XR is supported by UK Re-
search and Innovation [grant number EP/S022694/1]; DE is supported by
Queen Mary University of London and Yamaha.

view how it could be performed on guitar.

We model the task of guitar tablature estimation as a
masked language modeling task. Our ground truth data con-
sists of guitar tablature transcriptions (from the 78 perfor-
mances mentioned in Section I and GuitarSet [5]), in Mu-
sicXML or GuitarPro format. These are converted to six-
track MIDI files, with one track per string. We use the Struc-
tured tokenizer from MidiTok [6]. For each note event Ni,
we output the following tokens: Ni → Si, Ti, Pi, Vi, Di,
where Si ∈ {1, 2, 3, 4, 5, 6} is the string, Ti is the relative
time shift, Pi is the pitch, Vi is the velocity, and Di is the
duration. During training, we mask and predict the Si to-
kens. Our current best model using a BART [7] Transformer
architecture achieves approximately 80% accuracy on a held
out test set without any post-processing and is still a work-
in-progress.

III. REFERENCES

[1] C. Hawthorne, A. Stasyuk, A. Roberts, I. Simon, C. A. Huang, S. Diele-
man, E. Elsen, J. H. Engel, and D. Eck, “Enabling factorized piano
music modeling and generation with the MAESTRO dataset,” in 7th
International Conference on Learning Representations, New Orleans,
USA, 2019.

[2] Y. Chen, W. Hsiao, T. Hsieh, J. R. Jang, and Y. Yang, “Towards auto-
matic transcription of polyphonic electric guitar music: A new dataset
and a multi-loss transformer model,” in IEEE International Conference
on Acoustics, Speech and Signal Processing. IEEE, 2022, pp. 786–
790.

[3] B. Maman and A. H. Bermano, “Unaligned supervision for auto-
matic music transcription in the wild,” in International Conference on
Machine Learning, ICML 2022, 17-23 July 2022, Baltimore, Mary-
land, USA, ser. Proceedings of Machine Learning Research, vol. 162.
PMLR, 2022, pp. 14 918–14 934.

[4] Q. Kong, B. Li, X. Song, Y. Wan, and Y. Wang, “High-resolution piano
transcription with pedals by regressing onset and offset times,” IEEE
ACM Transactions on Audio, Speech and Language Processing, vol. 29,
pp. 3707–3717, 2021.

[5] Q. Xi, R. M. Bittner, J. Pauwels, X. Ye, and J. P. Bello, “GuitarSet:
A dataset for guitar transcription,” in Proceedings of the 19th Inter-
national Society for Music Information Retrieval Conference, Paris,
France, 2018, pp. 453–460.

[6] N. Fradet, J.-P. Briot, F. Chhel, A. El Fallah Seghrouchni, and
N. Gutowski, “MidiTok: A python package for MIDI file tokeniza-
tion,” in Extended Abstracts for the Late-Breaking Demo Session of the
22nd International Society for Music Information Retrieval Conference,
2021.

[7] M. Lewis, Y. Liu, N. Goyal, M. Ghazvininejad, A. rahman Mohamed,
O. Levy, V. Stoyanov, and L. Zettlemoyer, “Bart: Denoising sequence-
to-sequence pre-training for natural language generation, translation,
and comprehension,” in Annual Meeting of the Association for Com-
putational Linguistics, 2019.
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Through a series of three studies, this talk explores the big-
picture experiences of musicians, producers, composers, and 
listeners as they attempt to introduce AI into their musical lives 
in meaningful ways. 

The work covered here makes up the last chapter of my 
dissertation [1], and it was done very much in response to the 
work I did in the few preceding years that focused more on 
specific ML algorithms, models, and tools.  In this earlier 
work, I (and most others in the field) typically focused on 
coming up with technology that could do something new and 
exciting while still trying to fit into existing creative processes.  
But what happens when we move into the real world? How do 
real-world interactions between people and AI music systems 
play out?  In this talk, I start by taking a step back from specific 
musical problems or situations, instead focusing on the messy 
but practical experiences of musicians or listeners when we try 
to introduce machine learning in a meaningful way into some 
area of their musical experience where it hasn’t been involved 
at all before. 

My approach toward the studies in this talk acknowledges that 
every creative process is different.  Some people write music 
with an instrument, some write with a computer, some use pen 
and paper; sometimes we create to meet a deadline, sometimes 
we create because we feel inspired or emotional or bored; 
sometimes we create alone, sometimes we work together.  We 
all change from moment to moment and year to year as we go 
through different experiences and face different situations.  
Might our needs and experiences in working with musical AI 
be similarly individualized? How can we meet individuals 
where they are in order to overcome the practical barriers that 
prevent them from trying a new technology? 

In part because of the always-changing contexts in which 
people create music and art, studying human interactions with 
AI in situated creative environments is very hard. Controlled 
studies “in the lab'” might separate creators from their usual 
processes in ways that color their experiences, making it 
difficult to isolate the effects of new AI technology [2].  
Participants brought in to try out prototypes or learn how to 
use AI-based creative tools for the first time might find their 
learning curves to be steep; it can take a long time to start to 
understand how AI works or how to use it.  And finally, 
participants might not feel very invested in the outcomes of 
their (often unfamiliar) interactions with AI. 

The research in this talk begins with the following question: 
what are experiences and interactions like for people who have 
a reason to be emotionally invested in music created with AI? 
 
 

I approach this question from different angles in each of the 
three studies: 

In the first study, I use first-person design research methods to 
probe the experiences of a group of people (not necessarily 
musicians) listening to individually customized music that 
uses audio samples (and stories about those samples) from 
meaningful moments in their own lives.  I find that when 
listening to music created personally for them using this 
material (which could presumably be done in some form 
through AI), participants cared relatively little about the 
“quality” of the music; what mattered much more was how 
well it fit with their individual understanding of the stories 
behind the samples that were used in the music. 

The second study describes my own firsthand experience 
producing a song together with a group of 4 people that ended 
up as the winning entry submitted to the 2021 AI Song 
Contest, an international contest exploring the potential uses 
of AI for songwriting. Our collaboration built on the findings 
from my first study through our approach to coming up with a 
shared narrative starting point for any AI-generated musical 
material 

In the last study, I work with two musicians, one professional 
and one amateur, using AI to manipulate sound collections that 
they find meaningful in order to create musical material (new 
samples, loops, or digital instruments) to compose with. This 
study points to the potential for productive collaboration 
between musicians and experts in AI/ML (“AI Music 
Engineers”), who, much like recording engineers often do with 
studio gear, might be able to help guide artists through the 
landscape of available models or methods and help apply 
appropriate tools for the job in a given situation. 

 

ACKNOWLEDGMENT 
The work presented in this talk draws from work done in 
collaboration with Noura Howell, Wesley Deng, Julia Park, 
YangYang Yang, Carmine-Emanuele Cella, David Bamman, 
Matt Sims, Max Savage, and Brodie Jenkins. 

REFERENCES 
[1] Gillick, Jonathan. Creating and Collecting Meaningful Musical 

Material with Machine Learning. Dissertation. University of 
California, Berkeley, 2022. 

[2] C.Z.A Huang, H.V. Koops, E. Newton-Rex, M. Dinculescu, and C.J 
Cai, “AI Song Contest: Human-AI Co-creation in Songwriting” in 

The Stories Behind the Sounds: Finding Meaning in Creative 
Musical Interactions with AI 

Jon Gillick  
 

Creative Computing Institute, University of the Arts London, United Kingdom, j.gillick@arts.ac.uk  
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Proceedings of the 21st International Society for Music Information 
Retrieval Conference, pp. 708-716, October 2020. 
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Abstract— The jazz rhythm section (piano, bass, drums) has 

seen little attention in performance studies. We developed a 

pipeline to automatically extract features relating to swing, 

rhythmic feel, complexity, and performer interaction from 300 

commercial audio recordings. A classification model was able to 

correctly identify the pianist playing in 52% of these recordings 

using only the provided rhythmic features (chance accuracy: 

10%), with swing and feel proving the strongest predictors. Our 

results speak to the importance of rhythm in defining a 

performer’s unique improvisational style. 

I. INTRODUCTION 

Despite its presence in nearly every jazz ensemble, the 
rhythm section of piano, bass, and drums has received little 
scholarly attention. In this paper, we analyze the variation 
between the different instruments in this unit across a range of 
rhythmic features. We then consider which of these predictors 
are the strongest predictors of stylistic variation between 
rhythm sections led by different musicians. 

II. METHOD 

Thirty commercial audio recordings by ten bandleaders (n 
= 300) were selected for analysis, based on performer 
popularity and prolificacy (assessed using real-world listening 
and discographic data). A pipeline was developed to extract 
timing onsets automatically from these recordings. The 
Spleeter [1] and Demucs [2] source separation models were 
applied, yielding isolated stems for each instrument. An onset 
detection algorithm was used to detect the start of notes by 
each instrument, and the position of the underlying quarter 
note pulse in the audio mixture. Onsets were matched to their 
nearest pulse to estimate the meter of each musician. 
Comparison to a reference set of annotations created for 10% 
of the dataset indicated a mean F1 = 0.86 for detected onsets. 

III. RESULTS 

Features relating to a performer’s swing (beat-upbeat ratio, 
BUR [3]), complexity (compression rate of discrete inter-onset 
intervals), feel (relative position to bandmates), tempo (mean, 
stability, and slope) and interaction (phase coupling to and 
from bandmates) were extracted from all recordings. Pianists 
played the most complex rhythms and marked the pulse 1/64th 
note after bassists and drummers on average, neither of whom 
adjusted to match their beat. Bassists and drummers played 
fewer complex rhythms in tight synchrony (mean asynchrony: 
< 1/256th note) and coupled strongly to each other. Drummers 
played with the most swing (mean BUR: 1.65:1) in the 
ensemble, with pianists playing closer to notated “straight” 
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than “swung” eighths (BUR: 1.21:1). Bassists tended to play 
notated “straight” eighth note rhythms (mean BUR: 1.04:1). 

Features extracted from the piano player in each recording 
were then entered into a random forest classification model, 
fitted using stratified k-fold cross-validation (k = 5). The model 
was able to correctly identify the pianist using only rhythmic 
features in 52% of recordings, i.e., 5x better than chance 
(accuracy: 10%). Classification accuracy was higher on 
average for pianists associated with “hard bop” and “soul jazz” 
genres (e.g., Junior Mance), which typically place great 
emphasis on rhythmic drive, and lower for “modal” pianists 
(e.g., Bill Evans) whose innovations were harmonic. 

The mean variable importance scores (Fig. 1) computed for 
each feature category suggested that feel, tempo, and swing 
were the strongest predictors used in the model. By extension, 
these categories can be considered the aspects of musical 
timing that best contributed towards defining a pianist’s 
improvisational style, over and above the complexity of their 
performance and how they interacted with their bandmates. 

Figure 1.  Mean variable importance score across categories. Error bars 

show 95% confidence intervals via bootstrapping, n = 10,000 replicates. 

IV. DISCUSSION 

Our results speak to the importance of rhythm in defining a 

performer’s improvisational style. They also demonstrate the 

value of applying quantitative methodology to improvised 

jazz, a subject that often resists empirical study given its lack 

of notated scores and the freedoms afforded to its performers. 
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Abstract—This work aims to investigate the potential of 
employing Denoising diffusion probabilistic models, commonly 
referred to as diffusion models, to revert a processed electric 
guitar recording to its original, unaltered form while retaining 
all the expressive elements of the performance such as dynamics 
and articulation. Specifically, a parallel dataset is constructed, 
containing both the unprocessed and processed versions of the 
guitar recordings, which is used for training a diffusion model. 
To preserve the expressiveness, the model is conditioned on the 
processed guitar recording when restoring the raw guitar sound. 
This research has the potential to enhance the accuracy of 
various music information retrieval tasks, such as automatic 
music transcription.  

I. BACKGROUND 

Denoising diffusion probabilistic models, also known as 
diffusion models, have showcased their capacity for 
generating realistic images [1]. In particular, a diffusion model 
comprises two processes. The forward process entails the 
repetitive addition of Gaussian noise to the input data 𝑥𝑥, such 
as images. Conversely, the reverse process is responsible for 
denoising a vector sampled from 𝑝𝑝(𝑧𝑧) (i.e., the latent 
representation of 𝑥𝑥 in an iterative manner, ultimately restoring 
the input data to its original state. A well-trained diffusion 
model excels in learning the data distribution 𝑝𝑝(𝑥𝑥) within a 
provided set of data, enabling it to create novel data and 
surpass the performance of traditional Generative AI (GenAI) 
models. 

Beyond generating images, diffusion models have found 
applications in various GenAI tasks [3]. To facilitate the 
conditioning of the generated content, diffusion models often 
incorporate a conditioning mechanism. Conditional diffusion 
models are designed to learn the conditional distribution of 
𝑝𝑝(𝑧𝑧|𝑦𝑦) where 𝑦𝑦 is the conditioning input such as class labels, 
text, or audio. Nevertheless, it's worth noting that the 
application of GenAI models to audio signal processing 
remains an area that has not been thoroughly explored, to the 
best of our knowledge.  

II. OVERVIEW 

This work seeks to explore the potential of utilizing 
diffusion models to transform a processed electric guitar 
recording to its raw format (i.e., a clean electric guitar sound), 
akin to image denoising. To accomplish this, a parallel dataset 
containing both the clean and processed guitar sounds is 
constructed. The clean guitar playing is performed and 
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recorded by the author who is a professional studio guitarist. 
The recorded guitar recording is processed using Logic Pro. 
Due to the preliminary nature of this study, it only considers 
distortion as the processing technique.  

A diffusion model is developed and trained using the 
dataset mentioned above. To reduce the training time, a latent 
diffusion model is used [4]. It first encodes the input 𝑥𝑥 (i.e., 
ℰ(𝑥𝑥)) into a lower-dimension representation, carries out both 
the forward and reverse processes on ℰ(𝑥𝑥) , and eventually 
decodes ℇ(𝑥𝑥)  (i.e., 𝒟𝒟(ℰ(𝑥𝑥)) ) to obtain 𝑥𝑥� . To preserve the 
expressiveness of the guitar playing, the model conditions its 
output on the processed guitar recording. More precisely, the 
conditional input 𝑦𝑦 is encoded using the Diffusion Magnitude-
Autoencoding introduced by Schneider et al. [5] and 
concatenated with the sampled vector during the reverse 
process. The generated outputs will be evaluated both 
objectively and subjectively. 

III. CONCLUSION 

While the full potential of diffusion models in audio 
signal processing remains largely unexplored [6], this study 
introduces a novel approach for the restoration of electric 
guitar sounds using diffusion models. Given the potential to 
extend this method to multi-track scenarios, this research has 
the capacity to enhance the performance of various music 
information retrieval tasks, including automatic music 
transcription, music source separation, and beat detection. 
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ABSTRACT 

This presentation introduces DedAI, a state-of-the-art 

platform leveraging artificial intelligence to create 

emotionally resonant music compositions. At the core of 

DedAI's innovation is the integration of advanced EEG 

(Electroencephalography) technology and sophisticated AI 

models, including MERT (Music Emotional Recognition 

Transformer) variants like MERT-v1-330M and MERT-

v1-95M. This integration facilitates an unprecedented real-

time translation of emotional states, discerned through 

EEG, into AI-generated musical compositions. 

 An auxiliary research project enriches DedAI's 

approach, "Measuring Music's Emotional Impact with 

EEG: A Study on Musicians and Non-Musicians." This 

study provides invaluable insights into the neural 

underpinnings of music-induced emotions, enhancing 

DedAI's capability to tailor musical compositions based on 

EEG-derived emotional cues. By processing EEG data 

with Emotiv's sophisticated emotion detection algorithms, 

DedAI classifies emotional states, which are then 

interpreted by MERT models to guide the AI composition 

process. 

 This research employs advanced signal processing 

techniques for EEG data, including spatial filtering and 

Independent Component Analysis (ICA), followed by 

extracting specific EEG frequency bands using bandpass 

filters. These bands are correlated with distinct mental 

states and emotional responses. Subsequent machine 

learning algorithms, notably SVMs and neural networks, 

classify these EEG patterns into discernible emotional 

states, which are intricately woven into the music 

composition process. DedAI stands at the forefront of this 

research, showcasing a pioneering intersection of 

neuroscience, AI, and musicology. A potential 

collaboration with AudioSparx is envisioned to enrich 

DedAI's music database, providing a wide range of royalty-

free music for model training and enhancing the system's 

ability to generate diverse and personalised musical 

experiences. This project contributes to the field of music 

psychology and opens new avenues for personalised music 

therapy and cognitive enhancement applications. 

 
 

ABBREVIATIONS AND ACRONYMS 

EEG: Electroencephalography 

MERT: Music Emotional Recognition Transformer 
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Abstract— In this abstract, we introduce an ongo-
ing extension of the Differentiable Digital Signal Pro-
cessing (DDSP) [1] framework, expanding its capabilities
to accommodate multi-voice (n-voice) processing. Our
approach encompasses three key strategies: leveraging
parallel operations within a unified decoder pipeline, in-
corporating a multi-fundamental frequency (multi-F0)
pitch detection system, and devising a new, pre-trained,
lightweight timbre encoder. This work-in-progress pro-
poses a scalable and efficient technique for managing
complex polyphonic audio situations, while preserving
the core benefits of the original DDSP model, including
interpretable latents, rapid inference and relatively low
computational and data demands for training.

Index Terms— Digital Signal Processing, Machine
Learning, Real-time, Polyphony, Timbre Transfer

I. MULTI-PITCH

Adapting the Differentiable Digital Signal Processing
(DDSP) [1] for polyphonic audio first required addressing
the pitch encoder. The original model, developed by Engel
et al., utilised the CREPE [2] pitch detection method. This
method, notable for its lightweight convolution structure, ex-
celled at identifying the dominant fundamental frequency
(F0) in audio. However, its limitation was that it could only
detect a single F0. Bittner et al. [3] overcame this by using
Harmonically Stacked-Constant Q (HS-CQT) spectrograms,
which allowed for the identification of multiple F0 frequen-
cies through a similarly efficient 2D convolution structure.
This advancement not only enabled the detection of multi-
ple pitches but also their conversion into discrete note events
with individual velocities.

II. SCALABILITY AND GENERALISATION

With the ability to identify multiple pitches, the next step
is to translate these into synthesiser parameters. The initial
idea might be to expand the decoder pipeline. However, this
approach requires setting a fixed number of voices through-
out the model’s training and vastly increasing training pa-
rameters per voice added. Our solution is a single, general-
ist decoder pipeline. This decoder, treating each pitch and
timbre encoding as a unique ’voice’, generates synthesiser

Pitch

Pitch

Pitch

Pitch

Timbral Encoding

Loudness Envelope

Velocity

Velocity

Velocity

Velocity

Additive
Harmonic

Synthesiser
GRU MLP Linear

Figure 1: Model structure showing the parallel voices fed batch-wise though
the decoder pipeline to generate synthesiser parameters.

parameters for that specific frequency and its harmonic spec-
trum. This parallel processing approach enables the training
of a single decoder that can manage any number of voices,
offering flexibility as computational resources vary. When
the input pitches exceeds the maximum voices, this operates
like a standard polyphonic synthesiser, assigning voices on a
first-in-first-out basis.

III. TIMBRE: FURTHER WORK

The next phase involves extracting distinct timbral infor-
mation for each voice. To achieve this, we plan to utilise the
F0 frequency data and the HS-CQT spectrograms from our
pitch encoder. By employing a similar convolutional struc-
ture, we are developing a model for partial pitch-informed
source separation. This model aims to classify individual
timbres for each voice. For our goals, a basic timbre classifi-
cation that can accurately distinguish different timbral char-
acteristics is sufficient and will allow the decoder to learn the
corresponding parameterisations. However, the more repre-
sentative the timbre encoding, the less training the decoder
framework requires.
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Abstract— In symbolic music generation, objective
evaluation metrics have been widely employed to examine
how close the generated music is to that of the test dataset.
However, the computation process of most metrics is non-
differentiable, being unable to provide feedback when
training generation models. This work proposes DCritics,
a two-stage differentiable critic model that approximates
multiple evaluation metrics of the symbolic music input.
Instead of directly modelling the metrics from the hidden
space, DCritics first estimates the distributions of pitch,
pitch class, duration and intra-bar onsets, then model the
derived metrics accordingly. It is hypothesized that the
two-stage design of DCritics can improve the accuracy of
estimated metrics and reduce the parameter size. The
network is extendable for other metrics according to re-
searchers’ needs by applying the same concept.

Index Terms— Objective Evaluation, Symbolic Music
Representation, Pre-Training

I. METHODS

Since many evaluation metrics are based on the statistics
of specific musical features regarding the music input, DCrit-
ics would first model the needed distributions then compute
or approximate its statistics rather than directly model the
statistics. The proposed approach offers two advantages. (1)
The statistics are derived from meaningful distributions of
relevant musical features instead of from an unexplainable
hidden space. (2) When multiple statistics of the same dis-
tribution are modeled together, their gradient do not directly
affect other distributions that they do not depend on.

For the purpose of a concrete demonstration, this work
focuses on 12: PM, PSTD, MCP, MCPC, PCE, SC, DE,
DBR, EBR and GC1. Figure 1 compares a baseline imple-
mentation with a DCritics implementation. In the DCRIT-
ICS implementation, the distributions of Pitch, Pitch Class,
Duration, and intra-bar Onset are estimated before estimat-
ing the corresponding statistics. This layout ensures that the
metrics learned from meaningful and only-necessary distri-
butions of musical features.

1They are short for Pitch Mean, Pitch Standard Deviation, Most Com-
mon Pitch, Most Common Pitch Class, Pitch-Class Entropy, Scale Consis-
tency [1], Durational Entropy, Down-Beat Rate, Empty-Beat Rate, Groove
Consistency [1].

Feature
Extraction

(a) Baseline

Input Stg. 1 Stg. 2 (Output)

Feature
Extraction

(b) DCritics

Figure 1: Two Implementations of Differentiable Critic Networks

II. TRAINING

The entire network can be trained at the same time, but
only training some branches is also fine for fine-tuning. For
early training, a random music token dataset can be used.
As long as the input representation of music X is valid, the
ground truth musical feature distributions D (e.g. pitch dis-
tributions) and the true metric M can be computed as the la-
bels for the dataset. Since D and M are learnt via supervised
learning, the choice of loss function depends on the type of
distribution or statistic.

The Wikifonia2 dataset is selected but the approach ap-
plies to other datasets as well. OctupleMIDI[2] representa-
tion is used as it provides rich symbolic features for the in-
put. Results would be compared in terms of the similarity
between estimated metrics and the true metrics. It is hypoth-
esized that the DCritics implementation would predict closer
metrics to the ground truth.

III. CONCLUSION

The expect conclusion would be that forcing the model
to learn musically meaningful features can improve the mod-
elling of objective evaluation metrics accordingly.
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arXiv:2008.01951, Montréal, Canada, Aug. 2020.

[2] M. Zeng, X. Tan, R. Wang, Z. Ju, T. Qin, and T.-Y. Liu, “MusicBERT:
Symbolic Music Understanding with Large-Scale Pre-Training,” in
Findings of the Association for Computational Linguistics: ACL-
IJCNLP 2021. Association for Computational Linguistics, Aug. 2021,
pp. 791–800.

2http://wikifonia.org

DMRN+18: DIGITAL MUSIC RESEARCH NETWORK ONE-DAY WORKSHOP 2023, QUEEN MARY UNIVERSITY OF LONDON, TUE 19 DECEMBER 2023



DMRN+18: DIGITAL MUSIC RESEARCH NETWORK
ONE-DAY WORKSHOP 2023

QUEEN MARY UNIVERSITY OF LONDON
TUE 19 DECEMBER 2023

Tokenization Informativeness
and its Impact on Symbolic MIR Tasks

Dinh-Viet-Toan Le1, Louis Bigo2 and Mikaela Keller1

1Univ. Lille, CNRS, Inria, Centrale Lille, UMR 9189 CRIStAL, F-59000 Lille, France, dinhviettoan.le@univ-lille.fr
2Univ. Bordeaux, CNRS, Bordeaux INP, LaBRI, UMR 5800, F-33400 Talence, France

Abstract— With the breakthrough of Transformer
neural networks within the MIR community, there has
been an increasing interest in tokenization, a representa-
tion of music as sequences of elements, for which a variety
of methods have been proposed. We explore the impact
of two methods aiming at increasing the musical informa-
tiveness of token sequences: intervalization and byte-pair
encoding. We find out that improving tokenization in-
formativeness has an impact on downstream task perfor-
mances, as well as bringing out musical interpretations.

Index Terms— Tokenization, Symbolic Music, Natural
Language Processing (NLP), Machine Learning.

I. TOKENIZATION IN SYMBOLIC MUSIC

Tokenization refers to a process of representing a com-
plex content into a sequence of elements. In NLP, tokeniza-
tion is the task of segmenting a sequence of atomic elements
(characters) by grouping them together into informative to-
kens [1] such as subwords or words. In contrast, tokeniza-
tion for symbolic music can occur at different levels of gran-
ularity, thus leading to a variety of processes. The result-
ing elements, composing the musical sequences, derive from
two levels of description: the choice of an initial alphabet
of atomic elements encoding different aspects of music, and
the grouping of these atomic elements into the more infor-
mative elements of a vocabulary. It thus exists a variety of
tokenization strategies derived from MIDI-performance [2]
or MIDI-score [3] data.

II. TOKENIZATION INFORMATIVENESS

In contrast with words in text, individual musical tokens
do not carry much musical information on their own. This
has encouraged the elaboration of methods to improve the
informativeness of an initial tokenization strategy, including
the tweaking of encodings or groupings approaches.

We focus on applying intervalization [4], aiming at en-
coding pitches with intervals rather than absolute MIDI val-
ues, and byte-pair encoding (BPE) [5] derived from NLP, that
statistically groups atomic characters together into subword
units that we refer to as musical supertokens in the case of
symbolic music.
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Figure 1: Most common start-of-phrase (resp. end-of-phrase) supertokens.

III. TOKENIZATION INFORMATIVENESS IN MIR TASKS

In order to evaluate the impact of tokenization infor-
mativeness, we evaluate these tokenization strategies on
multiple downstream tasks involving various types of data
(monophonic, polyphonic), models (Naive-Bayes, LSTM)
and task scopes (composer classification, end-of-phrase de-
tection). Our results show that such customized tokenization
induce varying effects on the model’s performance depend-
ing on the context. In particular, combining BPE and in-
tervalization can lead to a +16% performance increase on a
monophonic/Naive-Bayes/classification context. These im-
provements are higher on performance-based tokenization
compared to score-based tokenization.

Supertokens also carry stylistic content. Analyses of the
learned supertokens show that common start-of-phrase and
end-of-phrase supertokens are matching musicology studies,
such as a rising fourth at the beginning of a phrase or arpeg-
gios on the tonic chord as an end-of-phrase motif (Figure 1).
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Abstract— We propose a new approach to generate
rhythm guitar continuation in tablature notation (tab),
given a chord progression and a tab prompt. Our ap-
proach builds on existing work for suggesting chord posi-
tions and generating guitar tabs, and proposes a two-part
model that provides user-control and explainability.

Index Terms— guitar tablature, symbolic music genera-
tion, assisted composition

I. PROBLEM STATEMENT

We can call rhythm guitar any guitar track that has an
accompaniment role in a song [1]. In this work, we focus
on generating continuation of rhythm guitar in the tablature
(tab) domain. Such a tool could help artists generate backing
tracks from a chosen chord progression, or be used by guitar
beginners for assisted composition. An illustration of that
objective is proposed Fig. 1.

OUTPUTFAm INPUT

Figure 1: From an input tab prompt with a chord label and the name of the
following chord, we want to generate a tab continuation for the next chord.

We call this task continuation, as we want the output of
our model to guarantee the textural consistency of the input
tab prompt. We define symbolic texture with two dimen-
sions: strumming – which strings are plucked and when; and
position – the strings and frets used to play the chord on the
fretboard. The desired texture for the requested chord pro-
gression is obtained from an input prompt. The prompt is a
tab notation of how the first chord is played, and we aim at
mimicking the underlying texture on the following chords.

II. PROPOSED APPROACH

To replicate a provided texture over new chords, we pro-
pose the architecture shown Fig. 2.

∗Research supported by ANR, project ANR-22-CE38-0001.
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Figure 2: Summary diagram of our proposed approach.

Instead of generating rhythm guitar tabs directly, we sug-
gest splitting the problem into subtasks: first predict an ap-
propriate chord position to preserve textural properties, then
generate a strumming pattern matching the pre-existing tex-
ture. Both sub-models are open to user conditioning for en-
hanced control. In particular, we will explore how condi-
tioning signals can be used to reflect the user’s preferences,
like a favorite style, or preferred chord positions. We aim at
comparing this approach with previous state-of-the-art, from
a simple machine learning model [2] to more advanced end-
to-end transformer models [3, 4]. This evaluation will assess
in particular the playability and controllability of the gener-
ated tabs. Preliminary experiments were conducted with a re-
current neural network, and comparing the generated content
with the original tabs yielded promising results. Some chal-
lenges remain, for instance when the expected chord shape
has open strings, or when strumming patterns change signif-
icantly from one chord to the next, leaving room for improv-
ing our approach in the near future.
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Abstract— This study investigates correlations between 

roughness metrics (musical [1], acoustic [2]) and the 

perceived audio quality of CODEC compressed musical 

intervals. 16 samples were synthesised using 2 musical 

instruments across 8 different note intervals and 4 audio 

conditions, which include uncompressed and 96kbps mp3 

compressed audio and spectral manipulations of the 

harmonic content. Roughness metrics were extracted 

from the signals. 17 participants evaluated the BAQ of 

each sample using a MUSHRA listening test. A significant 

difference with a large effect size was found for audio 

conditions, whereas a significant but small effect size 

difference was found for musical intervals and 

instruments. Further, a correlation was found between 

perceived quality and roughness metrics, but the 

explained variance in the model was low. 

I. INTRODUCTION 

Perceptual audio coding (CODECs) is known to create 
artefacts in the coded signal. It is posited that the acoustic 
metrics of roughness are reasonable, objective representations 
of these from a subjective standpoint [3]. A MUSHRA-based 
listening test was designed to draw a correlation between the 
subjective quality assessment and the roughness of audio 
samples. 

II. METHOD 

Two instruments, cello and pipe organ, playing the 
following note intervals, were synthesised: semitone, tritone, 
perfect-five, and minor seventh across two octaves, to produce 
various roughness levels created by the interaction of 
harmonic content. A digital equaliser was used to implement 
acoustic manipulation of the spectrum in each audio file. These 
were fundamental and 2nd harmonic enhancements of 10dB for 
musical EQ, whereas fundamental and harmonic adjacent at 
1kHz enhancement by 10dB for acoustic EQ. Subsequently, 
samples were compressed using a LAME encoder to 96kbps 
mp3 format. The listening test was conducted using the 
WebMUSHRA[4] interface in an ITU listening room. Samples 
were reproduced from a laptop via a pre-amp through 
Beyerdynamic DT990 PRO headphones. 

III. RESULT 

The data has 3 independent variables (intervals, 
instruments, audio conditions) and one dependent variable 
(BAQ). A 3-way rmANOVA (Table. 1) with post-hoc paired 
comparisons found significant differences with large effect 
sizes for Audio Conditions. Anchor was judged significantly 
lower than other conditions. A significant difference was also 
found in the EQ enhancements (Fig. 1). For the objective 
metrics of roughness and the BAQ scores, we found a negative 

correlation for musical roughness and a positive correlation for 
acoustic roughness. However, both are very weak, with a 
variance below 4% (Table. 2).  

 

Figure 1.  Boxplots of quality rating versus audio conditions collapsed 

across instruments and intervals of a figure caption.  

TABLE I.  TABLE TYPE STYLES 

Effect Type F value  p  value 
Effect size/ 

Measure Scale 

Audio Conditions 31.907 .000 .421(Large) 

Intervals 2.467 .023 .008(Small) 

Instruments 5.903 .030 .004(Small) 

Audio Conditions × Intervals 2.139 .000 .035(Small) 

Audio Conditions 

×Instruments 

20.481 .000 .073(Medium) 

Intervals × Instruments 0.949 .453 - 

Audio Conditions × 

Instruments × Intervals 

0.826 .774 - 

TABLE II.  CORRELATION OF AUDIO PERCEPTUAL RATING WITH THE 

ROUGHNESS VALUES (ACOUSTIC AND MUSICAL) 

Factor R/R2 p-value 

Acoustic roughness  
.084(-) 

/.007 
.000 

Musical roughness .190(.036) .000 

IV. CONCLUSION 

This study suggests that manipulations of spectral content 

are perceived as significant alterations of quality, which are 

independent of musical interval or instrumentation. Further, 

correlations between roughness metrics and perceptual 

quality were found to be weak, suggesting that perceptual 

quality might be more closely related to other signal metrics. 

Future studies will examine other timbral features 

(brightness, sharpness, etc.) for possible explanations. 
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Abstract— This study addresses the challenge of adapting 

current beat tracking algorithms, predominantly trained on 

Western music, to the rhythmic complexities of Salsa, a genre 

rich in syncopations and polyrhythms. We benchmark the 

adaptability of three established models: BeatNet, Wavebeat, 

and Böck TCN, using our own newly introduced beat-annotated 

Salsa dataset and focusing on training methods that minimize 

the need for extensive annotated data. We find that, on Salsa 

music, models trained with popular datasets and fine-tuned with 

Salsa generally outperform models trained under other training 

conditions. This research not only establishes a baseline for beat 

tracking performance in Salsa music but also contributes to the 

broader goal of developing more universally adept music 

information retrieval systems. 

I. BACKGROUND 

Beat tracking is the temporal identification of “beats”, the 

basic rhythmic unit of a song. Although it is a skill that 

comes naturally for many people, automatic beat tracking, 

the programmatic identification of beats from audio data, is 

a highly complex task. Current state of the art beat tracking 

algorithms perform well on Western music [2] but often 

stumble when encountering the rhythmic intricacies of Salsa. 

Salsa is, a genre rich with syncopation and polyrhythms [4], 

features not often found in current available beat tracking 

datasets. Addressing this discrepancy is crucial for progress 

towards more universal music information retrieval. 

II.  OBJECTIVES 

This study sets out to benchmark the adaptability of beat 

tracking models to Salsa music. It makes a point to 

emphasise methods that circumvent the need for large 

amounts of annotated data, a rare commodity that requires 

hours of tedious work and expert knowledge to be created. 

III. METHODOLOGY 

We assess the accuracy of three prominent beat tracking 

models: BeatNet [1], Wavebeat [2], and Böck TCN [3], on 

an unseen Salsa test dataset created for this study. The dataset 

contains 40 songs for a total of 2h53 of beat-annotated music. 

It will be made available at github.com/AntoninRap/Salsa-

dataset. The models were trained under four distinct 

conditions: training on "other"* datasets of non-Salsa music, 

training exclusively on Salsa, an initial training on “other” 

datasets followed by fine-tuning on Salsa, and simultaneous 

training on both Salsa and “other” datasets. 

 
*”Other” refers to four datasets of mostly western music popular in the 

field of beat tracking: GTZAN, Rock, Ballroom and SMC 

IV. RESULTS 

Our findings reveal a consistent pattern: models fine-tuned 

with Salsa music outperformed those trained on more 

generalised datasets. This trend persisted across models: 

Models trained on “other” datasets then fine-tuned on Salsa 

achieved the highest accuracy, followed by those trained on a 

combination of Salsa and “other” datasets, then models 

trained only on Salsa, with the least accuracy seen in models 

trained exclusively on “other” datasets. These results are still 

generally below what we see on “other” genres. 

V. CONCLUSION 

The study demonstrates that fine-tuning beat tracking models 

with genre-specific data can significantly improve accuracy 

for Salsa music. It also establishes a baseline for the 

performance of beat tracking on this genre, providing a 

reference point for the efficacy of more intricate future 

methodologies. This work contributes to the ongoing efforts 

to develop beat tracking systems that better account for the 

rhythmic diversity found in global music genres, and for that 

goal, introduces a new beat-annotated dataset of Salsa music.  

 
Table 1. average f-measure accuracy on unseen Salsa test dataset 

(10 songs) of three prominent beat tracking models under the four 

training conditions outlined in the Methodology section. 
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F-measure accuracy 

Model Fine-tuned 
Salsa + 

others 

Salsa 

only 

Others 

BeatNet 0.844 0.807 0.710 0.539 

TCN 0.789 0.644 0.461 0.422 

Wavebeat 0.739* * 0.789 0.704* 
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Abstract— Cadenza is an ongoing EPSRC project that aims
to improve music quality for those with a hearing loss. The
project is running signal processing and machine learning chal-
lenges to address different listening issues and scenarios. Dur-
ing the first round, the challenge focused on non-causal mu-
sic source separation to allow remixing for those with hearing
loss. This fed into an ICASSP 2024 challenge, which has cross-
talk from loudspeaker reproduction included. There are three
potential arms to our upcoming 2024 challenge: causal au-
dio source separation, lyric intelligibility, and loudness/dynamic
range control. DMRN is an opportunity for the community to
shape these arms.

Index Terms— challenge, source separation, lyric intelligibil-
ity, loudness, machine learning

I. INTRODUCTION

The Cadenza signal processing and machine learning chal-
lenges1 are designed to grow a research community that embeds di-
verse listening when designing music processing algorithms. Figure
1 illustrates the general structure of these challenges. The blue box
generates both the music to be enhanced and the reference music
signal, while the green oval generates the listeners. In the pink “mu-
sic enhancer” box, the music is enhanced for the listener. The “eval-
uation processor” is a fixed module that prepares the “enhanced mu-
sic” for both objective evaluation and listener panel assessment.

The first challenge (CAD1) [1] addressed a non-causal demix-
remix problem, focusing on rebalancing different components of
the music to enhance the listening experience. An ICASSP 2024 SP
challenge [2] followed the CAD1 problem. In this case, a cross-talk
scenario was introduced, and the challenge welcomed both causal
and non-causal submissions. Currently, the project is in the plan-
ning phase of the second challenge (CAD2), which involves three
potential arms: causal audio source separation, lyric intelligibility
and loudness/dynamic range control.

II. POTENTIAL ARMS OF CAD2

Causal source separation. Impressive performances have been
achieved in non-causal music source separation with deep neu-
ral networks (DNN) for separating pop/rock into vocals, bass and
drums [3]. However, many listening scenarios involve live mu-
sic that requires causal and low-latency approaches. Furthermore,

∗Research supported by EPSRC [grant: EP/W019434/1].
Thanks to BBC, Google, Logitech, RNID, Sonova, Universität Oldenburg.

1https://www.cadenzachallenge.org

Figure 1: General structure of challenges in Cadenza Project.

hearing aid processing power is limited, which is challenging for
very large DNNs. The plan is to run a causal, low-latency, cross-
talk music-remixing scenario. The objective is to rebalance the live
music captured by the hearing aid microphones for an enhanced
music-listening experience. Current databases (e.g., [4, 5]) are not
conducive to the listening habits of older adults with hearing loss
[6]; to make a relevant challenge, datasets involving more appropri-
ate genres are needed.

The lack of lyric intelligibility is one of the more commonly
cited issues for people with a hearing loss [6]. This challenge would
aim to enhance the clarity of the lyrics while still improving the
overall music quality. One of the difficulties in setting up this chal-
lenge is what objective metric to use. A pre-trained Automatic Lyric
Transcription (ALT) system can be used to evaluate music that has
been through a hearing aid and hearing loss processor. But what
is the desired intelligibility? There are many factors to consider:
(1) reducing the level of the other instruments might increase intel-
ligibility but reduce enjoyment; (2) maintaining the timbre of the
voice may be more important than intelligibility; (3) any enhance-
ment needs to consider the gain being applied to compensate for the
hearing loss, and (4) there is likely to be a large variation in the de-
sired intelligibility depending on several factors, including the style
of music (e.g., ballad vs metal).

Hearing aid users often struggle with music either being too
quiet, too loud or not having enough dynamic variation [6]. In the
loudness/dynamic range arm, the challenge will be to compress the
dynamic range of the music to match the listeners’ dynamic range
of hearing without introducing distortions that impact their listening
enjoyment. The training and evaluation dataset could be constructed
by synthesizing from MIDI files. This method enables the creation
of reference signals with distortion-free dynamic control simply by
adjusting the velocity values of the instruments. That allows an
intrusive objective metric to be used. The evaluation set for the
listening panel will consist of real-world stereo recordings.
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Abstract— This project will investigate how timbre can play an 

active role in designing sound synthesis and AI tools which 

empower everyone to partake in digital music instrument 

making and use. A research-through-design approach is adopted, 

based initially on a hackathon design activity. 

I. INTRODUCTION 

Timbre is among the most evocative yet elusive attributes 
of music. Musicians can express emotions through timbre by 
manipulating the physical responses of their acoustic 
instrument. Yet timbre is conspicuously absent from the digital 
luthier’s toolbox [1]. Synthesiser design is still primarily based 
on concepts from early analog and digital synthesis, or 
emulation of it, using more recent techniques. Furthermore, an 
audio engineer's workbench is still based mainly on classical 
tools like oscilloscopes and signal generators. Such 
technologies, whether commercial or open-source, value 
technical knowledge for producing sounds (e.g., pitch, 
rhythm) over perceptual knowledge for designing timbres. 
This effectively marginalises sonic cultures where timbre-
based practice predominates or is equally important (e.g., 
didgeridoo, tabla, techno) from partaking in the music maker 
movement. 

Timbre Tools proposes a techno-cognitive [2], timbre-first 
approach to digital musical instrument (DMI) design, 
leveraging the latest advances in music artificial intelligence 
(AI) to restore timbre to the same level of accessibility as pitch 
and rhythm. The premise of this project is to promote a learn-
by-making approach: through creating digital instruments 
using flexible, open-ended AI powered tools for control and 
analysis of timbre, artists and makers without formal training 
can learn more about sound synthesis and AI, become more 
aware of timbre phenomena, and so create their own highly 
expressive bespoke instruments, widening participation in 
computing and AI and enriching the cultural landscape. 

II. A HACKATHON APPROACH 

We propose an exploratory design activity for ideating and 
prototyping timbre tools based on a 48-hour hackathon with 
audio developers, researchers, music technologists, and 
interaction designers [3]. Here the user is a blurring between 
instrument maker, composer, producer, and performer, as 
these roles tend to merge in music interaction design [2].  

Hackathons are time-bounded, low-pressure collaborative 
events that present themselves as observatories of design 
thinking [4]. We will prompt participants to consider the role 
of timbre/ interacting with timbre in the development of a 
DMI. Drawing on the notion of problem and solution spaces, 

 
 

which form a general model of the design thinking process [4], 
our exploratory research questions are: 

• Exploring the problem space: How do participants 
think about the concept of timbre in the design of 
tools for makers? What (collaborative) strategies do 
they use to conceptualize their design? 

• Exploring the solution space: What tools are 
required by our participants to realize their 
concepts? How do they use the tools currently 
available to them to develop their concepts? 

We will borrow from methods of rapid ethnography [5] 
(e.g., self-reports, workbooks) to observe the design thinking 
process of participants, using the answers to the above 
questions to inform our future work. 

III. PREPARATORY WORK 

We will use the Ethically Aligned Stakeholder Elicitation 
(EASE) framework [6] to identify all project stakeholders, 
including users, considering their level of Power and Interest 
in the project, with particular attention to those who may be 
inadvertently or marginally damaged by it. 

Subsequently, we will interview users about their practice, 
the tools they use, and their needs as makers. We will aim to 
better understand how they think about the concept of timbre 
and what current practices and tools of DMI design constitute 
timbre tools. Interviews will inform a follow-up workshop, 
aiming to produce prompts for the hackathon.  
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