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‘FROM EXCHANGE IT COMES TO TEARS’.
A DUTCH ‘FOLK THEOREM’ RECONSIDERED

ABSTRACT. A Dutch folk theorem’ holds that ‘from exchange it comes to
tears’. This seems to contradict the basic idea found in economics that exchange
and trade can make both sides better off. We show that the ‘folk theorem’ has
a better theoretical foundation than sometimes thought, as it is vindicated by
the equilibrium of an exchange game with two-sided asymmetric information.
We, then, explain the practical value of such ‘folk wisdom’ in the real world by
showing why players might be unlikely to learn such an equilibrium strategy.
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1. INTRODUCTION

Children in Holland are instilled with the warning that ‘from
exchange it comes to tears’. But during my first lectures in eco-
nomics at the University of Amsterdam, the professors assured us,
with a superior and ironic smile, that although this ‘folk theorem’
might be amusing, it is, of course, incorrect. As economists show
time after time, exchange and trade can make both sides berter off.
An example is the dismissal of the doctrine of unequal exchange
in the context of the theory of comparative advantage (see, e.g.,
Krugman and Obstfeld [1994]). Now, who was right? The ‘folk
theorem’ or the economists?

In Section 2, we will show that the ‘folk wisdom’ has a better
theoretical foundation than sometimes thought. In particular, it is
vindicated by the Bayes—Nash equilibrium of an exchange game
in which each player owns an object that he can offer (or not) in
exchange for the object of the other player, with the value of each
object being private information of the current owner. This leaves
us with the following question. Why do Dutch children seem to
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need such persistent paternalistic advice in these matters? Even
if children perhaps should not be expected to reach equilibrium
through some introspective process, they might arrive at it through
a process of learning, as they play this game very frequently. As
we will see in Section 3, as learning takes place through a process
of social interaction, it iS not obvious at all that it will lead to
equilibrium.

2. GAME-THEORETIC ANALYSIS

Let us consider the following two-player game'. Each player draws
a lottery ticket from a hat (each player from a different hat), which
contains tickets with numbers between 1 and 100. The number on
each ticket indicates the monetary prize the player will get from
the organizer in exchange for his ticket. However, before handing
in their ticket, the two players may decide to exchange the tickets
with each other. Importantly, the players know the number on their
own ticket, but not the number on the other player’s ticket. If and
only if both players agree, exchange will take place. Otherwise
each player simply gets the prize found on his own ticket. Should
a player who finds himself with a ticket with number 40 agree to
an exchange for a ticket with an unknown number in the range
from 1 to 100? And if his ticket has number 10? And what about
number 2?7

If the set of possible actions is A={keep own ticket, propose
to exchange ticket}, and H, is the collection of player i’s informa-
tion sets, with a specific information set 4 for player i being identi-
fied by the value of player i’s own ticket, where he€{1,2,...,100},
then the strategy set for player i is S,=[];*, A(h). Any strat-
egy s; € S; with A(100) =keep weakly dominates all corresponding
strategies s; € S; for which A(100) =exchange and s;=s; for each
h=1,2,...,99. Once eliminated those 2% strategies for both play-
ers, the same argument applies to #=99 for both players, and so
forth till we reach h=1. We will have, then, iteratively eliminated
all 2'% strategies except two; saying to keep any ticket with a value
greater than 1, and to keep or exchange a ticket with number 1.
Notice that this iterative process of weakly dominated strategies
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happens to be path independent, and it also does not depend on the
specific form of the distributions of tickets in the hats.

For convenience let us now assume the distribution of tickets
in each hat is uniform, e.g., each hat contains exactly 100 tickets
numbered from 1 to 100. The following simple reasoning process
applies. If our player 1’s potential trading partner, player 2, is
prepared to exchange any ticket, the expected value of player 1’s
ticket will be the average of all possible values from 1 to 100:
(14100)/2=50.5. If our player 1 is risk-neutral, and only wants
to maximize the expected payoff in dollars, the highest number on
his own ticket which he is prepared to trade is 50. Now, if player 2
is rational, and knows player 1 is rational, then his expected value
of the ticket player 1 offers him in exchange is only 25.5, i.e.,
(1450)/2. Hence, the highest number he will offer to exchange
will be 25. Since player 1 is still rational, knows that his opponent is
rational, and knows that his opponent knows that he is rational, he
is only prepared to exchange tickets with numbers from 13 down to
1. Just like the iterative elimination of dominated strategies above,
this process of unraveling is based on the assumption of successive
degrees of rationality, and is a reasoning process that will stop only
when we are landed at 1. That is, both players may be prepared to
exchange a ticket with number 1, but not any ticket with a higher
number.

Instead of this introspective unraveling process by rational
players, we could also search directly for the equilibrium strategy
in this game with imperfect information. Define m; as the high-
est number that player i (with i=1,2) is prepared to exchange.
To value the various available strategies, player 1 must imagine
what player 2 will do. The probability that player 2 has a ticket
in hand with a number smaller than m, equals m,/100, which is
by definition the probability that player 2 is prepared to exchange
tickets. Clearly, this means that the probability that player 2 is not
ready to exchange will be (100—m,)/100. Now, suppose player
I has a ticket in hand with the number v,. In case he decides to
renounce the possibility of a trade, his payoff will be v,. But if
he opts for the trade, then his expected payoff will be the proba-
bility that player 2 agrees with the trade times the expected value
of player 2’s ticket, plus the probability that player 2 rejects times
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v, : (m,/100)- E[v,y|m,]+ (100 —m,)/100-v,. Obviously, player 1
will offer his ticket for trade if and only if v, <[v,|m,]. The
right-hand side is exactly the m; as defined above. Hence, m, =
E[v,|m,], where the latter expectation is (1+m,)/2. For player 2
we can derive exactly the same, and find that m,=(14m,)/2. The
strategies and beliefs of the players are mutually compatible if both
equations are satisfied. Solving the two equations for m; and m,
gives m; =m,=1. In other words, in a Bayes—Nash equilibrium,
where the players’ beliefs and strategies are mutually consistent,
and where each player chooses a best-reply given the strategy of the
other player, both players decide to keep any ticket with a number
greater than 1.

Hence, even with a number 2 ticket in hand, a rational player
decides to refrain from exchange. But that is exactly what the ‘folk
theorem’ says®. The analysis shows that the ‘folk theorem’ should
be taken as extreme as it appears. It would be incorrect to interpret
the saying ‘from exchange it comes to tears’ as a simple call for
prudence because sometimes a player will discover to end up at
the right side of a trade, and sometimes at the wrong side. If other
players adhere to the equilibrium strategy, whenever trade takes
place, a player will always discover he is at the same side of the
deal; the wrong one. Hence, we can see the ‘folk theorem’ as the
embodiment of a social norm with a self-enforcing property, in
the sense that its wisdom is justified by the equilibrium strategy of
our exchange game, implying that deviations do not pay-.

This exchange game is obviously related to a number of other
games with asymmetric information analyzed in the literature.
These games, however, differ in some important aspects from our
exchange game. Moreover, it is our exchange game that corre-
sponds precisely to the real world situation in which the ‘folk
theorem’ 1s employed: two children who want to exchange their
toys, with each owner knowing the value of his own toy (the
hidden defects, broken doors, stuck wheels, etc.), while lacking such
information concerning the toy to be received.

Akerlof [1970] analyzed the ‘market for lemons’ concerning
the market for second-hand cars. In that market there is a one-
sided information asymmetry. The seller knows the value of a car,
whereas the potential buyer does not. This leads to an unraveling
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of the market as sketched above, in which each round the better
cars disappear from the market, and only the lemons remain. This
process of adverse selection could continue until no second-hand
cars are offered for trade anymore*. There is a couple of differ-
ences between the market for lemons and our exchange game. A
first difference is that car-dealers rarely cry after a trade. They do
not suffer from the information asymmetry as they know exactly
what their customers’ money is worth. Hence, the ‘folk wisdom’
‘from exchange it comes to tears’ does not apply to car-dealers.
In our game, the information asymmetry is two-sided. Notice that
the fact that the information asymmetry is bilateral does not mean
that the effect of the unilateral asymmetry disappears. The dis-
advantage for a player of not knowing the value of the ticket to be
received in exchange is not compensated by the relative advantage
that the other player is in the same situation; quite the contrary.
The ‘folk theorem’ points to the fact that, as both sides are buy-
ers, each side is on the verge of tears. Another difference is that
car-dealers, in order to halt the unraveling process, take resort to
formal warranties, and informal guarantees in the form of their
reputation in the long run. Obviously, remedies such as warranties
or the seller’s reputation could be important in the exchange game
we consider as well. Hence, our analysis applies to those situations
where (for one reason or another) such remedies are not or can-
not be effectively implemented. In particular, it seems not realistic
to expect such remedies with children; either because it might be
legally infeasible or too costly, or because children might be too
myopic.

Kessler [2001] considers a market for lemons with two-sided
asymmetric information, in the sense that some sellers are un-
informed about the quality of the cars they sell. Notice that this
is different from our two-sided information asymmetry because in
Kessler both sides are uninformed about the same object.

The exchange game we consider is also related to a theme pursued
by Myerson and Satterthwaite [1983]. They consider an exchange
game with two-sided information asymmetry, and show the impos-
sibility of a trading mechanism that is incentive compatible, indi-
vidually rational, and ex post efficient. There are, however, some
differences with our exchange game. In Myerson and Satterthwaite
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there are two players, of which only one owns an object, which the
other wants to buy for money. The value that each player attaches
to the object is private information. In our game, both players own
an object, with its value being private information to the owner.
That is, each player knows exactly how much his own object is
worth to the other player, while not knowing the value of the object
to be received. In Myerson and Satterthwaite, however, each player
knows what he would get in case of exchange, while not know-
ing how much his own object is valued by the other player. Hence,
whereas Myerson and Satterthwaite focus on efficiency (the player
that values the object most owning it in the end), in our game
efficiency is not an issue, as the value of a given ticket is identical
for both players.

3. SOCIAL INTERACTION AND LEARNING

Given the game-theoretic analysis, some readers might wonder why
it is that children seem to need advice from adults in these mat-
ters, and in such a persistent way. A first reason might be that the
fact that an exchange game like this appears as an assignment in
a graduate textbook suggests it is not realistic to assume that chil-
dren themselves will be able to figure out the equilibrium strategy
through introspection. However, one might presume that it would
not be too difficult for children to /earn their way to equilibrium if
they play a large number of these exchange games.

As we will show in this section, although children may be
learning in the real world, for such a process to reach the equili-
brium is not as straightforward as the game-theoretic analysis might
suggest. The main cause of this is that it is not a simple single-agent
decision problem that the players need to learn to solve. Instead
learning takes place through social interaction. A player’s opti-
mal action depends on the actions of the other players. Hence, we
have a coevolutionary process because while a player is learning
about the other players, these other players are learning about him.
We will analyze how this feature may prevent a population of
players from converging to the equilibrium strategy by examining
a number of different learning schemes.
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In Section 2, we explained that the exchange game is closely
related to Akerlof’s market for lemons. Since the game-theoretic
analysis is in both cases driven by an information asymmetry, one
might conjecture that there are important similarities in the learning
processes in these two situations. Therefore, our analysis of the
learning task faced by the players in the exchange game might
shine some light on the issue of learning in market for lemons as
well®.

The learning schemes we consider are: best-response behavior,
fictitious play, learning direction theory, hill-climbing, and rein-
forcement learning. The pseudo-code for each scheme can be found
in the appendix. In each learning scheme, the player’s choice in the
first period is chosen from the range of possible threshold levels,
from 1 to 100, with equal probability for each value. For all later
periods, each scheme specifies a strategy on the basis of earlier
events. To simplify the learning task, given the strategy set for
player i S;, we will assume that he will only use strategies with a
so-called threshold property. That is, player i’s strategy is charac-
terized by a threshold number m;, the highest number that player
i (with me{1,2,...,100} and i=1,2) is prepared to exchange.
Given player i’s strategy, his exchange decision simply follows
from checking the value of the ticket distributed to him against it.

If a player adheres to best-response behavior, he chooses a best-
reply against the observed action of his opponent in the most recent
period. In case there are multiple best-replies, each of them is
chosen with equal probability. When a player himself did not offer
to exchange in a given period while his opponent did want to
exchange, he does not observe the value offered by his opponent,
and therefore sticks to his current threshold.

With fictitious play a player also chooses a best-reply against
some belief, but now this belief is based on the average value of
all tickets received in exchange in the past. As long as he does
not have any information in this respect, a player will continue to
choose a threshold at random.

A player who behaves according to learning direction theory
(see, e.g., Selten and Stoecker [1986]) looks at the outcome of
the most recent period, and reasons in which direction a better
threshold could have been found. He, then, simply adjusts his
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current threshold into that direction. That is, if he received a ticket
in exchange with a value below his original ticket, he will decrease
his threshold with one (as it will reduce his chance of encountering
such disadvantageous exchanges), whereas if he received a ticket
in exchange with a value even above his current threshold, he
will increase his threshold with one (to increase the likelihood
of finding such advantageous exchanges). If the value of a ticket
received in exchange was in between his own original ticket and his
current threshold, he keeps his threshold unchanged (as it is unclear
which direction would be wise to choose). This also happens if no
new information became available in the latest period because no
exchange took place.

A hill-climbing player does not reason about thresholds and
best-responses. He starts out experimenting in the first two periods,
choosing a threshold at random. After that, he always looks back
at the two most recent periods. If, during those two periods, he had
increased his threshold from one period to the other, and this corres-
ponded with an increase of the value of the ticket he had in his
hand at the end of each period, then he will increase his threshold
once more, moving one unit further up. If, however, an increased
threshold had coincided with a decreased ticket value at the end of
the day, then he will decrease his current threshold with one. The
opposite applies to the cases in which he had decreased his thres-
hold over the last two periods. If either his threshold or the value
of the ticket in his hand at the end of the day had been unchanged
during these two periods, then there is no hill to be climbed. In
such a case he will either increase or decrease his current threshold
with one with equal probability.

With reinforcement learning a player experiments in choosing his
thresholds, being more likely to choose those thresholds that had
been more reinforced (through higher payoffs) in the past. We use
some weighted average of the reinforcement, placing more weight
on more recent experiences. Given the reinforcements for all thres-
holds, a player uses the logit rule to choose his current threshold.
As can be seen in table A5 in the appendix, the logit rule includes
a sensitivity parameter 3, with low values of 8 implying more
randomness in a player’s choice, and high values of B implying
that his choice is more sensitive to differences in reinforcement.
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Following Goeree and Holt [2001], we implement a zoom-in
feature for this sensitivity parameter, decreasing noise as the itera-
tions go on. Our interpretation of this is an adaptive one. As players
start playing this game, they are very young and inexperienced.
Hence, they choose with lots of noise. But as they gain experience,
they will pick their threshold with more and more precision.

We will now analyze to what extent this range of different
learning schemes would converge to equilibrium®. If they do con-
verge, it would suggest the ‘folk theorem’ to be unnecessary,
leaving us with the unanswered question why children in Holland
are almost ‘beaten to death’ with it. If they do not converge,
however, we will analyze why not, and see how the ‘folk theorem’
fits into this.

For each learning scheme, we will first consider a population of
60 players, all learning following the same type of scheme. They
play 100,000 periods of the basic exchange game. In each period the
players are randomly and anonymously matched with each other.
The results we present are based on ten of these independent runs
for each learning scheme.

Figures la to 5a present the relative frequency distribution for
the thresholds chosen by the 60 players in the ten runs. As we
want to focus on the convergence issue, the figures are based
on the periods 50,001 to 100,000 only. Figures 1b to 5b present
for each learning scheme the time-series of the average, the Sth
percentile, and the 95th percentile of the thresholds chosen. These
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Figure 1. (a) Frequency distribution best-responses, periods 50,001 to
100,000; (b) Time-series best-responses.
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Figure 2. (a) Frequency distribution fictitious play, periods 50,001 to
100,000; (b) Time-series fictitious play.
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Figure 3. (a) Frequency distribution hill-climbing, periods 50,001 to
100,000; (b) Time-series hill-climbing.
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Figure 4. (a) Frequency distribution learning direction theory, periods
50,001 to 100,000; (b) Time-series learning direction theory.
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Figure 5. (a)Frequency distribution reinforcement learning, periods 50,001
to 100,000; (b) Time-series reinforcement learning.

three variables are computed for each single period in each run.
For presentational reasons, we averaged the variables over blocks
of 100 periods.

The frequency distributions show that only fictitious play
(Figure 2a) and learning direction theory (Figure 4a) converge
to all thresholds being in the 1-10 class. For the other learning
schemes the modal threshold class is 11-20. With hill-climbing
(Figure 3a) the distribution is almost uniform, whereas the best-
response distribution (Figure 1a) is slightly more skewed in favor of
the lower thresholds, and the distribution for reinforcement learning
(Figure 5a) even more so.

The time-series for best-responses (Figure 1b) and hill-climbing
(Figure 3b) are rather constant, showing no trend after the first
observation covering a block of 100 periods, with an average over
the last 50,000 periods of 41.62 for the former, and 46.56 for the
latter. With reinforcement learning (Figure 5b) we see a sudden
change after about 20,000 periods, which is due to the decrease
of the noise term in the logit choice function’. In addition, the
series show a weak but significant trend. Therefore, we run the
reinforcement learning scheme also for ten million periods. After
about one million periods, the average threshold stabilizes at a
level of 21.36 (whereas it was 27.95 over the periods 50,001 to
100,000). The frequency distribution for the ten million period run
is slightly more skewed towards the left, with the modal class still
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being the 11-20 one. With fictitious play (Figure 2b) and learn-
ing direction theory (Figure 4b) we see an initial learning effect
before they become constant at very low threshold levels. It is,
however, only the learning direction theory scheme that really
converges to the equilibrium. The average threshold over the peri-
ods 50,001 to 100,000 is 1.00, whereas with the fictitious play
scheme it is 3.12.

Hence, we observe, with one exception, that we do not get
convergence to equilibrium, and in general we stay far away from
it. Before we further explain this nonconvergence to equilibrium,
we will first explore the robustness of this finding in various
directions.

First, of all the learning schemes considered, fictitious play has
the most serious memory requirements, computing the expected
value of tickets to be received on the basis of all past exchanges.
What happens if the memory of the players were limited in the
following way? Using the fictitious play learning scheme, if a player
has not traded for more than 30 periods, he will forget the expected
value of tickets to be received, start with a random threshold, and
update his beliefs from scratch again (see also the pseudo-code in
the appendix). Figures 6a and 6b show the frequency distribution
and time-series for the limited memory fictitious play scheme. As
we see, apart from the learning direction theory scheme, the only
learning scheme that gets close to the equilibrium will not do
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Figure 6. (a) Frequency distribution limited memory fictitious play, periods
50,001 to 100,000; (b) Time-series limited memory fictitious play.
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so anymore once we consider a memory limits, with an average
threshold of 22.61 in the last 50,000 periods.

Second, could it be that the nonconvergence of some schemes is
simply due to some runs being ‘stuck’ far away from equilibrium?
To answer this question, we look at the differences between the ten
runs of each scheme, focussing on the average threshold used over
the periods 50,001 to 100,000. Table 1 presents for each learning
scheme the run with the lowest average, and the run with the
highest average. As we see, all runs are placed within a very narrow
band, and there is hardly any difference in the average threshold
applied across the runs. The same holds for the margins occurring
for the 5th and 95th percentiles (not shown here). In other words,
the nonconvergence is a robust phenomenon across runs.

Third, but what about robustness across individual players? In the
nonconverging learning schemes there is no single individual that
converges to equilibrium, not even in the weak sense of choosing
all thresholds within the 1-10 class. We do not show any graphs
or tables here, but the frequency distributions of individual players
look very similar to the ones presented per learning scheme above.
What this shows is that the nonconvergence is not due to some
individuals being ‘stuck’ far away from equilibrium while the others
actually converge®.

Fourth, the behavior we examined above arose in homogeneous
populations, in which each player was learning according to the
same type of scheme. It could be that the outcomes would be

TABLE 1
Average thresholds periods 50,001 to 100,000 for ten runs.

Run with Run with
lowest avg. highest avg.
Best-response 41.58 41.65
Fictitious play 2.86 3.42
Hill-climbing 44.56 48.19
Learning direction theory 1.00 1.01
Limited memory fictitious play 22.58 22.68

Reinforcement learning 27.72 28.29
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different in a heterogeneous population. In particular, one could
conjecture the following two effects. It could be that players choos-
ing thresholds closer to equilibrium might pull others’ thresholds
down. But it could also be the other way round. Therefore, we
analyze the behavior of heterogeneous populations of 60 players, in
which each of the six learning schemes considered (best-response
behavior, fictitious play, learning direction theory, hill-climbing,
reinforcement learning, and limited memory fictitious play) is used
by ten players. Figures 7a and 7b show the results. We observe
that the higher threshold classes (above 30) have virtually the same
relative frequencies as the average of the six homogeneous pop-
ulations, but there is an enormous drop in the frequency of the
1-10 class, and corresponding increases in the 11-20 and 21-30
classes. As a result, the latter is now the modal threshold class.
The average threshold chosen during the periods 50,001 to 100,000
is also higher in the mixed population than in the average of the
six homogeneous populations (30.56 against 23.81). The run with
the lowest average threshold chosen in the mixed population has
an average of 29.43 (and the highest 31.93). Hence, if we look
at Table 1, we see that even the lowest run with a mixed popu-
lation has a higher threshold than the average of the highest runs
of the six learning schemes in homogeneous populations (which is
24.21). In other words, we see that it is not true that some players
smart enough to learn the equilibrium strategy (like the learning
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Figure 7. (a) Frequency distribution mixed population, periods 50,001 to
100,000; (b) Time series mixed population.
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direction theory players) are sufficient to induce equilibrium play
in the population’.

What is it in the structure of this game that makes that a wide
range of learning schemes (with one exception) does not converge
to the equilibrium? As the equilibrium is approached the frequency
of exchanges goes down. What matters is not so much that this
might slow down the learning process, but that the cases in which
the feedback to the players points towards the equilibrium become
rarer and rarer. If a player does not want to exchange himself, he
will not receive feedback about the value offered in exchange by the
other player. But if the other player does not want to exchange, then
there are multiple best-responses for him. Any threshold is as good
as any other. Sooner or later most learning schemes respond to this.
Hence, there is some kind of endogenous random drift'’. What is
more, as the frequency of exchanges goes down, the possibility of
memory limits becomes more relevant, leading players away from
equilibrium. Finally, if, for whatever reason, other players choose
thresholds away from equilibrium, then the best a player can do is
choosing thresholds higher than the equilibrium one as well. Hence,
a fraction of ‘less smart’ players may induce all players to stay
away from equilibrium.

Why, then, does learning direction theory appear more successful
at finding the equilibrium strategy in this exchange game? Learn-
ing direction theory still does not use any feedback if no exchange
takes place. But when it receives exchange feedback, it reacts very
directly and myopically to single successes or failures, instead
of accumulating evidence to estimate (implicitly or not) some
expected payoff. In some situations this impulsive behavior may
lead to undesirable outcomes, but in the exchange game it seems
to help avoiding to get ‘trapped’ for too long in exchanges. What
is more, learning direction theory incorporates more reasoning
about alternative strategies than some other learning models do.
For example, reinforcement learning or fictitious play only update
the expected payoff for the thresholds actually used, whereas learn-
ing direction theory reasons that if, for example, the end ticket
value after an exchange was high, a higher threshold would have
been even better, as it would have made the exchange occur-
ring even more likely. This extra reasoning increases the learning
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speed, and may again help avoid getting trapped in exchanges for
too long.

Besides the obstacles inherent in the incentive structure of the
game that make it difficult for the learning schemes consid-
ered to reach equilibrium, in reality there might be additional
factors playing a role. First, in reality the game is played with
overlapping generations. Each period some new players enter the
population, choosing thresholds at random, while others leave. Sec-
ond, in reality interactions are probably not determined randomly
but endogenously. For example, players who want to exchange
may stop bothering players who refuse to do so. Or players
may avoid players from whom they got low values only. Third,
the only effect of non-equilibrium play upon other players we
considered was through the payoffs. But in reality players might
learn from the behavior of other players as well. Fourth, in reality
risk-aversion or regret might provide additional incentives for
the players to adhere to the equilibrium strategy. It is only for
this last point that more equilibrium play would seem obvious,
but the third factor (behavioral learning) deserves some more
attention.

Let us first assume that an agent observes the behavior of all other
players. Following models of technology adoption (see, e.g., Arthur
[1989]), assume that the probability to adopt a certain behavior
is a function of the proportion of the population displaying that
behavior. In particular, let us assume that this adoption function
is monotonically increasing. This leads to a dynamic process for
which in principle any state could be a fixed point (depending on
the exact shape of the adoption function), including the two most
extreme outcomes, and for many adoption functions there might
be multiple stable fixed points. Hence, in terms of our exchange
game, behavioral learning as such (even when the adoption function
is monotonically increasing) might lead to nobody ever exchan-
ging, as well as everybody always exchanging, and everything
in between. None of these possibilities can be singled out with-
out making additional assumptions. One such possible assumption
would be to combine behavioral learning with one of the other
learning theories considered as follows. If a player exchanges, he
learns from the feedback provided by the resulting payoff. But
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if no exchange takes place because a partner refuses to do so,
a player learns from his partners behavior. It is not clear, how-
ever, what a player would learn from this observation. Instead
of imitating his playfellow, behavioral learning could imply the
opposite'!. For example, if a player observes somebody hesitating
to exchange, that might increase his own eagerness to exchange,
since the refusing player must be somebody with a relatively high
value (after all, it is a zero-sum game). In other words, the adoption
curve for behavioral learning might even be decreasing instead of
increasing.

Some preliminary insights concerning the empirical relevance of
our analysis can be derived from a pilot experiment with under-
graduate students from an Experimental Economics class that we
organized at Queen Mary in 2001. Sixteen subjects played eight
rounds of the exchange game described in this paper, with random
matching in each round. Only one player made all his choices in
agreement with the equilibrium strategy, the fifteen others did not.
Hence, there clearly is some scope for learning. Assuming that play-
ers use a threshold strategy, i.e., that they are prepared to exchange
any ticket up to a certain value, we define a player as learning
if he decides to keep in some round a ticket with a value that he
would have exchanged earlier on. Similarly, we define unlearn-
ing as offering in some round a ticket with a value that he would
have decided to keep earlier on. A player displays constant behav-
ior if he shows neither learning nor unlearning. The behavior of
all sixteen players was consistent with constant behavior. In other
words, for none of the sixteen players did we observe one single
instance conforming to either learning or unlearning, and in fact
the average value offered for exchange did not come down over
the eight rounds. Hence, we cannot refute the hypothesis that all
players used a constant threshold value.

Given the general nonconvergence of the learning processes
considered, the reason for the parents to give such persistent advice
is clear. If their children employ any non-equilibrium strategy,
other strategies might come along that capitalize on them, leading
to losses, since after all it is a zero-sum game. Now, some people
might argue that even if learning as such should not be expected
to converge to equilibrium play, the following evolutionary
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argument for convergence should still be convincing. If some
players systematically make losses, they would disappear from the
population, as they would need a never ending inflow of resources
to continue playing the exchange game. Although the argument
seems correct, it might provide us with an additional explanation
for the existence of the folk theorem’. In this exchange game
between children, it is the parents who would need to provide such
an inflow of resources. Hence, we have some kind of principal-
agent problem. There is little incentive for the children to change
their behavior. But it is costly for the parents, and therefore they
spend so much time and energy on keeping the ‘folk theorem’ alive.

Finally, one could see the continuing reminders of the folk
theorem as a form of virtual reinforcement learning (see Vriend
[1997]). Parents teach children that exchange leads to the outcome
tears. Getting this information over and over again plays the same
role as actually experiencing this bad outcome. In other words, what
the folk wisdom essentially does is speeding up this reinforcement
learning process, as it allows to learn even without any exchanges
actually taking place.

4. CONCLUDING REMARKS

This paper provides two contributions to the literature. First, we
showed that a piece of Dutch ‘folk wisdom’ concerning exchange
can be explained and justified by the game-theoretic analysis of
a specific exchange game with two-sided asymmetric information.
Second, we explained that keeping this ‘folk wisdom’ alive is impor-
tant because learning by boundedly rational agents is inherently
slow in this type of situation.

Years ago I was stranded in Brussels on a Sunday night, with
just a little bit of Belgian money. To add insult to injury, it turned
out that these coins had been taken out of circulation some time
ago. Undeterred, we started searching for somebody naive enough
to exchange our money. Although that was not easy, in the end we
succeeded. Trying in vain to suppress a big smile, we approached a
booth to buy some food, whereupon the smile disappeared quickly.
As it turned out, we had received only some almost worthless
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French centimes. But tears? No. After all, this had been a typical
equilibrium exchange; our ticket with the lowest possible value for
their ticket with the lowest value.
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APPENDIX. PSEUDO-CODE

Tables Al to A5 present the pseudo-code for each of the
following five learning schemes: best-responses, fictitious play,
learning direction theory, hill climbing, and reinforcement learning.
Table A6 lists a variant of fictitious play in which players forget
everything about expected values of tickets to be received when
they have not exchanged any ticket in the last 30 periods.

TABLE Al

Best-response behavior.

procedure BESTREP;
begin
for each period do
begin
if first period the threshold is random
else
begin
if exchanged in previous period then
threshold:=end_ticket;
if opponent did not want to exchange then

threshold is random;
end;
end;
end;
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TABLE A2

Fictitious play.

procedure FICT;
begin
for each period do
begin
if never exchanged before then
threshold is random
else if exchanged at least once in past
then threshold:=expected value tickets
received through exchange;
end;
end;

TABLE A3

Learning direction theory.

procedure LDT;
begin
for each period do
begin
if first period then threshold is random
else
begin
if exchanged in previous period then
begin
if end_ticket <start_ticket then
threshold:=threshold-1;
if end_ticket > threshold then

threshold:=threshold+1;
end;
end;
end;
end;
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TABLE A4
Hill climbing.

335

procedure HILL;
begin
for each period do
begin
if first two periods then threshold is random
else
begin

if threshold[t-1] > threshold[t-2]
and end_ticket[t-1] >end_ticket[t-2]
then delta:=1;

if threshold[t-1] > threshold[t-2]
and end_ticket[t-1] <end_ticket[t-2]
then delta:=-1;

if threshold[t-1] <threshold[t-2]
and end_ticket[t-1] >end_ticket[t-2]
then delta:=-1;

if threshold[t-1] <threshold[t-2]
and end_ticket[t-1] <end_ticket[t-2]
then delta:=1;

if threshold[t-1]=threshold[t-2]
or end_ticket[t-1]=end_ticket[t-2]
then with equal probability either
delta:=-1 or delta:=1;

threshold:=threshold+delta;

(with min. threshold being 1 and max.

threshold 100)

end;
end;

end;
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TABLE AS

Reinforcement learning.

procedure REINFORCE;
begin
for each period do
begin
if first period then $:=0.00001 else B:=[-1.0005;
(with max. 3 being 100)
if first period then for each threshold m;
do avg_payoff[m;]:=100;
choose each threshold m; with probability
exp(B-avg_payoff[m;]) /%, exp(B-avg_payoff[m,]);
if threshold m; was used in this period
then avg_payoff[m;]:=0.95%avg_payoff[m;]
+0.05*end_ticket;
end;
end;

TABLE A6

Limited memory fictitious play.

procedure LM_FICT;
begin
for each period do
begin
if never exchanged before or not exchanged
in last 30 periods then
begin
clear memory concerning average value
tickets received;
threshold is random;
end;
else if exchanged at least once
in last 30 periods
then threshold:=average value tickets
received in exchange
since last clearance of memory;
end;
end;
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NOTES

See, e.g., Osborne and Rubinstein [1994].

It is interesting to note that the ‘folk theorem’ is much older than the
theoretic analyses of games with asymmetric information.

The game considered is a zero-sum game. One could, however, perhaps
more realistically, assume that children may be bored with their own toy
(although, of course, one could also argue that children are more attached
to their own toys). That is, if player i currently holds a ticket with value
v;, the value to agent i himself is only a-v,, with 0 <a < 1. If & is not too
small, this does not fundamentally change the situation the players are in,
and it does not change the flavor of the analysis.

See also Gresham’s law that ‘bad money drives out good’.

This leaves the question open as to how important the differences (indicated
in Section 2) between the exchange game and markets for lemons are in
this respect. Notice that the issue of learning by boundedly rational agents
in markets for lemons has received (surprisingly) little attention in the
literature. A recent exception is Feltovich [2003].

We will focus on convergence, and we will skip the issue of accumulated
losses during the learning process. One reason is that they will depend to
some extent on some arbitrary parameters determining the speed of learning.
In any case, as we will see below, considering accumulated losses would
only strengthen our conclusion.

Initially choices are essentially random. Notice that this implies that initial
beliefs of expected values are irrelevant; by the time a player becomes
really discerning he has tried all thresholds many times.

This still leaves open the question whether the distribution in the population
in a given period corresponds to the distribution over time for a given
player, or that the players move in synchrony. As our primary focus is on
the (lack of) convergence issue, we do not provide a full analysis of this.
However, the time-series figures suggest that, apart from the initial learning
effects, the distribution of choices is relatively steady over time, at least
when averaged over blocks of 100 periods.

Given the different performances of these schemes, it would be an inter-
esting question to ask whether the players would be able to learn which
learning scheme to use.

This nonconvergence related to the expansion of the best-response set as
equilibrium is approached was also observed experimentally in a Hotelling
location game with 4 players (see Huck et al. [2002]).

Experimental evidence in Cournot oligopolies suggests that players may be
rather reluctant to imitate (see Bosch-Domenech and Vriend [2003]).
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