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Abstract. We distinguish two types of learning with a Genetic Algorithm. A popu­
lation learning Genetic Algorithm (or pure GA), and an individual learning Genetic 
Algorithm (basically a GA combined with a Classifier System ). The difference be­
tween these two types of GA is often neglected, but we show that for a broad class of 
problems this difference is essential as it may lead to widely differing performances. 
The underlying cause for this is a so called spite effect. 

13.1 Introduction 

One dimension in which we can distinguish types of Genetic Algorithms is 
the level at which learning is modeled. A first possibility is as a model of 
population learning, which might be called a pure Genetic Algorithm. There is 
a population of rules, with each rule specifying some action. The fitness of the 
rules is determined by all members of the population executing their specified 
action, and observing the thus generated feedback from the environment. 
On the basis of these performances, the population of rules is modified by 
applying some genetic operators. The second way to implement a GA is to 
use it as a model of individual learning, which is basically a Classifier System 
with on top of it a Genetic Algorithm. 

The difference between these two types of GA is often neglected, but we 
show that for a broad class of problems this difference is essential. 1 This 
difference is due to the fact that when a GA is learning, there are actually 
two processes going on. On the one hand, when the rules are executed they 
interact with each other in the environment, generating the outcomes that 
determine the fitness of each rule. On the other hand, given the thus generated 
fitnesses of the rules, there is the learning process as such. As we will make 
precise below, it is the way in which these processes interact with each other 
that causes the essential difference between the two versions of a GA. 

The phenomenon causing this essential difference between an individual 
and a GA is called the "spite effect". The spite effect occurs when choosing 
an action that hurts oneself but others even more. 2 In order to introduce the 

'. ... /' 

1 A more detailed analysis of the wider issue of the essential difference between 
individual and social learning and the consequence for computational analyses in 
a more general sense can be found in [12}. 

2 The term "spiteful behavior" goes back, at least, to [3]. It has been examined in 
the economics (see, e.g., [9]), experimental economics (see, e.g., [2], or [4]), and 
evolutionary game theory literature (see, e.g., [6], [7}, and [11]). 
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essence of the spite effect, consider the bimatrix game in Fig. 13.1 (see [6]), 
where T and B are the two possible strategies, and a, b, c, and d are the payoffs 
to the row and column player, with a > b > c > d. Clearly, (T, T) is the 
only Nash equilibrium since no player can improve by deviating from it, and 
this is the only combination for which this holds. Now, consider the strategy 
pair (B, T), leading to the payoffs (b, c). Remember that a > b > c > d. 
Hence, by deviating from the Nash equilibrium, the row player hurts herself, 
but she hurts the column player even more. We could also look at it from 
the other side. Suppose both players are currently playing strategy B, when 
the column player, for one reason or another, deviates to play strategy T 
instead, thereby improving his payoff from d to c. But the row player, simply 
sticking to her strategy B, would be "free riding" from the same payoff of 
d to a payoff c that is even higher than b. The question, then, addressed in 
this paper is how this spite effect influences the outcomes of an individual 
learning GA and a population learning GA. 

T B 
T a,a c,b 
B b,c d,d 

Fig. 13.1. Bimatrix game, with payoffs a > b > c > d 

The remainder of this paper is organized as follows. In Section 13.2 we 
present an example illustrating this difference, which we will analyze in Sec­
tion 13.3 in relation to the spite effect. Section 13.4 draws our example into a 
broader perspective by discussing some specific features of the example, and 
presents some conclusions. 

13.2 An Example 

Consider a standard Cournot oligopoly game. There is a number n of firms 
producing the same homogeneous commodity, who compete all in the same 
market. The only decision variable for firm i is the quantity qi to be produced. 
Once production has taken place, for all firms simultaneously, the firms bring 
their output to the market, where the market price P is determined through 
the confrontation of market demand and supply. Let us assume that the 
inverse demand function is P(Q) = a + bQc, where Q = "Eqi. Making the 
appropriate assumptions on the parameters a, b, and c ensures that this is 
a downward-sloping curve, as sketched in Fig. 13.2. Hence, the more of the 
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commodity is supplied to the market, the lower the resulting market price 
P will be. We assume that the production costs are such that there are 
negative fixed costs K, whereas the marginal costs are k. Imagine that some 
firms happen to have found a well where water emerges at no cost, but each 
bottle costs k, and each firm gets a lump-sum subsidy from the local town 
council if it operates a well. Given the assumptions on costs, each firm might 
be willing to produce any quantity at a price greater or equal to k. But it 
prefers to produce the output that maximizes its profits. The parameters for 
the underlying economic model can be found in the appendix. 

price 

demand 

Fig. 13.2. Sketch demand function 

Assume that each individual firm (there are 40 firms in our implemen­
tation) does not know what the optimal output level is, and that instead it 
needs to learn which output level would be good. Then, there are two basic 
ways to implement a GA. The first is as a model of population learning. Each 
individual firm in the population is characterized by an output rule, which 
is, e.g., a binary string of fixed length, specifying simply the firm's produc­
tion level. In each trading day, every firm produces a quantity as determined 
by its output rule, the market price is determined, and the firms' profits 
are determined. After every 100 trading days, the population of output rules 
is modified by applying some reproduction, crossover, and mutation opera­
tors. 3 The underlying idea is that firms look around, and tend to imitate, 
and re-combine ideas of other firms that appeared to be successful. The more 

3 In each of the 100 periods between this, a firm adheres to the same output rule. 
This is done to match the individual learning GA (see below), and in particular 
its speed, as closely as possible. 
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successful these rules were, the more likely they are to be selected for this 
process of imitation and re-combination, where the measure of success is sim­
ply the profits generated by each rule. Figure 13.3 shows both the Cournot 
market process, and the population learning process with the GA. 

firms 

1011001010110111 

0010011000111111 

market 

1111100010010000 

Fig. 13.3. Social learning GA 

The second way to implement a GA is to use it as a model of individual 
learning. Instead of being characterized by a single output rule, each individ­
ual firm now has a set of rules in mind, where each rule is again modeled as a 
string, with attached to each rule a fitness measure of its strength or success, 
i.e., the profits generated by that rule when it was activated. Each period 
only one of these rules is used to determine its output level actually supplied 
to the market; the rules that had been more successful recently being more 
likely to be chosen. On top of this Classifier System, the GA, then, is used 
every 100 periods to modify the set of rules an individual firm has in mind 
in exactly the same way as it was applied to the set of rules present in the 
population of firms above. Hence, instead of looking how well other firms 
with different rules were doing, a firm now checks how well it had been doing 
in the past when it used these rules itself. 4 Figure 13.4 shows the underlying 
economic market process, and the individual learning process. 5 

Figure 13.5 presents the time series of the output levels for a representative 
run of each algorithm. As we see, they approach a different level. Whereas 
both series start around 1000, the population learning GA quickly 'converges' 

4 Hence, an alternative way to obtain the match in the speed of learning of the 
individual and the social learning GA would have been to endow the individual 
learning GA with the capability to reason about the payoff consequences for every 
possible output level in its set, updating all strengths every period. 

S The parameter specification of the G A can be found in the appendix, and the 
pseudo-code in [12]. 
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firms 

100101010011101 
011001110101000 

100001001110111 

000001110001111 
111101010000001 

001110001010011 

111111100001101 
010000110011000 

000110001110000 

market 

Fig. 13.4. Individual learning G A 

to a level of 2000, but the individual learning GA keeps moving around a level 
just below 1000. 6 We want to stress that these data are generated by exactly 
the same identical GA for exactly the same identical underlying economic 
model. 

6 The 5,000 periods here presented combined with the GA rate of 100 imply that 
the GA has generated 50 times a new generation in each run. Each single obser­
vation in a given run is the average output level for that generation. We did all 
runs for at least 10,000 and some up to 250,000 periods, but this did not add 
new developments. 
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Fig. 13.5. Output levels individual learning GA and social learning GA 

13.3 Analysis 

We first present two equilibria of the static Cournot oligopoly game speci­
fied above for the case in which the players have complete information. The 
GAs do not use this information, but the equilibria serve as a theoretical 
benchmark that helps us understanding what is going on in the GAs. 7 

If the firms behave as price-takers in a competitive market, they simply 
produce up to the point where their marginal costs are equal to the market 
price P. Given the specification of the oligopoly model above, this implies 
an aggregate output level of QW == 80,242.1, and in case of symmetry, an 
individual Walrasian output level of Qn

w 

~ 2,006.1. If, instead, the firms 
realize that they influence the market price through their own output, still 
believing that their choice of q does not directly affect the output choices of 
the other firms, they produce up to the point where their marginal costs are 
equal to their marginal revenue. This leads to an aggregate Cournot-Nash 
equilibrium output of QN == 39,928.1, and with symmetry to an individual 

Cournot-Nash output of Q; == 998.2. 
As we see in Fig. 13.5, the GA with individual learning moves close to 

the Cournot-Nash output level, whereas the GA with population learning 
'converges' to the competitive Walrasian output level. The explanation for 
this is the spite effect. 

In order to give the intuition behind the spite effect in this Cournot game, 
let us consider a simplified version of a Cournot duopoly in which the inverse 
demand function is P == a + bQ, and in which both fixed and marginal costs 

7 The formal derivation of the two equilibria can be found in [12]. 
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p 

demand curve 

<---------- qj ----------> 

Q 

Fig. 13.6. Example simple Cournot duopoly 

are zero (see [8]). The Walrasian equilibrium is then QW == -alb, as indicated 
in Fig. 13.6. Suppose firm i produces its equal share of the Walrasian output: 
qi = QW /2. If firm j would do the same, aggregate output is QW , the market 
price P will be zero, and both make a zero profit. What happens when firm 
j produces more than QW /2? The price P will become negative, and both 
firms will make losses. But it is firm i that makes less losses, because it has 
a lower output level sold at the same market price P. What happens instead 
if firm j produces less than QW /2? The price P will be positive, and hence 
this will increase firm j's profits. But again it is firm i that makes a greater 
profit, because it has a higher output level sold at the same market price P. 
In some sense, firm i is free riding on firm j's production restraint. Hence, 
in this Cournot duopoly the firm that .produces its equal share of QW will 
always have the highest profits. 

How do these payoff consequences due to the spite effect explain the dif­
ference in the results generated by the two GAs? As we saw above, the spite 
effect is a feature of the underlying Cournot model, and is independent from 
the type of learning applied. The question, then, is how this spite effect is 
going to influence what the firms learn. It turns out, this depends on how the 
firms learn. 

In the population learning GA, each firm is characterized by its own 
production rule (see Fig. 13.3). The higher a firm's profits, the more likely is 
its production rule to be selected for reproduction. Due to the spite effect, 
whenever aggregate output is below Walras, this happen to be those firms 
that produce at the higher output levels. And whenever aggregate output is 
above Walras, the firms producing at the lowest output are most likely to 
be selected for reproduction. As a result, the population of firms tends to 
converge to the Walrasian output.8 

8 This is not due to the specifics of this simple example, but it is true with great 
generality in Cournot games (see (11], and [7]). In particular, it also holds when 

nick

nick



240 Nicolaas J. Vriend 

In the individual learning GA, however, the production rules that com­
pete with each other in the learning process do not interact with each other 
in the same Cournot market, because in any given period, an individual firm 
actually applies only one of its production rules (see Fig. 13.4). Hence, the 
spite effect, while still present in the market, does not affect the learning 
process, since the payoff generated by that rule is not influenced by the pro­
duction rules that are used in other periods. Clearly, there is a spite effect 
on the payoffs realized by the other firms' production rules, but those do 
not compete with this individual firm's production rules in the individual 
learning process. 

We would like to stress that it is these learning processes that is the crucial 
feature here, and not the objectives of the agents. Both the individual and the 
population learners only try to improve their own absolute payoffs. The only 
difference is that their learning is based on a different set of observations. The 
direct consequence is that in the social learning GA the spite effect drives 
down the performance level, while the performance of the individual learning 
GA improves over time. In other words, the dynamics of learning and the 
dynamics of the economic forces as such interact in a different way with each 
other in the two variants of the GA, and this explains the very different 
performance of the two GAs. 9 

13.4 Discussion 

Before we draw some general conclusions, let us discuss some specific issues 
in order to put our example into a broader perspective. First, the spite effect 
we presented occurs in finite populations where the agents 'play the field'. 
The finite population size allows an individual agent to exercise some power, 

all firms start at the Cournot-N ash equilibrium (as long as there is some noise in 
the system). 

9 There is one additional issue to be analyzed. As we saw above in Fig. 13.5, "con­
vergence" with the individual learning GA is not as neat as with the population 
learning GA. Some numerical analysis shows that this is not a flaw of the indi­
vidual learning GA, but related to the underlying economic model. The formal 
analysis of the Cournot model shows that there is a unique symmetric Cournot­
Nash equilibrium. But in our numerical model we use a discrete version of the 
model, as only integer output levels are allowed. As a result, there turn out to 
be 1637 symmetric Cournot-N ash equilibria; for any average output level of the 
other firms from 1 to 1637, the best response for an individual firm is to choose 
exactly the same level. Hence, the outcomes of the individual learning G A are 
determined by the underlying economic forces, but convergence can take place 
at any of these Cournot-Nash equilibrium levels. As a result, the output levels 
act ually observed in the individual learning G A depend in part on chance factors 
such as the initial output levels, the length of the bit string, and genetic drift. 
Notice that although there are multiple Cournot-N ash equilibria, they are all still 
distinct from the Walrasian equilibrium. 
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and influence the outcomes of the other agents. For example, in a Cournot 
model, when the population size n approaches infinity, the Cournot-Nash out­
put level converges to the competitive Walrasian output. Finite populations 
are typically the case in GAs. To see why the 'playing the field' aspect is im­
portant, suppose there are many separate markets for different commodities, 
such that the actions in one market do not influence the outcomes in other 
markets, whereas firms can learn from the actions and outcomes in other mar­
kets. Since the spite effect does not cross market boundaries, if all firms in 
one market produce at the Cournot-Nash level, they will realize higher prof­
its than the firms in another market producing at a Walrasian level. 'Playing 
the field' is typically the case in, e.g., economic models where the agents are 
firms competing in the same market. There are also some results concerning 
the spite effect with respect to, e.g., 2-person games in infinite populations 
with agents learning about the results in other games, but the occurrence of 
a spite effect becomes a more complicated matter (see [6]). Notice, however, 
that with an individual learning GA a spite effect can never occur. 

Second, although, as we have seen, the spite effect may influence the 
outcomes qf a coevolutionary process, one should not confuse the spite effect 
with the phenomenon of coevolution as such. In fact, as the bimatrix game 
in the introduction showed, the spite effect can occur in a static, one-period 
game, and is intrinsically unrelated to evolutionary considerations. 

Third, the simple Cournot model we considered is not a typical search 
problem for a GA; not even if the demand and cost functions are unknown. 
The appeal of the Cournot model is not only that it is convenient for the 
presentation because it is a classic discussed in every microeconomics text­
book, but the fact that we can derive formally two equilibria provided us also 
with two useful benchmarks for the analysis of the outcomes generated by the 
Genetic Algorithms. Hence, the Cournot model is just a vehicle to explain 
the point about the essential difference between individual and population 
learning GAs, and for any model, no matter how complicated, in which a 
spite effect occurs this essential difference will be relevant. 

Fourth, one could consider more complicated strategies than the simple 
output decisions modeled here. For example, the Cournot game would al­
low for collusive behavior. However, as is well-known from the experimental 
oligopoly literature, dynamic strategies based on punishment and the building 
up of a reputation are difficult to play with more than two players. Moreover, 
considering more sophisticated dynamic strategies would merely obscure our 
point, and there exists already a large literature, for example, on GAs in 
Iterated Prisoners' Dilemma (see. e.g., [1], [5], or (10]). 

Fifth, we are sure that the GAs we have used are too simple, and that 
much better variants are possible. However, bells and whistles are not essen­
tial for our point. The only essential aspect is the level at which the learning 
process is modeled, and the effect this has on the convergence level. 
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The general conclusion, then, is the following. We showed that the pres­
ence of the spite effect impli~ that there is an essential difference. between 
an individual learning and a population learning GA. On the one hand, this 
means that when interpreting outcomes of a GA, one needs to check which 
variant is used, and one needs to check whether a spite effect driving the 
results might be present. On the other hand, it also has implications for the 
choice of the learning type of a GA. If a GA is used to model behavior in 
the social sciences, it seems ultimately an empirical question whether peo­
ple tend to learn individually or socially. But if, instead, the GA is used to 
'solve' some search problem, the presence of a spite effect implies that the 
performance of a population learning GA will be severely hindered. 

A Appendix 

Table 13.1. Parameters Cournot oligopoly model 

inverse demand function P(Q) 
demand parameter a 

demand parameter b 
demand parameter c 

fixed production costs K 
marginal production costs k 

number of firms n 

a+b·QC 
-1 . 10-97 

1.5 . 1095 

-39.999999997 
-4.097 .10-94 

o 
40 

Table 13.2. Parameters genetic algorithm 

minimum individual output level 1 
maximum individual output level 2048 

encoding of bit string standard binary 
length of bit string 11 

number rules individual GA 40 
number rules population GA 40·1 

GA-rate 100 
number new rules 10 

selection tournament 
probe selection fitness/l:fitness 

crossover point 
probe crossover 0.95 
probe mutation 0.001 
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