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1. Introduction 1

In this paper we interlink a dynamic programming, a game theory and a behav-
ioral simulation approach to the same problem of economic exchange. We argue
that the success of mathematical economics and game theory in the study of the
stationary state of a population of microeconomic decision makers has helped to
create an unreasonable faith that many economists have placed in models of ”ra-
tional behavior”.

The size and complexity of the strategy sets for even a simple infinite horizon
exchange economy are so overwhelmingly large that it is reasonably clear that
individuals do not indulge in exhaustive search over even a large subset of the
potential strategies. Furthermore unless one restricts the unadorned definition of
a noncooperative equilibrium to a special form such as a perfect noncooperative
equilibrium, almost any outcome can be enforced as an equilibrium by a suffi-
ciently ingenious selection of strategies. In essence, almost anything goes, unless
the concept of what constitutes a satisfactory solution to the game places limits on
permitted or expected behavior.

Much of microeconomics has concentrated on equilibrium conditions. Gen-
eral equilibrium theory provides a central example. When one considers infinite
horizon models one is faced with the unavoidable task of taking into account how
to treat expectations concerning the future state of the system. An aesthetically
pleasing, but behaviorally unsatisfactory and empirically doubtful way of han-
dling this problem is to introduce the concept of ”rational expectations”. Math-
ematically this boils down to little more than extending the definition of a non-
cooperative equilibrium in such a way that the system ”bites its tail” and time

1We wish to thank Paola Manzini and participants at the Society of Computational Economics
conference in Austin, TX, for helpful comments. Stays at the Santa Fe Institute, its hospitality and
its stimulating environment are also gratefully acknowledged.
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disappears from the model. Stated differently one imposes the requirement that
expectations and initial conditions are related in such a manner that the system
is stationary. All expectations are self-confirming and consistent. From any two
points in time, if the system is in the same physical state overall behavior will be
identical.

Unfortunately, even if we were to assume that the property of consistency of
expectations were a critical aspect of human life, the noncooperative equilibrium
analysis would not tell us how to get there. Even if one knows that an equilibrium
exists, suppose that the system is started away from equilibrium, the rational ex-
pectations requirement is not sufficient to tell us if it will converge to equilibrium.
Furthermore as the equilibrium is generally not unique the dynamics is probably
highly influenced by the location of the initial conditions.

The approach adopted here is to select a simple market model where we can
prove that for at least a class of expectations formation rules, a unique stationary
state exists and we can calculate the actual state. Then we consider what are the
requirements to study the dynamics of the system if the initial conditions are such
that the system starts at a position away from the equilibrium state.

The model studied provides an example where the existence of a perfect non-
cooperative equilibrium solution can be established for a general class of games
with a continuum of agents.

In the game studied a full process model must be specified. Thus a way of
interpreting the actions of the agents even at equilibrium is that equilibrium is
sustained by a group of agents where each single agent may be viewed as consist-
ing of a team. One member of the team is a very high IQ problem solver, who on
being told by the other member of the team what all future prices are going to be,
promptly solves the dynamic program which tells him what to do now, based on
the prediction he has been given. He does not ask the forecaster how he made his
forecast. We can, for example, establish the existence of an equilibrium stationary
through time based on the simple rule that the forecaster looks at the last price
extant in the market and (with a straight face) informs the programmer that that
price will prevail forever. But if we do not set the initial conditions in such a way
that the distribution of all agents is at equilibrium we do not knowa priori that the
system will actually converge to the equilibrium predicted by the static theory.

An open mathematical question which we do not tackle at this point is how to
define the dynamic process and prove that it converges to a stationary equilibrium
regardless of the initial conditions of the system. A way of doing this for a spe-
cific dynamic process might involve the construction of a Lyapunov function and
showing its convergence.

Karatzas, Shubik and Sudderth [1992] (KSS) formulated a simple infinite hori-
zon economic exchange model involving a continuum of agents as a set of parallel
dynamic programs and were able to establish the existence of a stationary equilib-
rium and wealth distribution where individuals use fiat money to buy a commodity
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in a single market and each obtain a (randomly determined) income from the mar-
ket. The economic interpretation is that each individual owns some (untraded)
land as well as an initial amount of fiat money. Each piece of land produces (ran-
domly) a certain amount of perishable food (or ”manna”) which is sent to market
to be sold. After it has been sold, each individual receives an income which equals
the money derived from selling his share. Each individual has a utility function of
the form:

1X
0

�t'(xt) ; (1)

where� is a discount factor, and'(xt) is the direct utility out of consumption at
t. The price of the good each period is determined by the amount of money bid
(b) and the amount of good available(q). In particular:

pt =

nP
i=1

bit

nP
i=1

qit

(2)

Although in KSS the proof was given for the existence of a unique stationary equi-
librium with any continuous concave utility function, in general it is not possible
to find a closed form representation of either the optimal policy for each trader
or the equilibrium wealth distribution in the society. In an extremely special case,
noted below, KSS were able to solve explicitly both for the optimal policy and
the resulting wealth distribution. In two related papers Miller and Shubik [1992]
and Bond, Liu and Shubik [1994] considered a simple (nonlearning) simulation
and a genetic algorithm simulation of the simple example in KSS and in the latter
paper considered also a more complex utility function using linear programming
methods to obtain an approximation of the dynamic programming solution in or-
der to compare the performance of the simulation with the solution of the dynamic
program.

If our only interest were in equilibrium we could settle for a mathematical
existence proof and computational procedures to obtain a specific estimate of the
structure of equilibrium when needed. But we know that the infinite horizon con-
sistency check of rational expectations is not merely a poor model of human be-
havior it tells us nothing about dynamics and it is a method to finesse the real
problems of understanding how expectations are formed and how decisions are
made in a world with less than super rational game players.

In contrast, approaches such as that of the genetic algorithm of Holland [1992]
concentrate on the dynamics of learning. It has been observed that genetic algo-
rithms are notper sefunction optimizers. But even if this is true it is a reasonable
question to ask: ”If one has a fairly straightforward optimization problem which
is low dimensional in the decision variables, where by straight mathematics and
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computational methods we can at least find a conventional economic solution,
what do we get by using a learning simulation approach?” If the learning simu-
lation converges to the formal game theoretic solution then we not only have a
dynamics, but also may have a useful simulation device to be used as an alterna-
tive to formal computation. If there is a great divergence in results on a simple
problem, then we might gain some insights as to why.

2. The Dynamic Programming Approach

Before we consider the key elements of expectations and disequilibrium and how
to approach the adjustment process we confine our remarks to the dynamic pro-
gramming equilibrium analysis of two special examples which we use as targets
for our exploration.

Model 1 We focus the first part of this paper on a simple special case where the
utility function for an individual is given by:

U(c) =

�
c ; 0 � c � 1

1 ; c � 1

�
: (3)

The utility function in a single period is illustrated in Figure 1.

utility

consumption0 1

1

Figure 1. A simple utility function

It can be proved that the optimal (stationary) policy of equation (3) has the
very simple form

c�(s) =

�
s ; 0 � s � 1

1 ; s � 1

�
; (4)
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where s is the agent’s current wealth level. We are able to compute explicitly the
value function V as well as the unique invariant measure of the Markov chain
when the distribution of income, represented byy, has the particularly simple
form

P (y = 2) = 
; P (y = 0) = 1� 
 with 0 < 
 <
1

2
: (5)

Figure 2 shows the Markov chain, truncated at a wealth level of 4, for
 = 1=4;

where the arrows indicate the transitions between the wealth levels, with the given
probabilities.
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3/4

Figure 2. Markov chain

Suppose that the variabley has the simple distribution (5). Then the value
functionV (�) can be computed explicitly on the integers:2

V (O) = A�+
�

1� �
and V (s) = A�s

+
1

1� �
; s 2 N (6)

where

� =
1�

p
1� 4�2
(1� 
)

2�

; A =

1� 



�

 
1��+

1��

�


! : (7)

2Outside the latticeV (�) is determined by linear interpolation

V (s) =
1

1� p
=

"
1

1��
� (s� [s])

#
�[s] with 0 � s � 1, where[s] is the integer part ofs.



266 MARTIN SHUBIK AND NICOLAAS J. VRIEND

The ergodic Markov chain has an invariant measure� = (�0; �1; :::) given by

�0 = c(1�
); �1 = c
; �s = c(



1 � 

)
s�1 for s � 2; where c =

1� 2


1� 

:

(8)
Suppose for specificity
 = 1=4 and� = 1=2, then the stationary wealth distribu-
tion is as illustrated in Figure 3.
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Figure 3. Wealth distribution

The requirement that individuals use fiat money for bidding is a formalization
of the transactions use of money. The motivation to hold money illustrates the
precautionary demand to protect the individual in periods of low income.

Given the extremely simple form of the optimal policy this example serves as
a simple testbed for investigating the basic features of a learning program.

Model 2

We now select an example simple enough to enable us to find an optimal
policy and a solution, and yet just rich enough that the pathologies of model 1 are
removed. In particular the depends directly on . We suppose that the (one period)
utility function is of the form

U(c) =

�
c ; 0 � c � 1

1 + �(c � 1) ; c � 1

�
with 0 � � � 1 : (9)

The utility function is illustrated in Figure 4 for� = 1=2.
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utility

consumption0 1

1

Figure 4. A nonsaturating utility function

For simplicity we consider the probability of gain
 = 1=2. The Bellman
equation for the problem is

V (s) = max
0�a�s

n
U(a) + �=2[V (s� a) + V (s� a+ 2)]

o
: (10)

LetQ(s) be the return function corresponding toc(s). ThenQ satisfies

Q(s) =

8<
:

s+ �=2[Q(0) +Q(2)] ; 0 � s � 1

1 + �=2[Q(s� 1) +Q(s+ 1)] ; 1 � s � 2

1 + �(s� 2) + �=2[Q(1) +Q(3)] ; s � 2

: (11)

Notice that, for1 � s � 2, we have0 � s� 1 � 1 and2 � s+ 1. So

Q(s� 1) = s� 1 + �=2[Q(0) +Q(2)]

and
Q(s+ 1) = 1 + �(s� 1) + �=2[Q(1) +Q(3)] :

Also
Q(0) = �=2[Q(0) +Q(2)]

Q(2) = 1 + �=2[Q(1) +Q(3)] :

So we can write the equation forQ as

Q(s) =

8<
:

s+Q(0) ; 0 � s � 1

1 + �=2[(1 + �)(s� 1) +Q(0) +Q(2)] ; 1 � s � 2

1 + �(s� 2) +Q(2) ; s � 2

:

(12)
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Differentiate to get

Q0(s) =

8<
:

1 ; 0 < s < 1

�(1 + �)=2 ; 1 < s < 2

� ; s > 2

: (13)

We can evaluate right and left derivatives by continuity at the end points.
ForQ to be concave, we need

1 >
�(1 + �)

2
� � or

2

1 + �
� � �

2�

1 + �
: (14)

This holds for any given� when� is sufficiently close to zero.
To verify the Bellman equation, we will also need that

� � �2(1 + �)=2 or
2�

1 + �
� �2 : (15)

It is not difficult to find� and� satisfying all the conditions. For example, take
� = 1=2, � = 3=4. Then

2

1 + �
=

4

3
> � =

3

4
>

2�

1 + �
=

2

3
> �2 =

9

16
: (16)

The verification that Q satisfies the Bellman equations is given in a separate paper
by Karatzas, Shubik and Sudderth [1995].

For� = 1=2, and� = 3=4 the optimal policy is

c(s) =

8<
:

s ; 0 � s � 1

1 ; 1 � s � 2

s� 1 ; s > 2

: (17)

Figure 5 shows the shape of the function for these parameter values. We observe
that the calls for spending all until a wealth level of 1 then saving up to 1 and
after saving has reached 1 spending of all further wealth resumes. Furthermore
the policy is directly dependent on�.

This leads to the Markov chain illustrated in Figure 6, where the arrows indi-
cate the transitions between the wealth levels, with the given probabilities.

The stationary is(�0; �1; �2; �3) = (1=4; 1=4; 1=4; 1=4), as presented in Fig-
ure 7, and the money supply must be

M =
1

4
� 1 +

1

4
� 2 +

1

4
� 3 = 1

1

2
: (18)

For ease in computation and notation we have implicitly assumed a stationary
price level ofp = 1 in the calculations, thus here we note that one unit of the
money is bid and 1/2 a unit remains in hoard.
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consumption

wealth0 1 2

1

Figure 5. Optimal policy for the nonsaturating utility function

. . . .
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Figure 6. Markov chain for the nonsaturating utility function

2.1. STATIONARY AND NONSTATIONARY VALUES

The dynamic programming solutions above enable us to calculate stationary val-
ues. But if we start away from equilibrium several new problems emerge. The
first is :”do we converge to equilibrium?”, the second is ”how costly is it to get
to equilibrium?”. It could be that ”satisficing” or ”good enough” is sufficient. The
cost of the search or new routine might be larger than the gain to be had.
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Figure 7. Wealth distribution with nonsaturating utility function

2.2. THE CONTINUUM GAME AND THE FINITE SIMULATION

The mathematical analysis given above was based on results proved for a stochas-
tic economy with a continuum of agents. But the assumption of a continuum of
agents is a mathematical convenience to provide mathematical tractability, which
must be justified as a reasonable approximation of reality. An open difficult ques-
tion in game theoretic analysis is does the equilibrium discussed here exist if there
is a large finite number of agents, but not a continuum? We conjecture that the an-
swer is yes. The basic functioning of a computer is such that it must deal with a
finite number of agents, thus the models we can simulate can represent markets by
a large, but finite number of agents. In studying money flows, banking, loan mar-
kets and insurance this distinction between large finite numbers and a continuum
of agents is manifested in the need for reserves. Reserves play no role in static
economic models with a continuum of agents.

3. On Expectations and Equilibrium

In Section 1 we noted that the problem of expectations was finessed in the equilib-
rium study by imagining that each agent consisted of a team with one individual
who could solve dynamic programming problems, while the other agent fed him
the information on what expectations he should use to calculate the impact of his
policy on future profits. But the key unanswered question is how are these ex-
pectations formed. Economic dynamics cannot avoid this question. The need to
prescribe an inferential process is not a mere afterthought to be added to an eco-
nomic model of ”rational man”, it is critical to the completion of the description
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of the updating process.
The proof of the existence of an equilibrium supplied by KSS [1992], be-

ing based on a complete process model required that the forecasting used in the
updating process be completely specified. But as already noted we selected an
extremely simple way of forecasting which was to believe that last period’s price
would last for ever. This clearly contains no learning. If the facts are otherwise
our forecaster does not change his prediction.

Any forecasting rule which predicts a constant price in the future and sticks
to it regardless of how it has utilized information from the past is consistent with
equilibrium. But we are told nothing about whether it converges to the equilib-
rium, or if it does, then how fast it converges.

Even for the extremely simple economic models provided here, the proof of
the convergence of classes of prediction procedures appears to be analytically dif-
ficult, although worth attempting. Even were one to succeed, the open problems
remain. How do individual economic agents make and revise predictions? Are
there any basic principles we can glean concerning inferential processes in eco-
nomic life? For these reasons we may regard the behavioral simulation approach
as a needed complement to and extension of the classical static economic analysis.

4. The Role of Behavioral Simulation and Learning

The past few years has seen an explosion in the growth of computer methods to de-
scribe and study learning processes. Among these are Genetic Algorithms (GAs)
and Classifier Systems (CS)s (see e.g., Holland [1975], [1986] and [1992], or
Machine Learning [1988]). Classifier Systems and Genetic Algorithms are com-
plementary. In combination they are an example of a reinforcement learning algo-
rithm. ”Reinforcement learning is the learning of a mapping from situations to ac-
tions so as to maximize a scalar reward or reinforcement signal. The learner is not
told which actions to take, as in most forms of machine learning, but instead must
discover which actions yield the highest reward by trying them”(Sutton [1992], p.
225). A reinforcement algorithm experiments to try new actions, and actions that
led in the past to more satisfactory outcomes are more likely to be chosen again in
the future. Machine Learning [1992] presents a survey of reinforcement learning.

In the appendix we present the pseudo-code used in our computational anal-
ysis, plus a detailed explanation. In this section we focus on the more general
ideas underlying the algorithms utilized. A Classifier System (CS) consists of a
set of decision rules of the‘if ... then ...’ form. To each of these rules is attached
a measure of its strength. Actions are chosen by considering the conditional‘if
...’ part of each rule, and then selecting one or more among the remaining rules,
taking into account their strengths. The choice of the rules that will be activated is
usually determined by means of some stochastic function of the rules’ strengths.

The virtue of CSs is that it aims at offering a solution to the reinforcement
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learning or‘credit assignment’problem. A complex of external payments and
mutual transfers of fractions of strengths can be implemented, such that eventu-
ally each rule’s strength forms implicitly a prediction of the eventual payoff it will
generate when activated. In fact, what CSs do is to associate with each action a
strength as a measure of its performance in the past. The essence of reinforce-
ment learning is that actions that led in the past to more satisfactory outcomes, are
more likely to be chosen again in the future. This means that the actions must be
some monotone function of the (weighted) past payoffs. Labeling these strengths
as‘predicted payoffs’is in a certain sense an interpretation of these strengths, as
the CS does not model the prediction of these payoffs, as a process or an act. The
basic source from which these transfers of strengths are made is the external pay-
off generated by an acting rule. The strengths of rules that have generated good
outcomes are credited, while rules having generated bad outcomes are debited.
The direct reward from the CS’s environment to the acting rule does not nec-
essarily reinforce the right rules. The state in which the CS happens to be may
depend, among other things, upon previous decisions. This is important, as only
those rules of which the conditional‘if ...’ part was satisfied could participate in
the decision of the current action. Hence, when the current decision turns out to
give high payoffs, it may be the rules applied in the past which gave that rule a
chance to bid. Moreover in general it may be that not all payoffs are generated
immediately, due to the presence of lags or dynamics, implying that the current
outcomes are not only determined by the current action, but also partly by some
actions chosen previously. This credit assignment problem is dealt with by the so-
called ‘Bucket Brigade Algorithm’. In this algorithm each rule winning the right
to be active makes a payment to the rule that was active immediately before it.
When the CS repeatedly goes through similar situations, this simple passing-on
of credit results in the external payoff being distributed appropriately over com-
plicated sequences of acting rules leading to payoff from the environment. Thus
the algorithm may‘recognize’valuablesequencesof actions.

At the beginning, a CS does not have any information as to what are the most
valuable actions. The initial set of rules consists of randomly chosen actions in the
agent’s search domain, and the initial strengths are equal for all rules.

Given the updated strengths, a CS decides which of the rules is chosen as
the current action, where the probability of a rule being activated depends on its
strength. This choice of actions is a stochastic function, i.e., it is not simply the
strongest rule that is activated, because a CS seeks to balance exploitation and
exploration.

A CS is a reinforcement learning algorithm, as experimentation and trying
new actions takes place through the stochasticity by which actions are chosen in
the CS, and actions that led in the past to more satisfactory outcomes are more
likely to be chosen again in the future through the updating of propensities to
choose actions. More experimentation takes place when a CS is combined with a
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Genetic Algorithm (GA), by which new actions can be generated.The frequency
at which this is done is determined by the GA rate. Note that a too high GA rate
would make that the CS does not get enough time topredict the value of the newly
created strings, while a too low GA rate would lead to lack of exploration of new
regions.

A GA starts with a set of actions, with to each action attached a measure of its
strength. This strength depends upon the outcome or payoff that would be gener-
ated by the action. Each action is decoded into a string. Through the application of
some genetic operators new actions are created, that replace weak existing ones.
GAs are search procedures based on the mechanics of natural selection and natural
genetics. The set of actions is analogous to a population of individual creatures,
each represented by a chromosome with a certain biological fitness. The basic GA
operators arereproduction, crossoverandmutation. Reproduction copies individ-
ual strings from the old to a new set according to their strengths, such that actions
leading to better outcomes are more likely to be reproduced. Crossover creates a
random combination of two actions of the old set into the new one, again taking
account of their strengths. This makes that new regions of the action space are
searched through. Mutation is mainly intended as a‘prickle’ every now and then
to avoid having the set lock in into a sub-space of the action space. It randomly
changes bits of a string, with a low probability.

The key feature of GAs is their ability to exploit accumulating information
about an initially unknown search space, in order to bias subsequent search efforts
into promising regions, and this although each action in the set refers to only one
point in the search space. An explanation of why GAs work is condensed in the
so-called‘Schema Theorem’3. When one uses the binary alphabet to decode the
actions, then 10110*** would be an example of a‘schema’, where * is a so-called
‘wild card’ symbol, i.e., * may represent a 1 as well as a 0. Not all schemata
are processed equally usefully, and many of them will be disrupted by the genetic
operators; in particular by the crossover operator. The‘Schema Theorem’says that
short, low-order, high performance schemata will have an increasing presence in
subsequent generations of the set of actions, where the order of a schema is the
number of positions defined in the string, and the length is the distance from the
first to last defined position. Although this‘implicit parallelism’ is also sometimes
called ‘randomized parallel search’, this does not imply directionless search, as
the search is guided towards regions of the action space with likely improvement
of the outcomes.

GAs are especially appropriate when, for one reason or another, analytical
tools are inadequate, and when point-for-point search is unfeasible because of the
enormous amount of possibilities to process, which may be aggravated by the
occurrence of non-stationarity. But the most attractive feature of GAs is that they

3Also called‘Fundamental Theorem of Genetic Algorithms(see, e.g., Goldberg [1989] or Vose
[1991]).
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do not need a supervisor. That is, no knowledge about the‘correct’ or ‘target’
action, or a measure of the distance between the coded actions and the‘correct’
action, is needed in order to adjust the set of coded actions of the GA. Theonly
information needed are the outcomes that would be generated by each action. This
information is supplied by the CS, which implicitly constructs a prediction of the
outcomes for all actions in the set. In this sense GAs exploit the local character of
information, and no further knowledge about the underlying outcome generating
mechanisms is needed, like e.g., the derivatives of certain functions.

5. Results

We first consider the special case of Model 1, outlined in section 2, withP (y =

2) = 1=4, P (y = 0) = 3=4, and� = 0:90. In order to evaluate the performance
of the CS/GA we consider the following three measures. First, the actual values
of the market bids. Second, the resulting wealth distribution. Third, the average
utility realized per period.

Figure 8 presents the bids in absolute value, made at the integer wealth levels
+-0.125. After 500,000 periods, for the integer wealth levels 1, 2, 3, and 4 the bids
come close to the theoretical values. For wealth level 5, bids are coming down
towards that level. For the intermediate non-integer wealth levels, not given here,
the bids are worse. This is due to the fact that those wealth levels occur much less
frequently.
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0 1 2 3 4 5 wealth
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5,000

50,000

500,000
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Figure 8. Bids for integer wealth levels: theoretical, and after 5,000, 50,000, and 500,000 periods

Figure 9 shows the resulting wealth distribution, distinguishing the wealth lev-
els 0-0.125, 0.125-0.375, 0.375-0.625, etc. Notice, that the intermediate wealth
levels disappear, and that wealth level 5 and higher almost never occur.
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Figure 9. Wealth distribution after 500,000 periods

Third, we consider the average utility realized per period. With the optimal
policy 50% of the time wealth would be zero, and otherwise wealth is at an integer
greater than zero. In the former case utility is zero, while otherwise utility is 1.
As a result, the average utility realized per period, following the optimal policy,
is 0.50. Considering the last 100,000 periods, our algorithm realized an average
utility of 0.49. That would imply a 98% performance level. That does not seem to
be adequate, however, since the correct lower bench mark is not zero utility but the
utility realized by a zero-intelligent agent. Even random market bids at any wealth
level would give an average utility greater than zero. In our case this turns out to
be 0.36. Therefore, we normalize the realized utility such that, given the actually
realized stochastic income stream, random market bids imply a performance level
of 0, and the optimal policy a performance level of 100. Figure 10 gives the whole
history; for each observation averaged over 1000 periods.

It should be stressed that the algorithm learns only from the actions actually
tried by the agent himself. The algorithm can be easily adjusted to incorporate also
the following forms of reinforcement learning. First, reinforcement based on the
experience of other agents, second, based on hypothetical experience as explained
by an advisor, and third, based on virtual experience following the agent’s own
reasoning process. Including all those reinforcement learning signals would make
the algorithm many factors faster, without however, changing the underlying ideas
(see also Lin [1992]).

We now turn to model 2 with the nonsaturating kinked utility function, with
� = 0:5, P (y = 2) = 1=2, P (y = 0) = 1=2, and� = 0:75. Figure 11 shows the
bids for the integer wealth levels +- 0.125.

Figure 12 shows the resulting wealth distribution over the wealth levels +-
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Figure 10. Average utility realized
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Figure 11. Bids for integer wealth levels: theoretical, and after 5,000, 50,000, and 500,000 periods

0.125 for the nonsaturating kinked utility function after 500,000 periods.
As we see, the actually learned bid function follows the two kinks in the op-

timal bid function, but convergence to the latter is not perfect. In particular at
wealth levels 2 and 3 consumption is somewhat high. For higher wealth levels
consumption is more or less random as these levels almost never occur (see Fig-
ure 12), and no learning can take place. The resulting wealth distribution equals
the wealth distribution generated by the optimal bids at wealth levels 0 and 2. At
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Figure 12. Wealth distribution after 500,000 periods

wealth levels 1 and 3, the frequencies are somewhat too low. In fact, the wealth
levels just below 1 and 3 occur too often since consumption at wealth levels 2 and
3 is slightly too high.

Figure 13 presents the average utility realized; again normalized to 0 for ran-
dom behavior and 100 for the optimal strategy. As we see, performance is not as
good as for the simple utility function of model 1. There seem to be two reasons
for this. First, as shown above, convergence to the optimal consumption levels
was not perfect; in particular at wealth levels 2 and 3. Second, the window of
opportunity to improve turned out to be much smaller with the nonsaturated util-
ity function in model 2; from 0.80 (random behavior) to 0.87 (optimal choices)
instead of the range from 0.36 to 0.50 in model 1.

6. Conclusion

In economic theory one often makes a distinction between ”rational” versus ”adap-
tive” behavior. The first is considered to be ”ex ante”, ”forward looking”, and
hence ”good”, whereas the latter is ”ex post”, ”backward looking”, and hence
”bad”. We would argue, however, that this distinction is not so sharp. Every so-
called ”forward looking” behavior is presuming that some relationships known
from the past will remain constant in the future. Moreover as shown in this paper,
backward looking agents might learn to behaveas if they are forward looking.
By repeatedly going through similar sequences of actions and outcomes, looking
backward, a Classifier System may be able to learn to recognize good sequences
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of actions, thereby implicitly solving the dynamic programming problem. This
has two advantages. First, in cases that an explicit closed form cannot be obtained
(e.g., because of less special utility functions), an adaptive algorithm might com-
pute it. Second, we can go on to study economic models with a population of such
agents to study dynamics of market economies.

A. The Pseudo-Code

1 program MAIN;
2 for all agents do finitialization agentsg
3 begin
4 with rule[0] do
5 begin
6 action:= 0;
7 fitness:= 0.50;
8 end;
9 for wealthindex:= 1 to 25 do for count:= 1 to 10 do with

rule[(wealthindex - 1) * 10 + count] do
10 begin
11 action:= count/10;
12 scale:=2length � 1;
13 scaledaction:= round(action * scale);
14 make chromosome of length:= 8 for scaledaction with standard binary

encoding;
15 fitness:= 0.50;
16 end;
17 wealth:= 1;
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18 end;
19 for period:= 1 to maxperiod do fstart main loopg
20 begin
21 for all agents do fclassifier system’s actionsg
22 begin
23 winning rule:= AUCTION; fsee procedure below; lines 53-65g
24 for all rules do update winning and previouslywinning tags;
25 marketbid:= rule[winningrule].action * wealth;
26 wealth:= wealth - marketbid;
27 with rule[winningrule] do fitness:= fitness - 0.05 * fitness;
27 bucket:= 0.05 * rule[winningrule].fitness;
29 end;
30 marketprice:= 1;
31 for all agents do fclassifier system’s outcomesg
32 begin
33 consumption:= marketprice * marketbid;
34 if consumption�1 then utility:= consumption else utility:= 1;
35 with rule[winningrule] do fitness:= fitness + 0.05 * utility;
36 with rule[previouslywinning rule] do fitness:= fitness + 0.9 * bucket;
37 for all rules at the given wealthindex do fitness:= 0.9995 * fitness;
38 end;
39 for all agents do fincome and wealth changeg
40 begin
41 with probability:= 0.25 income:= 2 and with probability:= 0.75 income:= 0;
42 wealth:= wealth + income;
43 end;
44 for all agents do fapplication genetic algorithmg
45 begin
46 for each wealthindex>0 do
47 if that wealthindex has occurred (100 +�) times fwith � ' N(0, 5)g
48 since last application of genetic operators at that wealth-index
49 then GENERATENEW RULE; fsee procedure below; 67-82g
50 end;
51 end;
52 —————————————————————————————————————
53 function AUCTION;
54 if wealth=0 then wealthindex:= 0
55 else if wealth�0.125 then wealthindex:= 1
56 else increment the wealthindex with 1 for each increase in wealth of 0.25;
57 if wealth>5.875 then wealthindex:= 25;
58 if wealth index=0 then highestbid:= 0 else for all rules at the given wealthindex do
59 begin
60 linearly rescale fitness such that bidfitness(max. fitness):= 1 and

bid fitness(avg. fitness):= 0.5;
61 bid:= 0.05 * (bidfitness +�); fwith � ' N(0, 0.40! 0.10)g
62 with probability:= 0.10 (! 0.01) the bid is ignored;
63 determine highestbid;
64 end;
65 auction:= highestbid;
66 —————————————————————————————————————-
67 procedure GENERATENEW RULE;
68 choose two mating rules by roulette wheel selection,
69 i.e., each rule drawn randomly with probability:= fitness/sumfitnesses;
70 with probability:= 0.75 do
71 begin
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72 place the two binary strings side by side and choose uniformly random crossing point;
73 swap bits before crossing point;
74 choose one of the two offspring randomly;
75 end;
76 with newrule do
77 begin
78 fitness:= average fitnesses of the two mating strings;
79 for each bit do with probability:= 0.005 do mutate bit from 1 to 0 or other way round;
80 end;
81 if new rule is not duplicate of existing rule then replace weakest existing rule with newrule
82 else re-start GENERATENEW RULE;
83 ————————————————————————————————————–

1-51 The main program.
2-18 Initialization of the agents.
9-16 For each of the distinguished wealth levels (see lines 54-57), we create 10 rules.

Notice that this differs from Lettau & Uhlig [1996], who model a
Classifier System such that every single rule specifies
an action for each and every possible state of the world.

11 Those rules are placed as a grid with ”openings” of size 1/10 on the interval [0, 1].
12-14 Since all actions have values in [0, 1], we apply a scaling factor equal to

28 � 1 = 255 to the binary strings of length 8. That is, the precision of the
possible actions is limited by a term1=255 � 0:004.

15 The initial fitness of all rules is 0.50.
17 The initial wealth of each agent is 1.
19-51 The main loop of the program.
21-29 The agents actions are decided by a Classifier System.
23 The winning rule is decided in the AUCTION procedure (see lines 53-65).
24 The agent’s bid to the market is a fraction of his wealth.
27 The winning rule makes a payment of a fraction of 0.05 of it’s fitness. The idea is

that the rules have to compete for their right to be active. See also below.
28 This payment is put in a bucket (see also line 36). See also below.
30 The price for the commodity is determined on the market. Here we assume a

fixed price.
31-38 The agent’s Classifier System is updated on the basis of the outcomes obtained.
35 The rule gets rewarded from its environment. See also below.
36 The contents of the bucket are transferred to the rule that was active the preceding

period, discounted at 10%. See also below.
37 All rules at the given wealth level pay a small tax from their fitness. See also below.
39-43 The agent receives a random income, which changes his wealth.
41 With probability 1/4 the agent receives an income of 2, and with probability 3/4

he receives 0.
44-50 We apply the Genetic Algorithm each(100 + �) times the rules for a given

wealth-index have been used, where� is noise with a Normal distribution with
expected value 0 and standard deviation 5.

53-65 The stochastic auction by which the Classifier System decides actions.
58-65 The winning rule is decided by a stochastic auction.
60 For the auction, we linearly rescale the fitnesses of all rules.
61 The variance of the noise in this auction is determined through an annealing

schedule; going down from 0.40 to 0.10 over time.
62 Through a ”trembling hand” some experimentation is added. This probability

also goes down over time from 0.10 to 0.01.
67-82 The Genetic Algorithm as such.
81-82 To prevent complete convergence of the rules, we do not allow for duplicate
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rules. This is useful in possibly non-stationary environments, where the
agent’s first interest is not optimizing some fixed objective function, but
his capacity to adapt. Moreover, if a rule is very useful, and this is reflected
in its fitness, no duplicates are necessary.

27, 28, 35, 36, 37 The dynamic programming problem is:
Vt = maxct [U(ct) + � �EVt+1] , where,Vt+1 = V (st � ct + yt) and0 � � � 1

The Classifier System with the Bucket Brigade Algorithm works as follows: Each
time a rule has been used (lines 23-25), a fraction� is subtracted from its fitness
(line 27). This is put in a bucket (line 28), which is used to make a discounted
payment to the last rule active right before this rule (line 36). The active rule
receives a payoff from its environment (line 35), and will receive a delayed and
discounted payment from the bucket filled by the rule that will be active the next
time (line 36).
Formally:f i

t+1 = f i
t � � � f i

t + � � Ut + � � � � f
j
t+1.

We can rewrite this as:(f i
t+1�f i

t ) = � � ([Ut+� �f
j
t+1]�f i

t ]). In other words,f i

will increase so long as(Ut + � � f
j
t+1) > f i

t . Notice the similarity between this
Classifier System updating and the dynamic programming problem. A difference
with the dynamic programming approach is that instead of taking the value V of
an uncertain state, the Classifier System approach assumes that this random value
can be represented by the fitness of the rules that happen to be chosen in those
states, where this value is given by the direct payoff to those rules plus the value
generated by the rules after that. An advantage of the Classifier System approach
is that you do not need to knowf j

t+1 in advance. You just look what is in the
bucket one period later. That is, the algorithm isadaptive. One additional feature
implemented is that we tax all relevant rules at the given wealth level each period
(line 37). This makes that you get more easily a distinction between the weak rules
that are rarely used and the better rules that get more frequently a payoff.
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