
Abstract. We consider an oligopolistic market game, in which the players
are competing ®rms in the same market of a homogeneous consumption
good. The consumer side is represented by a ®xed demand function. The
®rms decide how much to produce of a perishable consumption good, and
they decide upon a number of information signals to be sent into the
population in order to attract customers. Due to the minimal information
provided, the players do not have a well-speci®ed model of their environ-
ment. Our main objective is to characterize the adaptive behavior of the
players in such a situation.
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1 Introduction

We consider an oligopolistic market game, in which the players are identical
competitors in the same market. In each period, they decide how much to
produce of a perishable and homogeneous consumption good, and they
decide how many advertising signals to send into the population in order to
attract customers. The ®rms know the parameters of the production and
signaling technologies,1 as well as the ®xed price of the good. After every
period, each ®rm observes only its own market outcomes. No further in-
formation about the environment is given.

Given the minimal information, even a rational player is not in a po-
sition to maximize his pro®ts using standard optimization techniques.
Following Savage's (1954) terminology, he is in a `large world ', as opposed
to the `small world ' to which Subjective Expected Utility theory applies. In a
large world, the agent's situation is ill-de®ned in the sense that he does not
have a well-speci®ed model of his environment. Hence, instead of deducing
optimal actions from universal truths, he will need to employ inductive
reasoning, i.e., proceeding from the actual situation he faces. In Savage's
terminology, this is the `cross that bridge when you meet it' principle, which
is also known as adaptive behavior.2

Studying this adaptive behavior in a large world is the main motivation
for our simpli®ed experimental setup. To create a large world in a relatively
simple oligopoly game, we abstract from the process by which the price is
determined, and from the determination of the market demand at that price
level. This is perfectly compatible with a standard downward-sloping
market demand curve. Notice also that there are many markets in which
goods are sold at ®xed prices (whether as a result of legislation, of vertically
imposed restrictive practices, or of optimizing behavior of the sellers).
While a complete economic analysis would explain such legislation, re-
strictive practices, or strategies, by which the prices are ®xed, our analysis
focuses instead on the learning and adaptive behavior of the ®rms, and thus
applies equally to all the possible ways in which these prices may have been
determined. Given the price level, competition can then take place along
many dimensions,3 for example through advertising, and it seems more than
plausible that for some of these dimensions the information that an indi-
vidual ®rm has about its competitors is far from complete. In our model, as
we will show below, the only strategic variable to compete directly with the
other ®rms is the signaling activity. Assuming that ®rms do not observe the

1 Notice that we follow the common use of the word `signaling', and not the more re-
strictive game-theoretic one related to signaling games.
2 We would conjecture that many relevant economic problems, when considered at a
moderately realistic level, are large-world problems (see, e.g., Arthur, 1992).
3 Quantity and production capacity are obvious ones. Product di�erentiation is another
one. The quality of a good depends upon many aspects, like, e.g., a warranty, add-ons like
frequent ¯yer miles, or an after sale service. Firms also compete using entry deterring and
other restrictive practices, by their choice of technology, location, or the timing of new
product lines. Further competitive variables are the ®rms' R&D decision (including
marketing research), and their e�orts to build up a reputation.
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level of their competitors' signaling activity in our simple model is a ®rst
approximation of this fact.4

What can be learned from large world experiments that cannot be
learned from small-world experiments with fuller information? It is far from
certain that you can learn the way in which people behave in large worlds
by studying only small worlds. It might very well be that there is no sub-
stantial di�erence between the two as far as the behavior of the players is
concerned, but we cannot know this in advance. The only way to check this
is to study large-world experiments as well (see Page, 1994, for further
arguments along this line). Related to this is the observation that it might be
that many apparently small worlds are in fact large worlds as perceived by
the players, due to the fact that the agents' rationality is bounded (see, e.g.,
Simon, 1959), or that their perception is limited (see also Vriend, 1996a).
One of the key advantages of laboratory experiments is that one controls the
players' environment. Hence, it might be true that due to bounded ratio-
nality and limited subjective perceptions, some players consider even a full
information set-up as a large world, but we can make sure that it is a large
world for all players by placing some explicit simple restrictions on the
information provided to the players.5

Our main objective, then, is to characterize the adaptive behavior of the
players in such a large world. First of all, we want to characterize the overall
market outcomes that result from the interaction of the adaptive players.
Second, we want to know whether we can use simple models of adaptive
behavior to describe the actual behavior on average. Third, we will examine
the distributions of actions and outcomes over the individual players un-
derlying the market averages. As individual behavior is very heterogeneous,
we will analyze the reasons for this heterogeneity, despite the market being
symmetric.

In order to put the experimental data into perspective we use the fol-
lowing theoretical framework. First, to obtain a game-theoretical bench-
mark, we derive a stationary symmetric equilibrium, assuming complete
information. The second way to put the experimental data into perspective
is by using a simple 2-step model of adaptive behavior. Although we will
show that this 2-step model is closely related to the game-theoretic analysis,
it is very di�erent in the sense that it is based exclusively on the minimal
information that the players actually have, while making only minimal
assumptions about the agents' reasoning processes. The 2-step model
consists of two simple processes; learning direction theory, which has been
successfully applied in various experiments (see e.g., Selten and Stoecker,
1986; or Nagel, 1995), and the well-known method of hill climbing, also
known as the gradient method. As we will make clear below, these two steps
share the following underlying principle. The players' own actions and
outcomes in the most recent (two) period(s) give the player information

4 For a more extensive justi®cation of this type of oligopoly model we refer to Vriend
(1996b), and the references cited therein.
5 Some other `large-world' experiments can be found in Atkinson and Suppes (1958),
Sauermann and Selten (1959), Witt (1986), Malawski (1990), Stewing (1990), and
Kampmann and Sterman (1995).
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about the direction in which he may ®nd better actions. We will also use this
2-step model to analyze the di�erences in actions and outcomes between the
players.

We expected the players on average to adapt su�ciently to their envi-
ronment to discover the underlying trading opportunities, and we hoped
that the simple 2-step model of adaptive behavior would indeed be able
to describe the typical behavior of the players in a satisfactory way.
Although we expected to ®nd some spread around the players' average
actions and outcomes, we did not expect sharp di�erences between the
players.

How does this study of adaptive behavior ®t into more traditional an-
alyses of evolutionary economics? Schumpeterian evolutionary analysis
usually focuses on the long-run evolution of economic primitives such as
technologies and preferences. In doing so, it tends to abstract from the
short-run economic coordination problem by assuming a Walrasian per-
spective. However, if we are living in a large world, then also in the short-
run agents need to be entrepreneurs, adaptively discovering and creating
trading opportunities. We believe that the outcomes of these short-run
evolutionary market processes must in one way or another have conse-
quences for the developments in the longer run, certainly if one observes
systematic di�erences in the players' perceptions of their short-run under-
lying opportunities such as in our experiment. A complete evolutionary
economic theory should consider these short-run and long-run develop-
ments in a coherent analysis, but that is beyond the scope of the current
paper.

The paper is organized as follows. In Section 2, we explain how a large
world looks in a small experimental laboratory. In Section 3, we present the
theoretical framework within which we will analyze the data. Section 4
contains an analysis of the data, and Section 5 concludes.

2 The experiment: model and design

We conducted two series of experiments in the computerized experimental
laboratory at the University of Bonn, one with inexperienced, and one with
experienced players. Before presenting the experimental design, we will ®rst
explain and discuss the oligopoly model used. Table 1 gives the notation
used throughout. Superscripts will be used for the time index, and sub-
scripts for the identity of a ®rm. In addition, Table 1 gives an overview of
the parameter values. The last column indicates whether the parameter
value was known to the players or not. As we will explain below, in addition
to these parameter values, the players did not know the functional form of
the demand they faced.

a) The oligopoly model

A ®xed number of ®rms repeatedly interacts in an oligopolistic market. All
®rms are identical in the sense that they produce the same homogeneous
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consumption good, using the same technology (see below). Time is divided
into discrete periods. At the beginning of each period, each ®rm has to
decide how many units of the perishable consumption good to produce. The
production costs per unit are constant, and identical for all ®rms. The
production decided upon at the beginning of the period is available for sale
in that period. The ®rms also decide upon a number of information or
advertising signals to be sent into the population, communicating the fact
that they are a ®rm o�ering the commodity for sale in that period. Imagine
the sending of letters to addresses picked randomly from the telephone
directory. The costs per information signal sent to an individual agent are
constant, and identical for all ®rms. The price of the commodity is ®xed,
invariant for all periods, and identical for all ®rms and consumers. The
choice of the number of units to be produced, and the number of infor-
mation signals to be sent, is restricted to a given interval.

Consumers in this economy are simulated by a computer program. In
each period, when all ®rms have decided their production and signaling
levels, consumers will be `shopping', with each consumer wanting to buy
exactly one unit of the commodity per period. In fact, the consumer side is
represented by the ®xed, deterministic demand function given in equation
[1].
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Table 1. Notation and parameter values

Symbol Meaning Value Known

c `marginal' cost production 0.25 yes
f patronage rate satis®ed consumers 0.56 no
g price minus `marginal' cost production 0.75 yes
k `marginal' cost signaling 0.08 yes
m # ®rms 6 no
n # consumers 712 no
N total # agents 718 no
p price of the commodity 1.00 yes
P pro®t ± own
q demand directed towards a ®rm ± own
Q aggregate demand ± no
s # signals sent by a ®rm ± own
± maximum value for s 4999 yes
S aggregate # signals all ®rms ± no
S- aggregate # signals other ®rms ± no
V value ± no
x sales ± own
z production ± own
± maximum value for z 4999 yes
± # periods �150 no
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where

I � demand directed towards firm i by patronizing consumers

IIa � proportion of signals from firm i in aggregate signaling activity

IIb � proportion of individuals reached by one or more signals

IIc � number of `free', i.e., non-patronizing, consumers

IIa � IIb � IIc � demand directed towards firm i as a result of current

signaling

In each period, a ®xed fraction of the number of customers satis®ed by a
given ®rm during the last period will patronize that ®rm [part I of eq. (1)].6

The remaining consumers who received at least one signal (part IIc multi-
plied by IIb) are split between the ®rms, according to the ®rms' signaling
activity relative to the aggregate signaling in the market (part IIa). Notice
that when all ®rms signal very little, not all consumers will be reached by an
information signal, implying that not all consumers will actually be present
in the market. Hence, although all signaling has the form of informative
advertising, and there is no persuasive signaling (see Stiglitz, 1993), one can
distinguish two di�erent e�ects: a business stealing e�ect, and an e�ect on
the total demand in the market (see also Petr, 1997). In Vriend (1996b), in a
closely related model, we consider explicitly a process of sending, receiving,
and choosing individual signals, and show that this leads to a demand
function faced by the individual ®rms that may be approximated by a
Poisson distribution. The deterministic function given above equals the
expected value of such a Poisson distribution. At the end of the period, all
unsold units of the commodity perish. Notice that a ®rm cannot sell more
than it has produced at the beginning of the period. Hence, a ®rm's pro®t in
period t is given by:

Pt
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i ÿ k � st
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b) Information for the individual players

We now sketch the information available to the individual players, distin-
guishing technology, market, and experience factors. Appendix A presents
the instructions given to the players, and Table 1 above summarizes which
parameter values were known and which not.

The technology.The players know that they are identical ®rms, producing the
same homogeneous consumption good, using the same technology. Both the
production and signaling technology are common knowledge, and the same
applies to the price of the commodity. As to the fact that the choice interval
for production and signaling is limited, the players were told that ``this is due
only to technological restrictions, and has no direct economic meaning''.
The market. The players were told that the consumers in this economy
would be simulated by a computer program. They did not receive the

6 See also Keser (1992) for duopoly experiments with demand inertia.
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speci®cation of the demand function [eq. (1)], and they did not know the
number of competing ®rms,7 the number of consumers, or the parameter
value of the demand inertia. Instead they were given the following general
picture of the consumption side. Each consumer wants one unit of the
commodity in every period, and so a consumers has to ®nd a ®rm o�ering
the commodity for sale, and that ®rm should have at least one unit available
at the moment he arrives. The participants were given two considerations
concerning consumers' actions. First, a consumer who has received an in-
formation signal from a ®rm knows that this ®rm is o�ering the commodity
for sale in that period, and second, consumers who visited a certain ®rm,
but found only empty shelves, might ®nd that ®rm's service unreliable. On
the other hand, a consumer who succeeded in buying one unit from a ®rm
might remember the good service, and might be more likely to come back.
Participants were also told ``experience shows that, in general, the demand
faced by an individual ®rm is below 1000''.8

Experience. At the end of the period, each ®rm observes only its own
market outcomes, and never the actions and outcomes of the other players.
Each ®rm knows the demand that was directed to it during the period, how
much it actually sold, and its pro®ts for that period. Sometimes the market
outcomes are such that a ®rm makes a loss. A ®rm making cumulative
losses is informed about these. Each ®rm faces a known upper limit for the
total losses it may realize, and a ®rm exceeding this limit is declared
bankrupt, with the participant removed from the session. This was known
before the experiments started. The players did not know the number of
periods to be played, but they knew that the playing time would be about
2� hours. Given this minimal information, a player is not in a position to
maximize his pro®ts on the basis of a well-speci®ed demand function. In
other words, he ®nds himself in a `large world', and must behave adaptively.
During the instructions before the games, some players felt uncomfortable
with so much `mist', and many attempted to get more knowledge about the
environment. The usual answer to those questions was `you just don't
know'.

c) The experiments

In the ®rst series, we organized 13 sessions with inexperienced players. In
each session, 6 ®rms were competing in one market, for a total of 78 players.
In two of these sessions, the players faced an upper limit of 999 instead of
4999 for their production and signaling decision variables, but these two
sessions are excluded from the analysis. The remaining 11 sessions are
numbered 1 to 11 throughout this paper. In the second series, we organized
5 sessions with experienced players, with again 6 ®rms per session, for a
total of 30 players. We asked all players to return for a very similar

7 There were at most 12 players at the same time in the lab, but players did not know how
many parallel sessions were going on.
8 This was done to avoid players going bankrupt in one of the initial periods, without
impeding them to choose levels above 1000.

An experimental study of adaptive behavior 33



oligopoly game with experienced players in order to test whether the players
also learn over time to adjust the way in which they adapt to their cir-
cumstances.9

Most players came from various departments of the University of Bonn.
Players sat in front of personal computers, and could not observe the
screens of other players. Figure A.1 in appendix A presents an example of a
computer screen viewed by a given player. In the sessions with inexperi-
enced players, we played about 150 periods.10 There was no time limit for
the participants' decisions. Each player got a ®xed `show-up' fee, and was
paid according to the total pro®ts realized by his ®rm. Losses realized were
subtracted from the `show-up' fee. The total payo� for an individual player
was given by: a� �a=2000� á (points realized).11 Observe that bankrupt
players had lost their `show-up' fee, and hence got nothing. Each session
lasted about 2� hours, and the average payment over the 66 players was
DM 24.83 (� $16:36).

d) A closer look at the game

Besides the minimal information, there are two additional aspects of the
structure of this game that are worth noting. First, there is a positive
feedback mechanism. A ®xed proportion f of a ®rm's satis®ed customers
will patronize the next period, and so ®rms having sold more in period t,
will get more customers in period t+1. This positive feedback has two
e�ects. First, it makes the game complicated from the individual player's
point of view, and second, it may give rise to lock-in e�ects in both direc-
tions. For example, say each ®rm sends 927 signals, and receives 118 cus-
tomers in a given period t. Of those 118 customers, 0.56 á 118 will come
back in period t+1, 0.562 á 118 in period t+2, etc. In other words, the
signals sent in a given period t lead to new customers arriving in the form of
a wave, with a steep front that fades out gradually. As a result, in any
period t, the demand faced by a ®rm is composed as follows: 52 customers
are there because of a signal received in period t, 0.56 á 52 because they had
reacted to a signal in period t)1, 0.562 á 52 because of a signal in period t)2,
etc., up to 1 customer still coming back since period t)8.

The lock-in e�ect can be made visible as follows. For a given period, for
a given ®rm, one can calculate for each possible (production, signaling)-pair
the immediate pro®ts that pair would realize, taking as given the signaling
activity of the other ®rms and the sales of all ®rms in the preceding period.

9 An analysis of the data of the sessions with the experienced players can be found in
Nagel and Vriend (1999).
10 The sessions with inexperienced players lasted 151 periods, except for the sessions 7 an 8
(131 periods), 10 (251 periods), and 11 (201 periods). These di�erences are mainly due to
the fact that sessions 1 to 8 were organized with two sessions simultaneously, and that the
next period could only start when all twelve players had made a decision.
11 The value for a was DM 10 in sessions 1 and 2, 15 in sessions 3 to 6, and 20 in sessions 7
to 11, giving an average a of 16.4. The values for a were varied in advance in an e�ort to
keep average payo�s at a level of about DM 15/h.
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Hence, we draw a 3-D `immediate pro®t landscape', showing all points that
lead to positive immediate pro®ts as an `island '. If, on the one hand, ®rms
invest in order to build up a market, this island will grow. On the other
hand, a ®rm's market may collapse if it does not signal enough. For ex-
ample, it may be tempting for players to seek maximization of their im-
mediate pro®ts, i.e., to search for the peak in their immediate pro®t
landscape. What would happen then? Analyzing every single instance in
which an individual player had to make a decision in our experiments, it
turns out that very often the global maximum of immediate pro®ts is a
corner solution with signaling at zero and production equal to the demand
generated. This was the case 84% of the time in the ®rst series of experi-
ments. Hence, if a ®rm would try to maximize its immediate pro®ts, its
market will shrink away under its own eyes in most cases. An example of
this e�ect is shown in Fig. 1, where the dot indicates the action chosen by
the player considered, and where the other players each send 750 signals.

Figure 2 shows an example within the same environment of the opposite
positive feedback e�ect, where a ®rm builds up its market by maximizing its
sales subject to the condition that its immediate pro®ts are positive.

A second aspect of this game that is worth stressing is the in¯uence that
each player's actions have on the outcomes of the other players. While one
®rm may try to walk up to a peak in its pro®t landscape, this landscape is
deformed continuously by the other players who may be trying to reach
their peaks. This coevolutionary process can be seen as a number of players
walking simultaneously on one rubber mattress. Figure 3 shows an exam-
ple, where the aggregate number of signals sent by each of the other players
¯uctuates from 750 to 1300 to 200. The interaction between the ®rms
through the aggregate signaling activity shows up in the form of noise for
an individual ®rm. If a ®rm has a larger immediate pro®t island, it will be

Fig. 1. Example immediate pro®t land-
scape: shrinking through immediate
pro®t maximization (where · is action
chosen)
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less vulnerable to this noise in the sense that it will lead less easily to
negative pro®ts. (This is because the ®rm's action can be farther away from
the sea, and its island jumps up and down less than smaller islands.) As far
as occasional negative pro®ts induce ®rms to choose inactivity, this implies
more positive feedback.

Fig. 3. Example immediate pro®t land-
scape: ¯uctuations through actions other
players (where · is action chosen)

Fig. 2. Example immediate pro®t land-
scape: market build-up through sales
maximization, with immediate pro®ts>0
(where · is action chosen)
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3 Theoretical framework

Our analysis of the experimental data will be structured through the fol-
lowing theoretical framework. In Section 3.a we present a game-theoretic
analysis of the oligopoly game, and derive an equilibrium strategy. In
Section 3.b we outline a simple 2-step model of adaptive behavior based on
learning direction theory for the ®rm's production decisions, and hill
climbing for its signaling decisions.

a) Game-theoretic analysis

In order to obtain a theoretical benchmark, we derive the symmetric sta-
tionary optimal policy for a given player for any given period, assuming
complete information about the demand function.12 Clearly, this cannot be
a normative benchmark, but merely a yardstick. Of course, other theoretical
yardsticks are possible, but the stationary symmetric equilibrium for the
complete information game is particularly appealing in the sense that it is a
simple and well-understood one.

Proposition 1. In the symmetric stationary equilibrium, the signaling level
for an individual ®rm i in a given period t is given by:

st
i �

g
k
�
�mÿ 1

m2

�
� n �3�

and the production is simply equal to the demand thus generated.

Proof. We derive the equilibrium signaling level in appendix B (see
Table 1 for the notation used). Given this signaling level, the demand for
an individual ®rm is given by equation (1). Since the demand function is
deterministic, the optimal production level is simply equal to that
demand.

The numerical values of this equilibrium implied by the parameters of
the model are a production level of 118 and signaling level of 927.

12 The symmetry feature is justi®ed by the fact that the ®rms were identical. We do not
consider the optimal strategy for the incomplete information game, because the literature
on monopolies with uncertain, but linear, demand shows that it is often too complicated
not only to determine the optimal pricing strategy (in order to maximize the discounted
sum of pro®ts) but also to establish convergence as such (see, e.g., Kiefer and Nyarko,
1989). Basically, the reason is that for each action there is a trade-o� between the payo� a
®rm gets in the form of information which may lead to future pro®ts, and the payo� in the
form of immediate pro®ts. As Kirman (1993) argues, trying to incorporate this problem
into an oligopolistic model, in which there is also strategic interaction, seems unman-
ageable for the moment (see also, e.g., Green, 1983; or Kirman, 1983). Notice also that in
the literature on double oral auctions with private information, it is the complete infor-
mation outcome that is used as the theoretical benchmark (see Davis and Holt, 1992).
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b) A simple model of adaptive behavior

Some recent models of adaptive learning and evolutionary dynamics in the
economics literature are, for example, Ellison (1993), Kandori et al. (1993),
and Young (1993). Marimon (1993) discusses the basic properties of such
dynamic models. In the evolutionary dynamic models mentioned, adaptive
behavior is basically a one-step error correction mechanism. The agents
have a well-speci®ed model of the game, they can reason what, given the
actions of the other players, the optimal action would be, completely in-
dependent of any payo� actually experienced, and they play a best-response
strategy against the frequency distribution of a given (sub-)population of
other players (cf. ®ctitious play). The evolutionary dynamics consist of a
coevolutionary adaptive process, players adapting to each others' adapta-
tion to each other ..., plus experimentation in the form of trembling. In our
game, the scope of such learning techniques is limited. The agents do not
have a well-speci®ed model of their environment, and they do not know
what would be the best response. Hence, the very ®rst task for our players,
is to learn which actions would be good.

An important advance in the theoretical economics literature on learn-
ing involves models of Bayesian updating, in which the players optimize
their actions based on present beliefs about the state of nature, the types of
other players and the actions of other players, while updating these beliefs
using Bayes' rule. McKelvey and Palfrey (1992), for example, explain the
behavior in centipede games by a learning model in which players have a
common belief about the existence of altruists in the population, and a
common error rate about beliefs and actions which declines over time.
While this kind of model requires a high amount of rationality, there is also
a deeper problem: Bayesian updating applies only to small worlds, without
surprises. It is mainly a dynamic consistency requirement. The real learning
question is where the priors come from. In a small world they can be
reasoned backwards using Bayes' rule, but clearly, this cannot apply in a
world full of surprises (see also Binmore, 1991). Hence, we cannot apply
such a model since a rational player would be unable to construct a plau-
sible probability distribution of priors concerning his environment.

Adaptive behavior and learning have become important topics in ex-
perimental economics in the last decade. Learning in experimental eco-
nomics is usually de®ned as a systematic change of behavior over time as a
function of past information. Very few studies address, in this context, the
question of which kind of adaptation is optimal.13 Some papers have fo-
cused on comparing di�erent learning models and ®nding which of these
models describe best average behavior (see, e.g., Camerer and Ho, 1996;
Stahl, 1996; Tang, 1996; or Nagel and Tang, 1998). Not surprisingly this
turns out to depend on the game being played. This is supported by a recent
debate in computer science and AI, about the alleged superiority of various
search and learn algorithms. Macready and Wolpert (1995) prove a

13 An important exception is Selten et al. (1997) who classify in great depth computer
strategies submitted for Cournot supergames, and ®nd that the best strategy against actual
strategies is a simple measure-for-measure strategy.
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so-called No Free Lunch theorem, which basically says that no such Holy
Grail can exist, and that the success of an algorithm depends ultimately on
the speci®cs of the search problems at hand.

Since searching for the ultimate learning model does not appear to be a
promising strategy, some people began to search for simple models. In
reinforcement learning models (see, e.g. Arthur, 1991; Roth and Erev,
1995), which are based on the psychological literature, no knowledge of the
game or any beliefs of opponents' behavior is required, but only informa-
tion on the actual payo�s experienced. Roth and Erev (1995) do not try to
come up with the ultimate learning model, but instead take a simple model
that has some plausibility, and start asking for what games does this model
give a reasonably correct description of people's behavior on average. While
Roth and Erev (1995) focus more on average behavior, Easley and Ledyard
(1993) and Selten and Stoecker (1986) seek to make predictions for indi-
vidual period-to-period choices based on the plausibility of some very weak
qualitative assumptions concerning individual behavior. These models of
adaptive behavior do not imply that the players are aware of the optimum,
but only that they are continuously engaged in a process of adaptation in
the direction of better actions (see also Holland, 1992). The fact that such
models are based on some common general principles, and the plausibility
of weak assumptions implies not only that they are parsimonious, but also
that they are coarse, and that they avoid the problem of idiosyncracy. One
would expect more speci®c learning models to share many of the qualitative
conclusions of these simple models. The model of adaptive behavior that we
will use ®ts into this approach.

As shown in the formal game-theoretic analysis, in case of complete
information, the only choice variable for a ®rm is the number of signals to
be sent, whereas production should be simply adjusted to the demand
generated by these signals. This suggests a 2-step decision problem for the
players in our experiment. The ®rst step concerns the number of signals to be
sent, while the second step adjusts the production level to the level of the
demand generated. As we will see below, just as in the game-theoretic
analysis, in this 2-step model the two-dimensional decision problem is ba-
sically reduced to one dimension, since production just tracks the observed
demand. We will ®rst analyze this second step.

Production: learning direction theory

Given the demand generated by a players' signals sent in the current and
previous periods, the production level that would yield the highest pro®t
would be equal to this demand. We conjecture that the players use a simple
algorithm to achieve this. This is sometimes known in the experimental
literature as `learning direction theory' (see, e.g., Selten and Stoecker, 1986;
or Nagel, 1995). It is perhaps best illustrated by the following example given
in Selten and Buchta (1994): ``(C)onsider the example of a marksman who
tries to shoot an arrow at the trunk of a tree. If he misses the trunk to the
right, he will shift the position of the bow to the left and if he misses to the left,
he will shift the position of the bow to the right. The marksman looks at his
experience from his last trial and adjusts his behavior according to a simple
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qualitative picture of the causal relationship between the position of his bow
and the path of the arrow.'' (p. 9). Given an action, and the corresponding
feedback from his environment, it is assumed that the player has enough
knowledge of the structure of the game and the payo� function to reason in
which direction better actions could have been found (see also Selten, 1997).
Notice that the feedback is not necessarily the speci®c value of the payo�
generated. The player is supposed to move directly in his choice parameter
space, but it is not necessary for learning direction theory to be applicable
that a player knows exactly where the optimum is. Often only the direction
is known. Therefore learning direction theory concerns only a qualitative
learning mechanism.14 Notice that although, on the one hand, the theory
o�ers only a general qualitative prediction, it is, on the other hand, very
precise in the sense that it predicts a player's action on the basis of his most
recent action alone.

In our game, this direction learning mechanism can be applied as fol-
lows. If a ®rm faced more demand than it had produced, it knows that a
higher production level would have led to higher pro®ts. And if a ®rm faced
less demand than it had produced, it knows that a lower production level
would have led to higher pro®ts. Therefore, in our model, learning direction
theory would lead to the predictions given in Table 2. Notice that if pro-
duction and demand were equal, the theory does not predict the direction of
the change in production. Remember that, given the 2-step model (setting
signals and adjusting production), these predictions are for a given demand
level. Clearly, as we will analyze below, the demand depends upon the
signaling level. Therefore, here we only consider those cases in which the
players did not move in the opposite direction with their signaling level in
order to induce a demand change.15

Under learning direction theory, the reasoning of the players is supposed
to be boundedly rational in that it only considers what would have been a
better action, that is, it considers actions ex post. In our formal analysis we
explained that the demand was generated by a ®xed deterministic demand
function. Since this was not known to the players, there was subjective
uncertainty. The problem for the players is not so much to maximize their

Table 2. Predictions learning direction theory

If Then

(1) productiont < demandt productiont+1 ³ productiont
(2) productiont > demandt productiont+1 £ productiont
(3) productiont = demandt n.a.

14 Notice the similarity with supervised learning algorithms (see Vriend, 1994, for a dis-
cussion). With supervised learning it is not assumed that the player himself knows where
the better actions are, but it is a supervisor who tells the player where the optimal action
would have been. Also most supervised learning algorithms assume a gradual change in
the right direction only.
15 That is, if an increase in production is predicted there should be no decrease in sig-
naling, and the other way round. This condition was satis®ed in 63% of the cases.

40 R. Nagel, N.J. Vriend



ex post pro®ts, but to maximize their expected ex ante pro®ts. If demand is
uncertain, and rationing is not all-or-nothing, some overproduction may be
pro®table, that is, the production that maximizes expected pro®ts may be
higher than the expected demand. Given the signaling level, the demand q
faced by an individual ®rm is a stochastic function with p.d.f. f[q]. Hence
expected pro®t E[P] for a given output level z is: E[P(z)] � p á fRz

q� 0q �
f[q]� z � R1q�zf[q]g ÿ c � zÿ k � s. As can be easily shown: DE�P�z��=Dz
� p � �1ÿ F�z�� ÿ c. Hence, expected pro®t is maximized when F[z] �
1ÿ c/p. That is, if c/p<0.5, as was the case, then we have F[z]>0.5 at the
optimal production level. In other words, the ex ante optimal production
level is higher than the ex post average demand. We predict the players to
recognize this in our experiment, and hence expect a bias towards `over-
production' relative to the predictions of learning direction theory.

Signaling: hill climbing

As noted above, the adaptation of the production level is assumed to take
place for a given demand level. Since this demand is generated eventually by
the signals sent, it is time to turn to an analysis of the number of signals
sent. Learning direction theory cannot predict much with respect to sig-
naling. In the case where demand is higher than production, a ®rm knows
that a lower signaling level would have given higher pro®ts, but it does not
know what the optimal signaling level would have been. However, in case
production is higher than demand faced, a ®rm does not even know whether
a higher signaling level would have led to higher pro®ts. Perhaps even lower
signaling levels would have given higher pro®ts. Also, when the demand
faced by a ®rm equals its production, it does not know in which direction to
adjust its signaling. As we showed in Section 2, a player's opportunities
could be depicted as a hill. The objective of a player is to ®nd the top of the
hill, but he does not know what the hill looks like, and the hill may be
changing all the time. A simple way to deal with this problem would be to
start walking in one direction, and if one gets a higher payo�, one continues
from there; otherwise one goes back to try another direction. Eventually
one should reach the top.16 We conjecture that the players' adaptive be-
havior in signaling space can be described by such a hill climbing, or gra-
dient, algorithm.17

In order to explain the essence of hill climbing, and the contrast with
learning direction theory, let us continue the example of the marksman
trying to hit the trunk of a tree. Now, assume that the marksman is blind-
folded. After each trial the only feedback he gets from his environment is
the level of enthusiasm with which the crowd of spectators reacts. The

16 This might be a local top only. Simulated annealing is a more sophisticated variant of
hill climbing in that it tries to avoid getting stuck at local optima. To achieve this, the
algorithm accepts with some probability downhill moves, whereas uphill moves are always
accepted. Since we do not have landscapes with local optima, we do not consider simu-
lated annealing.
17 See also Bloom®eld (1994), Kirman (1993), Roberts (1995), and Merlo and Schotter
(1994).
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closer he gets to the optimum, the louder they are expected to shout.
Therefore, after two trials he can compare the levels of payo�, and shoot
next time in the neighborhood in which the yelling was loudest. In other
words, if an action leads to a worse outcome than the previous one, it is
rejected as a new starting point. Hill climbers do not use any knowledge of
the structure of the game, or of the payo� function. They are myopic local
improvers, walking blindly in the direction of the experienced gradient in
their payo� landscape. Hence, hill climbers rely completely upon the con-
tours of the payo� landscape, whereas direction learning takes place di-
rectly in the space of actions. A deterministic variant of hill climbing would
give the predictions presented in Table 3.

In our experiment there is one problemwith hill climbing: as we showed in
Section 2, the hillsmay change over time, even considering constant actions of
the other players. Therefore, given the dynamics of the demand generated by
the signals sent and the patronizing customers, a player should look further
ahead than his immediate pro®ts only. We showed that players could boost
their immediate pro®ts by signaling very little, i.e., by eating into their pool of
customers. But future pro®ts are adversely a�ected by this action. Of all the
customers satis®ed in a given period, some fractionwill come back `for free' in
the next period, i.e., without the need to send them a signal. A ®rm can also
forego some current pro®ts by investing in the buildup of a pool of customers.
The higher the current sales level, the better the ®rm's future pro®t oppor-
tunities, which was visualized by a larger island in Section 2. Hence, when
considering the question of how well a ®rm performed in a given period, one
should not only look at its immediate pro®ts, but also at the change in its
current sales level. The value of serving additional customers now (besides the
immediate pro®ts) is the pro®t that can be extracted from them in later pe-
riods.18 Since patronizing customers come back `for free' (without needing a
signal), the pro®t margin for those customers will be the price minus the unit
production costs of the commodity. Formally, the lookaheadpayo� in a given
period is: P� Dx� �pÿ c� �P1t� 1f

t.

We will consider both the basic hill climbing variant, in which the
players go myopically for their immediate pro®ts only, and the variant in
which the players climb hills, taking into account their lookahead payo�. If

Table 3. Predictions hill climbing

If Then

(1) signalingt < signalingt)1 and payo�t < payo�t)1 signalingt+1 > signalingt
(2) signalingt < signalingt)1 and payo�t > payo�t)1 signalingt+1 < signalingt)1
(3) signalingt > signalingt)1 and payo�t < payo�t)1 signalingt+1 < signalingt
(4) signalingt > signalingt)1 and payo�t > payo�t)1 signalingt+1 > signalingt)1
(5) signalingt = signalingt)1 or payo�t = payo�t)1 n.a.

18 There is also an indirect e�ect related to a change in the player's sales level. It will
change the number of `free' consumers for which the player's signals compete with the
other players' signals. This indirect e�ect will be relatively small because it is spread over
the six ®rms (they compete for the same pool of free consumers), and will be ignored here.
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there turns out to be myopic immediate pro®t hill climbers, we would expect
to ®nd them among the ®rms with low production levels, since they un-
derestimate the value of keeping their sales levels up. Notice that since the
players do not know the value of the patronage parameter f, nor the exact
speci®cation of the demand function, a priori they are not in a position to
calculate explicitly the altitude of their lookahead hill. But during the game
they can learn about the value of looking ahead. Hence, without specifying
here the exact learning mechanism through which they may have learned
this value, we will consider the question of how often the players behave
`as if ' they are hill climbing, having learned these lookahead payo� values
correctly.

What kind of average time pattern would this 2-step model of adaptive
behavior predict? We consider an unre®ned numerical model, in which we
use learning direction theory for the players' production decision, and hill
climbing for their signaling decision. We start with all players choosing the
average production and signaling levels observed during the experiments in
the ®rst period (see below), and restrict their choices to the same domain, i.e.,
0 to 4999. Players follow the learning direction theory hypotheses for pro-
duction as outlined above (see Table 2). The step size is equal to jej, with
e ' N�0; 5�. If their production is equal to their demand, then they do not
change their demand. And as explained above, the players do not change
their production level if their signaling decision for that period points in the
opposite direction. For hill climbing we use the lookahead variant explained
above (see also Table 3). Comparing the payo�s realized in the preceding
two periods, a player takes as the new starting value in the next period that
signaling level that generated the highest payo� of the two.When the payo�s
in the two preceding periods are equal, the new starting value is the average
signaling level in those two periods. When the signaling level is unchanged
during the two preceding periods, that value will again be the starting value
for the next period. In order to generate the player's new signaling level,
some noise is added, which is a draw from a truncated N(0, 10) distribu-
tion.19 All players are modeled identically, but independently, which implies
that their paths may diverge over time due to the stochastic factors. In Fig. 7
(in Section 4) we present the average behavior of 11 simulated sessions with
6 players, as well as the actual experimental data.

4 Data analysis

We will analyze the experimental data following the theoretical framework
outlined above. In Section 4.a we will compare the experimental data with
the game-theoretic benchmark presented in Section 3.a. In Section 4.b we
will examine the data in comparison to the predictions of the simple 2-step
model of adaptive behavior presented in Section 3.b, and the modi®cations
thereof that take into account some speci®cs of the oligopoly game. As we
will see below, perhaps the most striking feature of the data, given that the

19 Here the truncation was determined each time such that the new signaling value stays at
the correct side of the discarded signaling value that led to the lower payo� (see Table 3).

An experimental study of adaptive behavior 43



oligopoly game as such is symmetric, is the enormous di�erences between
the individual players' actions and outcomes. Section 4.c will explain these
di�erences.

a) Comparison experimental data to game-theoretic benchmark

Observation 1. The average actions actually chosen by the players are close
to the symmetric optimal policy, but the di�erences between the players are
considerable. The average actions chosen by the players get closer to the
equilibrium policy as they play more periods, but the di�erences between
the individual players increase, whereas the di�erences between the sessions
decrease.

Figure C.1.a±c in Appendix C show the time series for the average
signaling, production and pro®ts of the 66 players for the periods 1 to 131
(with these variables at zero for bankrupt players),20 and compare this with
the symmetric stationary equilibrium. We observe a steep learning curve in
the beginning, which leads to pro®ts close to the equilibrium level early on.
We see a lot of ¯uctuations during most of the history, and at the end we
observe a movement towards the equilibrium levels. Table 4 presents some
`snapshots' of this comparison between the symmetric stationary optimal
policy and the actual average actions played in the game. The numbers in
parentheses are the standard deviations. For each variable we calculate two
standard deviations; one based on the averages for each of the 66 individual
players, and the second based on the averages per session. Notice that the
variance across sessions is small, and much smaller than across subjects,
especially in the last 50 periods.

Given the minimal information about their environment available to the
players, they are not in a position to specify the demand function. Hence, a
player is not able to maximize his ®rm's pro®ts directly with standard tech-
niques. As their problem situation is ill-de®ned, they must learn and behave

Table 4. Comparison equilibrium, averages, and standard deviations (subjects±sessions)

Sign. (s.d.) Prod. (s.d.) Pro®t (s.d.)

Equilibrium 927 ± 118 ± 14.3 ±
Period 1 864 (1016±480) 616 (443±205) )107.6 (120.1±73.2)
Period 1±50 882 (867±163) 160 (121±13) 5.8 (23.3±11.3)
Period 81±130 938 (954±113) 133 (125±6) 8.1 (18.9±9.2)

20 Throughout the paper, unless otherwise stated, we adhere to the following policy when
computing averages. When the objective is to characterize the behavior of the individual
players, or the di�erences between (categories of) individual players, we take the averages
over the periods that a player was active, i.e., until the end of the session or until he went
bankrupt, whichever came ®rst. When we want to characterize the average actions and
outcomes for one or more sessions as such, e.g., to compare it with the theoretical
benchmarks computed, we average over all players, taking zero values for the actions and
outcomes of bankrupt players.
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adaptively. As we see, the players learn to choose actions that are on average
close to a symmetric equilibrium, but there are large di�erences between
these actions. Figure 4 shows the distribution of the individual players' sig-
naling and production levels, averaged over the periods 81±130 (with zero
values for bankrupt players). The arrow indicates the symmetric game-the-
oretic equilibrium given above. The straight line with slope �pÿ c�=k serves
as a benchmark. All combinations of production and signaling above it
necessarily lead to negative pro®ts. If every unit produced is actually sold, the
net revenue is given by the price minus production costs per unit, multiplied
by the production level: �pÿ c� � z. Dividing that number by the cost of a
signal (k) gives the number of signals beyond which pro®ts can never be
positive.Wewill return to these di�erences between the players in Section 4.c.

b) Comparison experimental data to simple model of adaptive behavior

We now turn to an analysis of the players' behavior using the 2-step model
as a benchmark. We ®rst examine the players' production decision in
comparison with the predictions of learning direction theory, and then
analyze their signaling decision in comparison with the hill climbing
predictions.

Observation 2. The players change their production level in a direction that
would be wrong according to learning direction theory in only 9% of the
cases in which it makes a prediction. But there is an asymmetry in the success
of learning direction theory between the cases in which production was too
low, and those in which it was too high. This asymmetry seems related to the
fact that the players are less boundedly rational than this theory assumes.

Figure 5 summarizes how far learning direction theory predicts cor-
rectly, distinguishing the cases of too high and too low production in the
preceding period. If production was too low (1250 observations), learning

Fig. 4. Distribution actions, periods 81±130
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direction theory made a wrong prediction in only 3% of the cases. If pro-
duction was too high (4571 observations), the relative frequency of wrong
predictions was 11%. The weighted average of these two gives the 9%
mentioned in observation 2. Production was equal to demand in only 8% of
the cases (510 observations).21

Figure 5 clearly shows the asymmetry between these cases. As explained
above, it seems that the players are more reluctant to decrease their pro-
duction level when it is too high, because they understand that production
should be higher than average demand; the players are less boundedly ra-
tional than learning direction theory assumes. Checking the players one by
one, we ®nd that 58 out of 66 subjects more often follow the learning
direction theory hypothesis in the case in which production is less than
demand, than in the case in which production is higher than demand. Also
it turns out that all players, without any exception, on average overproduce;
with the overall average production 1.20 times average demand.

Observation 3. Players adjust their signaling level in a way that is wrong
according to the hypothesis of hill climbing in about a quarter of the cases.
This applies equally to myopic (27%) and lookahead (25%) hill climbing.
Further, the players seem only slightly inclined to looking ahead.

Figure 6a,b give the percentages of correct and wrong predictions by the
hill climbing hypothesis for myopic and lookahead climbing.22 As we see,
Figures 6a, b are very similar. A ®rst explanation is as follows. Analyzing all
cases in which a player had changed his signaling level, it turns out that in
71% of the cases the payo� gradient happens to be in the same direction for
myopic and lookahead hill climbing. That is, the player's immediate pro®ts

Fig. 5. Learning direction theory, with conditions as explained in Table 2

21 If we neglect the condition that signaling did not move in the opposite direction,
considering all players together, the percentages of incorrect predictions would be 5 for the
case in which production was less than demand, and 23 for the case in which production
was greater than demand.
22 Notice that if a player had not changed his signaling level during the last two periods, or
if his payo� had not changed, there is no gradient, and hill climbing cannot be applied.
This is condition (5) in Table 3, and it occurred in 33% of the cases. The absolute
frequencies for the cases (1) to (4) in Fig. 6a are 560, 2311, 2997, and 810. In Fig. 6b these
frequencies are 1305, 1583, 2121, and 1710.
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as well as his lookahead payo� (taking into account also the future pro®ts
related to his current sales level) had increased, or both had decreased.
When we consider only the other 29% cases of opposite gradients, the cases
in which myopic hill climbing and lookahead hill climbing predict a dif-
ferent change in signaling, we ®nd that on average the players are inclined
only slightly towards looking ahead; in 53.2% of those cases they follow the
prediction of lookahead hill climbing, and in 48.8 the prediction of myopic
hill climbing.

The numbers in parentheses on the horizontal axis denote the `if . . .'
conditions as given in Table 3. The light shaded bars give the frequencies
when the hill climbing prediction was strictly correct. The dark shaded bars
give the frequencies with which players choose signaling in period t + 1
equal to signaling in period t. Notice that for conditions (2) and (4), those
cases are already included in the strictly correct predictions. For conditions
(1) and (3), according to the hill climbing hypothesis, a player should re-
verse the direction of the change in his signaling level, whereas it would be
strictly wrong to continue moving into the same direction that led to a
decrease in payo�s. The inertia indicated in the ®gures by the dark shaded
bars is not exactly predicted by the hill climbing hypothesis, but it is also not
strictly wrong. Moreover, there might be good reasons for this inertia. First,
players might keep their signaling level constant for a period, in order to
adjust their production level according to the rules suggested by the learning
direction theory. Second, given the noise caused by the other players, it may

Fig. 6. a Myopic hill climbing,
with conditions as explained in
Table 3. b Lookahead hill climb-
ing, with conditions as explained
in Table 3
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be wise not to put all the weight on the last period alone. This suggests that
a further re®nement of the modeling of the players' behavior could be
obtained, by considering algorithms taking into account more periods, such
as in reinforcement learning (see, e.g., Roth and Erev, 1995).

Observation 4. There is an asymmetry between the cases in which a player's
payo� had increased and those in which it had decreased. When things are
going well, a player will not easily switch into the wrong direction with his
signaling. When, on the other hand, a player's payo� is decreasing, he is
more likely to continue into the wrong direction with his signaling.

For convenience, we consider here only lookahead hill climbing. Com-
pare in Figure 6a, b the relative frequencies of wrong predictions for cases
(1) and (3) with cases (2) and (4). In cases (1) and (3), the player's payo� had
gone down, and so continuing to change his signaling level in the same
direction would be wrong (29% of the times this happened). In cases (2) and
(4), the player's payo� had increased, and so going back to his previous
signaling level and then moving into the opposite direction would be wrong
(21% on average). We used a sign test to analyze whether individual players
were more likely to go into a wrong direction in the cases (1) and (3) than in
the cases (2) and (4). For 43 out of 66 subjects this was the case (signi®cant
at 1.0% level; 1-sided). We conjecture that the fact that unsuccessful courses
of actions are more easily continued than are successful ones reversed, is a
more general psychological feature.

We have seen that the 2-step model we proposed does not perfectly
describe the behavior of the players. But at the same time, the attraction of
the model is its simplicity. A question, then, is whether the time-pattern of
the average behavior of the players in the experiments ®ts the pattern
predicted by this simple model. In Fig. 7 we present the average behavior of
11 simulated sessions with 6 players, and the average signaling levels ob-
served in the experiments. As we see, the average signaling level not only
converges to the same level, but it also shows a similar initial dip.23

Fig. 7. Simulation 2-step
model vs. experimental data

23 It should be stressed that the two curves have a di�erent time scale. Tinkering with the
speed of adjustment of the players (e.g., adjusting the speed itself as well), would yield a
better ®t along this dimension, but that is not our objective. We use an identical and
constant (but stochastic) low adjustment speed for all players.
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c) Explaining the di�erences between the individual players

Although the average behavior of the players appears to ®t rather well to
the symmetric game-theoretic equilibrium, and also to the convergence level
and time-pattern of the 2-step model, in Section 4.a we observed that
underneath these averages there were strong di�erences between the play-
ers.24 In this section we will analyze and explain these strong di�erences.

If we have a look at Fig. 4, showing the distribution of signaling and
production levels of the individual players, a ®rst question is how these
di�erences in actions correspond to di�erences in performance; and a sec-
ond is how we arrive at this distribution. In other words, in what sense does
the behavior of some players di�er from that of other players?

Observation 5. There are considerable di�erences in performance among
the players. We can distinguish three categories. Category I: the successful
players, Category II: the `nil players', and Category III: the unsuccess-
ful players. The category II players choose relatively low signaling and
production levels, and realize pro®ts close to zero. As for the category I
players, category III players try higher signaling (and production) levels than
category II players, but they are less successful than category I players.

A method to measure the di�erence in performance among the players is
the Gini coe�cient (see, e.g., Case and Fair, 1996), which measures the
skewness in the wealth distribution of a population, using the Lorenz curve.
If the poorest x% of a population has x% of the total wealth of that
population for each 0 £ x £ 100, we have an equal distribution, charac-
terized by a Gini coe�cient equal to 0. If the richest person in the popu-
lation has 100% of the total wealth, the Gini coe�cient will be 1. The Gini
coe�cient for the 66 players is 0.41.25 Given this unequal performance,
what does the distribution look like, and what is its relation to the actions
chosen? In Figure 8a we order all 66 players in terms of their cumulative
pro®t per period, and in Figure 8b we present for these same players their
average signaling.26 Although these categories can be identi®ed easily vi-
sually, they can be derived formally as follows: Having ordered all players
on their average pro®ts, calculate average signaling for each player, con-
sider any two possible boundaries yielding three categories, and take those

24 This is similar to the ®ndings by Keser and Gardner (1998) who observe that aggregate
behavior in a common pool experiment is well explained by the subgame perfect equi-
librium, although only 5% of the subjects play in accordance to the theory. See also Budd
et al. (1993) and Midgley et al. (1996).
25 In order to allow for a comparison between the di�erent sessions, we consider the same
number of periods played for each session, i.e., 131. The wealth for a player is the cu-
mulative pro®ts realized plus the initial 2000 points he could loose before going bankrupt.
Hence, bankrupt players have an accumulated wealth of zero. The Gini coe�cients per
session are available upon request.
26 These individual averages are taken over the periods in which a player was active, i.e.
until he went bankrupt or until the end of the session, whichever came ®rst. Adding
production levels would yield little extra information since average production and sig-
naling are almost perfectly correlated.
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boundaries for which the di�erence between the average signaling in the
middle category and the other two categories combined is maximized.27 We
will use these three categories in our subsequent analysis, to see whether we
can identify qualitative di�erences in the adaptive behavior between these
three groups of players. The numbers in Fig. 8a, b give the values of pro®ts
and signaling respectively for the observations next to the boundaries.

Table 5 illustrates this categorization further by giving the average sig-
naling, production, and pro®t levels per category as shown in Figure 8a, b.
We use the Wilcoxon-Mann-Whitney test (Wilcoxon test from here on) to
analyze whether the signaling levels of the individual players in the three
categories are drawn from the same population. The alternative hypotheses
are that the signaling level is stochastically higher for category I than for
category II players (signi®cant at 0.0% level), lower for category II than
for category III players (signi®cant at 2.6%), and di�erent for category I
and category III players (signi®cant at 5.0%).

The question, then, is from where do these di�erences between the
players' actions and outcomes arise?28 We will o�er three broad explana-
tions. First, we will show how it is related to the dynamics of the oligopoly

Fig. 8. a Average pro®t. b Average signaling

Table 5. Averages for the three categories

Players #Players Signaling Production Pro®ts

all 66 951 160 4.0
cat. I 37 1301 194 16.6
cat. II 18 290 49 )1.4
cat. III 11 857 225 )29.5

27 We imposed the additional restriction that there should be at least 3 players per cate-
gory.
28 The production and signaling technology are characterized by constant marginal costs.
Hence, any ®rm size might seem e�cient, and an unequal distribution of ®rm sizes would
not be surprising. Notice, however, that the demand equation (1) implies that the marginal
revenue of a signal sent is not constant, and depends upon the ®rm size.
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game, and the players' perception thereof and success in dealing with it.
Second, we will show how it is related to the players' initial choices, and the
positive feedback inherent in the dynamics of the game. Third, we analyze
the di�erences in the players' ambitions.

Observation 6. The observation (see Sect. 4b) that the players are less
boundedly rational than learning direction theory assumes applies in par-
ticular to category I players.

Figure 9a,b summarize how far learning direction theory predicts cor-
rectly, distinguishing the cases of too high and too low production in the
preceding period, and distinguishing the three categories of players. Com-
paring the frequencies of increasing production in those cases in which
production was less than demand (Fig. 9a), players in category II increase
their production less often than category I players (signi®cant at 3.1% level
with 1-sided Wilcoxon test). The di�erence between category II and cate-
gory III players is not signi®cant, and the fact that category III players
increase their production less often than category I players is signi®cant
only at the 7.6% level. Looking instead at the frequencies of decreasing
production in those cases in which production was higher than demand
(Fig. 9b), players in category II decrease their production more often than
category I players (signi®cant at 1.0% level with 1-sided Wilcoxon test), and
less often than category III players (signi®cant at 1.1%). The di�erence
between category I and category III players is not signi®cant. Hence, it
seems as though category I players understand best the desirability of
overproduction, while category II players understand this least well, and as
a result more easily become small players.

Observation 7. When hill climbing, category I players look ahead most
often. Category II players do so least frequently.

Table 6 shows the frequencies with which the players go for immediate
pro®ts, and with which they look ahead in those cases in which the hill
climbing hypothesis points to opposite directions. We observe that the
di�erences in frequencies between the categories are not large. Category II
players look ahead less frequently than category I players (signi®cant at
0.9%; 1-sided Wilcoxon test), and also less frequently than category III

Fig. 9. a Direction learning after production < demand. b Direction learning after
production > demand
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players (signi®cant at 9%). There is no signi®cant di�erence between cat-
egory I and category III players. Hence, category II players are the most
myopic, not putting enough resources into building their market, and this
partly explains why they are small players.

A second explanation for the di�erences between the players is related to
their choices in the initial periods, and, related to the dynamics of the game,
the way in which these initial choices have prolonged e�ects on the players'
behavior.

Observation 8. Both production and signaling levels in the ®rst period are
concentrated on focal points. Further, the individual players' sales in later
periods are positively correlated with their sales in the initial periods. The
correlation coe�cient between the 66 individual players' average sales levels
in the periods 1±10 and the periods 81±130 (taking zero values for bankrupt
players) is 0.55 (signi®cant at 0.0% level; 1-sided t-test).

In the ®rst period, the players have very little information to guide their
decisions. Nevertheless, these choices are far from uniformly randomly
distributed over the relevant choice domain. First, we look at production.
The choice domain ranges from 0 to 4999, but the players was told that the
demand faced by an individual ®rm would in general be below 1000. Only 6
players (9%) chose production levels greater than 1000. 61 out of 66 players
(92%) chose a multiple of 50, and 53 (80%) picked production levels that
are multiples of 100. The favorite multiple of 100 is 500, chosen by 13
players (20%), followed by 800 (7 players, or 11%), and 1000 (6 players, or
9%). Thus, as observed in many other experiments, the midpoint is a focal
point (see, e.g., Ochs, 1994 on coordination games). Next, we look at sig-
naling 61 players (92%) chose multiples of 50 or 100, and 55 (83%) chose
multiples of 100, the most frequently chosen being again 500 (8 players, or
12%).

The correlations between the players' initial and later experiences are
further illustrated by Table C.1 in Appendix C, where we give for each
player his initial period actions and outcomes, and his averages over his
whole playing history. The question one has to address is, once we observe
such a correlation, where does it stem from? In Section 2 we identi®ed
various positive feedback mechanisms. Let us see how they can be related to
these positive correlations between initial and later sales. First, we showed
the temptation to maximize immediate pro®ts by choosing signaling equal
to zero, with production greater than zero. In that way, a ®rm's costs would

Table 6. Frequencies myopic vs. lookahead hill climbing

Players Absolute frequencies Rel. frequencies (%)

Myopic Lookahead Lookahead

all 1094 1243 53.2
cat. I 595 747 55.7
cat. II 383 364 48.8
cat. III 117 132 53.0
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be greatly reduced because there are no signaling costs, with the patronizing
customers showing up `for free', but a consequence would be the shrinking
of its pool of customers, with negative e�ects on later sales and pro®tability.
How often did the players follow this strategy? And are there di�erences
between the categories?

Observation 9. Shrinking the customer pool by not signaling is done regu-
larly by players in all three categories. But there are di�erences between the
categories. Category III players are much more inclined to eat drastically
into their customer pool than are category II players, who are in turn much
more inclined to do so than are category I players.

Table 7 illustrates this. Notice that category III players do this in
more than 10% of their decision periods, that this is almost 6 times as
often as category I players, and more than twice as often as category II
players. We use the Wilcoxon test to analyze whether these levels of the
individual players in the three categories are drawn from the same pop-
ulation. The alternative hypotheses are that shrinking occurs less often
for category I than for category II players (signi®cant at 0.9% level), less
often for category II than for category III players (signi®cant at 4.0%),
and less often for category I than for category III players (signi®cant at
0.0%). Recall that category III players signal on average much more than
category II players, that is, they counter the shrinking of their customer
pool by extra signaling in the periods following it. This aggressive `on-o� '
signaling behavior might be one of the explanations for their low prof-
its.29

A second positive feedback e�ect presented in Section 2 was related to
the fact that small ®rms would more easily get negative pro®ts. Players on
small islands get wet feet easily. Clearly, positive and negative pro®ts are
only relative. However, when pro®ts are negative, a player has always the
option to play (0, 0) for (signaling, production). Since that leads to a sales
level of zero, and no patronizing customers, it implies a strong negative
lock-in e�ect.

Observation 10. Excluding bankruptcy cases, switching to inactivity is pre-
dominantly done by players after observing a loss in the preceding period.
There are di�erences between the categories. Category II players are more

Table 7. Shrinking customer pool by not signaling, with production>0

Players # Obs. Shrinking Rel. frequency

all 10174 391 3.8
cat. I 5877 107 1.8
cat. II 3078 156 5.1
cat. III 1219 128 10.5

29 It is not that players deliberately making themselves bankrupt increase these frequencies
for category III players. In fact, leaving the bankrupt players out would give an even
higher average frequency for shrinking for category III players (11.0%).
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skeptical about their opportunities than the other two categories. They
switch most easily to inactivity. Once voluntarily inactive, the probability to
stay inactive the next period is much higher than the probability of re-
turning to business (84% against 16%).

Table 8 illustrates the voluntary switching to inactivity. Considering the
individual players, only 1 player out of 66 switches to inactivity less often
after a loss than otherwise. Using the Wilcoxon test to analyze whether the
switching-to-inactivity frequencies of the individual players in the three
categories are drawn from the same population, we ®nd that category II
players switch to inactivity more often than category I players (signi®cant at
0.0% level), and category II players switch to inactivity also more often
than category III players (signi®cant at 2.4%), whereas there is no signi®-
cant di�erence between category I and category III players. Recall that
category III players realized negative pro®ts much more frequently than
category II players, so they try hard to improve upon their payo�s by acting
rather than staying out.

Up to this point we have discovered two main explanations for the dif-
ferences between the players. A ®rst factor explaining these di�erences is
their perception of the dynamics of the game, and this is extensively docu-
mented in the analysis above. A second factor is that the players' choices and
outcomes in the initial periods turned out to be an important explanatory
factor for success, or lack thereof, in later periods. The players' actions and
outcomes during the initial periods might be just a matter of good or bad
luck, but it might also be related to their pre-game experience in real life ±
what they have learned outside the laboratory ± or it might be related to
other psychological factors. There is a third factor that might explain some
of the di�erences between the three categories of players. This being the
ambitions of the players. To consider this, in a previous paper (Nagel and
Vriend, 1998) we carried out an aspiration level analysis. The basic idea of
such an analysis is that agents, due to their bounded rationality, are not able
to optimize, and therefore will settle for satis®cing behavior. Which out-
comes are satis®cing for a certain agent depends upon his aspiration level,
where those levels are a moving target based, for example, on the agent's
direct experience, or on the outcomes of other agents. This is a qualitative
theory of adaptive behavior, presuming that when an agent's targets are met,
he will be satis®ed, and hence not change his behavior, whereas if his targets
are not met, he will try to improve upon his situation by changing his

Table 8. Relative frequency switching to voluntary inactivity

Players # Observations Rel. frequencies (%) inactivity

Pro®t < 0 Pro®t ³ 0 After pro®t < 0 After pro®t ³ 0

all 3434 6308 1.7 0.1
cat. I 1470 4334 0.5 0.0
cat. II 1349 1427 3.4 0.4
cat. III 615 547 1.1 0.4
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actions.30 The central question we studied there was whether there are dif-
ferences between the three categories of players (the successful ones, the
unsuccessful, and the `nil' players). We found, among other things, that
there are systematic di�erences between the players in the three categories
as far as their reaction to satisfactory or unsatisfactory outcomes is
concerned. In particular, category I players appear to be more ambitious
than category II or III players, in the sense that they increase their pro-
duction and signaling levels even when their aspiration level had been
reached, whereas the latter two categories tend to keep production and
signaling unchanged when their aspiration levels had been reached.

5 Conclusions

There are three main conclusions we can draw from this experimental study
of adaptive behavior in an oligopolistic market game. The ®rst is related to
the average behavior of the players. Notwithstanding the minimal infor-
mation the players were provided with, on average they learned to choose
actions that were close to the symmetric stationary equilibrium for the
complete information variant of the game. The second conclusion concerns
the proposed a 2-step model, based on the game-theoretic analysis, in which
the players use their signaling level as the basic strategic variable, whereas
they adjust their production level towards the demand thus generated. It
seems fair to conclude that learning direction theory, combined with the
quali®cation concerning the ex ante optimality of overproduction, gives an
accurate description of the players' behavior as far as their changes of
production levels is concerned. The hill climbing hypothesis with respect to
the players' signaling level was slightly less accurate, and made wrong
predictions in about a quarter of the cases. In particular we detected an
asymmetry in the players' behavior. When payo�s were increasing, players
tend to continue their course of action. But when payo�s were decreasing
and the players should have reversed the direction their signaling was
moving into, they often continued walking downhill. We also showed that
inertia in the players' behavior was important. This suggests that a further
re®nement of the modeling of the players' behavior could be obtained, by
considering algorithms taking into account more periods than the most
recent alone, e.g. reinforcement learning (see Roth and Erev, 1995).31 Using
the hill climbing hypothesis, we analyzed how far the players were inclined
to go myopically for immediate pro®ts: all players were only slightly more
inclined to look ahead, and this was true above all for the successful players.
A numerical exercise showed that the simple 2-step model seems to o�er a
reasonable explanation for the average market outcomes, both for the level
and time-pattern of convergence.

30 See BoÈ rgers and Sarin (1996) and Hart and Mas-Colell (1996) for two recent examples
of aspiration level analyses.
31 One of the ®rst problems, then, is how to reduce the choice set of the players (see, e.g.,
Holland et al., 1986). Much more progress needs to be made here.
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A third conclusion is that the players' behavior in this symmetric game is
highly heterogeneous, much more so than expected. There are strong dif-
ferences between the players, both with respect to their average actions and
to their average payo�s. We showed that three categories of players could
be distinguished: the successful ones, the `nil players', and the unsuccessful
players. The actions and outcomes in the initial period turned out to be
important for the players' later performance. This could be due to good or
to bad luck, but it also could be related to personality issues, both how
daring they are in the ®rst periods, and how they react to success or lack of
it. We analyzed how this was related to some of the positive feedback
mechanisms present in the market, and how the di�erent categories of
players dealt with these more or less successfully. In general, with help of
the 2-step model, we showed that the players had di�erent rates of success
in adapting to their environment. An aspiration level analysis pointed to
di�erences in the players' ambitions as an additional factor explaining their
di�erences in performance.

Appendix A. Instructions, and computer screen

Table A.1 contains the English version of the instructions given to the
players.

Table A.1. Instructions to the players

Actors:
* Each of you will be a ®rm in a market economy.
* The consumers in this economy are simulated by a computer program.
Each day:
* In the morning, ®rms decide:
± Identical ®rms decide upon a number of units of a perishable consumption good (each
®rm the same good).

± The production of each unit costs 0.25 point.
± The production decided upon at the beginning of the day is available for sale on that
day.

± Experience shows that, in general, the demand faced by an individual ®rm is below
1000.

± The ®rms also decide upon a number of information signals to be sent into the
population, communicating the fact that they are a ®rm o�ering the commodity for
sale on that day. Imagine the sending of letters to addresses picked randomly from the
telephone book.

± Sending one information signal to an individual agent always costs 0.08 point.
± The price of the commodity is 1 point. The price of the commodity is given, it does not
change over time, it is equal for all ®rms and consumers, and known to all agents.

± It is not possible to enter values greater than 4999 for the number of units to be
produced and the number of information signals to be sent. This is due only to
technological restrictions, and has no direct economic meaning.
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Table A1 (Contd.)

* During the day, consumers are `shopping':
± When all ®rms have decided their actions, consumers will be `shopping'. Each day,
each consumer wishes to buy exactly one unit of the commodity. Hence, consumers
have to ®nd a ®rm o�ering the commodity for sale, and such a ®rm should have at
least one unit available at the moment they arrive.

± We give you two considerations concerning the consumers' actions:
a A consumer that has received an information signal from you knows that you are a
®rm o�ering the commodity for sale on that day.

b Consumers who visited you, but arrived too late and found only empty shelves might
®nd your service unreliable. On the other hand, a consumer who succeeded in buying
one unit from you might remember the good service.

* At the end of the day, each consumer and each ®rm observes his own market outcomes:
± Consumers turn home satis®ed or not, i.e. with or without a unit of the commodity.
± All unsold units of the commodity perish.
± Each ®rm will know the demand that was directed to it during the day, how much it
has actually sold (notice that it cannot sell more than it has produced at the beginning
of the day), and its pro®ts of that day.

± It cannot be excluded that sometimes the market outcomes are such that a ®rm makes
a loss. Each ®rm faces an upper limit of 2000 points for the total losses it may realize.
A ®rm exceeding this limit will be declared bankrupt, implying that it will be forced to
inactivity from then on.

± A ®rm might have received some information signals sent to random addresses by
other ®rms. These information signals will be listed (senders and numbers of signals),
using ®ctitious names for the sending ®rms.

Time:
* There is no time limit for your daily decisions. From day 20 on, you will hear a warning
sound when you are using more than one minute decision-time.

* The playing-time will be about 2� hours.
Payment:
* Each player will be paid according to the total pro®ts realized by its ®rm.
* Each player gets a `show-up' fee of DM 20.-.
* In addition, the payo� will be DM 10.- for each 1000 pro®t points realized.
* Note that losses realized will be subtracted from the DM 20.-.
* Bankrupt players have lost an amount of DM 20.-, and hence get nothing.
Anonymity:
* A player will never know the actions and outcomes of other players.
Keyboard:
* To con®rm your choice: Enter [<]
* To delete: Backspace [<--]
* Please, before con®rming your choices, always make sure that you did not make a
typing-error.
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Figure A.1 shows the computer screen as viewed by a player acting as
®rm ÔX' in a given period. At the beginning of day 1 the top part of the
screen contained the following message: ``Experience (from previous ex-
periments) shows that, in general, the demand faced by an individual
®rm is below 1000''. When a player had negative cumulative pro®ts, he
got a warning in the center of the screen saying: ''WARNING! Your
total losses are 192.25 (total losses greater than 2000.00 imply
BANKRUPTCY!)''.

Appendix B. Game-theoretic analysis

Proof of Proposition 1. First, we study the ®nite horizon case, and then
obtain the stationary signaling policy as a limit. The pro®t function and
demand function are given by: Pt

i � p � xt
i ÿ c � zt

i ÿ k � st
i, where:

xt
i � min�zt

i; qt
i�, and: qt

i � round�trunc�f � xtÿ1
i � st

i
St � �1ÿ exp�ÿ St

N�� ��nÿ Rm
j�1 trunc�f � xtÿ1

j ���. Since the demand function is deterministic,

zt
i � qt

i � xt
i
. Hence, the only control variable is signaling. Assuming the

game is played for T periods, the value V of an action in any period Tÿt¢ÿ1
equals the sum of the immediate pro®ts P in period Tÿt¢ÿ1 and the value V
in period Tÿt¢: V Tÿt0ÿ1

i � PTÿt0ÿ1
i � V Tÿt0

i , which has to be maximized. The
®rst-order condition is: @V Tÿt0ÿ1

i =@sTÿt0ÿ1
i � @PTÿt0ÿ1

i =@sTÿt0ÿ1
i � @V Tÿt0

i =
@sTÿt0ÿ1

i � 0. We consider these two terms on the right hand side sepa-
rately.32

Determination of the ®rst term: The immediate pro®t in a given period
is: Pt

i � g � qt
i ÿ k � st

i ) @Pt
i=@st

i � g � @qt
i=@st

i ÿ k. Neglecting the term

Firm ``X'': RESULTS day 7

ACTIONS OUTCOMES

production signaling demand sales pro®ts
123 450 114 114 47.25

The NEXT day is:

day 8

production =
signaling =

Firm ``X'', please enter your choices

price = 1.00; costs/unit produced = 0.25; costs/signal sent = 0.08

Fig. A.1. Computer screen ®rm `X'

32 Cf. Fudenberg and Tirole (1991) on equilibria in dynamic games.
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�1ÿ exp�ÿ St

N��, and the roundings and truncations, demand is given by:
qt

i � f � qtÿ1
i � st

i=St � �nÿ f � Qtÿ1� ) @qt
i=@st

i � St
ÿi=�St�2 � �nÿ f � Qtÿ1�,

where St
ÿi is the aggregate signaling of the other players. Since all consumers

visit a ®rm: Qtÿ1 � n. Hence, we get: @Pt
i=@st

i � g � St
ÿi=�St�2 �

n � �1ÿ f � ÿ k. We substitute T ÿ t0 ÿ 1 for t.
Now we turn to the second term. We have to determine V Tÿt0

i . We solve
this ®rst for the last period T, and then solve the game using backward
induction. In the last period, period T, we have PT

i � V T
i , and hence the

®rst-order condition is: @V T
i =@sT

i � @PT
i =@sT

i � 0. From above, we know
@PT

i =@sT
i � g � ST

ÿi=�ST �2 � �nÿ f � QTÿ1�. Hence, we get: k
g � ST

ÿi=�ST �2 �
�nÿ f � QTÿ1�. Since ST � m � sT

i , and QTÿ1 � n, we obtain:
sT

i � g=k � �mÿ 1�=m2 � n � �1ÿ f �, which is the optimal signaling level in
the last period. Thus, the value V T

i in the last period is

V T
i � PT

i � g � qT
i ÿ k � sT

i

� g � �f � qTÿ1
i � 1

m
� �nÿ f � QTÿ1�� ÿ k � �g

k
� �mÿ 1

m2
� � n � �1ÿ f �� )

V T
i � g � �f � qTÿ1

i � n
m2 � �1ÿ f ��. In other words, V T

i � g � �A0 � qTÿ1
i�B0�, or in general: V Tÿt0

i � g � �At0 � qTÿt0ÿ1
i � Bt0 �, where: A0 � f ;

B0 � n
m2 � �1ÿ f � and: At0�1 � f � f � At0 . Hence, @V Tÿt0

i =@sTÿt0ÿ1
i � g � At0 �

@qTÿt0ÿ1
i =@sTÿt0ÿ1

i � g � At0 � ST
ÿi=�ST �2 � n � �1ÿ f �. Combining the two

terms we get:

@V Tÿt0ÿ1
i

@sTÿt0ÿ1
i

� g � STÿt0ÿ1
i

�STÿt0ÿ1
i �2 � n � �1ÿ f � ÿ k�

� �g � At0
STÿt0ÿ1
ÿi

�STÿt0ÿ1�2 � n � �1ÿ f �� � 0)

g � �1� At0 � �
�

mÿ 1

m

�
� 1

STÿt0ÿ1 � �1ÿ f � � n � k )

sTÿt0
i � g=k � �1� At0�1� � �mÿ 1�=m2 � �1ÿ f � � n. Now consider the dif-
ference equation At0�1 � f � f � At0 , which can be solved as: At0�1 �
�f ÿ f =�1ÿ f �� � f t0�1 � f =�1ÿ f �; with limt0!1 At0�1 � f =�1ÿ f �. Hence,
for large enough t0 the optimal action in a given period T ÿ t0 in the steady
state is: sTÿt0

i � g=k � �1� f =�1ÿ f �� � ��mÿ 1�=m2� � �1ÿ f � � n � g=k
� ��mÿ 1�=m2�� n. QED.33

33 See also Stokey and Lucas (1989).

An experimental study of adaptive behavior 59



Appendix C. Some additional data

Figure C.1.a, c present the time series for signaling, production, and pro®ts
for periods 1 to 131 averaged over the 66 players (with all variables at zero
for bankrupt players). In all these graphs, we took a ®ve period moving
average for presentational reasons, and we added the equilibrium levels as a
®rst benchmark. In the graph for signaling (C.1.a) we added two other
benchmarks. The ®rst one is called `losses', and corresponds to the line
drawn in Figure 4, as explained in Section 4. It is the signaling level beyond
which positive pro®ts are impossible, given the equilibrium production

Fig. C.1. a Average signaling,
periods 1±131. b Average
production, periods 1±131.
c Average pro®ts, periods
1±131
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Table C.1. Summary data individual players

Session Player Period 1 Avg. all periods Pro®ts Number
periods

Also
session

Player

Prod. Sign. Sales Prod. Sign. Sales

1 1 0 100 0 154 868 144 35.9 151 21 2
1 2 400 200 91 215 1096 192 50.4 151 21 1
1 3 500 500 228 197 1045 180 47.4 151 21 4
1 4 250 400 183 131 393 64 0 151 21 5
1 5 100 100 46 129 715 118 28.9 151 ± ±
1 6 20 5 2 467 161 35 )94.9 22 ± ±
2 1 1199 2199 522 362 2309 315 39.8 151 ± ±
2 2 300 100 24 38 78 10 )6.1 151 ± ±
2 3 200 0 0 207 1348 163 3.4 151 ± ±
2 4 600 400 95 83 540 70 6.6 151 ± ±
2 5 600 100 24 163 986 134 14 151 21 3
2 6 350 150 36 12 52 6 )1 151 21 6
3 1 1000 1500 113 138 827 99 )1.8 151 ± ±
3 2 600 800 91 124 846 100 1.5 151 23 3
3 3 800 4800 216 9 54 5 )2 151 ± ±
3 4 1200 2000 129 335 2574 286 )4.2 151 ± ±
3 5 1000 800 91 36 170 20 )2.7 151 23 2
3 6 200 200 72 213 1699 192 2.6 151 ± ±
4 1 500 1500 153 429 2893 406 67.8 151 23 1
4 2 1000 1000 124 439 820 78 )97 28 ± ±
4 3 500 500 95 26 147 20 2.2 151 ± ±
4 4 2000 2000 182 344 710 99 )44.2 68 ± ±
4 5 900 400 89 50 298 40 4 151 ± ±
4 6 100 50 69 202 1268 171 19.1 151 ± ±
5 1 500 2000 285 356 2805 330 16.8 151 ± ±
5 2 700 600 85 29 138 14 )3.8 151 ± ±
5 3 500 600 85 86 505 52 )10.3 151 ± ±
5 4 500 700 100 44 280 30 )3.3 151 24 6
5 5 500 500 71 229 1841 211 6.6 151 ± ±
5 6 400 600 85 97 527 56 )10.8 151 24 4
6 1 1200 800 185 107 618 85 8.8 151 24 3
6 2 800 400 92 112 691 90 6.4 151 ± ±
6 3 550 500 116 391 2627 340 32.3 151 24 2
6 4 400 300 69 6 20 3 )0.1 151 ± ±
6 5 500 800 185 168 1228 142 2.2 151 24 5
6 6 234 234 54 113 272 37 )12.6 151 24 1
7 1 250 150 35 58 457 50 )1.1 131 ± ±
7 2 600 900 207 138 991 118 4.4 131 25 3
7 3 400 400 92 274 2109 243 6.2 131 25 1
7 4 50 100 23 38 289 32 )0.5 131 ± ±
7 5 2000 500 115 43 134 17 )4.3 131 ± ±
7 6 800 1000 230 259 2230 232 )11.2 131 25 6
8 1 875 900 117 94 430 76 18.1 131 ± ±
8 2 1000 100 13 173 962 135 14.5 131 ± ±
8 3 500 500 65 77 299 62 18.8 131 ± ±
8 4 400 500 65 350 1836 289 55 131 ± ±
8 5 900 990 128 28 121 20 3.1 131 ± ±
8 6 2255 2500 324 154 705 116 21 131 ± ±
9 1 800 2000 334 95 540 64 )2.9 151 ± ±
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level. The second additional benchmark is called `99%', and corresponds to
the average signaling level needed to make sure that 99% of the consumer
population receives at least one signal.

Table C.1 presents the individual averages and ®rst period actions for
the players. For each individual player, the averages are taken over the
periods in which the player actually played. Table C.2 gives the session
averages, where the averages are taken over the periods in which the
session lasted (with production and signaling levels at zero for bankrupt
players).

Table C.1 (Contd.)

Session Player Period 1 Avg. all periods Pro®ts Number
periods

Also
session

Player

Prod. Sign. Sales Prod. Sign. Sales

9 2 300 100 17 39 246 27 )2.3 151 ± ±
9 3 200 600 100 269 2246 250 2.6 151 23 5
9 4 500 1000 167 295 2394 270 4.6 151 23 6
9 5 50 50 8 9 54 5 )1.2 151 ± ±
9 6 750 500 84 103 775 88 0.2 151 23 4
10 1 800 400 55 16 84 10 )0.9 251 ± ±
10 2 100 300 41 99 668 87 9.1 251 22 6
10 3 800 3000 414 265 1934 246 24.6 251 ± ±
10 4 500 750 104 79 565 64 )1 251 ± ±
10 5 350 400 55 354 2377 293 14.7 251 22 5
10 6 300 300 41 3 11 1 )0.4 251 ± ±
11 1 800 1000 63 57 391 46 0.1 201 25 4
11 2 1000 3500 222 363 2667 316 11.9 201 25 5
11 3 500 450 28 255 1419 149 )28.4 84 ± ±
11 4 500 4999 316 86 656 74 )0.2 201 ± ±
11 5 1000 1000 63 117 912 107 4.3 201 25 2
11 6 300 300 19 101 842 96 3.6 201 ± ±

Table C.2. Session averages

Session Period 1 Avg. all periods Pro®ts Number
periods

Prod. Sign. Sales Prod. Sign. Sales

1 212 218 92 149 690 117 25 151
2 542 492 117 144 886 116 9 151
3 800 1683 119 143 1028 117 )1 151
4 833 908 119 157 846 116 9 151
5 517 833 119 140 1016 116 )1 151
6 614 506 117 150 909 116 6 151
7 683 508 117 135 1035 115 )1 131
8 988 915 119 146 726 116 22 131
9 433 708 118 135 1043 117 0 151
10 475 858 118 136 940 117 8 251
11 683 1875 119 139 1010 117 1 201
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