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We study  a linear  location  model  (Hotelling,  1929)  in  which  n (with  n  ≥  2)  boundedly
rational  players  follow  (noisy)  myopic  best-reply  behavior.  We  show  through  numerical
and  mathematical  analysis  that  such  players  spend  almost  all  the  time  clustered  together
near the  center,  re-establishing  Hotelling’s  “Principle  of Minimum  Differentiation”  that  had
been discredited  by equilibrium  analyses.  Thus,  our  analysis  of  the  best-response  dynam-
ics shows  that  when  considering  e.g.  market  dynamics  as  well  as their policy  and  welfare
implications,  it  may  be  important  to  look  beyond  equilibrium  analyses.
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. Introduction

Hotelling (1929) showed in a linear location model, in which two  players independently choose a location, with their
ayoffs depending on the distance from individuals distributed on the line, that both players will locate together in the

enter. This result led to the notion of the “Principle of Minimum Differentiation”.

Hotelling’s model, where individuals have preferences over locations, provided a theoretical explanation for some casual
bservations that he reported about a widespread tendency for decision makers to choose only slight deviations from each
ther’s location in the most diverse fields of competitive activity, even quite apart, as he put it, from what is typically called
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economic life. Besides geographical locations, he also discussed locations in product characteristics space, mentioning a
“tremendous standardization of our furniture, our houses, our clothing, our automobiles and our education”  (p. 54), as well as
the choice of platforms by political parties in policy space.

Building on Hotelling’s results, Black (1948) and Downs (1957) established the “Median Voter Theorem”, i.e., that a majority
voting rule will select the outcome preferred by the median voter. Also related is “Duverger’s Law” (Duverger, 1954), which
suggests that with plurality voting, one should expect a two-party system. This has given rise to an extensive empirical
and theoretical literature (see e.g. Riker (1982), Rowley (1984), Osborne (1995), Grofman (2004), and many others). In this
paper, we will go back to Hotelling (1929), and focus on one single aspect of this literature: The Principle of Minimum
Differentiation.

Hotelling’s result that in equilibrium the players will locate together in the center turns out to be correct for the special
case of n = 2 players. As we will sketch in Section 2, equilibrium analyses have made clear that the Principle of Minimum
Differentiation is not robust to changing the number of players n in the basic location model to any number n > 2. In fact,
for any n > 2, the Nash equilibria look almost the opposite of what is described by the Principle of Minimum Differentiation,
with all players spread out relatively evenly, and strict bounds on the spatial differences between the players.

Experimental evidence for Hotelling’s location game in the laboratory with n = 3 (Collins and Sherstyuk, 2000) and n = 4
(Huck et al., 2002) suggests that one may  expect many non-equilibrium outcomes in this game, with in particular more
choices near the center than predicted by the theory.1

Given the apparently widespread centripetal tendency of decision makers in a range of different settings, as argued e.g.
by Hotelling (1929), typically also in cases where there are more than two decision makers, and given also the experimental
evidence for the basic Hotelling game, the game-theoretic analysis of the basic location game raises the important question
as to how one may  explain such a centripetal tendency. In the industrial organization literature, Palma et al. (1985) showed
that one way to restore the Principle of Minimum Differentiation is to assume that there is sufficient heterogeneity in
consumers’ tastes combined with uncertainty by the firms about these preferences. Another approach is to consider a
different equilibrium concept. Shino and Kawasaki (2012) characterize the farsighted stable set of the Hotelling game, and
show that this set contains location profiles that reflect the minimum differentiation.

In this paper, we will follow an alternative approach. Instead of an equilibrium analysis, we  will analyze the dynamics of
myopic best-response behavior. We  will show, through numerical as well as formal, mathematical analysis, that the players
will be located almost all the time close to the center if their location choices are governed by noisy, myopic best-responses
to the other players. We  show for n ≥ 3 that players spend significantly much more time in locations that are closer to the
center (and close to each other) than predicted by the Nash equilibria. What is more, we  show that by refining the discrete
space (thus approximating a continuous space), we can get the players located arbitrarily close to the center almost all the
time, catering essentially just to the median voter. We  also show that none of the pure strategy Nash equilibria for any n ≥ 3
is stochastically stable.

Thus, while the Principle of Minimum Differentiation is consistent with Nash equilibrium behavior only for n = 2, to the
extent that there may  be a tendency for decision makers to choose (noisy) myopic best-responses, our analysis suggests a
possible explanation as to why this popular notion is so ubiquitous, acquiring almost “folk wisdom” status, as well as for the
empirical evidence this is based on.

Providing a possible explanation for some empirical phenomenon is not the only reason why our analysis may  be inter-
esting. That best-response dynamics may  lead to outcomes that are so different from the Nash equilibrium analyses seems
an intriguing feature of the Hotelling game from a theoretical point of view, and relates to the literature on best-response
dynamics and Nash equilibria. See, e.g. Hofbauer (1995), Hopkins (1999), and Balkenborg et al. (2013).

The rest of the paper is organized as follows. Section 2 presents the basic Hotelling location model as well as a brief
overview of the equilibrium analysis. Section 3 presents our numerical analysis, to gain some insight into the behavior of
best-response dynamics in our model. We,  then, formally characterize the long-run behavior for the case of n = 3 in Section
4, followed by the case of n ≥ 4 in Section 5. The welfare implications of our analysis are presented in Section 6, and Section
7 presents some concluding remarks.

2. Equilibrium and minimum differentiation

2.1. Continuous location model

In this section, we will give a brief overview of the various equilibria found in Hotelling’s location game. We  focus our
attention on a basic, linear location model, which we  will present for convenience as a model of spatial voting where the
players are parties who choose a platform x in a one-dimensional, continuous policy space (normalized to [0, 1]). Following
Eaton and Lipsey (1975), assume that no two parties can choose exactly the same location, with the minimum distance

being ı (with ı close to 0). An infinite number of voters with unit mass, whose preferences are distributed uniformly over
this space, vote for the player who are closest to their preferred location. The spatial distribution of voters is known to the
players.

1 See also Brown-Kruse et al. (1993) and Brown-Kruse and Schenk (2000) for related duopoly experiments.
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The payoff for a player from choosing location x is simply the share of votes received at that location. Therefore, if the two
earest players to the left and to the right are located in L(x) and R(x) respectively, with L(x) < x < R(x), the payoff of choosing

ocation x is given by:

�(x|L(x), R(x)) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

R(x) − L(x)
2

if 0 ≤ L(x) < R(x) ≤ 1

(
x + R(x) − x

2

)
if no player to the left of x and R(x) ≤ 1

(
1 − x + x − L(x)

2

)
if 0 ≤ L(x) and no player to the right of x

Eaton and Lipsey (1975) characterized pure strategy Nash equilibria for games with any number of players but three. If
 = 2, the unique Nash equilibrium is when both players locate at x = 1

2 , giving a payoff � = 1
2 , as any other location would

mply a lower payoff. For n = 3 there is no Nash equilibrium in pure strategies. Any of the peripheral players will want to
ove in towards the interior player as much as possible, but that interior player will always want to jump out of this squeeze.
e will turn our attention to mixed strategy equilibria in a moment, but first we  will consider equilibria in pure strategies

or n > 3.
For n = 4, the Nash equilibrium configuration has two players located at 1

4 and the other two at 3
4 . Each player will get a

ayoff of 1
4 . When n = 5, there will be three locations that will be occupied in equilibrium: one in the center (occupied by

ne player), and two peripheral ones equally distanced from the center, located at 1
6 and 5

6 respectively, and each occupied
y two players. Note that this means that the interior player will get a payoff of 1

3 , whereas the four peripheral players will
ach get a payoff of 1

6 .
Eaton and Lipsey show that there is multiplicity of equilibria when there are more than 5 players (for any n > 5). For n = 6,

ne equilibrium configuration involves three locations, with 1
6 , 3

6 and 5
6 each occupied by two  players, and each of them

etting a payoff of 1
6 . An alternative equilibrium configuration involves the four locations 1

8 , 3
8 , 5

8 and 7
8 , where the two

eripheral locations are occupied by two players each and the two  interior ones by one player each. In this case the two
nterior players will get a payoff of 1

4 and the four peripheral ones a payoff of 1
8 . Between these two  equilibria there is an

nfinite number of additional equilibria. Think of the second equilibrium as a stretched version of the first one. As the interval
etween the two peripheral locations gets gradually stretched, for any distance one can compute the required distance for
he interior players such that no player has an incentive to deviate. The same logic, and hence multiplicity of equilibria,
pplies for any n > 6.

Eaton and Lipsey present an informal proposition (for any n ≥ 6) computing the bounds for the locations of the peripheral
airs of players, as well as for the vote shares of each of the players as a function of n. The upper bound for the distance from
he boundary of the space to the leftmost (or rightmost) player is 1

n . If the space left at the extreme by the peripheral player
ere greater than that, this player would get a payoff greater than 1

n , and hence the average payoff of the other players must
e strictly less than 1

n , which means that at least one of them could profitably deviate to this space left by the peripheral
layer and get a payoff of at least 1

n . Thus, in any equilibrium the distance between the leftmost and rightmost player will be
t least n−2

n , which will approach 1 as n increases. Within this range the players must be spread relatively evenly. Towards
he two boundaries there must be a pair of peripheral players, as the outermost players always have an incentive to move
owards their neighbours as far as possible. Interior players may  be located either individually or in pairs. If they appear as

 pair their distance will be ı, but otherwise the upper bound for the intervals between players will be 2
n . What is more, in

quilibrium no player can get more votes than twice the number of votes for any of the other players.
We now consider mixed strategy Nash equilibria. Although no pure strategy equilibrium exists for n = 3, there is a doubly

ymmetric mixed strategy Nash equilibrium characterized by Shaked (1982): all players independently choose locations x
with 1

4 ≤ x ≤ 3
4 ) with equal probabilities. Ewerhart (2014) characterized the set of mixed Nash equilibria for n ≥ 4, showing

hat as n increases this leads to a more dispersed distribution of individual locations. The distributions are sharply M-
haped, with most weight at locations at the periphery of the support interval. The support increases as n increases, and for
he reported values of n exceeds that of the maximum distance between the peripheral players in the corresponding pure
trategy Nash equilibria.

We can summarize these findings by noting that for any n > 2 the equilibrium analyses seem to discredit the Principle
f Minimum Differentiation as the locations chosen in the Nash equilibria are spread out considerably, essentially covering
he entire space.

Besides varying the number of players n, a number of alternative variations of the basic model and their effect on the equi-
ibrium predictions have been considered in the literature. For example, Eaton and Lipsey (1975) consider one-dimensional
paces without bounds, or two-dimensional spaces, showing that the Principle of Minimum Differentiation will normally

ot hold. Apart from considering other spatial dimensions, equilibrium locations may  contradict the Principle also when
xtending the basic Hotelling game in other dimensions. For example, in industrial organization, d’Aspremont et al. (1979)
how that in a two-stage game where two firms choose their locations in the first stage, and then compete in terms of prices
n the second stage, when the cost of transportation is quadratic for consumers, firms will locate in the opposite ends of



(
(
(
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the line to soften the competition in terms of prices.2 Irmen and Thisse (1998) consider product differentiation in a multi-
characteristics space, and show that firms will choose to maximize differentiation in some dominant (salient) characteristic
while minimizing differentiation in the others. Similarly, in political economy, the Principle may  not apply if political parties
care not only about winning elections but are also ideologically motivated, i.e., they care about the policy actually imple-
mented. Even with only two parties, in equilibrium we may  see diverging platforms if there is sufficient uncertainty about
the location of the median voter (Drouvelis et al., 2014).

2.2. Discrete location variant

For the remainder of the paper we will focus on a slight variation of the basic, linear location model sketched above.
Instead of a continuous strategy space, we will consider a discrete space. We  discretize the interval [0, 1] into 2M + 1 equally
spaced locations x ∈ {0, 1, . . .,  M − 1, M,  M + 1, . . .,  2M}, where x = 0 and x = 2M correspond to the two  boundaries, 0 and 1
respectively, and x = M is the median. Higher values of M correspond to a finer discretization of the space.3 As before, the
spatial distribution of voters (uniform with full support) is known to all n players, and it will stay constant.

Each player can only occupy one of these discretized locations at any point in time. But any location x can be selected by
any of the players simultaneously. We  say two  players are exactly paired if they occupy the same location. If they occupy
consecutive locations, we say they are non-exactly paired. Voters will go for the nearest player.4 The payoff for a player from
choosing location x is simply the number of votes received at that location. When the number of players in location x is nx,
and two nearest players to the left and to the right are located in L(x) and R(x) respectively, with L(x) < x < R(x), the payoff of
choosing location x is given by:

�(x|nx, L(x), R(x)) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1
nx

R(x) − L(x)
2

if 0 ≤ L(x) < R(x) ≤ 2M

1
nx

(
x + R(x) − x

2

)
if no player to the left of x and R(x) ≤ 2M

1
nx

(
2M − x + x − L(x)

2

)
if 0 ≤ L(x) and no player to the right of x

The (pure strategy) Nash equilibria in this discrete variant have the following properties5:

(i) The peripheral players are always (exactly or non-exactly) paired.
ii) The interior players can be alone or in pairs of two.

iii) If two players are exactly paired the size of their left market is equal to the size of their right market.
iv) If two players are non-exactly paired, the difference in size between their markets is at most one.
(v) No player can have a market size greater than twice the size of another player.

Thus, the discreteness of the strategy space and the opportunity for more than one player to select the same location

induce some slight changes to the equilibria sketched in Section 2 for the continuous model of Eaton and Lipsey, but the
main qualitative features, with all Nash equilibria for any n > 2 looking strongly at odds with the Principle of Minimum
Differentiation, are not affected.6

2 Matsumura et al. (2010) analyze the consequences of the evolutionary dynamics of two firms competing in the setting of d’Aspremont et al. (1979),
and  show that such dynamics restore the minimum differentiation in that, under the unique stochastically stable equilibrium, the two firms will locate in
the  center and set their prices equal to their marginal costs.

3 Note that this implies that the number of locations will be odd, ensuring that the space has a median, location M,  that can actually be chosen by the
players. Results for the numerical analysis of the best-response dynamics for even numbers of locations can be found in Appendix A.

4 When a voter finds that the best option(s) to the left and the best option(s) to the right are equally distant, they choose between going left or right by
a  fair coin toss. If, then, there is more than one player at location x, votes will be equally divided among the players located there.

5 Most of these properties can be established by simply adapting the analysis of Eaton and Lipsey to a discrete setting. We will however provide a short
proof  of properties (iii) and (iv), which are not mentioned in the analysis of Eaton and Lipsey. For Property (iii), suppose that the two exactly paired players
are  located at m.  Let l and r be the location of the players closest to their left and to their right. At m,  the exactly paired players earn the payoff (r−m)+(m−l)

4 .
Now  suppose for example that the left market is greater than the right market: m − l > r − m.  Then, if a player unilaterally deviates, relocating at l + 1, he
earns m−l

2 > (r−m)+(m−l)
4 . This contradicts the Nash equilibrium property. Similarly, if the right side of the market was larger, players would have an incentive

to  deviate to that side. To prove property (iv), let the non-exactly paired players be located at m and m + 1, and let l and r be the closest location to the left
of  m and to the right of m + 1. The payoff of the player at m is m+1−l

2 . The payoff of the player at m + 1 is r−m
2 . Suppose for example that r−m

2 ≥ m+1−l
2 + 1, then

by  relocating at m + 2 the player at m could earn r−(m+1)
2 > m+1−l

2 , contradicting the equilibrium property.
6 The minor differences are illustrated e.g. in Huck et al. (2002), where we see that with n = 4 in equilibrium the paired players may  stay either in the

same  location or in two neighboring ones. And of course, as noted already, in a continuous strategy space there is an infinite number of Nash equilibria for
any  n > 5, and thus any discretization will be able to relate to only a subset of these.



3

i
p
0

a
1
b
m

1
w
i
s

a
a
t
w
w
g
M
t

n
o

w
a
i

a
w
r
c
t
o

t
t
c
a
a
t
t
a

f

e

w
o
A

p

a

N. Hanaki et al. / Journal of Economic Behavior & Organization 157 (2019) 145–170 149

. Best-response dynamics: numerical analysis

Before turning to the formal, mathematical analysis of the dynamics of best-response behavior in the Hotelling model
n Sections 4 and 5, where we characterize the invariant distribution of the players in the long run, in this section we will
resent a numerical analysis of the dynamics of the system. We  will report on the dynamics for values of M ∈ {1500, 15,
00, 150, 000}, and values of n ∈ {3, 4, 5, 6, 7, 8}.7,8

In each period, all players simultaneously decide where to locate themselves, except in the very first period when they
re all located randomly. We  consider noisy myopic best-replies. Each player chooses a myopic best-reply with probability

 − �, and chooses a location uniformly randomly with probability �. We  report the results for � = 0.001. When myopically
est-replying, each player takes the positions of the other players in the previous period as given and selects a position that
aximizes his payoff. When there are multiple such locations, one of them will be chosen (uniform) randomly.9

Best-response dynamics are related to a broad class of learning dynamics and evolutionary dynamics (see, e.g. Hopkins,
999). The underlying idea of considering such a plausible class of dynamics is to shed some light on the question as to
hether one should expect (boundedly rational) players to play a Nash equilibrium. If best-response dynamics converge,

t can only be at a strict Nash equilibrium. But if they exhibit endless cycling, one question to consider will be where the
ystem spends most of the time.

As we saw above, the location game is characterized by a multiplicity of equilibria (for any n > 5 in pure strategies, and
ny n > 3 if we consider mixed strategies too), and all these Nash equilibria are weak, as there are always some players who
re indifferent between their equilibrium locations and some alternative locations.10 As players choose randomly among
heir best-replies, for any equilibrium there may  be some individual players who move out of their equilibrium location,
hich may  render these equilibria unstable as other players may  be affected. In addition to this effect of the equilibria being
eak, the best-response dynamics that we consider are characterized by a small amount of noise. This prevents the system

etting stuck in simple periodic trajectories.11 The presence of noise ensures that the location dynamics will be an ergodic
arkov chain. It is then well known that their long run behavior will be described by an invariant distribution on the states

hat is reached regardless of the initial conditions of the system.
The question, then, is what outcomes one should expect in these simple linear location models when players follow a

oisy myopic best-reply. Although one should not expect perfect convergence to a weak Nash equilibrium, one possible
utcome would be that they spend most of the time near or approximating Nash equilibrium locations.

Before we will turn to an examination of some statistics of the system later in this section, we start our numerical analysis
ith a relatively close-up look at a number of representative runs of the model, examining how individual players move

round from period to period. This will also provide some insights that may  be helpful in our formal, mathematical analysis
n Sections 4 and 5.

Fig. 1 shows some representative snapshots of locations chosen by all n players over a 1000 period interval for M = 1500,
nd n = 3, 4, 6, 8, with � = 0.001. Each location chosen by each player in each period is represented by a dot. The 1000 periods
ere taken after 10,000,000 periods had passed from the beginning of each run to reduce the possible effects of the initial,

andom allocations. Time is shown on the horizontal axis, while the vertical axis shows the locations. The left-hand side
olumn shows the 1000 locations near the center for the graphs for n = 3, 4, 6 and 8, while the right-hand side column shows
he same runs, but now with the vertical axis zoomed into the most relevant parts of the strategy space for each graph to
ptimize the display of the locations.

Fig. 1 reveals some interesting features. For n = 3, the players are basically staying within a small set of locations around
he center. For n ≥ 4, we can see how the dynamics are dominated by waves of outward expansion of two clusters of players
hat are equally distanced from the center and located in the opposite sides of the center, alternated with waves of single
lusters slowly moving inward to the center. While riding the outward waves, when it comes to choosing a best-response
ll players are indifferent between these two clusters, as long as there is at least one other player in their current cluster. As

 result, the numbers involved within each of the clusters may  vary from period to period, and at some point it will happen

hat all the players locate themselves in the same cluster, and hence in the same half of the strategy space. The single cluster,
hen, starts moving step-by-step towards the center.12 Once the cluster reaches the center, there are two possibilities. Either
ll players stay together, moving to either M − 1 or to M + 1 before returning to M. Or the cluster splits into two, with some

7 We chose the values of M so that the number of intervals will be a multiple of 60, accommodating many of the Nash equilibria in the discretized system
or  the numbers of players n that we consider.

8 Note that the state space in our model (depending on the position of n players in 2M + 1 locations) is 2M+1Hn = 2M+nCn = (2M + n)!/(2M!n!), with all
lements being non-zero. Given this size of the state space, an eigenvalue analysis of such a transition matrix seems computationally unattractive.
9 We also considered a number of variants of the model. Variants with even numbers of locations, with different noise levels, with sequential moves,
here in each period one randomly chosen player decides where to locate himself, and with inertia, in which players for whom the current location is part

f  their best-response correspondence will stay put. Results for these variants, documenting the robustness of our main results, can be found in Appendix
.

10 While this is trivially true for any mixed Nash equilibrium, it is also the case in the pure strategy equilibria for any n > 3, where there are always some
layers who could deviate from an equilibrium location to any two  locations that are between two  other players without loss of payoffs.
11 It is also effective in the variant with inertia (where players stay put in case of indifference).
12 Note that during their move to the center at every step all players select the same location. That is, there is minimum differentiation even when they
re  still on their way  to the center.



150 N. Hanaki et al. / Journal of Economic Behavior & Organization 157 (2019) 145–170
Fig. 1. Locations over 1000 period interval for M = 1500, n = 3, 4, 6, 8, with � = 0.001.

players moving to M − 1 and some others to M + 1, followed by a step-by-step outwards movement of both clusters, with
varying memberships, until all players happen to choose the same side of the strategy space again. To start these waves all
that is needed is that all players are located in the same half of the strategy space.13

Note that in none of the snapshots do we see convergence to the corresponding Nash equilibrium. Instead, we  tend to see
the wrong clustering at the wrong locations and moving into the wrong direction. At first sight, the most likely candidate
to be reached by best-response dynamics is the Nash equilibrium for the case of n = 4, as it consists of exactly two clusters
of two players at locations M

2 and 3M
2 . Taking a closer look at this case provides an interesting illustration for the general
lack of convergence to equilibrium. Note that, for any n, the farthest the outward-moving waves can reach is a distance
M
2 from the center. The clusters are shattered at that point because players prefer to move to anywhere between the two

clusters rather than continue their outward movement. Thus, if this Nash equilibrium were reached, it would be shattered

13 This takes, depending on n, typically only a few periods from a random initial allocation.
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Table  1
Mean distances from the center (with standard deviations in parentheses), and NE distances, for M = 1500, 15,000, 150,000, n = 3, 4, 5, 6, 7, 8, with � = 0.001.

M = 1500

n = 3 n = 4 n = 5 n = 6 n = 7 n = 8

90% 2.0 8.0 30.0 66.0 123.7 203.7
(0.0)  (0.0) (0.0) (0.0) (0.5) (0.6)

95%  2.0 10.0 40.0 86.9 161.3 265.5
(0.0)  (0.0) (0.0) (0.3) (0.5) (0.9)

99%  2.0 15.0 65.9 139.9 247.4 409.3
(0.0)  (0.0) (0.4) (0.3) (0.8) (1.4)

NE  539 750 800 667 804 750

M  = 15, 000

n = 3 n = 4 n = 5 n = 6 n = 7 n = 8

90% 2.0 8.0 30.0 66.1 124.1 204.6
(0.0) (0.0) (0.0) (0.3) (0.4) (0.6)

95%  2.0 10.0 40.0 87.3 164.2 271.1
(0.0) (0.0) (0.0) (0.5) (0.4) (0.9)

99%  2.0 15.0 67.2 152.0 291.5 481.9
(0.0) (0.0) (0.4) (0.5) (1.4) (2.4)

NE  5392 7500 8000 6667 8036 7500

M  = 150, 000

n = 3 n = 4 n = 5 n = 6 n = 7 n = 8

90% 2.0 8.0 30.0 66.1 124.2 204.7
(0.0)  (0.0) (0.0) (0.3) (0.4) (0.6)

95%  2.0 10.0 40.0 87.5 164.6 271.9
(0.0)  (0.0) (0.0) (0.5) (0.5) (0.8)

99%  2.0 15.0 67.9 154.0 302.0 525.6
(0.0)  (0.0) (0.3) (0.5) (1.4) (3.8)
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NE  53,914 75,000 80,000 66,667 80,357 75,000

mmediately. But as Fig. 1 shows, the outward-moving clusters typically disintegrate already long before the equilibrium
ocations are reached. For other values of n the dynamics look similar, even though the Nash equilibrium configurations
re not characterized by two clusters. What is more, for any n > 4 the Nash equilibria would require some players to move
eyond the points where clusters would stop moving outwards and start disintegrating with some players moving back

nwards.
Next, what about the long-run properties in terms of the average distances of players from the center for various n? How

o they vary when we increase the number of locations, i.e., when we increase M?  To answer such questions, we now turn
o some statistics of these best-response dynamics, moving beyond these representative runs.

We analyze the myopic best-replies for 11 × T periods where T = 10, 000, 000. We  drop, again, the data from the first T
eriods to reduce the possible effects of the initial, random allocations, and keep the outcomes from the remaining 10 × T
eriods. For a given run, for each period we compute the average distance of the n players from the center, and we then
heck for that run the distances from the center below which this average distance is found 90%, 95% and 99% of the 100
illion periods. Table 1 reports these distances for n = 3, 4, 5, 6, 7 or 8 and for M = 1500, 15,000 and 150,000, with � = 0.001

hroughout. The reported mean distances (with the standard deviations in parentheses) are taken over 30 runs.
To compare with the outcomes of the noisy best-replies dynamics, Table 1 also reports the distances for the Nash equilib-

ium predictions that minimize the average distance from the center, i.e., the equilibria with as much clustering of players
n the middle as possible.14

Table 1 shows that when n = 3, regardless of the number of locations, the players are within distance 2 from the center
lmost all the time. Moving beyond n = 3, the average distance from the center increases with the number of players n. This
s true for all values of M. Focussing on M,  we note that the average distance below which the system spends time increases
nly very slightly as we move from M = 1500 to M = 15, 000, and to M = 150, 000, with these increases being detectable only
or larger values of n. Thus, for example, for M = 1500 and n = 8, we see that the distance from the center below which the

ystem (i.e., the average distance of the n players in the period concerned) spends 95% of the time is 265.5, and this increases
o only 271.9 when we increase the number of locations to 150,000 (a hundredfold increase).

14 For n = 3 this is based on the mixed strategy Nash equilibrium, and therefore we report the average distance below which the system will spend 90%
f  the time.
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We  can compare this with how the average distances in the Nash equilibria increase with the number of locations. As we
see in Table 1, the predictions of the Nash equilibria are not affected by the refinements of the strategy space in the sense that
they are simply scaled up proportionally with the number of locations and hence stay away from the median at a constant
relative distance. For example, the average distances from the center for n = 4 are 750, 7500, and 75,000 for M = 1500, 15,000
and 150,000, respectively.15

Table 1 also reflects the fact that as n increases, the average distance of the Nash equilibrium that is closest to the center
is essentially constant.16 As n increases the peripheral players get closer to the boundaries, but this is exactly offset by the
most central ones getting closer to the center, and thus the average distance stays constant. A good example of this is a
comparison of the average distance for the Nash equilibria reported for n = 4 and 8.

We can conclude that Table 1 confirms what we saw in Fig. 1, i.e., that the best-response dynamics do not converge to the
Nash equilibria.17 Our numerical analysis also shows that for any n > 2, as M,  and hence the number of locations, increases,
the players tend to spend their time farther and farther away from the Nash equilibrium predictions and within smaller
and smaller regions around the center. In other words, as we  refine the discrete strategy space, approximating a continuous
strategy space, we can get the players locating arbitrarily close to the median when they follow best-response dynamics.

Thus, the best-response dynamics seem to restore something close to the Principle of Minimum Differentiation and as a
result, the preferences of the median voter will tend to rule.

4. Long run behavior: analyzing the invariant measure with three players

With the numerical analysis presented in Section 3 in mind, in this section and in Section 5, we characterize the long-run
properties of the system. For any number of locations M and any level of noise �, the long run behavior of the location
dynamics is described by the invariant distribution �M,� of an ergodic Markov chain. The dynamics that we  observe in the
numerical analysis after a sufficiently large number of time steps, are in fact sample paths from the distribution �M,�. Our
analytical results concerning the behavior of the location dynamics are based on an asymptotic analysis (w.r.t. M and �) of
the invariant distribution �M,�. In other words, we study this distribution when the number of locations tends to infinity
and/or the level of noise is driven to zero. The asymptotic analysis is relevant for understanding the behavior of the dynamics
when the number of locations is finite but large and for positive but small levels of noise, which is precisely the setting we
are interested in here.

For the case of n = 3 players analyzed in this section, we  will let the number of locations M be fixed and drive noise
down to zero, as is a standard approach in the equilibrium selection literature. The states in which the invariant measure is
concentrated as noise goes to zero are referred to as the stochastically stable states, and correspond to outcomes that remain
stable when players make errors with a small probability.

In the remainder of this section we will characterize the stochastically stable steady states for the case of three players.
For the case of four or more players, presented in Section 5, we  will follow a somewhat different approach, explained in that
section.

4.1. Absorbing classes

It is well known that when noise is driven down to zero, the invariant distribution will concentrate on some union of
absorbing classes. A set of states is an absorbing class if we remain within the class under best-replies without noise (� = 0).
Thus, we begin by characterizing the absorbing classes of our system.

Recall that we consider a system where the center is unique and denoted by M.  The leftmost location is then 0 and
the rightmost location 2M. Let (a, b, c) denote the locations of the players, adopting the convention that a ≤ b ≤ M < c. By
symmetry, we consider, without loss of generality, the case where two players are to the left of the center and the third
player on the other side.18 The number of positions to the left of a is then a and the number of positions to the right of c
is 2M − c. If a > 2M − c it is preferable to locate to the left of a than to the right of c and conversely. If a = 2M − c these two
choices are indifferent. We  will also consider the distance between the peripheral, i.e., the most extremely located, players,
which under the above assumptions is the length of the interval [a, c], i.e., c − a. Also, a and 2M − c are the distances of the
peripheral players to the boundaries. For given M,  when a and 2M − c increase, the distance to the center decreases. We  will
denote the set of best-replies to (a, b, c) by BR(a, b, c). We will denote by BRl, BRm, BRr the best-responses of the leftmost,

middle and rightmost player respectively. We  denote by BRl

t , BRm
t , BRr

t the tth best-response of the leftmost, etc. player.19

We  denote by BRt(a, b, c), or sometimes for convenience simply BRt, the locations of the players after t periods, determined
by best-replies, starting from (a, b, c). Best-replies may be non-unique. Note that we will also order the best-reply to (a, b,

15 If, for n = 3, we consider the 99% criterion instead of the 90% reported in the table, these will be 652, 6521, and 65,213, for M = 1500, 15,000, and 150,000,
respectively.

16 Apart from some minor variances as different values of n lead to slightly different types of Nash equilibrium configurations.
17 That the best-response dynamics lead to outcomes that are in some sense the ‘opposite’ of the Nash equilibrium predictions was also observed in Pancs

and  Vriend (2007).
18 The case where all players are on the same side will be treated separately.
19 Note that BRl

t refers to the tth best-reply of the leftmost player at time t − 1, which is not necessarily the leftmost player in the initial configuration.
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) from the smallest to the largest element. Thus if BR(a, b, c) = a′, b′, c′, we have a′ ≤ b′ ≤ c′ but generally we do not have (BRl,
Rm, BRr) = (a′, b′, c′). The following proposition characterizes the absorbing classes of the system.

roposition 1. Let C = {(M − 3, M − 1, M + 1), (M − 1, M + 1, M + 3), (M,  M + 2, M + 2), (M,  M − 2, M − 2), (M − 1, M + 1, M + 1),
M − 1, M − 1, M + 1), (M − 2, M,  M + 2),} and Ck = {(M − k, M − k, M + k − 1), (M − k + 1, M + k, M + k)}. Then, C is an absorbing class,
nd Ck is an absorbing class for 1 ≤ k ≤ K, where K =: max{k|2M − (M + k − 1) > 2k−1

2 }.
roof. Immediate verification. The condition on k ensures that the players on the left will prefer location M + k to an interior

ocation. �

Although it is possible to show that C and (Ck)k=K
k=1 are the only absorbing classes, we  will not need this result. In fact, in

ur analysis we will focus on the following union of absorbing classes: Define S = C
⋃

C1
⋃

C2.

.2. Basins of attraction

If an element that is not in the absorbing class S will eventually lead to S by best replies with probability one, it is said to
elong to the basin of attraction of S. The basins of attraction of the absorbing classes play an important role in determining
heir stochastic stability. We  recall that the basin of attraction B(S) of an absorbing class S is: B(S) = {z|Prob (∃T st BRt(z) ∈ S

 t > T) = 1}).
As the following two lemmas show, a large subset of configurations is in the basin of attraction B(S) of the union of

bsorbing classes S defined above.

emma  1. Any configuration (a, b, c) where a ≤ b ≤ c ≤ M (or M ≤ a ≤ b ≤ c), i.e., with all players on the same side of the center,
s in the basin of attraction of S.

roof. We  make explicit the possible BR sequences. If a ≤ b < c ≤ M,  BR(a, b, c) = (b + 1, c + 1, + c + 1). If b < 2M − c − 2, BR2 = (c + 2,
 + 2, c + 2), which is considered below. If b ≥ 2M − c − 2, which is only possible if c = M and b ∈ {M − 1, M − 2}, these cases
orrespond to BR ∈ {(M, M + 1, M + 1), (M − 1, M + 1, M + 1)}. The first is in C1 and the second in C. If a ≤ b = c < M,  we  get (c + 1,

 + 1, c + 1), (c + 2, c + 2, c + 2), and then all the way  to (M, M,  M).  The configuration (M,  M,  M)  leads either to (M − 1, M − 1,
 + 1) or (M − 1, M + 1, M + 1), which are both in C or to (M − 1, M − 1, M − 1) and then (M,  M,  M)  or similarly to (M + 1, M + 1,
 + 1) and then (M,  M,  M).  In this case we cycle, but with positive probability we will eventually reach C from (M,  M, M).  �

emma  2. Any configuration that lies within {ω|ω ∈ [M − 3, M + 3]}  − C3 is in the basin of attraction of S.

roof. Given in Appendix B. It simply requires checking a number of configurations. �

Combined, Lemmas 1 and 2 characterize the basin of attraction B(S) of the union of absorbing classes S that is the focus
f our analysis.

.3. Stochastically stable steady states

To show that the invariant distribution will be concentrated on S, we  will use the radius-coradius theorem of Ellison
2000). The main idea behind this theorem is to associate a cost to any path of transitions. Loosely speaking, this cost is
roportional to the number of random events (i.e., choices that are not best replies) required on the path. The stochastic
tability of a set is then determined by comparing the cost of leaving its basin of attraction and the cost of entering its basin
f attraction from the outside.

The Hotelling model with noise lies within the general setting considered by Ellison (2000) since a player locates with
robability 1 − � on a best reply, and with probability � uniformly at random. In the Hotelling model, we can define a cost
unction as follows: the cost of the transition from configuration z1 to z2 is c(z1, z2) = 3 − m, where m is the number of players
n z2 who play a best reply to z1. In other words, the cost of a transition is the number of random events it requires. The cost
f a path (z1, . . .,  zt) can then be defined as

∑i=t−1
i=1 c(zi, zi+1). It can be verified that this cost function satisfies the properties

equired to use Ellison’s radius-coradius theorem.
The crucial quantities defined by Ellison (2000) are the radius and coradius of S, R(S) and CR(S) respectively. The coradius of

 basically measures the number of random events required to reach B(S) from outside S. The radius of a union of stochastically
table sets measures the random events required to leave B(S) starting from S.

The main result in Ellison (2000) is that the invariant measure is concentrated on a union of absorbing classes such that
he number of random events required to leave this set (the radius) is greater than the number of random events required
o reach it from the outside (the coradius):

heorem 1. (Ellison, 2000). In a model of evolution with noise, let � be a union of limit states. If R(�) > CR(�)  then the long
un stochastically stable set is contained in �.
We will use this theorem in order to show that the stochastically stable steady state is contained in S = C
⋃

C1
⋃

C 2. We
rst compute the radius and coradius of S.

roposition 2. Let S = C
⋃

C1
⋃

C2, then the coradius of S, CR(S) = 1.
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To see that a single random event is sufficient to enter the basin of attraction of S, consider some Ck with k > 2. To move
from such a Ck into S, it is sufficient that one player, the one who is alone on one side, relocates at random to the other side.20

Proposition 3. The radius of S, R(S) > 1.

We show that a single random event is not enough to leave the basin of attraction of S with Lemma  3.

Lemma  3. Take a configuration s ∈ S. Relocate one player. Call this configuration ω. Then there exists 0 < t < 3 such that BRt(ω)  ∈
({ω|ω ∈ [M − 3, M + 3]}  − C3)

⋃
B(S).

Proof. Given in Appendix B. It simply requires checking a number of configurations. �

Lemma  3 shows that after a single random event, we  will return to ({ω|ω ∈ [M − 3, M + 3]C3)
⋃

B(S), which by Lemma  2
is also in B(S). Consequently, any path from S to a configuration that is not in the basin of attraction of S requires at least two
random events, and hence the cost is strictly greater than 1.

Combining Propositions 2 and 3 shows that the radius R(S) is strictly greater than the coradius CR(S), and together with
the theorem in Ellison (2000) this gives us the main result for our analysis of the case of three players:

Corollary 1. The long run stochastically stable set is a subset of S = C
⋃

C1
⋃

C2. All configurations in S are such that the average
distance to the center is strictly smaller than 3, and for none of the players is the distance to the center greater than 3.

5. Long run behavior: analyzing the invariant measure with four or more players

We  now move to the analysis of cases with four or more players. As we have seen in Section 3, there is a difference in
the dynamics between the cases of n = 3 and n ≥ 4. For n = 3, as observed in the numerical analysis, the players spend almost
all their time at locations whose average distance from the center is strictly less than three. In fact, with only three players,
in the absence of random noise, the central location belongs to an absorbing class. Thus, the typical distance to the center is
bounded independently of the system size.

For n ≥ 4, instead, there are repeated waves of two-sided expansion and one-sided contraction centered around the
middle. The distance of these waves from the center is typically very small compared to the number of locations, but it is
not bounded independently of the latter. More precisely, when the number of locations increases, the maximal distance of
the waves from the center also increases but at a speed that is some orders of magnitude smaller. Thus, as the number of
locations increases, the sizes of the waves become negligible compared to the size of the system. To capture this intuition
formally, we let the number of locations grow and impose some restrictions on the level of random noise compared to the
number of locations. We  then show that the invariant measure is concentrated on the center and on some absorbing classes
close to the center.

Therefore, in the asymptotic framework presented in this section, for the case of n = 4 we will use the fact that M is large
and we will study the behavior of �M,� driving M to infinity and noise down to zero simultaneously, while imposing some
conditions on the relative speed of convergence of these quantities. Although by doing so we lose the connection to the
equilibrium selection approach, such an asymptotic analysis does capture the behavior of our system when the number of
locations is large and the noise level small.

We first provide some notation needed to state our main result.

5.1. Description and notation

We  denote by N the 2M + 1 locations indexed by {0, 1, 2, . . .,  M,  M + 1, . . .,  2M}. Let ω ∈ {0, 1, 2, . . .,  M,  M + 1, . . .,  2M}4

be a configuration, i.e., giving the locations of the four players. For convenience, we will write ω = (a * k, . . .), when the
configuration ω has k (k ≥ 3) players located at a.

We denote by ā the configuration where all players are at location a. The distance between two locations a and b is d(a,
b) = |a − b|. For a configuration ω = (a, b, c, d), we define the distance from the center M as d(ω, M)  =: maxi=a,b,c,dd(i, M).  Given a
configuration ω at date t, the configuration at t + 1 is given by the realization of the following random variables: (1) First, we
determine the number of players who do not relocate at one of their best replies. This number is given by a binomial random
variable Xt = Bin(�, 4). (2) Given the realization of Xt, we draw a variable Yt following a uniform law on all the subsets of {1,
2, 3, 4} of size Xt. If Xt = 1, each player has probability 1

4 of being selected for relocation. (3) Finally, for any element e ∈ {1, 2,
3, 4} such that e ∈ Yt, we draw its location uniformly at random. Any player who  is not drawn for random relocation, picks
each of his best replies according to a uniform probability.

This description, where we draw first the number of uniformly relocated players, then their identity, then their location,
is convenient for our proof and obviously equivalent to relocating each player uniformly at random with i.i.d. probability

�. Let us also introduce some notation for some particular subsets of configurations that will be of interest. Let A be the set
of configurations where all players are on the same side (i.e., ≥M or ≤M). Analogous to the case of three players, we note
that the classes consisting of the two states {((M − a) * 3, M + a − 1), (M − a + 1, (M + a) * 3)}, with the same restriction on a

20 Note that this applies to any configuration outside B(S), as they are all of the two on one side versus one on the other side type.
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s we saw for k in Proposition 1, are absorbing classes for the dynamics. Let us denote by �AC the set of such absorbing
lasses. Moreover, let �l

AC be the subset of such classes for which d(a, M)  < l, in other words absorbing classes containing
onfigurations that are closer than l to the center.

.2. The setting with an increasing number of locations and the main result

In the case of n = 3 players, and in the result in the previous subsection, the number of locations was fixed and the level of
oise � converged to zero asymptotically. In other words, we studied the behavior of the invariant distribution �N,�, holding

 fixed and taking the noise � down to zero. From now on, we  will analyze the behavior of the invariant distribution �N,�
hen N goes to infinity and � goes down to zero. We  will put some restrictions on the level of noise compared to the number

f locations. To this effect, assume that the level of noise in a Hotelling model with N locations is �N.21 The invariant measure
N,�N

will be denoted simply by �N. Our main result characterizes the asymptotic behavior of �N under some assumptions
n the speed at which �N goes down to zero as N increases.

heorem 2. In the Hotelling model with N locations, let IN = [M − lN, M + lN] be an interval centered at M, of length 2lN and let
IN)C be the complement of the interval in {0, . . .,  2M}, that is (IN)C = {0, . . .,  2M} − I. Let SN be a subset of locations such that

 ∈ SN ⇔ ω ∈ [M − 3, M + 3]
⋃

�lN /2
AC ⊂ IN . Let BN be any set of states BN ⊂ (IN)C such that card(BN) ≤ card(SN). Suppose that

he Condition 1 below is verified, then lim
N→∞

�N (BN )
�N (SN )

= 0.

ondition 1. There exist constants  ̨ ∈ ]0, 1
7 [ and ˇM <∞ and N0 such that for every N ≥ N0, lN = N˛ and the level of random

oise �N verifies �N = N−ˇ, where  ̌ ∈ [1, ˇM].

Theorem 2 states that when we consider a certain set of states SN included in a ‘small’ (some orders of magnitude smaller
han N) interval around the center, IN, any set containing the same number of locations as SN (or a smaller number) and that
s located outside of the interval IN, i.e., farther from the center, has an invariant measure that is vanishingly small compared
o the measure of SN when the number of locations is large. In particular, it follows from this result that states close to the
enter have more weight than the Nash equilibrium, and also more weight than absorbing classes farther from the center.

How demanding are assumptions under which this asymptotic result holds? The most important restriction imposed by
ondition 1 concerns the speed at which �N goes down to zero as the number of locations increases, since we  must have
N ≤ 1

N . The upper bound of the size of the interval lN is not a demanding condition in our context. Since we  want to show
hat the invariant measure is concentrated close to the center, we  are only interested in intervals lN that are small compared
o the total number of locations N. The lower bound of the size of lN and the lower bound on the noise are not very restrictive.
ogether they guarantee that �2

N ≥ plN for any 0 < p < 1 when N is large. We  should note that Condition 1 is a sufficient but
ot necessary condition.

.3. Analysis of the dynamics of the system and intuition for our results

Before turning to the proof of Theorem 2 itself, we  will provide some intuition for the result based on the behavior of
he system’s dynamics.22 A central part of our proof is to show that starting from the center, we  will return to it with high
robability. As we have seen in the numerical analysis shown in Fig. 1, starting from the center, in absence of random noise,
he dynamics would be as follows. If two players locate at M − 1 and two  at M + 1, we move farther away from the center.
owever, there is also a positive probability that all players locate on the same side. As we  have established previously, the
ynamics will then bring them back to the center. Similarly, in the next step, all players may  locate on M − 2 and M + 2 but
gain, with positive probability, they may  all end up on the same side. In each period, we can move farther away from the
enter but there is also a positive probability that all players end up on the same side. The probability that the latter does
ot occur in a long sequence of time steps is very small.23 This description of the dynamics ignores the possibility of random
elocations. However, with high probability only few random relocations occur (as shown in Lemma 4 in Appendix C.1). This
akes the dynamics somewhat more complex but not significantly different from what is described above.
An occasional random relocation may  lead to various configurations within the interval I. However, we show (Lemma  5 in

ppendix C.2) that the configurations we reach are always either contracting, in the sense that best replies bring us closer to
he center, or, if the state is such that best replies can be farther away from the center with positive probability, there is also a

ositive probability that all players end up on the same side. This is because such configurations involve indifference on the
art of some players. The typical, but not unique, example of such a state is the one described previously where two players
re at M − k and two players at M + k. Thus, we can only move far away from the center if we pass through configurations of

21 Later on, when N is fixed, for convenience we will omit the index N, writing simply �.
22 Note that in what follows and also in the Proofs we will give later, we  will often write I instead of IN and IC instead of (IN)C in order to simplify notation
hen  N is fixed.

23 The conditions we  impose in Theorem 2 guarantee that the probability of not returning in this way is in fact smaller than the probability of a random
elocation.
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the second type a large number of times. However, each time we do, there is a positive probability that all players end up
on the same side and the probability of avoiding this event for a long time is very small.

So far, we  have ignored the possibility of entering one of the absorbing classes in �l
AC . This case is analyzed separately

in Appendix C.3. If such a class is reached, we remain there for a long time. The most probable way  to exit is with a single
random relocation. When a single random relocation occurs, with positive probability we move to another absorbing class
farther from the center, or, also with positive probability, we  enter a state where all players are on the same side. Again, it is
highly unlikely to have a long sequence of realizations where we  move farther away from the center without an occurrence
of an event where all players end up on the same side.

Finally, the proof also involves showing that with a single random relocation we can move back from any state to the
center. This is the object of Appendix C.5.

We now turn to the proof of Theorem 2 itself. In what follows, we often do not need to establish exact values of quantities
but only their order of magnitude with respect to N when N is large. We  will thus use the notation g(N) = O(f(N)) if 0 <
lim

N→∞
f (N)
g(N) < ∞.  Moreover, from now on we will write l for lN and � for �N.

Our proof will make use of the following property of the invariant distribution of a Markov chain: �(S) = �(b)E[V(S, b,
b)], where V(S, b, b) is a random variable that counts the number of times that the process reaches an element in S before it
reaches b, starting from state b.24

To bound the value of this expectation, we will bound, on the one hand the expected number of times we  return to S
starting from S, and on the other hand the probability of reaching S from a state in Ic. These two  bounds are the object of the
following two  propositions:

Proposition 4. The probability of not returning to the set S when starting from a configuration in S is bounded above by
1 − q = O

(
�
l2

)
.

Proposition 5. Let b ∈ IC, the probability of reaching S from b without passing again through b is bounded below by q̃ = O(�).

The event V(S, b, b) = k, requires first that we move from b ∈ IC to S without passing again through b, which occurs with
a probability greater than q̃,  and then that starting from S, we return again to S exactly k − 1 times before reaching b again.
Due to Propositions 4 and 5, we can bound the expectation as follows: E[V(S, b, b)] =

∑∞
k=1q̃kqk(1 − q) = q̃E[Z], where Z is

a geometric law of parameter q. Thus E[Z] = 1
1−q and E[V(S, b, b)] = q̃

1−q = O
(

�l2
�

)
. The number of elements in the set S is

at most l, because we can index states in �l
AC by the location of the three players who are at the same location. Therefore if

card(B) ≤ card(S) ≤ l, lim
N→∞

�N (S)
�N (B)

= lim
N→∞

�N (S)∑i=card(B)

i=1
�N (b)

= lim
N→∞

2lE[V(S, b, b)] = ∞.  �

The lengthy proofs of Propositions 4 and 5, which are based on a number of Lemmas, have been placed in Appendices C.4
and C.5.

5.4. Extension to more than four players

In this section, we have provided a proof for the case n = 4 players. For cases n > 4, the dynamics starting from the center

are similar: we move away from the center as long as all players do not locate on the same side. With probability
(

1
2

)n−1
all

players end up on the same side and we return to the center. It would seem possible to generalize the proof regarding the
probability of returning to the center to the case n > 4. However, proving that a single random relocation takes us back from
any location to the center becomes less manageable, because there are a large number of cases to consider. We  conjecture
that the behavior of the system for n > 4 is similar to the case n = 4, as is suggested by the numerical analysis.

Analyzing the dynamics also allows us to understand why  the average distance to the center is larger when we  increase
the number of players. Indeed, the probability that all players end up on the same side and then return to the center is

pn =:
(

1
2

)n−1
at each time step, and thus the expected value of the first time that this occurs is 1/pn.

5.5. Stochastic stability of Nash equilibria

While we are not able to show, in the standard setting for equilibrium selection (for given n ≥ 4 and with noise driven
down to zero) that the stochastically stable steady states concentrate around the center, in this subsection we  show that the
pure strategy Nash equilibria of the model cannot be part of any of the stochastically stable steady states for any n ≥ 4.
Theorem 3. Suppose that there are n ≥ 4 players and that the number of locations N is fixed and satisfies N 
 n.25 Then, no pure
strategy Nash equilibrium is included in the set of stochastically stable steady states as the noise goes to zero.

24 See, e.g., Kemeny and Snell (1960).
25 Note that the condition N 
 n is required only to ensure that the number of locations between the players’ distinct equilibrium positions will not be

too  small. If n = 4, we  also assume that N is not a multiple of 4.
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We  show that in a model without random noise, starting from any Nash equilibrium, there is a positive probability of
eaching an absorbing state in �AC, implying that the Nash equilibrium cannot belong to another stochastically stable steady
tate. The key to proving the result is that the Nash equilibria are weak. Players are indifferent between their location in the
ash equilibrium and several other locations. Therefore, with positive probability they can move in such a way  that a fairly

arge interval in the market is left unoccupied. In the next step, all players will prefer to locate within this interval and they
ill all end up on the same side of the center.

The proof is given in Appendix D. The analysis shows that when n ≥ 4, the pure strategy Nash equilibria of the Hotelling
odeling cannot be selected under ‘trembling hand’ dynamics. While we do not have a proof for this, we conjecture that

he stochastically stable steady states will be the elements of �AC. However, some elements in �AC are close to the center,
thers are not. While we expect the invariant measure to place more weight on the elements in �AC that are closer to the
enter when the number of locations is large, the distinction becomes sharp only when we look at the asymptotic behavior
ith respect to the number of locations, as we showed earlier in Section 5.

. Welfare analysis

In this section we analyze the welfare consequences of the best response dynamics relative to the Nash equilibrium
rom the point of view of voters for n ≥ 3. Here we  take the average distance of voters from the player located closest to
hem, relative to the total number of locations, as a measure of a welfare. The larger the average distance, the more electoral
nhappiness, and the lower the welfare of the voters.

In the case of n = 3, in the mixed strategy Nash equilibrium the lower bound for the average distance for the voters
rom the closest player is 3/32, which happens when the three players are located equally distanced on 1/4, 1/2, and 3/4
f the interval [0, 1]. In the case of n > 3, as noted in Section 2, in any pure strategy Nash equilibrium, players are located
ymmetrically in two sides of the center and are relatively uniformly spread across the interval, depending on the number
f players (see Section 2 for details). The upper bound for any interval between players is 2/n,  whereas the upper bound for
he spaces beyond the peripheral players is 1/n.  This means that the average distance of voters from the closest player is (at

ost) 1/(2n). Thus, for n = 4 the average distance will be equal to 1/8, while the average distance will get smaller and smaller
s n increases beyond 4.

We  can compare these average distances for the voters from the closest player in the Nash equilibria with the corre-
ponding distances under the best response dynamics. Recall that, under the best response dynamics, as we observed in
ig. 1, in case of n = 3, the three players are essentially clustered in the center all the time. Thus, the average distance for
oters from the closest player is 1/4 of the total number of locations.

In case of n > 3, the best response dynamics generate waves of outward expansions of two  clusters of players equally
istanced from the center and inward contractions of one clusters of all players who  are all on the same side of the center.
et us denote d ∈ [0, 1/2] as the distance from the center relative to the total number of locations. When the players are split
nto two clusters of players that are symmetrically located on both sides of the center with some distance d from the center,

he average distance of the voters from the closest player is
(

1
2 − d

)2 + d2. As we  noted in Section 2, the upper bound for the
utward waves is d = 1/4. Thus, in this type of situation with two clusters, the average distance for the voters varies from 1/8
when d = 1/4) to 1/4 (when d = 0). When, instead, all the players are clustered in the same location that is some distance d

rom the center, the average distance for the voters is
(

1
2 − d

)2
/2 +

(
1
2 + d

)2
/2. This distance varies between 1/4 (when all

he players are in the center, i.e., d = 0) and 5/16 (when all the players are at d = 1/4, the upper bound for the outward waves).
Thus, at any moment during the best response dynamics the theoretical lower bound for the average distance for the

oters is 1/8. Averaging over time means that the average distance for the best response dynamics will be strictly greater
han 1/8. What is more, we showed in Section 5 that when we let the number of locations N go to infinity, under best response
ynamics we see the players being located arbitrarily close to the center (where d = 0), implying that the average distance
or the voters will be 1/4.

In other words, from a welfare point of view this means that the voters are strictly worse off under the best response
ynamics than in any Nash equilibrium, and this is true for any n ≥ 3.

. Concluding remarks

We  considered a linear location model (Hotelling, 1929) in which players follow noisy myopic best-replies. We  asked
hat the likely configurations are in terms of numbers of players in each location in such a case.

We analyzed numerically how the average distance from the center depends on the number of players n and the number
f locations 2M + 1, showing that by refining the discrete strategy space we can get the players locate arbitrarily close to the
enter almost all the time.
In our formal, mathematical analysis we proved, in the case of n = 3 players, that all the players are located in close
roximity of the center in the stochastically stable steady states. For the case of n = 4 we proved that the players will tend to
e located near the center if the noise is small (in a sense made precise) relative to the number of locations. The logic of the
roof for n = 4 appears applicable to any n > 4 as well.
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Although our analyses show that we do not necessarily always have all players located precisely in the center, and thus
we do not always have the minimum differentiation as the Principle of Minimum Differentiation would suggest, our analyses
suggest that, in contrast to the Nash equilibrium configuration for any n ≥ 3, if players are myopic and adaptive we may  tend
to observe outcomes that conform rather closely to the Principle of Minimum Differentiation, with the difference becoming
negligible as the space is refined and approximates a continuum. Thus, we  restored Hotelling’s principle for this class of
boundedly rational players, and provided a possible explanation for the relatively common perception that decision makers
in a wide range of situations tend to cater to the median voter even when there are more than two  players: The return of
the median voter.

As mentioned already in Section 1, and emphasized by Hotelling (1929) to start with, interpreting the location model as
one of electoral competition is only one of the many possibilities, and the Principle of Minimum Differentiation applies to
a wide range of situations of players competing in either discrete or continuous strategy spaces. Thus, our analysis of the
best-response dynamics seems relevant in particular also for market dynamics, with the firms competing e.g. in geographical
space or product characteristics space.26

Focussing on geographical space, our welfare analysis of Section 6 would apply to the total travel distance between the
locations chosen by the firms and the preferred locations of the consumers. As Eaton and Lipsey (1975) already indicated, one
important aspect of the multiplicity of the Nash equilibria in the Hotelling model is that these travel costs may  differ from
equilibrium to equilibrium. Our analysis adds a new dimension to this, as the best-response dynamics lead to outcomes that
stand in stark contrast to all these Nash equilibria. It is not just that we  do not get perfect convergence to the Nash equilibria.
What we see is that these equilibria are not even approximated, as the system moves into other directions, with minimum
differentiation quickly emerging. As our analysis shows, this implies an important welfare loss as less differentiation means
substantially increased travel costs compared with any of the Nash equilibria.

Thus, to the extent that players may  be inclined to adopt behavior resembling myopic best-replies, our analysis suggests
that from a policy (welfare) point of view it may  be important to look beyond an equilibrium analysis of such models.

Appendix A. Robustness checks for numerical analysis

In this appendix we report the numerical analysis for variants of the basic setup in which we consider (1) an even number
of locations, (2) other values for the probability of random moves, (3) non-simultaneous moves, and (4) inertia in the location
choice when players cannot find a strictly better location.

A.1 Even number of locations

When there is an even number of locations, there is no possibility for the system to converge to the center in the sense
that the median is right in-between the two central locations. For example, with N = 3002 locations (indexed by {0, 1, 2, . . .,
3001}, the median M would be at 1500.5, which is not a location that can be chosen by the players. This is why we focused
our analysis in the main text on the case of odd numbers of locations. But it may  nevertheless be interesting to see how
the dynamics may  differ in the case of even numbers of locations. Table 2 reports the mean distances from the center (with
standard deviations in parentheses) with some even numbers of locations.27 Compared to the case with the odd numbers
of locations reported in Table 1, the mean distance is substantially smaller, especially for larger n.

As is illustrated for the case of M = 1500.5 in Fig. 2, this is related to some qualitative differences in the best-response
dynamics. Note that there is a difference in speed of the outward movements in Fig. 1 (with an odd number of locations) and
Fig. 2 (with an even number of locations), this being lower than in the case of an odd number of locations. Recall from our
main analysis that in the case of an odd number of locations the players would repeatedly approach the median M together.
Once there, they faced two equally attractive locations, one immediately to the left and one immediately to the right. The
players would, then, be likely to split into two smaller groups, starting their steadily outward movement, one location for
each time-step. The outward movement continues until the two-group configuration is shattered, which typically happens
randomly as each player chooses randomly between the two sides. With an even number of locations, however, there is no
such steadily outward movement. There is no median location available, and if all players are located immediately to the
left of the median, then the unique best-response is the location immediately to the right of the median, and the other way
around. Alternatively, the players may  find themselves in an absorbing class similar to those at the end of Proposition 1, with

two groups of players located approximately symmetrically around the center. In either case their distance to the center
is constant. The slow outward movement that we  observe with an even number of locations is due to individual random
moves plus subsequent best-replies, typically resulting in some small one-off outward movement.

26 Firms may  compete in other dimensions too. For example, Ewerhart (2014) discusses competition between professional forecasters with reputational
concerns.

27 To compute these distances to the center we  treat the two  nearest locations as having a distance of 0.
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Table  2
Mean distances from the center (with standard deviations in parentheses) with even numbers of locations, n = 3, 4, 5, 6, 7, 8, with � = 0.001.

M = 1500.5

n = 3 n = 4 n = 5 n = 6 n = 7 n = 8

90% 2.0 4.0 5.1 7.0 8.0 9.0
(0.0)  (0.0) (0.3) (0.0) (0.0) (0.0)

95%  2.0 6.0 7.0 9.0 10.0 12.0
(0.0)  (0.0) (0.0) (0.0) (0.0) (0.2)

99%  2.0 10.0 12.1 15.0 18.4 22.0
(0.0)  (0.0) (0.3) (0.2) (0.5) (0.2)

M  = 15,000.5

n = 3 n = 4 n = 5 n = 6 n = 7 n = 8

90% 2.0 4.0 6.0 7.0 8.0 9.0
(0.0)  (0.0) (0.3) (0.0) (0.0) (0.0)

95%  2.0 6.0 7.0 9.0 10.4 12.0
(0.0)  (0.0) (0.2) (0.0) (0.5) (0.0)

99%  2.0 10.0 12.9 16.0 19.5 24.0
(0.0)  (0.0) (0.4) (0.0) (0.5) (0.6)

M  = 150,000.5

n = 3 n = 4 n = 5 n = 6 n = 7 n = 8

90% 2.0 4.0 6.0 7.0 8.0 9.0
(0.0)  (0.0) (0.0) (0.0) (0.0) (0.0)

95%  2.0 6.0 7.0 9.0 10.6 12.0
(0.0)  (0.0) (0.2) (0.0) (0.5) (0.0)

99%  2.0 10.0 13.0 16.0 19.7 24.1
(0.0)  (0.0) (0.0) (0.0) (0.5) (0.6)

Fig. 2. Locations over 1000 period interval for M = 1500.5, n = 3, 4, 6, 8, with � = 0.001.
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Table  3
Mean distances from the center for 99% of time (with standard deviations in parentheses) for various �, M = 1500, 15, 000, 150, 000, n = 3, 4, 5, 6, 7, 8.

M = 1500

n = 3 n = 4 n = 5 n = 6 n = 7 n = 8

� = 0.01 336.3 286.6 252.0 227.0 208.0 191.0
(0.5) (0.5) (0.0) (0.2) (0.0) (0.0)

� = 0.001 2.0 15.0 65.9 139.9 247.4 409.3
(0.0) (0.0) (0.4) (0.3) (0.8) (1.4)

� = 0.0001 2.0 14.0 61.0 138.9 283.7 522.3
(0.0) (0.0) (0.0) (0.4) (1.0) (1.7)

� = 0.00001 2.0 14.0 60.9 138.9 288.7 534.8
(0.0) (0.0) (0.3) (0.4) (1.5) (2.3)

� = 0.00000 2.0 14.0 60.9 138.9 288.9 495.2
(0.0) (0.0) (0.3) (0.3) (1.0) (82.0)

M  = 15,000

n = 3 n = 4 n = 5 n = 6 n = 7 n = 8

� = 0.01 3351.8 2838.1 2445.6 2144.6 1909.8 1721.5
(2.7) (1.1) (1.2) (0.9) (0.8) (0.7)

� = 0.001 2.0 15.0 67.2 152.0 291.5 481.9
(0.0) (0.0) (0.4) (0.5) (1.5) (2.4)

� = 0.0001 2.0 14.0 61.0 139.7 287.2 567.5
(0.0) (0.0) (0.0) (0.5) (1.1) (2.6)

� = 0.00001 2.0 14.0 60.9 139.0 288.9 583.5
(0.0) (0.0) (0.3) (0.4) (1.0) (2.8)

� = 0.00000 2.0 14.0 60.9 138.9 288.9 585.8
(0.0) (0.0) (0.3) (0.3) (1.0) (3.0)

M  = 150,000

n = 3 n = 4 n = 5 n = 6 n = 7 n = 8

� = 0.01 33514.1 28354.9 24382.7 21323.0 18942.9 17054.1
(25.7) (10.7) (12.2) (8.1) (7.1) (7.9)

� = 0.001 2.0 15.0 67.9 154.0 302.0 525.6
(0.0)  (0.0) (0.3) (0.5) (1.4) (3.8)

� = 0.0001 2.0 14.0 61.0 139.7 287.7 569.3
(0.0)  (0.0) (0.0) (0.5) (1.1) (2.9)
� = 0.00001 2.0 14.0 60.9 139.0 289.0 583.8
(0.0)  (0.0) (0.3) (0.4) (1.0) (2.6)

� = 0.00000 2.0 14.0 60.9 138.9 288.9 585.8
(0.0)  (0.0) (0.3) (0.3) (1.0) (3.1)

A.2 Other levels of noise in the myopic best reply

In our main analysis we considered the probability of random choice to be � = 0.001. In this appendix, we consider
� ∈ {0.01, 0.001, 0.0001, 0.00001, 0.00000} to see the limiting results as we reduce the error rate. We  concentrate here on
odd numbers of locations and simultaneous moves. Table 3 reports the average distance below which the system will spend
99% of the time. As the table clearly shows, with � = 0.01, a much higher noise level than the � = 0.001 used in our main
analysis, the basic, dispersing effect of random choices starts to dominate and as a result the distance from the center would
increase substantially. But considering lower noise levels than � = 0.001 does not qualitatively change the picture of our main
analysis.

A.3 Non-simultaneous move

In the main text we considered simultaneous, noisy best-responses, where all players decide their location simultaneously
in each period. We  now relax this assumption and consider the case where in each period, one randomly chosen player
decides about his location. In order to keep number of decisions being made the same as with the simultaneous move case,
we ran the model n times as many time steps as in our main analysis with simultaneous moves, such that the expected

number of decisions per player is the same in both variants.28

Table 4 shows the results for this variant. Compared to the simultaneous move case, the average distance is higher,
especially for higher values of M.  This is due to the following difference with our main analysis. With simultaneous moves,

28 Thus, the analysis here is based on the 11 × T periods with T = 10, 000, 000 × n, where n is the number of players, and each player is still making, on
average, 11 × 10 millions decisions. As before, we drop the data from the first T periods and use the data for the remaining 10 × T periods.
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Table  4
Mean distances from the center (with standard deviations in parentheses) when one randomly chosen player moving at a time for M = 1500, 15, 000, 150,
000,  n = 3, 4, 5, 6, 7, 8. � = 0.001.

M = 1500

n = 3 n = 4 n = 5 n = 6 n = 7 n = 8

90% 3.0 9.0 31.0 116.6 394.1 670.0
(0.0)  (0.0) (0.0) (0.5) (0.6) (0.2)

95%  4.0 11.0 40.0 152.0 491.2 726.0
(0.0)  (0.0) (0.0) (0.0) (0.8) (0.0)

99%  5.0 17.0 66.0 235.4 676.4 777.1
(0.0)  (0.0) (0.2) (0.5) (0.6) (0.3)

M  = 15, 000

n = 3 n = 4 n = 5 n = 6 n = 7 n = 8

90% 3.0 9.0 31.0 118.0 426.2 1280.3
(0.0)  (0.0) (0.0) (0.0) (1.0) (3.8)

95%  4.0 11.0 40.6 155.3 563.3 1677.6
(0.0)  (0.0) (0.5) (0.5) (1.2) (5.5)

99%  5.0 18.0 70.9 281.8 968.1 2607.0
(0.0)  (0.0) (0.5) (1.5) (3.8) (11.6)

M  = 150, 000

n = 3 n = 4 n = 5 n = 6 n = 7 n = 8

90% 3.0 9.0 32.0 120.7 438.2 1306.1
(0.0) (0.0) (0.0) (0.5) (1.3) (4.3)

95%  4.0 11.8 42.1 162.6 594.5 1775.2
(0.0) (0.4) (0.3) (0.7) (2.5) (8.1)
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99%  8119.8 622.5 2953.5 4922.6 6380.7 7482.5
(1629.7) (545.7) (865.6) (650.0) (533.1) (499.0)

or any random mistake the players can adjust their location choices immediately. But without simultaneous moves this
s different. A single random move can make the average distance from the center quite large, and it may  take some time
efore the randomly re-located player is selected again to correct his choice. Thus, for any given noise level, the effect of the
andom mistakes is much more prolonged than with simultaneous moves. As we saw already in Table 3, for too high noise
evels we get substantially greater distances from the center. To illustrate further that it is indeed the prolonged effect of
he noise that causes these distances to increase with non-simultaneous moves, we  computed for this variant the distances
rom the center below which the system will spend 99% of the time with a noise level of � = 0.0001 instead of � = 0.001. This
educes the average distances drastically.29

.4 Presence of inertia

The reason for the instability of Nash equilibria was  that they are weak in the sense that players were indifferent between
he equilibrium locations and those located between equilibrium locations as long as others remain in their equilibrium
ocations. Therefore, we consider the role of inertia. That is, we  analyze the dynamics if players simply choose to stay put
n case there is no location that is strictly better than their current location. Otherwise the behavior is the same as in our

ain analysis, i.e., the players choose a best-reply and choose randomly among their best-replies if there is more than
ne.

Table 5 shows the results for an odd number of locations and simultaneous moves, which we  can compare with Table 1.
s we can see, inertia does not change the picture, and thus the lack of inertia in our main analysis was not crucial for our
esults. This is due to the fact that the dynamics will normally never reach any of the Nash equilibria.

ppendix B. Proofs for the three player case

.1 Lemma 2
roof. Because we have shown that when all the three players are on the same side (AOS, for ‘all one side’), we  are in B(S),
e consider the remaining cases.

29 For n equal to 3, 4, 5, 6, 7 and 8 these distance would become 4.0, 15.3, 60.1, 241.4, 976.3 and 3582.8 respectively, for M = 150, 000.
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Table  5
Mean distances from the center (with standard deviations in parentheses) in presence of intertia for M = 1500, 15, 000, 150, 000. n = 3, 4, 5, 6, 7, 8, with
� = 0.001.

M = 1500

n = 3 n = 4 n = 5 n = 6 n = 7 n = 8

90% 2.0 8.0 30.0 66.0 123.7 203.8
(0.0)  (0.0) (0.0) (0.0) (0.5) (0.7)

95%  2.0 10.0 40.0 86.9 161.3 265.5
(0.0)  (0.0) (0.0) (0.3) (0.5) (0.9)

99%  2.0 15.0 65.9 139.9 247.5 409.6
(0.0)  (0.0) (0.45) (0.3) (0.8) (1.4)

M  = 15,000

n = 3 n = 4 n = 5 n = 6 n = 7 n = 8

90% 2.0 8.0 30.0 66.1 124.1 204.6
(0.0) (0.0) (0.0) (0.3) (0.4) (0.5)

95%  2.0 10.0 40.0 87.3 164.3 271.1
(0.0) (0.0) (0.0) (0.5) (0.5) (0.9)

99%  2.0 15.0 67.2 152.0 291.5 471.7
(0.0) (0.0) (0.4) (0.5) (1.5) (2.3)

M  = 150,000

n = 3 n = 4 n = 5 n = 6 n = 7 n = 8

90% 2.0 8.0 30.0 66.1 124.3 204.7
(0.0) (0.0) (0.0) (0.4) (0.5) (0.5)

95%  2.0 10.0 40.0 87.5 164.6 272.0
(0.0) (0.0) (0.0) (0.5) (0.5) (0.8)

(

(

99%  2.0 15.0 67.9 154.0 302.2 526.9
(0.0) (0.0) (0.3) (0.5) (1.7) (3.3)

There are 19 cases that we need to consider (up to symmetry). And, for each case, we will show the best response path
either reaches the state where all the players are on the same side AOS or S.

(i) [M − 3, M − 3, M + 3] → either
• [M − 4, M − 4, M − 2] ∈ AOS
• [M + 4, M + 4, M − 2] → [M − 1, M − 1, M + 3], which will be considered below (xi)
• [M − 4, M + 4, M − 2] → either

- [M − 5, M − 1, M − 5] ∈ AOS
- [M − 3, M − 1, M + 5] → [M − 2, M − 4, M]  ∈ AOS

(ii) [M − 3, M − 2, M + 3] → either
• [M − 3, M − 4, M − 1] ∈ AOS
• [M − 3, M + 4, M − 1] → [M − 2, M,  M − 4] ∈ AOS

(iii) [M − 3, M − 1, M + 3] → either
• [M − 2, M − 4, M]  ∈ AOS
• [M − 2, M + 4, M]  → [M − 1, M − 3, M + 1] ∈ S

(iv) [M − 3, M,  M + 3] → either
• [M − 1, M + 4, M + 1]→ either [M,  M + 2, M − 2] ∈ S or [M + 2, M + 2, M]  ∈ S
• [M − 1, M − 4, M + 1]→ either [M + 2, M + 2, M]  ∈ S or [M + 2, M − 2, M]  ∈ S

(v) [M − 3, M − 3, M + 1] → [M + 2, M + 2, M − 2] to be considered below (xiv)
(vi) [M − 3, M − 2, M + 1] → [M + 2, M + 2, M − 1] ∈ S

(vii) [M − 3, M − 2, M + 2] → [M + 3, M + 3, M − 1] considered above (v)
viii) [M − 3, M − 1, M + 2] → [M + 3, M + 3, M]  ∈ AOS
(ix) [M − 3, M,  M + 1] → [M + 2, M + 2, M + 1] ∈ AOS
(x) [M − 3, M,  M + 2] → [M + 3, M + 3, M + 1] ∈ AOS

(xi) [M − 3, M + 1, M + 1] → [M,  M − 2, M − 2] ∈ S
(xii) [M − 3, M + 1, M + 2] → [M,  M + 3, M + 2] ∈ AOS
xiii) [M − 3, M + 2, M + 2] → [M + 1, M − 2, M − 2] ∈ S

(xiv) [M − 2, M − 2, M + 2] → either

• [M − 3, M − 3, M − 1] ∈ AOS
• [M − 3, M + 3, M − 1] considered above (iii)

(xv) [M − 2, M − 1, M + 1] → either
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• [M − 2, M + 2, M]  ∈ S
• [M + 2, M + 2, M]  ∈ S

(xvi) [M − 2, M − 1, M + 2] → either
• [M − 2, M + 3, M]  considered above (x)
• [M − 2, M − 3, M]  ∈ AOS

xvii) [M − 2, M,  M + 1] → either
• [M − 1, M + 2, M + 1] considered above (xv)
• [M,  M + 2, M − 2] ∈ S

viii) [M − 2, M + 1, M + 1] → [M − 2, M − 2, M]  ∈ S
xix) [M − 1, M,  M + 1] → either

• [M − 1, M − 2, M + 1] considered above (xv)
• [M − 1, M + 2, M + 1] considered above (xv) �

.2 Lemma 3

roof. Let s = (a, b, c) ∈ S, and consider all possible cases.

First case, we relocate the middle player b: If he is relocated in [0, M − 4], then BRr = a + 1, BRm = c + 1 and the best reply of
the left player is a − 1 or c + 1. We  are in {ω|ω ∈ [M − 3, M + 3]}  − C3 unless c = M + 3 or a = M − 3. In the first case s = (M − 1,
M + 1, M + 3) and BR = (M − 2, M,  M + 4) but then BR2 = (M − 3, M − 1, M + 1) ∈ S. In the second case s = (M − 3, M − 1, M + 1)
and BR2 = (M − 2, M,  M + 2) ∈ S. The case where he is relocated on the right is identical by symmetry.
Second, we relocate the rightmost player c: If we relocate him on the left we are in [0, M].  If he is relocated on [M + 4, 2M],
then BR = (a − 1, b − 1, b + 1). This is in [M − 3, M + 3] − C3 unless a = M − 3. But then s = (M − 3, M − 1, M + 1) and BR = (M − 4,
M − 2, M)  ∈ [0, M].
Third, we relocate the leftmost player a: If he is relocated in [0, M − 4], then BRr = b + 1, BRm = c + 1 and BRl is either b − 1
or c + 1. We  are in {ω|ω ∈ [M − 3, M + 3]}  − C3 unless c = M + 3. If this is the case s = (M − 1, M + 1, M + 3) and BR = (M, M + 2,
M + 4) ∈ [M,  2M]. If we relocate the leftmost player at a in [M + 4, 2M], then BRl = c − 1, BRm = b − 1 and BRr is either c + 1 or
b − 1. We  are in [M − 3, M + 3] − C3 unless c = M + 3 but in this last case, BR = (M + 2, M,  M)  ∈ [M,  2M].
Finally, we need to check that we cannot get to C3 by relocating a single player in a configuration s ∈ S. Indeed, we need to
have two players at M − 3 or at M + 3. Consider s = (M − 1, M + 1, M + 3) and (M − 3, M − 1, M + 1). We  cannot get from these
to C3 by moving a single player. �

ppendix C. Proofs for the four player case

.1 Typical sequences: bounding the probability of rare events

Scenarios where two or more random relocations occur close to each other are very unlikely. It will be useful to bound
he probability of such an event to show that it is very small. This is the objective of Lemma  4. When we study the dynamics,
e will then condition on the fact that there is at most one random relocation in a given number of periods.

efinition 1. We  will say that a sequence is typical if it contains at most one random relocation and this relocation is not
ocated in I.

emma  4. The probability that a sequence of length l is not typical is at most O
(

�l2

N

)
.

roof. The probability of at least two random relocations in a sequence of length l is
∑k=4l

k=2 �k(1 − �)4l−kC4l
k

≤
∑k=4l

k=2 �k(4l)k =
(4l�)2−(4l�)4l+1

1−4l� = O(�2l2). Note that we have 4l because at each date, there are four players who  each relocate with probability

. The probability that there is exactly one random relocation and that it is in I is smaller than 4l� l
N = O

(
l2�
N

)
. �
.2 Best reply dynamics starting from a state close to the center

In what follows, a state will be ω = : (a, b, c, d) with a ≤ b ≤ c ≤ d and l(ω) = d − a.
Lemma 5 tells us that starting from a configuration close to the center and assuming the sequence is typical, best replies

ill either take us closer to the center than before, or, if there is a positive probability of moving farther away from the
enter, there is also a positive probability that all the players end up on the same side, or, as a final possibility, we may  enter
n absorbing class close to the center.
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Lemma  5. Assume that the evolution is ‘typical’ as in Definition 1 above. Any state ω ∈ I − S belongs to
⋃i=4

i=1�i where:

• If ω ∈ �1,Then P((BR4(ω)
⋃

BR5(ω)) = x̄ ∈  I) ≥ p (p ≥ 1
83 )and if this does not occur, d(BR2(ω), M)  ≤ d(ω, M)  + 2.

• If ω ∈ �2, then d(BR(ω), M)  ≤ d(ω, M)  and l(BR(ω)) ≤ l(ω), with at least one strict inequality.
• If ω ∈ �3, then BR(ω) is at the same distance to the center as ω and BR(ω) ∈ �1

⋃
�2.

• If ω ∈ �4, then BR2(ω) belongs to an absorbing class in �l
AC with l < d(ω, M)  + 2.

Proof of Lemma  5.

First, we prove that Lemma  5 holds at a date t where no random perturbation occurs. Let us prove that any state (a, b, c,
d) ∈ I belongs to one of the aforementioned categories.

• First, consider a < b ≤ c < d. Note that there are two possible cases, either there are two players on each side of the center, or
three players on one side and one player alone on the other side. Sometimes, but not always, it is necessary to treat these
cases separately.
-  First, consider the case d(a, M)  = d(d, M).  If c < M,  the best reply (a − 1, a − 1, b − 1, c + 1) ∈ A has positive probability, so we

are in �1. Suppose from now on that c ≥ M.  If d(b − 1, M)  ≥ d(c + 3, M),  with positive probability BR = (a − 1, a − 1, b − 1,
c + 1), BR2 = (b, (c + 2) * 3), and with positive probability BR3 = (c + 1, (c + 3) * 3) ∈ A. If d(b − 1, M)  < d(c + 3, M), with positive
probability BR = (d + 1, d + 1, b − 1, c + 1), BR2 = (c, (b − 2) * 3), and BR3 = (b − 1, (b − 3) * 3) ∈ A.

- Suppose now without loss of generality that d(d, M)  < d(a, M), that is players prefer location d + 1 to a − 1.
• If d(d + 1, M)  < d(a, M),  then the maximal endpoint has contracted, we are in �2.
• If d(d + 1, M)  = d(a, M), then if d(b, M)  > d(a + 2, M),  BRt = (b − 1, d + 1, d + 1, c + 1) and l(BRt(ω)) = (d + 1) − (b − 1) < d − a = l(ω).

Thus, ω ∈ �2.
© If d(b, M)  = d(a + 2, M),  BRt = (a + 1, c + 1, d + 1, d + 1) and BRt+1 = (a, a, a, c), which has contracted.
© If d(b, M)  = d(a + 1, M),  we can have BRt = (a, c + 1, d + 1, d + 1), as a is indifferent between staying put and d + 1. In the next

step, a will relocate at c. All others are indifferent between a − 1 and d + 2, so with positive probability they end up on
the same side as c so that A is reached. Thus we are in �1.

• Now consider the case (a, b, c, c) with a < b < c, where there are two players at one of the endpoints.
- If d(a, M)  = d(c, M),  we are in �1 because due to indifference, there is a positive probability that all players end up on the

same side as b − 1.
- If d(a, M)  ≥ d(c + 1, M),  BRt = ((c + 1) * 3, b − 1). Thus, we assume b ≤ M. Since c + 1 − (b − 1) = c − b + 2, the interval has con-

tracted unless b ∈ {a + 1, a + 2}. If d(b, M)  = d(a + 1, M),  ω = (a, a + 1, c, c) and (c + 1) * 4 ∈ A ∈ BRt. If b = a + 2, and if d(a,
M) > d(c + 1, M),  with positive probability BRt = (c + 1) * 4 ∈ A. If d(a, M)  = d(c + 1, M),  BRt = (a + 1, (c + 1) * 3) which is an
absorbing state. We  are then in �4.

- If d(a, M)  ≤ d(c − 1, M),  BRt = ((a − 1) * 3, b − 1), and since b − 1 − (a − 1) = b − a < c − a, we  are in �2.
• If the configuration is (a, c, c, c), if d(c, M)  ≤ d(a, M),  with positive probability all players locate on the same side and we reach

A. If d(a, M)  < d(c, M),  BRt = ((a − 1) * 3, c − 1). If d(a − 1, M)  = d(c, M), we  are in an absorbing state. Otherwise the maximal
endpoint has decreased and we are in �2.

• Finally if the configuration is (a, a, c, c), without loss of generality d(a, M) ≤ d(c, M)  and with positive probability,
BRt = (a − 1) * 4 ∈ A.

Now, consider a date t at which exactly one player is relocated randomly. Let Lp and Rp be the leftmost and rightmost
endpoint at time t. At t + 1, the players who best reply are not further from the center than max{ − Lp − 1, Rp + 1}. Suppose that
BRt+1 = (a, b, c, r). The player who locates at random at r locates outside the interval I. At t + 2, the player located at random
will locate at a − 1 or c + 1 and the remaining players at a − 1 if r is to the right and at c + 1 if r is to the left. Thus at t + 2, no
player locates further away than max{ − a − 2, d + 2}.

When exactly one player relocates at random, each player is chosen to be the one who does with probability 1
4 . His

probability of being on the right/left side respectively is 1
2 .

Let us show that the probability of entering A is at least 1
8 , in other words there is at least one player whose random

relocation leads to BR in A. Let a, b, c, d be (one of) the best replies without random relocation at time t + 1. Note that
now (a, b, c, d) is the configuration we reach by best replies (in the absence of random relocations) and not as before the
configuration we start from. It is obvious that if at least three players are on the same side it is sufficient to relocate the last
one. Therefore suppose a ≤ b < 0 ≤ c ≤ d. Suppose first that d(a, M)  ≤ d(d, M)  (without loss of generality). Relocate the player
whose deterministic best reply was c to the right of d (such a relocation occurs with probability 1

8 ), so that the best reply with

random relocation is BRt+1 = (a, b, d, r). Since r >> d, BRt+2 = ((a − 1) * 3, b − 1) ∈ A. It is now sufficient to note that whenever we
are in A

⋂
I, if no random relocation occurs, we reach a configuration of the form x̄ ∈ I in two  steps. Therefore, if we  reach a

state in A
⋂

I in two or three steps starting from ω,  we  reach a configuration of the form x̄ ∈ I in four or five steps. �

We will also need a lemma  that tells us that when the sequence is typical, a state of the type x̄  ∈ I leads to [M − 3, M + 3].
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emma  6.

If we are in x̄ ∈  I at date t and the sequence is typical until t + l, we reach a state in [M − 3, M + 3] within l periods.

roof of Lemma  6.

Suppose without loss of generality that x < M.  If a random relocation outside I occurs, the configuration can be (r, x * 3)
nd then BR = ¯x + 1. Given that this is the only random relocation in l periods, best replies take us into [M − 3, M + 3] within

 periods. If the configuration with random location is (x * 3, r), r > M,  then BR = ((x − 1) * 3, x + 1), and since all players are on
he same side, again best replies take us into [M − 3, M + 3] within l periods. �

.3 Best reply dynamics starting from an absorbing class �l/2
AC

We  also need to determine what happens when we  exit an absorbing class in �l/2
AC .

emma  7. Consider a date t at which the deterministic best reply is ω = ((M − a) ∗ 3, (M + a − 1)) ∈ �l/2
AC (without loss of

enerality). Conditioning on the fact that a single random relocation outside of I occurs at t, and no random relocation occurs at
 + 1, the state at t + 1 can be

ωt+1 = ((M − a) ∗ 3, (M + a − 1)) ∈ �l/2
AC , i.e., we remain in the same absorbing class at the same distance from the center.

ωt+1 ∈ A. This happens with probability at least p = 1
8 , and consequently, the probability that ωt+3 = x̄ ∈ I is at least p = 1/8

times the probability that no random relocation occurs at t + 2 or t + 3.
ωt+1 ∈ {(M − a − 1) * 3, (M + a)}, that is in an absorbing class one step further from the center than before, which occurs with at
most probability 1 − p.

roof of Lemma  7.

Consider without loss of generality ω = ((M − a) * 3, (M + a − 1)) (the other case is similar by symmetry). If the player who
s alone is randomly relocated outside of I, if it is on the right we  are done because all players are on the same side. This choice
as probability 1

8 , as each player is chosen with probability 1
4 , and a location on the right is chosen with probability 1

2 . If it
s on the left, the configuration with random relocation is (r, (M − a) * 3) and BRt = (M − a − 1, (M − a + 1) * 3) ∈ A

⋂
I. If one of

he three players on the same side relocates at random on the left, the configuration with random relocation is (r, (M − a) * 2,
 + a − 1) and BRt = (M − a + 1, (M + a) ∗ 3) ∈ �l/2

AC . If one of the three players on the same side relocates at random on the
ight, the configuration with random relocation is ((M − a) * 2, (M + a − 1), r), hence BRt = ((M − a − 1) * 3, (M + a)) ∈ �AC. Note
hat we are not necessarily in �l/2

AC because we have moved to an absorbing state one step farther from the center. �

emma  8. Starting from any state ω ∈ �l/2
AC , the probability of returning to S before reaching a configuration in IC is greater

han 1 − O
(

�
l2

)
.

roof of Lemma  8.

Consider the probability of returning to S from a state in �l/2
AC . This probability is minimized when ω = {(M − a) * 3,

 + a − 1)}  with a = l/2, the state in S that is the farthest from the center. Let q be the probability that exactly one random
elocation occurs and that it leads to {(M − a − 1) * 3, (M + a)}. With probability 1 − q − O(�2) we  return to S. With probability

 = O(�) we are in {(M − a − 1) * 3, (M + a)}, an absorbing class that is neither in S nor in IC. From this class, we  can reach IC in
wo ways. Either by gradually moving from one absorbing class to another one step farther from the center, i.e., repeating l/2
imes case 3 in Lemma 7, or we can exit rapidly because of ‘atypical’ random relocations. Consider the sequence of random
ariables drawn at times t, . . .,  t + L, where t is the date of entry in ((M − a − 1) * 3, (M + a)) and L =: l4

� . Let us define three
vents E1, E2, E3 such that if these three events are realized we return to S.

E1: Let Ak be the event that there is no random relocation in I at date t + k or t + k + 1, and at most one random relocation in
IC (either at t + k or at t + k + 1 but not both), and let E1 be the event

⋂k=L−1
k=1 Ak).

E2 is the event that there are at least O(l) random relocations in IC.
E3 is the event that at least one random relocation in IC leads to a state x̄ ∈ I.

If the three events above are realized, we return to S. Consequently the probability that we do not return to S is bounded

y P(EC

1 ∪ EC
2 ∪ EC

3 ) ≤ P(EC
1 ) + P(EC

2 ∪ EC
3 ).

We begin by bounding P(E1). At each date, the probability that there is no random relocation is (1 − �)4 =: 1 − �, with
 = 4� + O(�2

N). The probability that exactly one random relocation occurs at a given date is q =: 4�(1 − �)3 = 4� + O(�2). The

robability that the required property is satisified by A1 is thus (1 − �)2 + 2(1 − �)q(N − l)/N = 1 − O
(

l�
N

)
. Either we have
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no random relocations in A1 or there is a random relocation outside of I at one of the dates and no random relocation
at the other date. The probability that Ak satisfies the property is not independent of the probability that it is satisfied
by Ak−1 since there is one date in common. However the probability P(

⋂k=L−1
k=1 Ak) =

∏k=L−1
k=2 P(Ak|Ak−1)P(A1). The condi-

tional probability P(Ak|Ak−1) is not smaller than P(Ak). Indeed the dependence occurs through the common location k and

the probability of a random relocation at this date is lower conditioning on Ak−1. We  have P(
⋂k=L−1

k=1 Ak) ≥
(

1 − O
(

l�
N

))L =
(

1 − O
(

l�
N

))( N
l�

)(
l5
N

)
= exp −O

(
l5

N

)
= 1 − O

(
l5

N

)
. Thus P(EC

1 ) = O
(

l5

N

)
< O

(
1
l2

)
since lim

N→∞
l7

N = 0.

Next, we prove that with high probability the number of random relocations in IC is approximately L�, their expected
value. The number of periods at which we obtain random relocations is given by a binomial random variable Bin(q, L). This
variable has mean qL = O(l4) and standard deviation � =

√
Lq(1 − q) = O(l2). By the Chebycheff inequality, the probability

P(|Bin(q, L) − qL|  ≥ k�)  ≤ 1
k2 . Taking for example k = l, with probability at least 1 − 1

l2
, the number of random relocations is

O(l4). Thus, P(E2) ≥ 1 − 1
l2

.

Finally, each time a random relocation occurs, it is such that we  enter A with probability p = 1
8 , and if no random relocation

occurs in the next two steps, which has a probability close to 1, we  then reach x̄ ∈ I. Consequently, at each random relocation,
the probability of not reaching x̄ ∈  I is smaller than, say, 8

9 . If we condition on the fact that there are O(l4) random relocations

in IC, the probability that none leads to x̄ ∈ I is P(EC
3 |E2) =

(
8
9

)O(l4)
< O(�2) (as a result of Condition 1). Therefore P(EC

2

⋃
EC

3 ) =
1 − P(E2

⋂
E3) = 1 − P(E3|E2)P(E2) = 1 − [1 − P(EC

3 |E2)]P(E2) ≤ 1 − [1 − O(�2)](1 − 1
l2

) = O( 1
l2

).

Thus, we conclude that P(EC
1

⋃
EC

2

⋃
EC

3 ) = O
(

1
l2

)
. Since the probability of entering ((M − a − 1) * 3, (M + a)) instead of

returning to S immediately is q, the probability of not returning to S is O
(

q
l2

)
= O

(
�
l2

)
. �

Now we can prove Proposition 4.

C.4 Proof of Proposition 4

We  want to bound the probability of returning to S from a state in S = [M − 3, M + 3]
⋃

�l/2
AC . First, consider the case

where we start from an ω ∈ [M − 3, M + 3]. Let us bound the probability of returning in at most l/4 periods, assuming that
the sequence is typical over these periods. We  can assume that we do not enter an absorbing class because if we do we  have
returned to S, so |�4| = 0. Note that by Lemma  5, we have |�3| = |�1| + |�2| since any successor of an element in �3 is in
�1

⋃
�2. Also note that if |�1| < 2|�2|, then we have returned to the center M because the configurations in �2 contract

one step and those in �1 grow at most two steps. Therefore we  must have |�3| + |�1| + |�2| = l
4 , where |�1| ≥ 2|�2|.

Suppose that |�1| < l
24 . Then |�2| ≤ 2l

24 and |�3| < 3l
24 . But this contradicts |�3| + |�1| + |�2| = l

4 . Consequently, |�1| ≥ l
24 .

Each time we are in �1, we enter a state x̄ ∈ I with probability p. From such a state we then return to [M − 3, M + 3]
if the sequence is typical by Lemma  6. The probability of not reaching a x̄ ∈  I in l/24 trials is (1 − p)l/24 ≤ O(�2), which

is a consequence of Condition 1 since 0 < (1 − p)
1

24 < 1. Consequently, the probability of returning to S is bounded by
1 − (1 − p)l/24 times the probability that the sequence is typical for l/4 + l periods. Using Lemma  4 this probability is greater
than (1 − O(�2))[1 − �2l2] = 1 − O(�2l2). In the case which was not considered before, where we start from a state ω ∈ �l/2

AC ,
it is sufficient to apply Lemma  8. �

C.5 Proof of Proposition 5

Proposition 5 is a consequence of Lemma  9 below:

Lemma  9. For any configuration ω ∈ AC, there exists a random relocation of a player, which occurs with probability O(�) such
that A is reached in at most three steps.

Proof. The proof is based on a number of lemmas dealing with all possible cases of configurations in AC.

The first lemma  deals with configurations where three players are on the same side:

Lemma  10. Suppose that ω is a configuration such that a ≤ b ≤ c < M < d. Then either BR(ω) is a configuration such that
a ≤ b < M < c ≤ d, or a single random relocation will place BR(ω) in A.

Proof. Indeed, suppose that the deterministic best replies place three players on the same side, it is then sufficient to
relocate at random the last player. If he is relocated on the same side as the others, which occurs with probability 1

2 , we are

in A. �

Therefore, from now on, we restrict attention to configurations with two  players on each side of the center: a ≤ b < M < c ≤ d.
In Lemma  11 below, we consider the case where both endpoints of the configuration are close to the center so that no

player has an interior best reply.
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emma  11. Suppose that max {d(a, M), d(d, M)} < N
4 , then the set A is reached within at most two  steps with a probability at

east equal to �c1, where c1 is a constant independent of N.

roof. If max  {d(a, M), d(d, M)} < N
4 , the interior players prefer to relocate at the endpoints. We  have a ≤ b < M < c ≤ d, and

(d, M)  ≤ d(a, M)  (without loss of generality), then with probability at least 1
4 both interior players locate at d + 1, and the

layer at d locates at c + 1. It is sufficient to randomly relocate the player at a on the right side to be in A. �

When the endpoints of a configuration are far from the center, best replies can be interior. We  summarize some useful
roperties of interior best replies. We  denote by U[a,b] a discrete uniform law on the set of locations strictly between a and b.

roperty 1.

If the players at a or d prefer an interior location it is given by U[b,c]
If the player at b has an interior best reply, it is given by the uniform random variable U[a,c] or U[c,d]
If the player at c has an interior best reply, it is given by the uniform random variable U[b,d] or U[a,b]
If the best reply of the player at b is U[c,d], the best reply of the player at c is U[b,d]
If the best reply of the player at c is U[a,b], the best reply of the player at a is U[a,c]

roof. For uniform variables on the intervals [a, c], [b, c] and [b, d], the result is obvious since these intervals contain M.  For
xample [a, c] = [a, M]

⋃
(M,  c] and at least one of the two intervals must have a strictly positive probability to make [a, c] a

est reply, and similarly for [b, c] and [b, d]. Let us show that the best reply U[c,d] (and similarly U[a,b] by symmetry) can only
ccur if d(c, M)  ≤ [ 1

4 − K]N, implying P(d(U[c,d], M)  < N
4 ) ≥ K . If d(c, M)  > [ 1

4 − K]N, the utility of location U[c,d] is inferior to
/8 + KN,  but then if d(a, M)  < N

4 , the player at b prefers location a − 1, which gives a utility of at least N
4 . And if d(a, M)  > N

4 ,
e prefers U[a,c] which provides a utility superior to N

4 − KN (with K assumed small but positive). Thus, U[c,d] cannot be a best
eply. �

emma  13. Let c3 = 1
10 . If d(b, M)  > kN and d(c, M)  > c3N, then any configuration ω where at least one player has an interior best

eply reaches A with a single random relocation.

roof. Suppose at least one player has an interior best reply U ∈ {U[a,c], U[b,c], U[b,d]}. By the assumptions, P(U > M) > 1
10

nd P(U < M)  > 1
10 . Such a player can end up on any side of the center with positive probability. If one of the remaining

hree players is alone on his side, it suffices to relocate him at random. We  note that by Property 1, if the interior reply (of
layer b) is U[c,d], then the best reply of the player at c is U[b,d], and similarly if the interior reply (of player c) is U[a,b] then
hat of player b is U[a,c]. �

The cases that were not covered by Lemma  13 are covered by Lemma  14.

emma  14. If d(b, M)  ≤ c3N or d(c, M)  ≤ c3N, where c3 = 1
10 , then any configuration ω reaches A in at most three steps involving

 single random relocation.

roof. Suppose without loss of generality d(b, M) ≤ d(c, M).

(i) Suppose d(a, M)  > N
4 and d(d, M)  < N

4 . Since the point d + 1 ≤ N
4 is available, no player locates at a − 1. If some player

has an interior best reply, by Lemma  12, the realized location is closer than N
4 to the center with probability at least 1

4 ,
and we reach a configuration where both endpoints are inferior to N

4 , a case already treated in Lemma  11.
(ii) The case d(a, M)  < N

4 and d(d, M)  > N
4 is the same as the one above, by symmetry, since the positions of b and d did not

intervene in the argument above.
iii) Suppose d(a, M)  > N

4 and d(d, M)  > N
4 .

(a) If d(b, M)  ≤ d(c, M)  < c3N, then the best replies are b − 1, c + 1 and the interior players either locate at the smallest
endpoint or in the interior. In both cases, with positive probability, the smallest endpoint in BRt(ω) is closer than N

4
to the center, and we are in one of the cases considered above.

(b) Suppose d(c, M)  ≥ c3N, and d(a, M)  > d(d, M).  If the best reply of the player at b is U[a,c], he has positive probability
of ending up on either side. We  can then apply the argument in the proof of Lemma  13: at least two  of the other
players locate on the same side. Relocate the remaining one on this side. Thus suppose the player at b locates at d + 1
or at U[c,d]. The players at c and d locate on the right with positive probability.30 The player at a relocates at b − 1. It
is sufficient to relocate the player whose best reply is b − 1 on the right side.

(c) Suppose d(c, M) ≥ c3N, and d(a, M)  ≤ d(d, M).  If the best reply of the player at b is U[a,c], he has positive probability of
ending up on either side, and we are done by the argument in the proof of Lemma  13. Thus, suppose the player at b

locates at a − 1 or U[c,d] and the player at a relocates at b − 1. Note that d(c, M)  < N/5, because otherwise the player at
b would prefer the interval [a, c]. The possible locations to the right of c are U[b,d] and U[c,d] but P(d(U[c,d], M)  < N

4 ) ≥

30 Indeed U[a,b] is not a best reply for the player at c if U[a,c] is not a best reply for the player at b.
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N/4−N/5
d−c . With positive probability, we reach a configuration whose rightmost endpoint is smaller than N

4 , a case that
has been analyzed before. �

Combining Lemma  10–14 proves Lemma  9. �

Proposition 5 results almost immediately from this lemma. Indeed, once in A, the configuration will move towards
the center at the pace of one location per time step. To reach the center, it is thus sufficient that no random relocation
occurs in N steps. The probability that this is the case is (1 − p)N, where p = 1 − (1 − �)4. Since � < 1/N, we  have (1 − p)N = O(1).
Consequently, the probability of reaching M from b ∈ AC is given by the probability of entering A, which is O(�), since a single
random relocation takes us to A, times the probability that no random relocation occurs for N periods after entering A, which
has probability O(1). The result in Proposition 5 follows. �

Appendix D. Stochastic stability of Nash equilibria

Proof of Theorem 3.

Let (Li)
i=r
i=1 be the locations of the players at date t, with the convention that L1 and Lr are the leftmost and rightmost

locations. By abuse of notation, if two players are (non-exactly) paired, we will refer to their location as Li if the leftmost
player in the pair is located at Li and the rightmost one in the pair at Li + 1. Let i =: argmaxLi+3 − Li. This quantity is well defined
if the players are located in at least four different locations. This will always be true if n ≥ 7. If n = 6 it is true if all the players
are not paired in equilibrium. We  will assume that this holds and the cases n = 4, 5 or n = 6 with all players paired will be
analyzed separately. Suppose first that the players at Li+1 and Li+2 are alone or exactly paired. The player/players at Li+1 are
indifferent between their current location and Li + 1. The player/players at Li+2 are indifferent between their current location
and Li+3 − 1, so that if the players relocate at Li + 1 and Li+3 − 1, then in the next period, a player can gain (Li+3 − 1 − (Li + 1))/2
by locating anywhere in [Li + 2, Li+3 − 2]. Any player j who  is not in this interval and who  remains at his current position Lj
gains (Lj+1 − Lj−1)/2 < (Li+3 − 1 − (Li + 1))/2 since i was  chosen to have for all j Li+3 − Li ≥ Lj+2 − Lj−1 = Lj+2 − Lj+1 + Lj+1 − Lj−1 and
Lj+2 − Lj+1 »1 for every j. Therefore, for every player, every location in [Li + 2, Li+3 − 2] is a best reply.

Suppose instead that the players at Li+1 and Li+2 are (non-exactly) paired. In this case, it is not possible to obtain a large
empty interval in one step and we need to move players in several steps. The locations chosen among the possible best replies
in the first step are picked in order to obtain new empty intervals of suitable sizes. At time t, by indifference, with positive
probability, the leftmost player at Li+1 can move to Li + 1, the rightmost player at Li+2 to Li+3 − 3 and the leftmost player at Li+2 to
Li+2 − 2. With positive probability, the occupied locations in [Li, Li+3] at t + 1 will then be {Li, Li + 1, Li+1 + 1, Li+2 − 2, Li+3 − 3, Li+3}.
The unoccupied intervals between Li and Li+3 are [Li + 2, Li+1], [Li+1 + 2, Li+2 − 3], [Li+2 − 1, Li+3 − 4]. If we compare the sizes of
these unoccupied intervals with the sizes of the unoccupied intervals in Nash equilibrium prior to the moves at time t we have
Li+1 − (Li + 2) = (Li+1 − 1) − (Li + 1), (Li+2 − 3) − (Li+1 + 2) = (Li+2 − 1) − (Li+1 + 2) − 2 and (Li+3 − 4) − (Li+2 − 1) = (Li+3 − 1) − (Li+2 + 2).
The moves at t have reduced the middle market by two, while conserving the sizes of the two others. By property (v), the size
of the middle market in Nash equilibrium cannot exceed the size of the left and right markets by more than one. Therefore,
at t + 1, the middle interval cannot be strictly preferred to the left and right ones. The markets of the players located at Li and
Li+3 have been reduced and they might want to move. If interval [Li + 2, Li+1] is a best reply for the players located at Li and
Li+3, Li + 2 is a possible location and if [Li+2 − 1, Li+3 − 4] is a best reply, Li+3 − 4 is a possible location. If none of these intervals
are a best reply, the best reply for these players is either to stay where they are or relocate elsewhere (we note that if they
relocate elsewhere, their presence will only have for effect to reduce the markets of the players where they relocate). It is
also important to note that since the sizes of the different markets between Li and Li+3 have not increased compared to their
sizes in Nash equilibrium, no other players want to move into these markets at this time. As for the players at Li+1 + 1 and
Li+2 − 2, by indifference, they can move to Li + 2 and Li+3 − 4 respectively at t + 1, while the players at Li + 1 and Li+3 − 3 stay
where they are.

At t + 2, with positive probability, we have thus reached a configuration where the interval [Li + 3, Li+3 − 5] is empty.
Similarly to the first case, a player can gain (Li+3 − Li − 8)/2 by locating anywhere in this interval. If he remains at his current
position Lj, he gains at most (Lj+1 − Lj−1)/2 < (Li+3 − Li − 8)/2 for every j. Therefore, for every player, every location in [Li + 3,
Li+3 − 5] is a best reply.

Finally, if the players at Li+1 (without loss of generality) are non exactly paired and those at Li+2 are exactly paired, at t,
by indifference, one of the players at Li+2 can move to Li+3 − 3 and the other one to Li+2 − 2, the leftmost player at Li+1 can
move to Li + 2 and the rightmost player stay where he is. This configuration is similar to the one reached at time t in the
case analyzed previously and by the same arguments, at t + 2, with positive probability locations in [Li + 3, Li+3 − 4] are best
replies.
If the whole interval [Li + 2, Li+3 − 2] is not on the same side of the center, the probability of locating in say {1, . . .,
M}

⋂
[Li + 2, Li+3 − 2] is positive (and similarly for {1, . . .,  M}

⋂
[Li + 3, Li+3 − 5], etc.). Thus, there is a positive probability of

reaching a configuration where all players are on the same side of the center (i.e., a configuration in A). Therefore, in any
Nash equilibrium, with positive probability, we reach, in at most three steps, a state where all players are on the same side
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f the center. We  have already seen that from such a state we  reach the center with probability 1 and from the center, there
s a positive probability of reaching some absorbing state in �AC.

We will now analyze the cases n = 4, 5 and n = 6 with all players paired. In all these cases, the proof just consist in showing
hat we have a positive probability of a best reply sequence leading to a configuration where all players are on the same side.
n the cases n = 4, 5, 6, there are always three possible sub-cases depending on whether the peripheral players are exactly
r not exactly paired: Case (a): all the peripheral players are exactly matched and located at l and r respectively. Case (b):
he peripheral players on the left (without loss of generality) are not exactly paired and located at l, l + 1 and the rightmost
layers are exactly paired and located at r. finally, in case (c), all the peripheral players can be non exactly paired and located
t l, l + 1 and r, r + 1. We  should also note that it is possible that some of the Nash equilibria that we analyze do not always
xist because the inequalities that must hold to ensure their stability are not verified for all N. However, it is easier to prove
hat if the equilibrium exists the inequalities defining it lead to instability than to check its existence.

n = 4:
Case (a). The initial locations are (l, l, r, r). Assume that the players at l do not want to deviate to l − 1 and strictly prefer their

current location to l + 1 (or any other interior location). These conditions imply that l ≤ l+1
2 + r−l−1

4 and r−l
2 < l+1

2 + r−l−1
4 .

Rewriting these conditions gives us 3l ≤ r + 1 and 3l > r − 1. Thus 3l ∈ {r, r + 1}. Suppose first that 3l = r + 1. Assuming that the
players at r strictly prefer r to l − 1, we have l < r−l−1

4 + N−r+1
2 ⇔ 5l < 2N − r + 1 ⇔ N > 4l − 1, where the last inequality

comes from 3l = r + 1. The players at r must prefer their current location to r + 1, which gives r−l−1
4 + N−r+1

2 ≥ N − r ⇔ 2N ≤
3r − l + 1 ⇔ N ≤ 4l − 1. Together we have 4l − 1 < N ≤ 4l − 1, which is impossible. The weak inequalities must be verified,
for Nash equilibrium to hold. Therefore it must be that some of the equalities that were assumed to be strict are not. Thus,
either the players at l are indifferent between l and an interior location, or the players at r are indifferent between r and
l − 1. In both cases, due to indifference, we can move two players to the same side as the players on the opposite side and
we are done. Suppose 3l = r. The players at r must not want to move to l − 1, which gives r−l−1

4 + N−r+1
2 > l ⇔ 2N > 8l − 1.

The players at l must not want to move to r + 1, which gives N − r ≤ l+1
2 + r−l−1

4 ⇔ 4N ≤ 5r + l + 1 ⇔ 4N ≤ 16l  + 1. Thus we
must have 16l  − 2 <4N  ≤ 16l + 1. Since l is a natural number, we  must have N = 4l. If the number of locations is a multiple of 4,
we can have a Nash equilibrium with 4 players that is not weak. This does not necessarily imply that the Nash equilibrium
belongs to the stochastically stable steady states but we cannot apply the same types of arguments as when the equilibrium
is weak. This case is excluded from our analysis.

Case (b): The initial configuration is (l, l + 1, r, r). Relocate the player at l + 1 who  is indifferent between interior locations
to M − 4, to obtain configuration (l, M − 4, r, r). The player at l has M − 5 for best reply and the player at M − 4 is indifferent
between interior locations in [l, r]. The left market of the players at r has been reduced significantly. Unless their unique
best reply is r + 1, with positive probability, all players can end up on the same side. If their unique best reply is r + 1, (M − 5,
M − 4, r + 1, r + 1) ∈ BR(l, M − 4, r, r) and (3 * (M − 6), M − 5) ∈ BR2 and so in two  steps, with positive probability, all players
can end up on the same side.

Case (c): the initial configuration is (l, l + 1, r, r + 1). Suppose without loss of generality that l ≥ N − (r + 1) so that location
l − 1 is preferred to r + 2. Then (l, l + 1, M − 2, r + 1) ∈ BR(l, l + 1, r, r + 1) and (l − 1, l, M − 2, M − 1) ∈ BR2.
n = 5:

We  note the middle player’s location by m.  In all the Nash equilibria, we  have some inequalities that must be verified. It
is necessary to have r−l

2 ≥ max{l, N − r − 1} because the middle player must not want to deviate to location l − 1 or to r + 2.
Moreover, we must have m−l

2 ≥ l to ensure that none of the left-peripheral players want to deviate to l − 1. Indeed, if the
left-peripheral players are exactly paired, they earn l+1

2 + m−l−1
4 . They must not want to deviate to location l − 1 implying

that l ≤ l+1
2 + m−l−1

4 ↔ 2l ≤ m − l + 1. If the left-most players are non-exactly paired, the player at l + 1 who  earns m−l
2 at

his current location must not want to deviate to l − 1. A necessary condition is that m−l
2 ≥ l. Taking the weakest condition

resulting from the two possible cases we have 2l ≤ m − l + 1 and by similar reasoning for the rightmost players we  must
have r−m

2 ≥ N − r + 1. To summarize, in any Nash equilibrium, we must have 2l ≤ m − l + 1 and 2(N  − r) ≤ r − m + 1.
Case (a): Let (l, l, m, r, r) be the initial configuration at t = 0. By indifference of the middle player, (l, l, l + 1, r, r) ∈ BR(l, l, m, r,

r). At t = 2, the payoff for a location inside [l + 2, r − 1] is (r−1)−(l+2)
2 = (r−m)+(m−l)−3

2 >> max{N − r, l
2 }. Therefore the leftmost

players prefer a location in [l + 2, r − 1]. If the rightmost players also prefer an interior location we  are done because with
positive probability, all players pick a location in [l + 2, r − 1] on the left side of the center. If not, at t = 2, locate one of the
leftmost players at l + 2 and the other one at r − 1. This reduces the left market of the rightmost players enough to make
them want to move. At t + 3, all players prefer a location in [l + 3, r − 2]. With positive probability, all player pick a location
on the left of the center.

Case (b): The initial configuration is (l, l + 1, m,  r, r). By indifference of the middle player, (l, l + 1, l + 2, r, r) ∈ BR(l, l + 1, m,  r,
r). As in (a), at t + 2, the two leftmost players prefer a location in [l + 3, r − 1]. The rest of the argument is analogous to case
(a).

Case (c): The initial configuration is (l, l + 1, m,  r, r + 1). By indifference of the middle player, (l, l + 1, l + 2, r, r + 1) ∈ BR(l,

l + 1, m, r, r + 1). As in (a), at time t = 2, the two leftmost players prefer a location in [l + 3, r − 1]. With positive probability
they locate at l + 3. The player at r can locate at l + 3 by indifference, so ((l + 3) * 3, r + 1) ∈ BR2. At t + 3, the player at r + 1
moves to l + 4. All other players prefer a location in [l + 4, r]. Thus, with positive probability, all player pick a location on the
left of the center.
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• n = 6:
The middle players, exactly or non exactly paired must not want to deviate, implying that min{ m+1−l

2 , r−m
2 , r−(l+1)

4 } ≥
max{l, N − r}.

Case (a): The initial configuration is (l, l, m, m,  r, r) or (l, l, m,  m + 1, r, r). By indifference, at a time t = 1, the two middle
players, whether they are exactly or not exactly paired, can relocate at l + 1 and r − 1, so as to obtain configuration (l, l, l + 1,
r − 1, r, r). At t = 2, the payoff from locating inside [l + 2, r − 2] is (r−2)−(l+2)

2 = (r−m)+(m−l)−4
2 > max{ N−r+1

2 , l+1
2 }. Therefore

the players at l and r both prefer a location inside [l + 2, r − 2] to their current location. The player at r − 1 is indifferent
between this location and other locations in [l + 2, r − 2]. Thus, with positive probability, at t + 1, they all locate on the same
side of the center.

Case (b): The initial configuration is (l, l + 1, m,  m, r, r) or (l, l + 1, m,  m + 1, r, r). By indifference, at a time t = 1, the two
middle players, whether they are exactly or not exactly paired, can relocate at l + 2 and r − 1, so as to obtain configuration
(l, l + 1, l + 2, r − 1, r, r). At t = 2, similarly to case (a), the players at l and l + 1 prefer a location inside [l + 3r − 2] and the same
for the players at r. The player at r − 1 is indifferent between all locations in [l + 3, r − 1]. With positive probability, at t = 2,
all players locate on the same side of the center.

Case (c): The initial configuration is (l, l + 1, m, m,  r, r + 1) or (l, l + 1, m,  m + 1, r, r + 1). By indifference, at a time t = 1, the
two middle players can relocate at l + 2 and r − 1, so as to obtain configuration (l, l + 1, l + 2, r − 1, r, r + 1). At t = 2, as in case
(a), the players at l, l + 1, r and r + 1 prefer locations inside [l + 3, r − 2], the players at l + 2 and r − 1 are indifferent between
interior locations. With positive probability, at t = 2, all players locate on the same side of the center. �
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